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Motivation
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Embedded Safety-Critical Systems

 Embedded with software to e
deliver intelligent: e o oo
«  Transportation L A .
- Communication \_| =) T
* Automation 1 e _T"
] Section Section End Section | Section
* Across domains: Movement Authriy EndOF Authorty
 Railways
* Avionics
 Automotive
e Space
 Health oo L -
« Key properties and | e [
challenges: b e B P
* Interaction of components s i i et
* Decomposition of services L oot e FJ
- Safety requirements ———— i ——
uuuuuu e—
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Model-based system engineering

 Models used for system requirements, architectural design,
analysis, validation and verification

 Different system-level analysis (safety, reliability,
performance, ...)

* Formal methods as back-end

 Formal specification to assign models a rigorous mathematical
semantics

« Formal verification to prove the properties on the models.

 Design models translated into input for verification
engine

« Requirements formalized into properties

 Model checking appealing because integrated as push-
button
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AIR6110 Wheel Braking System

* Joint scientific study with Boeing

 Aerospace Information Report 6110:

e Traditional Aircraft/System Development Process
Example

 Wheel Brake System of a fictional dual-engine
aircraft

* Objectives:
« Analyze the system safety through formal techniques

« Demonstrate the usefulness and suitability of formal
techniques for improving the overall traditional
development and supporting aircraft certification
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NASA NextGen Air Traffic Control

* Joint project with NASA Ames and Langley

 Allocation of tasks between Aircraft and Ground

« Model and Study a design space with more than 1600
configurations

 Objectives:

« Apply Formal Methods to study the quality and Safety of
many design proposals

* Highlight Implicit assumptions
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Finite-State
Model Checking

Invariant Checking




Model checking

temporal formula

[G(p -> Fq)} \ /yes!

Model
Checker

N Y —
finite-state model q \

counterexample
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Mutual exclusion example

N: non-critical
T: trying

C: critical
Userl

User?2

Property:
always

not C1 or not C2
I.e.

(C1 and C2)

is not reachable
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Symbolic representation

 Symbolic Boolean variables vV = {v,, ..., v,} to represent the
state space

« A state is an assignment to the variables

 Symbolic formulas used to represent:

e Set of states: ¢p(V)={s|sE¢}
o« Abuse of notation se ¢ iff s E ¢

 Set of transitions: ¢(V, V') = {(s,s") | (s,s") E ¢}
e Where the variables V' = {v'4, ..., v',,} represent next state variables

A transition system is a tuple (V,I,T) where:
« TV is the set of variables
 The set of initial states represented by the formula 1(V)
 The transition relation represented by the formula T(V,V")
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Example

e V={uv}
* [:==uAN-v

e T:=u o uAv & (uxorv)
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Invariant properties

A path of the system S is a sequence sy, sq, ..., s Of
states such that s, 1 and for all i,0 <i <k,
Si)Si+1 =T

A state s is reachable iff there exists a path
Sg, Sy, .-, S, sSuch that s = s;,

A formula P(V) is an invariant iff for all paths
So,S1,,Sk, forall i,s; e P

Equivalent to say that no state in —P is reachable
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Forward reachability checking

 Forward image computation:
e Compute all states reachable from Q in one transition:

Fwdimg(Q) =3V QWV)ATW, V' )[V/ V']
* Prove that a set of states Bad is not reachable:
e Start from initial states: R :=1
 Apply Fwdimg iteratively: oldR := R;R = Fwdimg(R) U R
e until fixpoint oldR =R

A. Cimatti - Invited Lectures on Advanced Verification



Bounded Model Checking

 Reachability encoded into a satisfiability problem
I(Vo) NT(Vo, Vi) AT(Vy, Vo) A= AT (Vi—1, Vi) A Bad (Vi)

 The formula is sat iff there exists a path of length
k that reaches Bad

* Checked for increasing values of k
 Exploited incrementality of SAT solvers

* Finite-state space = a completeness threshold
K exists

 If unsat for all k < K then Bad is not reachable
« K is typically very large = unfeasible to reach in practice
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Example

o @ — @
[ :==—=uAN-v

T=u ouAv o (uxorv)

