|
FONDAZIONE
- | (BRUNO KESSLER

Advanced model checking
for verification and
safety assessment

Alessandro Cimatti
Fondazione Bruno Kessler (FBK)

Invited Lectures on Advanced Verification
Part 1

Lectures prepared in collaboration with
Stefano Tonetta and Marco Gario
Slides on IC3 borrowed from Alberto Griggio (VTSA’15)

A. Cimatti - Invited Lectures on Advanced Verification

Outline

e Motivation

* Finite-State Model Checking

 Invariant Checking
« IC3

« LTL Checking
* Infinite-State Model Checking

* Wrap-up

A. Cimatti - Invited Lectures on Advanced Verification

Motivation

A. Cimatti - Invited Lectures on Advanced Verification

Embedded Safety-Critical Systems

 Embedded with software to e
deliver intelligent: e o oo
« Transportation L A .
- Communication _| =) T
* Automation 1 e _T"
] Section Section End Section | Section
* Across domains: Movement Authriy EndOF Authorty
 Railways
* Avionics
 Automotive
e Space
 Health oo L -
« Key properties and | e [
challenges: b e B P
* Interaction of components s i i et
* Decomposition of services L oot e FJ
- Safety requirements ———— i ——
uuuuuu e—

A. Cimatti - Invited Lectures on Advanced Verification 4

Model-based system engineering

 Models used for system requirements, architectural design,
analysis, validation and verification

 Different system-level analysis (safety, reliability,
performance, ...)

* Formal methods as back-end

 Formal specification to assign models a rigorous mathematical
semantics

« Formal verification to prove the properties on the models.

 Design models translated into input for verification
engine

« Requirements formalized into properties

 Model checking appealing because integrated as push-
button

A. Cimatti - Invited Lectures on Advanced Verification

AIR6110 Wheel Braking System

* Joint scientific study with Boeing

 Aerospace Information Report 6110:

e Traditional Aircraft/System Development Process
Example

 Wheel Brake System of a fictional dual-engine
aircraft

* Objectives:
« Analyze the system safety through formal techniques

« Demonstrate the usefulness and suitability of formal
techniques for improving the overall traditional
development and supporting aircraft certification

A. Cimatti - Invited Lectures on Advanced Verification

NASA NextGen Air Traffic Control

* Joint project with NASA Ames and Langley

 Allocation of tasks between Aircraft and Ground

« Model and Study a design space with more than 1600
configurations

 Objectives:

« Apply Formal Methods to study the quality and Safety of
many design proposals

* Highlight Implicit assumptions

A. Cimatti - Invited Lectures on Advanced Verification

Finite-State
Model Checking

Invariant Checking

Model checking

temporal formula

[G(p -> Fq)} \ /yes!

Model
Checker

N Y —
finite-state model q \

counterexample

A. Cimatti - Invited Lectures on Advanced Verification

Mutual exclusion example

N: non-critical
T: trying

C: critical
Userl

User?2

Property:
always

not C1 or not C2
I.e.

(C1 and C2)

is not reachable

A. Cimatti - Invited Lectures on Advanced Verification

Symbolic representation

 Symbolic Boolean variables vV = {v,, ..., v,} to represent the
state space

« A state is an assignment to the variables

 Symbolic formulas used to represent:

e Set of states: ¢p(V)={s|sE¢}
o« Abuse of notation se ¢ iff s E ¢

 Set of transitions: ¢(V, V') = {(s,s") | (s,s") E ¢}
e Where the variables V' = {v'4, ..., v',,} represent next state variables

A transition system is a tuple (V,I,T) where:
« TV is the set of variables
 The set of initial states represented by the formula 1(V)
 The transition relation represented by the formula T(V,V")

A. Cimatti - Invited Lectures on Advanced Verification

Example

e V={uv}
* [:==uAN-v

e T:=u o uAv & (uxorv)

A. Cimatti - Invited Lectures on Advanced Verification

Invariant properties

A path of the system S is a sequence sy, sq, ..., s Of
states such that s, 1 and for all i,0 <i <k,
Si)Si+1 =T

