|
FONDAZIONE
- | (BRUNO KESSLER

Advanced model checking
for verification and
safety assessment

Alessandro Cimatti
Fondazione Bruno Kessler (FBK)

Invited Lectures, University of Udine
Lecture 1

Lectures prepared in collaboration with
Stefano Tonetta and Marco Gario
Slides on IC3 borrowed from Alberto Griggio (VTSA'15)

Alessandro Cimatti - Invited Lectures, UniUD

Outline

e Motivation

* Finite-State Model Checking

 Invariant Checking
o« IC3

« LTL Checking
* Infinite-State Model Checking

* Wrap-up

Alessandro Cimatti - Invited Lectures, UniUD

Motivation

Alessandro Cimatti - Invited Lectures, UniUD 3

Embedded Safety-Critical Systems

 Embedded with software to e
deliver intelligent: e o oo
« Transportation L A .
- Communication _| =) T
* Automation 1 e _T"
] Section Section End Section | Section
* Across domains: Movement Authriy EndOF Authorty
 Railways
 Avionics
 Automotive
e Space
 Health oo L -
« Key properties and | e [
challenges: b e B P
* Interaction of components s i i et
« Decomposition of services L oot e FJ
- Safety requirements ———— i ——
uuuuuu e—

Alessandro Cimatti - Invited Lectures, UniUD 4

Model-based system engineering

Models used for system requirements, architectural design,
analysis, validation and verification

Different system-level analysis (safety, reliability,
performance, ...)

Formal methods as back-end

 Formal specification to assign models a rigorous mathematical
semantics

« Formal verification to prove the properties on the models.

Design models translated into input for verification
engine

Requirements formalized into properties

Model checking appealing because integrated as push-
button

Alessandro Cimatti - Invited Lectures, UniUD

AIR6110 Wheel Braking System

* Joint scientific study with Boeing

 Aerospace Information Report 6110:

e Traditional Aircraft/System Development Process
Example

« Wheel Brake System of a fictional dual-engine
aircraft

 Objectives:
« Analyze the system safety through formal techniques

« Demonstrate the usefulness and suitability of formal
techniques for improving the overall traditional
development and supporting aircraft certification

Alessandro Cimatti - Invited Lectures, UniUD

NASA NextGen Air Traffic Control

* Joint project with NASA Ames and Langley

 Allocation of tasks between Aircraft and Ground

« Model and Study a design space with more than 1600
configurations

 Objectives:

« Apply Formal Methods to study the quality and Safety of
many design proposals

* Highlight Implicit assumptions

Alessandro Cimatti - Invited Lectures, UniUD

Finite-State
Model Checking

Invariant Checking

Model checking

temporal formula

[G(p -> Fq)} \ /yes!

Model
Checker

N Y —
finite-state model q \

counterexample

Alessandro Cimatti - Invited Lectures, UniUD

Mutual exclusion example

Alessandro Cimatti - Invited Lectures, UniUD

N: non-critical
T: trying

C: critical
Userl

User?2

Property:
always

not C1 or not C2
I.e.

(C1 and C2)

is not reachable

Symbolic representation

Symbolic Boolean variables V = {v,, ..., v,} to represent the
state space

A state is an assignment to the variables

Symbolic formulas used to represent:

« Setof states: ¢(V)={s|sE¢}
o« Abuse of notation se ¢ iff s E ¢

 Set of transitions: ¢(V,V') = {(s,s") | (s,s") E ¢}
e Where the variables V' = {v'4, ..., v',,} represent next state variables

A transition system is a tuple (V,I,T) where:

« TV is the set of variables

 The set of initial states represented by the formula 1(V)
 The transition relation represented by the formula T(V,V")

Alessandro Cimatti - Invited Lectures, UniUD

Example

e V={uv}
* [:==uAN-v

o T:=u o uAv & (uxorv)

Alessandro Cimatti - Invited Lectures, UniUD

Invariant properties

A path of the system S is a sequence sy, sq, ..., s Of
states such that s, 1 and for all i,0 <i <k,
Si,)Si+1 =T

A state s is reachable iff there exists a path
Sg, Sy, .-, S, sSuch that s = s;,

A formula P(V) is an invariant iff for all paths
So,S1,,Sk, forall i,s; e P

Equivalent to say that no state in =P is reachable

Alessandro Cimatti - Invited Lectures, UniUD

Forward reachability checking

 Forward image computation:
e Compute all states reachable from Q in one transition:

FwdImg(Q) =3V QW) AT(V,V)[V/ V']
* Prove that a set of states Bad is not reachable:
e Start from initial states: R :=1
 Apply Fwdimg iteratively: oldR := R;R = Fwdimg(R) U R
e until fixpoint oldR =R