Bad =uAv

BMC:

y (_|u0 N\ _Ivo) AN (UO AN vo) UNSAT

* (mug Awp) A (ug © ug Avy © (ug xor v)) A (ug Av;) UNSAT

o (mug Awg) A (g © ug Avy © (ug xor vy))
(uz o Uy Avy © (uq xor vl)) A
(u3 © uy Avy © (uy x0r v5)) A (U3 Avs)
SAT
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Induction and K-induction

 Induction
 Base case: check if the initial state satisfies P (invariant)
 Inductive case: check if the transitions preserve the invariant
PWVYATWV, V) PV
« We say P is inductive invariant

e K-induction

« Base case: check if all initial path satisfies P (invariant) up to
k steps

 Inductive case: check if every path of k + 1 steps preserve the
invariant

P(Wo) ANT(Vo, Vi )AP(V) ATV, Vo) Aos AP(Vie—1) AT(Vie—1, Vi) & P(V)

« Strengthened with simple path condition to avoid repeating
states

e We say P is k-inductive invariant

 Typically however Pis not (k-)inductive
= find Inv such that Invis inductive invariant and Inv = P
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IV = {xl, Xy, x3}

° [:=—ax; Axy A Xg

° Bad :=x; \xy
¢ P = —1Xq \% —1X>

e Inductive?
 No

 k-inductive?
* Yes for k=3

e Inductive invariant?
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Finite State Model-
Checking




IC3

- Very successful SAT-based model checking algorithm

Based on induction

Given a symbolic transition system and invariant property
P, build an inductive invariant F s.t. FE P

Inductive invariant built incrementally

Trace of formulas F, = I, F, ..., F; S.t:

fori > 0, F; is a set of clauses, overapproximation of
states reachable in up to i steps

Fiy1 € F; (SO F; F Fyyq)
F,AT E F/,,
Foralli<kF, =P
Strengthen formulas until F, = Fi44

Exploiting efficient SAT solvers
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A (very) high level view of IC3

o T
% e —

- Blocking phase: incrementally strengthen trace
until F, = P

- Get bad cube s
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A (very) high level view of IC3

T
@
- Blocking phase: incrementally strengthen trace

until F, = P

Get bad cube s
Call SAT solveron Fj,_{ A=sATAS'

(i.e.,checkif F,_{ A=s AT E =s')

\ECheck if —s is inductive relative to F, , }
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A (very) high level view of IC3

®
C
- Blocking phase: incrementally strengt

until F, = P

Get bad cube s
Call SAT solveron Fj,_{ A=sATAS'

SAT: s is reachable from F,_; in 1 step
Get a cube c in the preimage of s and try

nen trace

If I is reached, a
counterexample

to P is found

(recursively) to prove it unreachable from F;_,, ...

c is a counterexample to induction (CTI)

A. Cimatti - Invited Lectures on Advanced Verification



A (very) high level view of IC3

.
Q ‘n —>13

- Blocking phase: incrementally strengthen trace
until F, E P

Get bad cube s
Call SAT solveron Fj,_{ A-s AT As'

UNSAT: =s is inductive relative to F,_,

- Generalize c to g and block by adding —g to
Fi 1, Fi_p, ., Fy
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A (very) high level view of IC3

- M [=

- Blocking phase: incrementally strengthen trace
until F, E P

Get bad cube s
Call SAT solveron Fj,_{ A-s AT As'

UNSAT: =s is inductive relative to F,_,

- Generalize c to g and block by adding —g to
Fi 1, Fi_p, ., Fy
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A (very) high level view of IC3

T T T °
o -

- Propagation: extend trace to F;,; and push
forward clauses

For each / and each clause c € F;:

Call SAT solver on F; AT A =c’
If UNSAT, add ¢ to F;;4
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A (very) high level view of IC3

T T T T o
o -

- Propagation: extend trace to F;,, and push
forward clauses

For each i and each clause c € F;:

Call SAT solver on F; AT A =c’
If UNSAT, add ¢ to F;,4
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A (very) high level view of IC3

T T T T o
o -

- Propagation: extend trace to F,,; and push
forward clauses

For each i and each clause c € F;:

Call SAT solver on F; AT A =c’

If UNSAT, add ¢ to F;,4
If F; = F;,,, P is proved,

otherwise start another round of blocking and propagation
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Inductive Clause Generalization