A state s is reachable iff there exists a path
Sg, Sy, .-, S, sSuch that s = s;,

A formula P(V) is an invariant iff for all paths
So,S1,,Sk, forall i,s; e P

Equivalent to say that no state in —P is reachable

A. Cimatti - Invited Lectures on Advanced Verification

Forward reachability checking

 Forward image computation:
e Compute all states reachable from Q in one transition:

Fwdimg(Q) =3V QWV)ATW, V')[V/ V']
* Prove that a set of states Bad is not reachable:
e Start from initial states: R :=1
 Apply Fwdimg iteratively: oldR := R;R = Fwdimg(R) U R
e until fixpoint oldR =R

A. Cimatti - Invited Lectures on Advanced Verification

Bounded Model Checking

 Reachability encoded into a satisfiability problem
I(Vo) NT(Vo, Vi) AT(Vy, Vo) A= AT (Vi—1, Vi) A Bad (Vi)

 The formula is sat iff there exists a path of length
k that reaches Bad

* Checked for increasing values of k
 Exploited incrementality of SAT solvers

* Finite-state space = a completeness threshold
K exists

 If unsat for all k < K then Bad is not reachable
« K is typically very large = unfeasible to reach in practice

A. Cimatti - Invited Lectures on Advanced Verification

Example

o @ — @
[:==—=uAN-v

T=u ouAv o (uxorv)

Bad =uAv

BMC:

y (_|u0 N\ _Ivo) AN (UO AN vo) UNSAT

* (mug Awp) A (ug © ug Avy © (ug xor v)) A (ug Av;) UNSAT

o (mug Awg) A (g © ug Avy © (ug xor vy))
(uz o Uy Avy © (uq xor vl)) A
(u3 © uy Avy © (uy x0r v5)) A (U3 Avs)
SAT

A. Cimatti - Invited Lectures on Advanced Verification

Induction and K-induction

 Induction
 Base case: check if the initial state satisfies P (invariant)
 Inductive case: check if the transitions preserve the invariant
PWVYATWV, V) PV
« We say P is inductive invariant

e K-induction

« Base case: check if all initial path satisfies P (invariant) up to
k steps

 Inductive case: check if every path of k + 1 steps preserve the
invariant

P(Wo) ANT(Vo, Vi)AP(V) ATV, Vo) Aos AP(Vie—1) AT(Vie—1, Vi) & P(V)

« Strengthened with simple path condition to avoid repeating
states

e We say P is k-inductive invariant

 Typically however Pis not (k-)inductive
= find Inv such that Invis inductive invariant and Inv = P

A. Cimatti - Invited Lectures on Advanced Verification

IV = {xl, Xy, x3}

° [:=—ax; Axy A Xg

° Bad :=x; \xy
¢ P = —1Xq \% —1X>

e Inductive?
 No

 k-inductive?
* Yes for k=3

e Inductive invariant?

A. Cimatti - Invited Lectures on Advanced Verification

Finite State Model-
Checking

IC3

- Very successful SAT-based model checking algorithm

Based on induction

Given a symbolic transition system and invariant property
P, build an inductive invariant F s.t. FE P

Inductive invariant built incrementally

Trace of formulas F, = I, F, ..., F; S.t:

fori > 0, F; is a set of clauses, overapproximation of
states reachable in up to i steps

Fiy1 € F; (SO F; F Fyyq)
F,AT E F/,,
Foralli<kF, =P
Strengthen formulas until F, = Fi44

Exploiting efficient SAT solvers

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

o T
% e —

- Blocking phase: incrementally strengthen trace
until F, = P

- Get bad cube s

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

T
@
- Blocking phase: incrementally strengthen trace

until F, = P

Get bad cube s
Call SAT solveron Fj,_{ A=sATAS'

(i.e.,checkif F,_{ A=s AT E =s')

\ECheck if —s is inductive relative to F, , }

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

®
C
- Blocking phase: incrementally strengt

until F, = P

Get bad cube s
Call SAT solveron Fj,_{ A=sATAS'

SAT: s is reachable from F,_; in 1 step
Get a cube c in the preimage of s and try

nen trace

If I is reached, a
counterexample

to P is found

(recursively) to prove it unreachable from F;_,, ...