Bad(X)

Alessandro Cimatti - Invited Lectures, UniUD

Bounded Model Checking

 Reachability encoded into a satisfiability problem
I(Vo) NT(Vo, Vi) AT(Vy, Vo) A= AT (Vi—1, Vi) A Bad (Vi)

 The formula is sat iff there exists a path of length
k that reaches Bad

* Checked for increasing values of k
 Exploited incrementality of SAT solvers

* Finite-state space = a completeness threshold
K exists

 If unsat for all k < K then Bad is not reachable
« K is typically very large = unfeasible to reach in practice

Alessandro Cimatti - Invited Lectures, UniUD

Example

o @ — @
[:==—=uAN-v

T=u o uAv e (uxorv)

Bad =uAv

BMC:

¢ (ﬁUO N\ _Ivo) AN (UO AN VO) UNSAT

* (mup A=wo) A (ug & ug Avy & (ug xor 1)) A (ug Avy) UNSAT

e (AugA—vy) A (ul o Uy Avy © (ug xor UO))
(uz o Uy Avy, © (uq xor vl)) A
(u3 © uy Avy © (uy x0r v5)) A (U3 Avs)

SAT

Alessandro Cimatti - Invited Lectures, UniUD

Induction and K-induction

 Induction
 Base case: check if the initial state satisfies P (invariant)
 Inductive case: check if the transitions preserve the invariant
PWVYATWV, V) PV
e We say P is inductive invariant

e K-induction

« Base case: check if all initial path satisfies P (invariant) up to
k steps

 Inductive case: check if every path of k + 1 steps preserve the
invariant

PWo) ANT(Vo, Vi)AP(V) ATV, Vo) Ao AP(Vie_1) AT(Vie—1, Vi) E P(V')

 Strengthened with simple path condition to avoid repeating
states

* We say P is k-inductive invariant

 Typically however Pis not (k-)inductive
= find Inv such that Invis inductive invariant and Inv & P

Alessandro Cimatti - Invited Lectures, UniUD

IV = {xl,xz,, x3}
[== —=xqy A Xy A X3
Bad = x{ A\ x,
P = —=x; V—x,

Inductive?
 No

k-inductive?
* Yes for k=3

Inductive invariant?

Alessandro Cimatti - Invited Lectures, UniUD

Finite State Model-
Checking

IC3

- Very successful SAT-based model checking algorithm
Based on induction

Given a symbolic transition system and invariant property
P, build an inductive invariant F s.t. FE P

Inductive invariant built incrementally

Trace of formulas F, = I, F, ..., F; S.t:

fori > 0, F; is a set of clauses, overapproximation of
states reachable in up to i steps

Fiy1 € F; (SO F; E Fyyq)
F,AT E F/,,
Foralli<kF, =P
Strengthen formulas until F, = F;, 44

Exploiting efficient SAT solvers

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

o T
% e —

- Blocking phase: incrementally strengthen trace
until F, = P

- Get bad cube s

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

T
©
- Blocking phase: incrementally strengthen trace

until F, = P

Get bad cube s
Call SAT solveron Fj,_{ A-sATAS'

(i.e., checkif F,_; A=s AT E —s')

\ECheck if —s is inductive relative to F, , }

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

Fr_q
c

- Blocking phase: incrementally strengthen trace
until F, = P

Get bad cube s

Call SAT solver on Fy_{ A=sATAS' If I is reached, a
counterexample

SAT: s is reachable from F,_; in 1 step to P is found

Get a cube c in the preimage of s and try
(recursively) to prove it unreachable from F,_,, ...

c is a counterexample to induction (CTI)

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

.
Q ‘i —>1

- Blocking phase: incrementally strengthen trace
until F, E P

Get bad cube s
Call SAT solveron Fj,_{ A-sATASs'

UNSAT: —s is inductive relative to Fj_,

- Generalize c to g and block by adding —g to
Fi 1, Fi_p, ., Fy

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

- M [=

- Blocking phase: incrementally strengthen trace
until F, E P

Get bad cube s
Call SAT solveron Fj,_{ A-sATASs'

UNSAT: —s is inductive relative to Fj_,

- Generalize c to g and block by adding —g to
Fi 1, Fi_p, ., Fy

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

T T T °
o -

- Propagation: extend trace to F,,; and push
forward clauses

For each / and each clause c € F;:

Call SAT solver on F; AT A —c’
If UNSAT, add ¢ to F;,4

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

T T T T o
o -

- Propagation: extend trace to F,,; and push
forward clauses

For each i and each clause c € F;:

Call SAT solver on F; AT A —c’
If UNSAT, add ¢ to F;,4

Alessandro Cimatti - Invited Lectures, UniUD

A (very) high level view of IC3

T T T T o
o -

- Propagation: extend trace to F,,; and push
forward clauses

For each i and each clause c € F;:

Call SAT solver on F; AT A —c’

If UNSAT, add ¢ to F;,4
If F; = F;,,, P is proved,

otherwise start another round of blocking and propagation

Alessandro Cimatti - Invited Lectures, UniUD

Inductive Clause Generalization

- Crucial step of IC3

. Given a relatively inductive clause ¢ = {l1,...,1,}

- compute a generalization g C ¢ that is still inductive
Fi i ANTANgEY (1)
- Drop literals from ¢ and check that (1) still holds

- Accelerate with unsat cores returned by the SAT solver
- Using SAT under assumptions

- However, make sure the base case still holds
- If THEce\{l;} ,then l; cannot be dropped

Alessandro Cimatti - Invited Lectures, UniUD

Example

No counterexamples of length O

borrowed and adapted from F. Somenzi

Alessandro Cimatti - Invited Lectures, UniUD

Example

Get bad cubec = x1 Axo in Fy AN P

N\

@ e ol (@]
P:_Iilfl\/_liljg
o L

=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Is —c inductive relative to F,? Fo AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —¢ = —x1 V 29

N\

@ e ol @ fimym
P:_Iilfl\/_liljg
o

=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

_ Fr=T
Try dropping —Z2

Fo NT N —xy = o)

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

_ Fr=T
Try dropping 1

Fo NT N —xo E il

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

_ Fr=T
Try dropping 1

Fo NT N —xo E il

Alessandro Cimatti - Invited Lectures, UniUD

Example

Update I}
@ e ol @
P =—-x1V 29
o
I = —xo

Alessandro Cimatti - Invited Lectures, UniUD

Example

Blocking done for F7 . Add F> and propagate forward

@ e o @ Ly
P = -z V ~x

Fy=1

Alessandro Cimatti - Invited Lectures, UniUD

Example

No clause propagates fromF7 to F5

o

Alessandro Cimatti - Invited Lectures, UniUD

Example

Get bad cubec =1 N\ o inFo A =P

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Alessandro Cimatti - Invited Lectures, UniUD

Example

Is —¢ inductive relative to F; ? F1 AT A —c

N\

L

Alessandro Cimatti - Invited Lectures, UniUD

I = —x1 N\ X9 A\ X3
P = -z V ~x

o1
0
—] ~

Example

N\

L

No, found CTI s = 721 A X2 A X3
I = -1 N\ X9 N I3

@ @ @ P:—[El\/_IZEZ
@ . _,

Alessandro Cimatti - Invited Lectures, UniUD

Example

Try blocking—s at level 0: fo AT N\ —s = —s

CAATIC. I
P:_Iibl\/_libg
F— 1

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —s = x1 V 22 V 13

TR IS
P:_le\/_lxg
-

Try dropping 1 F, ; T

Fo NT NxoV —xg = xh V —ah

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —s = x1 V 22 V 13

TR IS
P:_le\/_lxg
-

Try dropping T2 F, ; T
FoANT NxqV —zg =27 V xf

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —s = x1 V 22 V 13

Try dropping T3

I

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1T
by = —xo
Fo =T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Update [}
@ e ol @ LT
P=-z1V 2o
o e
F1 = X9 A\
(5131 V —ICIZ3)

=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Return to the original bad cube ¢

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fy=1
F1 = X9 N\
(5131 \/—ICIZ3)

=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Is =¢ inductive relative to F,? F1 AT A —c = —c

/\\/
@ e ol (@] g
P:_Iilfl\/_liljg
o e

F1 = X9 A\
(5131 \/—ICIZ3)
=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
: F1 = L2 N
Try dropping —1 (x1 V —x3)
o =T

Fi NT N —zo = a2

Alessandro Cimatti - Invited Lectures, UniUD

Example

Update F5 and add new frame F3j

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fy=1
F1 = X9 A\
(5131 \V4 —ICIZ3)

Fs =T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Perform forward propagation

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fo=1

F1 — TI9 /N\
From £y to F> : (1 V —23)
F;AT = (x1V—x3) Fy = -1y

Fs =T

Alessandro Cimatti - Invited Lectures, UniUD

Example

Perform forward propagation

I = —xr1 /\ X9 /_I£133
P = -z V 29

Fy=1

Found fixpoint! Fy = —x2 A
(5131 V _l5133)