- Crucial step of IC3

. Given a relatively inductive clause ¢ = {l1,...,1,}

- compute a generalization g C ¢ that is still inductive
Fi i ANTANgEY (1)
- Drop literals from ¢ and check that (1) still holds

- Accelerate with unsat cores returned by the SAT solver
- Using SAT under assumptions

- However, make sure the base case still holds
- If T ce\{l;} .then l; cannot be dropped
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Example

No counterexamples of length O

borrowed and adapted from F. Somenzi
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Example

Get bad cubec = x1 Axo in Fy AN P

I = X1 N\ X9 N\ X3
P = -z V zo

Fy=1
=T
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Example

Is —c inductive relative to F,? Fo AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
=T
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Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
=T
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Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Fi=T
Try dropping —Z2

Fo NT N —xy = o)
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Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Fi=T
Try dropping 1

Fo NT N —xo E il
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Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Fi=T
Try dropping 1

Fo NT N —xo E il
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Example

Update I}

@ e ol @
P = -z V zo

Fo=1T
I = —xo

A. Cimatti - Invited Lectures on Advanced Verification



Example

Blocking done for F7 . Add F> and propagate forward

@ o
— X1 \Y T

FO_I
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Example

No clause propagates fromF7 to F5

o

el
|
i
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Example

Get bad cubec =1 N\ o inFo A =P

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
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Example

Is —¢ inductive relative to I, ? F1 AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1T
by = —xo
Fo =T
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Example

No, found CTI s = 721 A X2 A X3

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

GRS
I
4

A. Cimatti - Invited Lectures on Advanced Verification



Example

Try blocking—s at level 0: fo AT N\ —s = —s

CAATIC. I
P:_Iibl\/_libg
F— 1
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Example

Yes, generalize —s = x1 V 22 V 13

Fy=1

Try dropping 1 Fy =

Fo NT NxoV —xg = xh V —ah

-
o
7
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Example

Yes, generalize —s = x1 V 22 V 13

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
. F1 — X2
Try dropping T2 Fy=T

FoANT NxqV —zg =27 V xf

A. Cimatti - Invited Lectures on Advanced Verification



Example

Yes, generalize —s = x1 V 22 V 13

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
. F1 — X2
Try dropping T3 =T

Iﬁxl
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Example

Update [}
@ e w @ LTy
P = -z V 29
o
F1 = X9 N\
(5131 \/—ICIZ3)
Fo =T
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Example

Return to the original bad cube ¢

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fy=1
F1 = X9 N\
(5131 \/—ICIZ3)

Fo =T
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Example

Is =¢ inductive relative to F,? F1 AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
F1 = X9 A\
(5131 \/—ICIZ3)

Fo =T
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Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
: F1 = L2 N
Try dropping —1 (x1 V —x3)
o =T

Fi NT N —zo = a2
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Example

Update F5 and add new frame F3j

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fy=1
F1 = X9 A\
(5131 \V4 —ICIZ3)

Fs =T
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Example

Perform forward propagation

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fo=1

F1 = X9 N\
From £y to Fo : (1 V —23)
F;AT E (xqV —|Xé) Fy = -1y

Fs =T
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Example

Perform forward propagation

I = —xr1 /\ X9 /\_I£133
P = -z V 29

Fy=1

Found fixpoint! Fy = —x2 A
(5131 V _l5133)

F2 — TI9 /N

(le \V4 _lﬂjg)
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Example

Perform forward propagation

I = —xr1 /\ X9 /\_I£IZ‘3
P = -z V 29

Fo=1
_ _ _ F1 = Xy N
Inductive invariant: (21 V —23)
Fl EFQ — —ICUQ/\(QL‘l\/_ICL‘g) F2 — TI9 /N\

(21 V —x3)
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Finite State Model-
Checking

Liveness Checking




Linear Temporal Logic

 Linear models: state sequences (traces)
 Built over set of atomic propositions AP

 LTL is the smallest set of formulas such that:
 any atomic proposition p € AP is an LTL formula
 if ¢, and ¢, are LTL formulas,
then —¢,, ¢, A, and ¢, v ¢, are LTL formulas
 if ¢, and ¢, are LTL formulas,
then X¢,F¢,,G¢p; and ¢p,U¢, are LTL formulas
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LTL semantics

B Semantics defined for every
trace, for every i e N.