c is a counterexample to induction (CTI)

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

.
Q ‘n —>13

- Blocking phase: incrementally strengthen trace
until F, E P

Get bad cube s
Call SAT solveron Fj,_{ A-s AT As'

UNSAT: =s is inductive relative to F,_,

- Generalize c to g and block by adding —g to
Fi 1, Fi_p, ., Fy

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

- M [=

- Blocking phase: incrementally strengthen trace
until F, E P

Get bad cube s
Call SAT solveron Fj,_{ A-s AT As'

UNSAT: =s is inductive relative to F,_,

- Generalize c to g and block by adding —g to
Fi 1, Fi_p, ., Fy

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

T T T °
o -

- Propagation: extend trace to F;,; and push
forward clauses

For each / and each clause c € F;:

Call SAT solver on F; AT A =c’
If UNSAT, add ¢ to F;;4

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

T T T T o
o -

- Propagation: extend trace to F;,, and push
forward clauses

For each i and each clause c € F;:

Call SAT solver on F; AT A =c’
If UNSAT, add ¢ to F;,4

A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

T T T T o
o -

- Propagation: extend trace to F,,; and push
forward clauses

For each i and each clause c € F;:

Call SAT solver on F; AT A =c’

If UNSAT, add ¢ to F;,4
If F; = F;,,, P is proved,

otherwise start another round of blocking and propagation

A. Cimatti - Invited Lectures on Advanced Verification

Inductive Clause Generalization

- Crucial step of IC3

. Given a relatively inductive clause ¢ = {l1,...,1,}

- compute a generalization g C ¢ that is still inductive
Fi i ANTANgEY (1)
- Drop literals from ¢ and check that (1) still holds

- Accelerate with unsat cores returned by the SAT solver
- Using SAT under assumptions

- However, make sure the base case still holds
- If T ce\{l;} .then l; cannot be dropped

A. Cimatti - Invited Lectures on Advanced Verification

Example

No counterexamples of length O

borrowed and adapted from F. Somenzi

A. Cimatti - Invited Lectures on Advanced Verification

Example

Get bad cubec = x1 Axo in Fy AN P

I = X1 N\ X9 N\ X3
P = -z V zo

Fy=1
=T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Is —c inductive relative to F,? Fo AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
=T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
=T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Fi=T
Try dropping —Z2

Fo NT N —xy = o)

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Fi=T
Try dropping 1

Fo NT N —xo E il

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

Fi=T
Try dropping 1

Fo NT N —xo E il

A. Cimatti - Invited Lectures on Advanced Verification

Example

Update I}

@ e ol @
P = -z V zo

Fo=1T
I = —xo

A. Cimatti - Invited Lectures on Advanced Verification

Example

Blocking done for F7 . Add F> and propagate forward

@ o
— X1 \Y T

FO_I

A. Cimatti - Invited Lectures on Advanced Verification

Example

No clause propagates fromF7 to F5

o

el
|
i

A. Cimatti - Invited Lectures on Advanced Verification

Example

Get bad cubec =1 N\ o inFo A =P

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1

A. Cimatti - Invited Lectures on Advanced Verification

Example

Is —¢ inductive relative to I, ? F1 AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1T
by = —xo
Fo =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

No, found CTI s = 721 A X2 A X3

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

GRS
I
4

A. Cimatti - Invited Lectures on Advanced Verification

Example

Try blocking—s at level 0: fo AT N\ —s = —s

CAATIC. I
P:_Iibl\/_libg
F— 1

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —s = x1 V 22 V 13

Fy=1

Try dropping 1 Fy =

Fo NT NxoV —xg = xh V —ah

-
o
7

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —s = x1 V 22 V 13

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
. F1 — X2
Try dropping T2 Fy=T

FoANT NxqV —zg =27 V xf

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —s = x1 V 22 V 13

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
. F1 — X2
Try dropping T3 =T

Iﬁxl

A. Cimatti - Invited Lectures on Advanced Verification

Example

Update [}
@ e w @ LTy
P = -z V 29
o
F1 = X9 N\
(5131 \/—ICIZ3)
Fo =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Return to the original bad cube ¢