F2 — TI9 /N

(21 V —x3)

Alessandro Cimatti - Invited Lectures, UniUD

Example

Perform forward propagation

I = —xr1 /\ X9 /_I£IZ‘3
P = -z V 29

Fo=1
_ _ _ F1 = Xy N
Inductive invariant: (21 V —23)
Fl EFQ — —ICUQ/\(QL‘l\/_ICL‘g) F2 — TI9 /N\

(21 V —x3)

Alessandro Cimatti - Invited Lectures, UniUD

Finite State Model-
Checking

Liveness Checking

Linear Temporal Logic

 Linear models: state sequences (traces)
 Built over set of atomic propositions AP

 LTL is the smallest set of formulas such that:
 any atomic proposition p € AP is an LTL formula
 if ¢, and ¢, are LTL formulas,
then —¢,, ¢, A, and ¢, v ¢, are LTL formulas
 if ¢, and ¢, are LTL formulas,
then X¢,F¢,,G¢p; and ¢p,U¢, are LTL formulas

Alessandro Cimatti - Invited Lectures, UniUD

LTL semantics

B Semantics defined for every
trace, for every i e N.

¢ Given an infinite trace m = sy, s4, ..
finally p globally p

e mikEpiffs;Ep

e Standard definition for o, A, V ' -
F G

o T[,i |= X¢ iff Sl+1’ Sl+2’ e |= ¢ d d

e 1,ikE¢,U ¢, iff there exists j = i,
m,j E ¢, and for all k,i <k <j, next p P until g

e e R

e ik F¢ iff there exists j > i,
T,jE @
e mikGe iffforallj=i, n,jE@

B ME¢Iiff M,n,0 = ¢ for every
trace m of M.

Alessandro Cimatti - Invited Lectures, UniUD

LTL examples

Gp “always p” - like invariant (if we assume
deadlock freedom)

G(p —» Fq) “p is always followed by q” - reaction

G(p —» Xq) "whenever p holds, q is set to true” -
immediate reaction

GFp “infinitely many times p” - fairness
FGp “eventually permanently p”

G (speed_above_limit — (brake U —speed_above_limit))

Alessandro Cimatti - Invited Lectures, UniUD

LTL verification

 Given an LTL property ¢, build a transition
system M_, with a fairness condition f_,, such that
M X M_g E FGf_g

 FG requires a doubly-nested fixpoint

« SAT-based approaches typically reduce the
problem to safety

Alessandro Cimatti - Invited Lectures, UniUD

Liveness2safety

 Based on the existence of a lasso-shaped
counterexample, with f_, at least once in the loop

* liveness to safety transformation: absence of
lasso-shaped counterexamples as an invariant
property
* Duplicate the state variables V,,, = {v.| v € V}

« Non-deterministically save the current state
* Remember when f_, in extra state var triggered

* Invariant: G=(V =V, Atriggered)

Alessandro Cimatti - Invited Lectures, UniUD

K-liveness

 Simple but effective technique for LTL verification
of finite-state systems

* Key insight: M x M_4 E FG—f_, iff there exists k
such that f_, is visited at most k times
 Again, a safety property

 K-liveness: increase k incrementally
Liveness checking as a sequence of safety checks

 Using IC3 as safety checker
 Exploits the highly incremental nature of IC3

Alessandro Cimatti - Invited Lectures, UniUD

Wrapping up...

e Motivations

* Finite-State Model Checking
« From BDD-based to SAT-based

* Invariant Checking
« IC3

« LTL Checking
e BMC: traces as models, found with SAT checks
 Liveness to safety
 Proving limit for violations to fairness

Alessandro Cimatti - Invited Lectures, UniUD

Infinite State
Model-Checking

Infinite State Transition System

Same definition as before: (V,I,T)

First-order instead of propositional formulas:

e Signature: set X of constant, functional, and relational
symbols

e Structure: a domain D and interpretation 7 of the
symbols in the signature

e Theory: set T of axioms (a model of T is a structure
that satisfy T)

Some constant symbols are used as the variables of

the transition system

« They have a flexible interpretation that varies along
time

« The other symbols are rigid

In the following = implicitly means &4, i.e. is
restricted to the models of a given theory

Alessandro Cimatti - Invited Lectures, UniUD

Example

T=00U'=x+1DAY <y
X:={x1y01+=5..}

T = theory of reals
y<xATEsy <x'

Alessandro Cimatti - Invited Lectures, UniUD

From SAT to SMT

Previous algorithms assume to have a solver for the
satisfiability of formulas

First developed for finite-state systems with the support
of SAT solvers

SAT solvers substituted by Satisfiability Modulo Theory
(SMT) solvers:

« Satisfiability for decidable fragments of first-order logic
e SAT solver used to enumerate Boolean models

 Integrated with decision procedure for specific theories, e.g.,
theory of real linear arithmetic

Search algorithms applied to infinite-state systems
(although in general undecidable)

Lift to SMT straightforward for BMC and k-induction

Not for IC3:
 Requires alternative effective generalization

Alessandro Cimatti - Invited Lectures, UniUD

Predicate Abstractio

* Reduction to finite-state MC = =
b 4 !
 Predicates IP over concrete //,' P ,‘.\ /
variables to define the abstractior T ——
/ T Vo
- Abstract state space given by ¥ :’ /R

/ \
L ‘l XL
=1

\
\
\
Bool_ean variables, one for each 7 7 W
predicate V = {v, | p € P} / k. \
* I’#

- Abstract state a(s) = {v,| s(p) = T}

« Abstract transition iff there exists a concrete transition between

two corresponding concrete states
T ={(5,38)3s,s",a(s) = §,a(s") =8',T(s,s")}

Transitions computed with ALLSMT:
T(V,0")=3v,v'(T(V,V') A /\vp o p(V) A /\v’p o pV"))

pEP pEP

Alessandro Cimatti - Invited Lectures, UniUD

Abstraction Refinement

- Abstract traces are overapproximations

Spurious counterexamples can be generated

- Standard abstraction refinement techniques based on
interpolation

Sequence of abstract states §,, 54, ..., Sk
SMT check on
So(Wo) AT(Vo, Vi) AS1(Vi) ATV, Vo) A - AT(Vi—q, Vie) A S (Vi)
If unsat, compute sequence of interpolants for
[So(Vo) AT(Vo, Vi) A - AT Vi, V)]
[$i (V) AT Vo, Vi) A s AT Vi1, Vi) A i (Vi)]
using the same UNSAT proof (called sequence interpolants)
Add all the predicates in the interpolants to P

Alessandro Cimatti - Invited Lectures, UniUD

Implicit Predicate Abstraction

- Abstract version of BMC and k-induction, avoiding explicit
computation of the abstract transition relation

- By embedding the abstraction in the SMT encoding
© EQV,V2) = Npepp (V1) © p(V2)
- The abstract unrolling is

T(Vo, Vi) NEQ(V, Vi) AT(Vy, Vo) AEQ(Vo, Vo) AT (Vy, V) A -

a0 a5 a0 a0
9 s 9
O TB O TB

Alessandro Cimatti - Invited Lectures, UniUD

Infinite State
Model-Checking

IC3 with Implicit Abstraction

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation

- Learn clauses only over predicates

- Use abstract relative induction check:

AbsRellnd(F, T, c, P)
=FWV)Ac(V)AT(V,V) A /\ (pv) & p(V)) A=c (V")
peEP

- If UNSAT = inductive strengthening as in the Boolean
case

- No theory-specific technique needed

Alessandro Cimatti - Invited Lectures, UniUD

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation
- Learn clauses only over predicates
- Use abstract relative induction check:
AbsRellnd(F, T, c, P)

=F(WV) Ac(V) A T(V, V) A /\ (p(V’) © p(V)) A=c(V')
peEP

- If SAT = abstract predecessor from the SMT model
- No preimage needed

Alessandro Cimatti - Invited Lectures, UniUD

Example

« T :=2x; —3x; <4x)+ 2x, +3) A (B3x; — 2x, = 0)

c Pi={(x —x2 2 4),(x; <3))

c s==(x; —xy, =24)A(x; <3)

. AbsRellnd(®,T,—s,P) = T (V, V’) A=s(V) As(V) A
(X1 —x,24) o (x; —x,24)N(x; <3) & (x; <3)

- AbsRellnd(®,T,s,P) is SAT

- Compute a predecessor from SMT model:
1= {z — 0,29 — 1}
—(x1 — 22 > 4) A (21 < 3)

Alessandro Cimatti - Invited Lectures, UniUD

Abstraction refinement

Abstract counterexample check can use incremental SMT
Abstraction refinement is fully incremental
No restart from scratch

Can keep all the clauses of Fy, ..., F;
Refinements monotonically strengthen T

Tnew = loig N /\ (p(V) « p(W)) A (p(V,) « p(W’))

peENnewP
All IC3 invariants on F,, ..., F;, are preserved
Fiy1 € F; (SO F; E Fi44)
F,AT E F/,,
Foralli<k,F; =P