¢ Given an infinite trace n = sy, s4, ..
finally p globally p

e mikEpiffs;Ep

e Standard definition for o, A, V ' -
F G

o T[,i |: X¢ iff Sl+1’ Sl+2’ e |: ¢ d d

e 1, ik ¢,U ¢, iff there exists j = i,
m,j E ¢, and for all k,i <k <, next p P until g

e PBeseaee s eeeese.

e 1,i E F¢ iff there exists j > i,
T,jE @
e mikrGe iffforallj=i, n,jE@

B MEeo¢Iiff M,r,0 £ ¢ for every
trace m of M.
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LTL examples

Gp “always p” - like invariant (if we assume
deadlock freedom)

G(p —» Fq) “p is always followed by q” - reaction

G(p — Xq) "whenever p holds, q is set to true” -
immediate reaction

GFp “infinitely many times p” - fairness
FGp “eventually permanently p”

G (speed_above_limit — (brake U —speed_above_limit))
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LTL verification

 Given an LTL property ¢, build a transition
system M_, with a fairness condition f_,, such that
M X M_g E FGf_g

 FG requires a doubly-nested fixpoint

« SAT-based approaches typically reduce the
problem to safety

A. Cimatti - Invited Lectures on Advanced Verification



Liveness2safety

Based on the existence of a lasso-shaped
counterexample, with f_, at least once in the loop

liveness to safety transformation: absence of
lasso-shaped counterexamples as an invariant
property

* Duplicate the state variables V,,, = {v.| v € V}
 Non-deterministically save the current state

* Remember when f_, in extra state var triggered

* Invariant: G=(V =V, Atriggered)
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K-liveness

 Simple but effective technique for LTL verification
of finite-state systems

* Key insight: M X M_, E FGf_ iff there exists k
such that f_, is visited at most k times
 Again, a safety property

 K-liveness: increase k incrementally
Liveness checking as a sequence of safety checks

 Using IC3 as safety checker
 Exploits the highly incremental nature of IC3
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Wrapping up...

e Motivations

* Finite-State Model Checking
« From BDD-based to SAT-based

* Invariant Checking
« IC3

 LTL Checking
e BMC: traces as models, found with SAT checks
 Liveness to safety
 Proving limit for violations to fairness
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Infinite State
Model-Checking




Infinite State Transition System

Same definition as before: (V,I,T)

First-order instead of propositional formulas:

e Signature: set X of constant, functional, and relational
symbols

e Structure: a domain D and interpretation 7 of the
symbols in the signature

e Theory: set T of axioms (a model of T is a structure
that satisfy T)

Some constant symbols are used as the variables of

the transition system

« They have a flexible interpretation that varies along
time

« The other symbols are rigid

In the following = implicitly means 4, i.e. is
restricted to the models of a given theory
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Example

* T=@=x+1D)AQ <y)

e X:={xvy01+<..}
e T := theory of reals

YSX/\T|=T}/’SX’
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From SAT to SMT

* Previous algorithms assume to have a solver for the
satisfiability of formulas

 First developed for finite-state systems with the support
of SAT solvers

 SAT solvers substituted by Satisfiability Modulo Theory
(SMT) solvers:

« Satisfiability for decidable fragments of first-order logic
e SAT solver used to enumerate Boolean models

« Integrated with decision procedure for specific theories, e.qg.,
theory of real linear arithmetic

 Search algorithms applied to infinite-state systems
(although in general undecidable)

* Lift to SMT straightforward for BMC and k-induction

* Not for IC3:
 Requires alternative effective generalization
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Counter-Example Guided Abstraction-Refinement
(CEGAR)

CProg -
ﬁ‘ Abstraction I\
Morelnfo AProgli]

Refinement ‘ Model Check I

No CCex

Counter-example |
[No ACex
Unsafex<: An aly sis — >Safe




Predicate abstraction

not P, Po  Wo(X)
o 091
P2 j}
W, (X
not P, M//
@) 4

100 101
not P,

State vars X

P Abstract State vars P
1 X)
AI (P)
W, (X) R(X, X')
980 AR(P,P") 014




Predicate Abstractio

* Reduction to finite-state MC = =
b 4 i
* Predicates IP over concrete //,' s ,‘.\ /
variables to define the abstractior 3 : ra \/’ v
/ T Vo
- Abstract state space given by £ 145 A 0