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fy=1
F1 = X9 N\
(5131 \/—ICIZ3)

Fo =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Is =¢ inductive relative to F,? F1 AT A —c = —c

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fy=1
F1 = X9 A\
(5131 \/—ICIZ3)

Fo =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Yes, generalize —¢ = —x1 V 29

I = —x1 N\ X9 A\ X3
P = -z V ~x

Fo=1
: F1 = L2 N
Try dropping —1 (x1 V —x3)
o =T

Fi NT N —zo = a2

A. Cimatti - Invited Lectures on Advanced Verification

Example

Update F5 and add new frame F3j

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fy=1
F1 = X9 A\
(5131 \V4 —ICIZ3)

Fs =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Perform forward propagation

I = —xr1 /\ X9 /\‘ICEg
P = -z V 29

Fo=1

F1 = X9 N\
From £y to Fo : (1 V —23)
F;AT E (xqV —|Xé) Fy = -1y

Fs =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

Perform forward propagation

I = —xr1 /\ X9 /_I£133
P = -z V 29

Fy=1

Found fixpoint! Fy = —x2 A
(5131 V _l5133)

F2 — TI9 /N

(le \V4 _lﬂjg)

A. Cimatti - Invited Lectures on Advanced Verification

Example

Perform forward propagation

I = —xr1 /\ X9 /_I£IZ‘3
P = -z V 29

Fo=1
_ _ _ F1 = Xy N
Inductive invariant: (21 V —23)
Fl EFQ — —ICUQ/\(QL‘l\/_ICL‘g) F2 — TI9 /N\

(21 V —x3)

A. Cimatti - Invited Lectures on Advanced Verification

Finite State Model-
Checking

Liveness Checking

Linear Temporal Logic

 Linear models: state sequences (traces)
 Built over set of atomic propositions AP

 LTL is the smallest set of formulas such that:
 any atomic proposition p € AP is an LTL formula
 if ¢, and ¢, are LTL formulas,
then —¢,, ¢, A, and ¢, v ¢, are LTL formulas
 if ¢, and ¢, are LTL formulas,
then X¢,F¢,,G¢p; and ¢p,U¢, are LTL formulas

A. Cimatti - Invited Lectures on Advanced

Verification

LTL semantics

B Semantics defined for every
trace, for every i e N.

¢ Given an infinite trace n = sy, s4, ..
finally p globally p

e mikEpiffs;Ep

e Standard definition for o, A, V ' -
F G

o T[,i |: X¢ iff Sl+1’ Sl+2’ e |: ¢ d d

e 1, ik ¢,U ¢, iff there exists j = i,
m,j E ¢, and for all k,i <k <, next p P until g

e PBeseaee s eeeese.

e 1,i E F¢ iff there exists j > i,
T,jE @
e mikrGe iffforallj=i, n,jE@

B MEeo¢Iiff M,r,0 £ ¢ for every
trace m of M.

A. Cimatti - Invited Lectures on Advanced Verification

LTL examples

Gp “always p” - like invariant (if we assume
deadlock freedom)

G(p —» Fq) “p is always followed by q” - reaction

G(p — Xq) "whenever p holds, q is set to true” -
immediate reaction

GFp “infinitely many times p” - fairness
FGp “eventually permanently p”

G (speed_above_limit — (brake U —speed_above_limit))

A. Cimatti - Invited Lectures on Advanced Verification

LTL verification

 Given an LTL property ¢, build a transition
system M_, with a fairness condition f_,, such that
M X M_g E FGf_g

 FG requires a doubly-nested fixpoint

« SAT-based approaches typically reduce the
problem to safety

A. Cimatti - Invited Lectures on Advanced Verification

Liveness2safety

Based on the existence of a lasso-shaped
counterexample, with f_, at least once in the loop

liveness to safety transformation: absence of
lasso-shaped counterexamples as an invariant
property

* Duplicate the state variables V,,, = {v.| v € V}
 Non-deterministically save the current state

* Remember when f_, in extra state var triggered

* Invariant: G=(V =V, Atriggered)