Alessandro Cimatti - Invited Lectures, UniUD

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d>2)—-(c>d)

* Check base case: Init = Property

- Predicates P

(d=1),(c=d),
(d>2),(c>d)

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d

Init: (d=1)A(c =d)
Trans: (c'=c+d)A(d =d+1)
Property: (d >2) - (c > d)

Get bad cube

SMT check F; A =P
SAT with model u:={c=0,d = 3}
Evaluate predicates wrt. u

« Return
s={=(d=1),-(c=4d),(d>2),-(c>d)}

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P
(d=1),(c=ad),
(d>2),(c>d)

- Trace
- Fy == Init
- =T

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d >2) - (c>d) (d=1),(c=d),

 Rec. block s (d>2),(c>d)
e Check - Trace

AbsRellnd(F,, T, —s, IP)_ . Fy = Init
=InitA(c=c+d)A(d=d+1)
/\(d’=1<—>a=1)/\(c’2d’<—>523)
/\(d’>2<—>E>2)/\(c’>d’<—>E>H)/\—|5/\S’

- Predicates P

F1 =T

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d

Init: (d=1)A(c =d)
Trans: (c'=c+d)A(d =d+1)
Property: (d >2) - (c > d)

Rec. block s

Check AbsRellnd(F,, T, s, P): UNSAT
Generalize: {=(d > 2)}
Update F; .= F; A=(d > 2)

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P
(d=1),(c=d),
(d>2),(c>d)

- Trace
- Fy == Init
- =T

Example

System with 2 state vars cand d
Init: (d = 1) A(c = d)

- Predicates P

Trans: (c'=c+d)A(d =d+1)
Property: (d >2) - (c > d)

(d=1),(c=4d),
(d>2),(c>d)

- Trace

Forward propagation

Alessandro Cimatti - Invited Lectures, UniUD

- Fy == Init
° F1 = _I(d > 2)
° F2 =T

Example

System with 2 state vars cand d

Init: (d=1)A(c =d)
Trans: (c'=c+d)A(d =d+1)
Property: (d >2) - (c > d)

Get bad cube at 2

S = {_I(d — 1),—|(C = d),
(d > 2),=(c>d)}

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P

(d=1),(c=d),
(d>2),(c>d)

- Trace

- Fy == Init
° F1 = _I(d > 2)
° F2 =T

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

e Trans: (c'=c+d)A(d =d+1)

* Property: (d>2)—-(c>d)

Recursively block s

e Update F;:==F,A(c=d)

e Update F, =F,A(c=d)Vv-a(d>?2)

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P
(d=1),(c=d),
(d>2),(c>d)

- Trace
- Fy == Init
- F=4(d>?2)
- =T

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

e Trans: (c'=c+d)A(d =d+1)

* Property: (d>2)—-(c>d)

Forward propagation

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P
(d=1),(c=d),
(d>2),(c>d)

- Trace
- Fy = Init

° F1°=_I(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

. F3:=T

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d>2)—-(c>d)

e (Get cube at 3
¢ S = {_I(d = 1),—|(C = d),
(d > 2),=(c>d)}

- Predicates P
(d=1),(c=d),
(d>2),(c>d)

- Trace
- Fy = Init

° F1°=_I(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

. F3:=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

e Trans: (c'=c+d)A(d =d+1)

* Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

Recursively block s

« AbsRelind is sat - Trace

* SMT model: - Fy = Init

M::{C:O,dzzyc’:O,dzg,C :2,d=3} . F1:=—|(d>2)/\

 Abstract predecessor: (c=d)A\F,

{=(d>2),-(c>d),~(d=1),=(c =d)} - F=(c>d)V
—(d > 2)

. F3:=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

e Trans: (c'=c+d)A(d =d+1)

* Property: (d>2)—-(c>d)

Recursively block ¢

« Reached level 0, abstract cex:
Sop=—(d>2),-(c>d),(d=1),(c=d)
s;:==(d>2),a(c>d),-(d=1),(c=d)
Sy :=—(d>2),-(c>d),~(d=1),-(c =d)
s=-(d=1),-(c=>d),(d>2),-(c>d)

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P
(d=1),(c=d),
(d>2),(c>d)

- Trace
- Fy = Init

° F1°=_I(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

. F3:=T

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

e Property: (d >2) - (c > d) (d=1),(c=d),
(d>2),(c>d)
 Check abstract counterexample + Trace

so(Vo) AT(Vo, Vi) Asy(Vy) ATV, V) A s (V) - F, := Init

ATV, V3) As(V3) - Fi==(d>2)A
(c=d)AF,

UNSAT - F,=(c>d)V

—(d > 2)