/ L
i ‘lk

\
Bool_ean variables, one for each 7 7 o
predicate V = {v, | p € P} / k. \
* I’#

 Abstract state a(s) = {v,| s(p) = T}

. Abstract transition iff there exists a concrete transition between

two corresponding concrete states
T ={(538"3s,s",a(s) =3,a(s") =38,T(s,s")}

 Transitions computed with ALLSMT:
T(V, V") =3v,v'(T(V,V") A /\vp o p(V) A /\v’p o p(V'))

pEP pEP
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Interpolation

An interpolant for an unsatisfiable formula
S (X, Y)NP(Y,2Z)

is a formula /fp(Y') such that:
@ ltip(Y) A D(Y,Z)is unsatisfiable



Interpolation-based model checking

<
¢1(>53:X1)
1(Xo) AR(X0, X1) A R(X1,Xo)..

Precise

Overapproximated

Reachable from I(X) Can reach B(X) in k-1 steps

ltp(X1) = Itp(R, 1(X0), k)




Interpolation-based model checking

Precise

Overapproximated

>
et

Reachable from I(X) Can reach B(X) in k—1 steps
@ Precise reachability
@ Ro=1
@ Ri=Img(R,Ri_1) UR;j_1
@ Interpolation based reachability
[+ Itpo = I(X1)
@ ltp; = Itp(R, Itp;_1, k) U Itp;_4




Abstraction Refinement

- Abstract traces are overapproximations

Spurious counterexamples can be generated

Standard abstraction refinement techniques based on
interpolation

Sequence of abstract states §,, 54, ..., $x
SMT check on
So(Vo) ANT(Vo, Vi) AS (Vi) AT(Vy, Vo) A AT (Vi—q, Vie) A S (Vi)
If unsat, compute sequence of interpolants for
[So(Vo) AT(Vo, Vi) A= AT Vi, Vi)]
[$;(V) AT(Vo, Vi) A+ AT (Vi—1, Vie) A S (Vi)]
using the same UNSAT proof (called sequence interpolants)
Add all the predicates in the interpolants to P

A. Cimatti - Invited Lectures on Advanced Verification



Implicit Predicate Abstraction

- Abstract version of BMC and k-induction, avoiding explicit
computation of the abstract transition relation

- By embedding the abstraction in the SMT encoding
© EQ(V1,V2) = Npepp(V1) < p(V2)
- The abstract unrolling is

T(Vo, Vi) AEQ(V, Vi) AT(Vy, Vo) AEQ(V, Vo) ATV, Va) A -

a0 a5 a0 a0
9 s 9
O TB O TB
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Infinite State
Model-Checking

IC3 with Implicit Abstraction




IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation
- Learn clauses only over predicates

- Use abstract relative induction check:

AbsRellnd(F,T,c, P)
=FWV) Ac(V)AT(V,V) A /\ (pv") & p(V)) A= (V")
peEP

- If UNSAT = inductive strengthening as in the Boolean
case

- No theory-specific technique needed
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IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3

- Use abstract transition relation

- Learn clauses only over predicates

- Use abstract relative induction check:
AbsRellnd(F,T,c, P)

=F(V) Ac(V) A T(V, V) A /\ (p(V’) © p(V)) A=c(V')
peEP

- If SAT = abstract predecessor from the SMT model
- No preimage needed
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Example

« T :=2x; —3x; <4x)+2x, +3) A (3x; — 2x, = 0)

c Pi={00 —x224),(x <3)}

e si==(x; —x, =2 4)N(x1 <3)

. AbsRellnd(®,T,—s,P) = T (V, V’) A=s(V) As(V) A
(X1 —x,24) o (x; —x,24)N(x; <3) & (x; <3)

- AbsRellnd(®,T,s,P) is SAT

- Compute a predecessor from SMT model:
1= {z — 0,29 — 1}
—(x1 — 22 > 4) A (21 < 3)
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Abstraction refinement

Abstract counterexample check can use incremental SMT
Abstraction refinement is fully incremental