A. Cimatti - Invited Lectures on Advanced Verification

K-liveness

 Simple but effective technique for LTL verification
of finite-state systems

* Key insight: M X M_, E FGf_ iff there exists k
such that f_, is visited at most k times
 Again, a safety property

 K-liveness: increase k incrementally
Liveness checking as a sequence of safety checks

 Using IC3 as safety checker
 Exploits the highly incremental nature of IC3

A. Cimatti - Invited Lectures on Advanced Verification

Wrapping up...

e Motivations

* Finite-State Model Checking
« From BDD-based to SAT-based

* Invariant Checking
« IC3

 LTL Checking
e BMC: traces as models, found with SAT checks
 Liveness to safety
 Proving limit for violations to fairness

A. Cimatti - Invited Lectures on Advanced Verification

Infinite State
Model-Checking

Infinite State Transition System

Same definition as before: (V,I,T)

First-order instead of propositional formulas:

e Signature: set X of constant, functional, and relational
symbols

e Structure: a domain D and interpretation 7 of the
symbols in the signature

e Theory: set T of axioms (a model of T is a structure
that satisfy T)

Some constant symbols are used as the variables of

the transition system

« They have a flexible interpretation that varies along
time

« The other symbols are rigid

In the following = implicitly means 4, i.e. is
restricted to the models of a given theory

A. Cimatti - Invited Lectures on Advanced Verification

Example

* T=@=x+1D)AQ <y)

e X:={xvy01+<..}
e T := theory of reals

YSX/\T|=T}/’SX’

A. Cimatti - Invited Lectures on Advanced Verification

From SAT to SMT

* Previous algorithms assume to have a solver for the
satisfiability of formulas

 First developed for finite-state systems with the support
of SAT solvers

 SAT solvers substituted by Satisfiability Modulo Theory
(SMT) solvers:

« Satisfiability for decidable fragments of first-order logic
e SAT solver used to enumerate Boolean models

« Integrated with decision procedure for specific theories, e.qg.,
theory of real linear arithmetic

 Search algorithms applied to infinite-state systems
(although in general undecidable)

* Lift to SMT straightforward for BMC and k-induction

* Not for IC3:
 Requires alternative effective generalization

A. Cimatti - Invited Lectures on Advanced Verification

Counter-Example Guided Abstraction-Refinement
(CEGAR)

CProg -
ﬁ‘ Abstraction I\
Morelnfo AProgli]

Refinement ‘ Model Check I

No CCex

Counter-example |
[No ACex
Unsafex<: An aly sis — >Safe

Predicate abstraction

not P, Po Wo(X)
o 091
P2 j}
W, (X
not P, M//
@) 4

100 101
not P,

State vars X

P Abstract State vars P
1 X)
AI (P)
W, (X) R(X, X')
980 AR(P,P") 014

Predicate Abstractio

* Reduction to finite-state MC = =
b 4 i
* Predicates IP over concrete //,' s ,‘.\ /
variables to define the abstractior 3 : ra \/’ v
/ T Vo
- Abstract state space given by £ 145 A 0

/ L
i ‘lk

\
Bool_ean variables, one for each 7 7 o
predicate V = {v, | p € P} / k. \
* I’#

 Abstract state a(s) = {v,| s(p) = T}

. Abstract transition iff there exists a concrete transition between

two corresponding concrete states
T ={(538"3s,s",a(s) =3,a(s") =38,T(s,s")}

 Transitions computed with ALLSMT:
T(V, V") =3v,v'(T(V,V") A /\vp o p(V) A /\v’p o p(V'))

pEP pEP

A. Cimatti - Invited Lectures on Advanced Verification

Interpolation

An interpolant for an unsatisfiable formula
S (X, Y)NP(Y,2Z)

is a formula /fp(Y') such that:
@ ltip(Y) A D(Y,Z)is unsatisfiable

Interpolation-based model checking

<
¢1(>53:X1)
1(Xo) AR(X0, X1) A R(X1,Xo)..