. F3:=T

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

e Trans: (c'=c+d)A(d =d+1)

e Property: (d>2)—-(c>d)

Check abstract counterexample

Extract new predicates from
sequence interpolants:

Update P

d=2,d=3

Alessandro Cimatti - Invited Lectures, UniUD

- Predicates P

(d=1),(c=d),
(d>2),(c>ad),
(d =2),(d =3)

- Trace

- Fy = Init

° F1°=_I(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

° F3 =T

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),
d>2),(c>d),
Update abstract Trans (d=2),(d=3)
Resume IC3 from level 3 + Trace
1 Fy = Init

1 FL==(d>2)A(c=d)AF,
1 FE=(c>dVvald>2)AF;

1T F=d=1)v(d=2)A
ﬁ(CZd)/\F4

1 F,=(c>d)Vva(d>?2)

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),

d>2),(c>d),

Update abstract Trans (d=2),(d=3)
- Trace

Resume IC3 from level 3
1 Fy = Init
: D F=ad>2)A(c=d)AF,
Forward propagation
FoATpE(c'=d)Vv=(d =2) D F=(c>dVvald>2)AF;
T FhR=d=1)vd=2)A
—(c = d) ANF,

D Fp=(c>d)Vva(d>2)

Alessandro Cimatti - Invited Lectures, UniUD

Example

System with 2 state vars cand d
e Init: d=1)A(c=d)

. Trans: (' =c+d)A(d =d+1) * Predicates P

e Property: (d >2) - (c > d) (d=1),(c=d),

d>2),(c>d),

Update abstract Trans (d=2),(d=3)
- Trace

Resume IC3 from level 3
1 Fy = Init

- D F==d>2)A(c=2d)AF,
Forward propagation
R CE T VO
Fixpoint = Property is true (d=>2)A=(c=d)AF,
1 Fp=(>d)v=(d>2)

Alessandro Cimatti - Invited Lectures, UniUD

Infinite State
Model-Checking

Liveness Checking

LTL from Finite to Infinite

Use first-order predicates instead of propositions:
. Gx=aNAx<Dh)
. GF(x =a) AGF(x = b)

Predicates interpreted according to specific theory

“next” variables to express changes/transitions:
e G(X'=x+1)
Gl —a<bh)

BMC

« Add encoding of lasso-shape and fairness
Sound for finding traces, but not complete

e The only counterexaple may be not lasso-shape

K-liveness
* No change
e Sound to prove properties, but not complete

* Property may hold, but fairness can be visited an unbounded number
of times

Alessandro Cimatti - Invited Lectures, UniUD

Liveness to Safety for Infinite States

 Unsound for infinite-state systems
 Not all counterexamples are lasso-shaped

I(=(x=0) TO=(@=z+1) ¢=FG(z<5H)

 Liveness to safety with Implicit Abstraction

 Apply the I2s transformation to the abstract system

« Save the values of the predicates instead of the
concrete state

Do it on-the-fly, tightly integrating I12s with IC3
 Sound but incomplete

o Wfr_)_en abstract loop found, simulate in the concrete and
refine

o Might still diverge during refinement
Intrinsic limitation of state predicate abstraction

Alessandro Cimatti - Invited Lectures, UniUD

Wrap-up

Alessandro Cimatti - Invited Lectures, UniUD

Lecture Summary

 Overview of SAT-based model checking techniques

* Details on IC3, as currently the prominent
algorithm

 Liveness reduced to safety

* Lifting SAT-based MC to SMT

 For invariant checking
o« Easy for BMC and k-induction
« Predicate abstraction to reduce to finite-state MC

« Implicit abstraction to avoid explicit computation of
abstract state space

o Implicit abstraction to lift IC3 to SMT
 For liveness

« BMC and K-liveness sound but not complete

o Liveness2safety on abstract state space

Alessandro Cimatti - Invited Lectures, UniUD

Not covered

 Other MC approaches: BDD-Based,
Interpolation, ...

 QOther Properties: CTL, PSL,
termination, epistemic, ...

* Other kind of systems
 Continuous-time/hybrid systems
* Probabilistic Systems
« Software (control-flow graphs)

Alessandro Cimatti - Invited Lectures, UniUD

Next lecture

L1

L2

Functional
Verification

Safety
Assessment

Hierarchical
Decomposition

‘ Model-Checking

Model-Based
‘ Safety-
Assessment

‘ Contract-Based
Design

Alessandro Cimatti - Invited Lectures, UniUD

Contract-Based
Safety-
Assessment

Readings

A list of suggested readings on the topics of the course. The list is not meant to be
complete.