No restart from scratch

Can keep all the clauses of Fy, ..., F

Refinements monotonically strengthen T

Thew = Toia N /\ (P(V) © P(V)) A (P(V') ©p (V’))

peEnewpP
All IC3 invariants on F, ..., F;, are preserved
Fiy1 € F; (SO F; E Fi44)
F,AT E F/,,
Foralli<k,F; =P
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
*  Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

* Check base case: Init = Property
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

*  Property: (d >2) - (c>d) (d=1),(c=d),
« Get bad cube (d>2),(c>d)
e« SMT check F; A =P - Trace
« SAT with model u:={c=0,d = 3} - Fy = Init
* Evaluate predicates wrt. u CF =T
« Return

s={=(d=1),-(c=4d),(d>2),-(c>d)}

A. Cimatti - Invited Lectures on Advanced Verification



Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
*  Property: (d >2) - (c>d) (d=1),(c=d),

 Rec. block s (d>2),(c>d)
e  Check - Trace

AbsRellnd(Fy, T, —s, P) . F, = Init
::Init/\(E=C+d)/\(a=d+1)

/\(d’=1<—>a=1)/\(c’2d’<—>523)
/\(d’>2<—>E>2)/\(c’>d’<—>E>E)/\—|s/\s’

- Predicates P

F1 =T

A. Cimatti - Invited Lectures on Advanced Verification




Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
*  Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

* Rec. block s
« Check AbsRellnd(F,, T, —s,P): UNSAT - Trace
* Generalize: {=(d > 2)} . Fy = Init
 Update F; == F; A=(d > 2) COF =T

A. Cimatti - Invited Lectures on Advanced Verification



Example

 System with 2 state vars c and d
e Init: d=DA(c=d)
e Trans: (c'=c+d)A(d =d+1)
e Property: (d >2) - (c > d) (d=1),(czd),
(d>2),(c>d)
- Trace
- Fy == Init
° F1 = _I(d > 2)
° F2 =T

- Predicates P

 Forward propagation
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Example

System with 2 state vars c and d

Init: (d=1)A(c =d)
Trans: (c'=c+d)A(d =d+1)
Property: (d > 2) - (c > d)

Get bad cube at 2

S = {_I(d — 1),—|(C > d),
(d > 2),=(c > d)}
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- Predicates P

(d=1),(c=ad),
(d>2),(c>d)

- Trace

- Fy == Init
° F1 = _I(d > 2)
° F2 =T




Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

e Property: (d >2) - (c > d) (d=1),(czd),
(d>2),(c>d)
: - Trace
 Recursively block s .
. - Fy == Init
« Update F, :=F, A (c = d) - Fpi=a(d>2)
¢ ° F2 =T

 UpdateF, =F,A(c=d)Vv-a(d>?2)
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d) _
+ Trans: (' =c+d)A(d =d+1) + Predicates P
*  Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

«  Forward propagation - Trace

- Fy = Init

° Fl':_l(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

° F3 =T
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d>2)—-(c>d)

e Get cube at 3
° S = {_I(d = 1),—|(C > d),
(d > 2),=(c > d)}
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- Predicates P

(d=1),(c=d),
(d>2),(c>d)
Trace

- Fy = Init

° Fl':_l(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

° F3 =T




Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
*  Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

 Recursively block s

e AbsRellnd is sat - Trace

*  SMT model: - Fy = Init

u={c=0,d=2,c"=0d=3,c =2,d=3} . F = a(d>2)A

 Abstract predecessor: (c=d)A\F,

{_I(d > 2), —|(C > d),_l(d = 1),ﬂ(C > d)} . FZ — (C > d) Vv
—(d > 2)

F3 =T
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
*  Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

 Recursively block ¢

. - Trace
« Reached level 0, abstract cex: - F, = Init
Sop=—(d>2),-(c>d),(d=1),(c=d)

o Fpi==(d>2)A
5y = a(d > 2).4(c > d),=(d = 1), (c > d) A3 d)(/\F )
sy = =(d > 2),=(c >d),=(d =1),-(c = d) - ?
s:==a(d=1),=(c=d),(d>2),=(c>d) © Fp=(c>d)v

—(d > 2)
° F3 =T
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

e Property: (d >2) - (c > d) (d=1),(cz4d),
(d>2),(c>d)
 Check abstract counterexample + Trace

sSo(Vo) AT(Vo, Vi) A sy (V) ATV, V,) A sy(Vy) - Fy = Init

AT (V3,V3) As(V3) - Fi==a(d>2)A
(c=d)AF,

UNSAT - Fy=(c>d)V

—(d > 2)