Precise

Overapproximated

Reachable from I(X) Can reach B(X) in k-1 steps

ltp(X1) = Itp(R, 1(X0), k)

Interpolation-based model checking

Precise

Overapproximated

>
et

Reachable from I(X) Can reach B(X) in k—1 steps
@ Precise reachability
@ Ro=1
@ Ri=Img(R,Ri_1) UR;j_1
@ Interpolation based reachability
[+ Itpo = I(X1)
@ ltp; = Itp(R, Itp;_1, k) U Itp;_4

Abstraction Refinement

- Abstract traces are overapproximations

Spurious counterexamples can be generated

Standard abstraction refinement techniques based on
interpolation

Sequence of abstract states §,, 54, ..., $x
SMT check on
So(Vo) ANT(Vo, Vi) AS (Vi) AT(Vy, Vo) A AT (Vi—q, Vie) A S (Vi)
If unsat, compute sequence of interpolants for
[So(Vo) AT(Vo, Vi) A= AT Vi, Vi)]
[$;(V) AT(Vo, Vi) A+ AT (Vi—1, Vie) A S (Vi)]
using the same UNSAT proof (called sequence interpolants)
Add all the predicates in the interpolants to P

A. Cimatti - Invited Lectures on Advanced Verification

Implicit Predicate Abstraction

- Abstract version of BMC and k-induction, avoiding explicit
computation of the abstract transition relation

- By embedding the abstraction in the SMT encoding
© EQ(V1,V2) = Npepp(V1) < p(V2)
- The abstract unrolling is

T(Vo, Vi) AEQ(V, Vi) AT(Vy, Vo) AEQ(V, Vo) ATV, Va) A -

a0 a5 a0 a0
9 s 9
O TB O TB

A. Cimatti - Invited Lectures on Advanced Verification

Infinite State
Model-Checking

IC3 with Implicit Abstraction

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3
- Use abstract transition relation
- Learn clauses only over predicates

- Use abstract relative induction check:

AbsRellnd(F,T,c, P)
=FWV) Ac(V)AT(V,V) A /\ (pv") & p(V)) A= (V")
peEP

- If UNSAT = inductive strengthening as in the Boolean
case

- No theory-specific technique needed

A. Cimatti - Invited Lectures on Advanced Verification

IC3 with Implicit Abstraction

- Integrate the idea of Implicit Abstraction within IC3

- Use abstract transition relation

- Learn clauses only over predicates

- Use abstract relative induction check:
AbsRellnd(F,T,c, P)

=F(V) Ac(V) A T(V, V) A /\ (p(V’) © p(V)) A=c(V')
peEP

- If SAT = abstract predecessor from the SMT model
- No preimage needed

A. Cimatti - Invited Lectures on Advanced Verification

Example

« T :=2x; —3x; <4x)+2x, +3) A (3x; — 2x, = 0)

c Pi={00 —x224),(x <3)}

e si==(x; —x, =2 4)N(x1 <3)

. AbsRellnd(®,T,—s,P) = T (V, V’) A=s(V) As(V) A
(X1 —x,24) o (x; —x,24)N(x; <3) & (x; <3)

- AbsRellnd(®,T,s,P) is SAT

- Compute a predecessor from SMT model:
1= {z — 0,29 — 1}
—(x1 — 22 > 4) A (21 < 3)

A. Cimatti - Invited Lectures on Advanced Verification

Abstraction refinement

Abstract counterexample check can use incremental SMT
Abstraction refinement is fully incremental

No restart from scratch

Can keep all the clauses of Fy, ..., F

Refinements monotonically strengthen T

Thew = Toia N /\ (P(V) © P(V)) A (P(V') ©p (V’))

peEnewpP
All IC3 invariants on F, ..., F;, are preserved
Fiy1 € F; (SO F; E Fi44)
F,AT E F/,,
Foralli<k,F; =P

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

* Check base case: Init = Property

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

* Property: (d >2) - (c>d) (d=1),(c=d),
« Get bad cube (d>2),(c>d)
e« SMT check F; A =P - Trace
« SAT with model u:={c=0,d = 3} - Fy = Init
* Evaluate predicates wrt. u CF =T
« Return

s={=(d=1),-(c=4d),(d>2),-(c>d)}

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d >2) - (c>d) (d=1),(c=d),

 Rec. block s (d>2),(c>d)
e Check - Trace

AbsRellnd(Fy, T, —s, P) . F, = Init
::Init/\(E=C+d)/\(a=d+1)