. Model checking:

. Edmund M. Clarke, Orna Grumberg, Doron A. Peled: Model Checking. The MIT Press, 1999

. Kenneth L. McMillan: Symbolic Model Checking. Kluwer, 1993

. Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. The MIT Press, 2008

. Bounded Model Checking:

. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan Zhu: Bounded
model checking. Advances in Computers 58: 117-148 (2003)

Alessandro Cimatti - Invited Lectures, UniUD

Readings

. K-induction:

. Mary Sheeran, Satnam Singh, Gunnar Stalmarck: Checking Safety Properties Using Induction
and a SAT-Solver. FMCAD 2000: 108-125

. Niklas Eén, Niklas Sorensson: Temporal induction by incremental SAT solving. Electr. Notes
Theor. Comput. Sci. 89(4): 543-560 (2003)

. IC3 for Finite-State Transition Systems:
. Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87

. gagio Somenzi, Aaron R. Bradley: IC3: where monolithic and incremental meet. FMCAD 2011:

. Aaron R. Bradley: Understanding IC3. SAT 2012: 1-14

. Krystof Hoder, Nikolaj Bjgrner: Generalized Property Directed Reachability. SAT 2012: 157-
171

Alessandro Cimatti - Invited Lectures, UniUD

Readings

. LTL Model Checking:

. Amir Pnueli: The Temporal Logic of Programs. FOCS 1977: 46-57

. Moshe Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic. Banff Higher
Order Workshop 1995: 238-266

. Edmund M. Clarke, Orna Grumberg, Kiyoharu Hamaguchi: Another Look at LTL Model
Checking. Formal Methods in System Design 10(1): 47-71 (1997)

. Liveness to safety:

. Armin Biere, Cyrille Artho, Viktor Schuppan: Liveness Checking as Safety Checking. Electr.
Notes Theor. Comput. Sci. 66(2): 160-177 (2002)

. Yi Fang, Kenneth L. McMillan, Amir Pnueli, Lenore D. Zuck: Liveness by Invisible Invariants.
FORTE 2006: 356-371

. Is(geélgdaessen, Niklas Sdrensson: A liveness checking algorithm that counts. FMCAD 2012:

Alessandro Cimatti - Invited Lectures, UniUD

Readings

. K-Induction for Infinite-State Systems:

. Leonardo Mendonga de Moura, Harald RueB, Maria Sorea: Bounded Model Checking and
Induction: From Refutation to Verification (Extended Abstract, Category A). CAV 2003: 14-26

. Temesghen Kahsai, Cesare Tinelli: PKind: A parallel k-induction based model checker. PDMC
2011: 55-62
. Alessandro Cimatti, Sergio Mover, Alessandro Cimatti: SMT-based scenario verification for

hybrid systems. Formal Methods in System Design 42(1): 46-66 (2013)

. Jonathan Laurent, Alwyn Goodloe, Lee Pike: Assuring the Guardians. RV 2015: 87-101

Alessandro Cimatti - Invited Lectures, UniUD

Readings

. Interpolation-based Model Checking:

. Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003: 1-13

. Kenneth L. McMillan: Applications of Craig Interpolants in Model Checking. TACAS 2005: 1-12

. Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

. Liveness to Safety for Infinite-State Systems:

. Viktor Schuppan, Armin Biere: Liveness Checking as Safety Checking for Infinite State
Spaces. Electr. Notes Theor. Comput. Sci. 149(1): 79-96 (2006)

. Andreas Podelski, Andrey Rybalchenko: Transition predicate abstraction and fair termination.
ACM Trans. Program. Lang. Syst. 29(3) (2007)

. Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: Verifying LTL
Properties of Hybrid Systems with K-Liveness. CAV 2014: 424-440

Alessandro Cimatti - Invited Lectures, UniUD

Readings

. Implicit Abstraction:

. élgeslsggdro Cimatti: Abstract Model Checking without Computing the Abstraction. FM 2009:

. IC3 for Infinite-State Systems:
. Alessandro Cimatti, Alberto Griggio: Software Model Checking via IC3. CAV 2012: 277-293

. Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: IC3 Modulo Theories
via Implicit Predicate Abstraction. TACAS 2014: 46-61

. Johannes Birgmeier, Aaron R. Bradley, Georg Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014: 831-848

. Yakir Vizel, Arie Gurfinkel: Interpolating Property Directed Reachability. CAV 2014: 260-276

. §i8kolaj Bjgrner, Arie Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015: 263-
1

Alessandro Cimatti - Invited Lectures, UniUD