° F3 =T
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Example

System with 2 state vars c and d

e Init: d=1DA(c=d)

e Trans: (c'=c+d)A(d =d+1)
* Property: (d>2)—-(c>d)

Check abstract counterexample

Extract new predicates from
sequence interpolants:

Update P

d=2,d=3
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- Predicates P

(d=1),(c=ad),
(d>2),(c>d),
(d =2),(d = 3)

- Trace

- Fy = Init

° F1°=_I(d>2)/\
(c=d)AF,

- F,:=(c>d)V
—(d > 2)

° F3 =T




Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),
(d>2),(c>d),
e Update abstract Trans (d=2),(d=3)
« Resume IC3 from level 3 + Trace
| Fy = Init

1 FL==(d>2)A(c=d)AF,
1 FE=(c>dVvald>2)AF;

1T F=d=1)v(d=2)A
—-(c=d)AF,

1 F,=(c>d)Vv-a(d>?2)
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),

d>2),(c>d),

e Update abstract Trans (d=2),(d=3)
- Trace

¢ Resume IC3 from level 3
1 Fy = Init
: D F=ad>2)A(c=d)AF,
 Forward propagation
FoATeE(2d)Va@d =22) | f2= (c>d)Vald>2)AF;
CFB=d=1)vd=2)A
—(c=d)ANF,

D Fp=(c>d)Vva(d>2)
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Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),
(d>2),(c>d),
e Update abstract Trans (d=2),(d=3)
« Resume IC3 from level 3 + Trace
| Fy = Init

Forward t CR=ad>2DACzdAR
¢ orwar ropagation
e CFR=F=(c2dvV

F,ATpE (¢'2d)V—(d =2) ~(d=2)A(d=1)V
Fixpoint = Property is true (d=22)A=lc2d)AF,
1 Fy=(>d)va(d>?2)
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Infinite State
Model-Checking

Liveness Checking




LTL from Finite to Infinite

 Use first-order predicates instead of propositions:
. Gx=aNAx<Dh)
. GF(x =a) AGF(x = b)

* Predicates interpreted according to specific theory

« “next” variables to express changes/transitions:
e G(x=x+1)
« G —-a<bh)

« BMC
« Add encoding of lasso-shape and fairness

« Sound for finding traces, but not complete
e The only counterexaple may be not lasso-shape

« K-liveness
* No change
e Sound to prove properties, but not complete

. Property may hold, but fairness can be visited an unbounded number
of times
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Liveness to Safety for Infinite States

 Unsound for infinite-state systems
 Not all counterexamples are lasso-shaped

I(=(x=0) TO=(@=z+1) ¢=FG(z<5H)

 Liveness to safety with Implicit Abstraction

 Apply the I2s transformation to the abstract system

« Save the values of the predicates instead of the
concrete state

Do it on-the-fly, tightly integrating I2s with IC3
 Sound but incomplete

o WP_en abstract loop found, simulate in the concrete and
refine

o Might still diverge during refinement
Intrinsic limitation of state predicate abstraction
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Wrap-up
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Lecture Summary

 Overview of SAT-based model checking techniques

* Details on IC3, as currently the prominent
algorithm

 Liveness reduced to safety

e Lifting SAT-based MC to SMT

 For invariant checking
« Easy for BMC and k-induction
 Predicate abstraction to reduce to finite-state MC

o Implicit abstraction to avoid explicit computation of
abstract state space

o Implicit abstraction to lift IC3 to SMT
 For liveness

« BMC and K-liveness sound but not complete

o Liveness2safety on abstract state space
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Not covered

 Other MC approaches: BDD-Based,
Interpolation, ...

 QOther Properties: CTL, PSL,
termination, epistemic, ...

* Other kind of systems
 Continuous-time/hybrid systems
* Probabilistic Systems
* Software (control-flow graphs)
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Next lecture

L1

L2

Functional ‘ Model-Checking
Verification

Model-Based
Safety ‘ Safety-
Assessment Assessment
Hierarchical Contract-Based

Decomposition Design
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Contract-Based
Safety-
Assessment



Readings

A list of suggested readings on the topics of the course. The list is not meant to be
complete.

. Model checking:

. Edmund M. Clarke, Orna Grumberg, Doron A. Peled: Model Checking. The MIT Press, 1999

. Kenneth L. McMillan: Symbolic Model Checking. Kluwer, 1993

. Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. The MIT Press, 2008

. Bounded Model Checking:

. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan Zhu: Bounded
model checking. Advances in Computers 58: 117-148 (2003)
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Readings

. K-induction:

. Mary Sheeran, Satnam Singh, Gunnar Stalmarck: Checking Safety Properties Using Induction
and a SAT-Solver. FMCAD 2000: 108-125

. Niklas Eén, Niklas Sérensson: Temporal induction by incremental SAT solving. Electr. Notes
Theor. Comput. Sci. 89(4): 543-560 (2003)

. IC3 for Finite-State Transition Systems:
. Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87

. galgio Somenzi, Aaron R. Bradley: IC3: where monolithic and incremental meet. FMCAD 2011:

. Aaron R. Bradley: Understanding IC3. SAT 2012: 1-14

. lfryistof Hoder, Nikolaj Bjgrner: Generalized Property Directed Reachability. SAT 2012: 157-
7
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Readings

. LTL Model Checking:
. Amir Pnueli: The Temporal Logic of Programs. FOCS 1977: 46-57

. Moshe Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic. Banff Higher
Order Workshop 1995: 238-266

. Edmund M. Clarke, Orna Grumberg, Kiyoharu Hamaguchi: Another Look at LTL Model
Checking. Formal Methods in System Design 10(1): 47-71 (1997)

. Liveness to safety:

. Armin Biere, Cyrille Artho, Viktor Schuppan: Liveness Checking as Safety Checking. Electr.
Notes Theor. Comput. Sci. 66(2): 160-177 (2002)

. Yi Fang, Kenneth L. McMillan, Amir Pnueli, Lenore D. Zuck: Liveness by Invisible Invariants.
FORTE 2006: 356-371

. ggeggClaessen, Niklas Sérensson: A liveness checking algorithm that counts. FMCAD 2012:
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Readings

. K-Induction for Infinite-State Systems:

. Leonardo Mendonga de Moura, Harald RueB, Maria Sorea: Bounded Model Checking and
Induction: From Refutation to Verification (Extended Abstract, Category A). CAV 2003: 14-26

. Temesghen Kahsai, Cesare Tinelli: PKind: A parallel k-induction based model checker. PDMC
2011: 55-62
. Alessandro Cimatti, Sergio Mover, Alessandro Cimatti: SMT-based scenario verification for

hybrid systems. Formal Methods in System Design 42(1): 46-66 (2013)

. Jonathan Laurent, Alwyn Goodloe, Lee Pike: Assuring the Guardians. RV 2015: 87-101
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Readings

. Interpolation-based Model Checking:

. Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003: 1-13

. Kenneth L. McMillan: Applications of Craig Interpolants in Model Checking. TACAS 2005: 1-12

. Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

. Liveness to Safety for Infinite-State Systems:

. Viktor Schuppan, Armin Biere: Liveness Checking as Safety Checking for Infinite State
Spaces. Electr. Notes Theor. Comput. Sci. 149(1): 79-96 (2006)

. Andreas Podelski, Andrey Rybalchenko: Transition predicate abstraction and fair termination.
ACM Trans. Program. Lang. Syst. 29(3) (2007)

. Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: Verifying LTL
Properties of Hybrid Systems with K-Liveness. CAV 2014: 424-440
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Readings

. Implicit Abstraction:

. ?g%fano Tonetta: Abstract Model Checking without Computing the Abstraction. FM 2009: 89-

. IC3 for Infinite-State Systems:
. Alessandro Cimatti, Alberto Griggio: Software Model Checking via IC3. CAV 2012: 277-293

. Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: IC3 Modulo Theories
via Implicit Predicate Abstraction. TACAS 2014: 46-61

. Johannes Birgmeier, Aaron R. Bradley, Georg Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014: 831-848

. Yakir Vizel, Arie Gurfinkel: Interpolating Property Directed Reachability. CAV 2014: 260-276

. §i8k10|aj Bjgrner, Arie Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015: 263-
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