/\(d’=1<—>a=1)/\(c’2d’<—>523)
/\(d’>2<—>E>2)/\(c’>d’<—>E>E)/\—|s/\s’

- Predicates P

F1 =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

* Rec. block s
« Check AbsRellnd(F,, T, —s,P): UNSAT - Trace
* Generalize: {=(d > 2)} . Fy = Init
 Update F; == F; A=(d > 2) COF =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=DA(c=d)
e Trans: (c'=c+d)A(d =d+1)
e Property: (d >2) - (c > d) (d=1),(czd),
(d>2),(c>d)
- Trace
- Fy == Init
° F1 = _I(d > 2)
° F2 =T

- Predicates P

 Forward propagation

A. Cimatti - Invited Lectures on Advanced Verification

Example

System with 2 state vars c and d

Init: (d=1)A(c =d)
Trans: (c'=c+d)A(d =d+1)
Property: (d > 2) - (c > d)

Get bad cube at 2

S = {_I(d — 1),—|(C > d),
(d > 2),=(c > d)}

A. Cimatti - Invited Lectures on Advanced Verification

- Predicates P

(d=1),(c=ad),
(d>2),(c>d)

- Trace

- Fy == Init
° F1 = _I(d > 2)
° F2 =T

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

e Property: (d >2) - (c > d) (d=1),(czd),
(d>2),(c>d)
: - Trace
 Recursively block s .
. - Fy == Init
« Update F, :=F, A (c = d) - Fpi=a(d>2)
¢ ° F2 =T

 UpdateF, =F,A(c=d)Vv-a(d>?2)

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d) _
+ Trans: (' =c+d)A(d =d+1) + Predicates P
* Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

« Forward propagation - Trace

- Fy = Init

° Fl':_l(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

° F3 =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d>2)—-(c>d)

e Get cube at 3
° S = {_I(d = 1),—|(C > d),
(d > 2),=(c > d)}

A. Cimatti - Invited Lectures on Advanced Verification

- Predicates P

(d=1),(c=d),
(d>2),(c>d)
Trace

- Fy = Init

° Fl':_l(d>2)/\
(c=d)AF,

- F,=(c>d)V
—(d > 2)

° F3 =T

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

 Recursively block s

e AbsRellnd is sat - Trace

* SMT model: - Fy = Init

u={c=0,d=2,c"=0d=3,c =2,d=3} . F = a(d>2)A

 Abstract predecessor: (c=d)A\F,

{_I(d > 2), —|(C > d),_l(d = 1),ﬂ(C > d)} . FZ — (C > d) Vv
—(d > 2)

F3 =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)
e Trans: (c'=c+d)A(d =d+1)
* Property: (d >2) - (c>d) (d=1),(c=d),
(d>2),(c>d)

- Predicates P

 Recursively block ¢

. - Trace
« Reached level 0, abstract cex: - F, = Init
Sop=—(d>2),-(c>d),(d=1),(c=d)

o Fpi==(d>2)A
5y = a(d > 2).4(c > d),=(d = 1), (c > d) A3 d)(/\F)
sy = =(d > 2),=(c >d),=(d =1),-(c = d) - ?
s:==a(d=1),=(c=d),(d>2),=(c>d) © Fp=(c>d)v

—(d > 2)
° F3 =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

+ Trans: (' =c+d)A(d =d+1) + Predicates P

e Property: (d >2) - (c > d) (d=1),(cz4d),
(d>2),(c>d)
 Check abstract counterexample + Trace

sSo(Vo) AT(Vo, Vi) A sy (V) ATV, V,) A sy(Vy) - Fy = Init

AT (V3,V3) As(V3) - Fi==a(d>2)A
(c=d)AF,

UNSAT - Fy=(c>d)V

—(d > 2)

° F3 =T

A. Cimatti - Invited Lectures on Advanced Verification

Example

System with 2 state vars c and d

e Init: d=1DA(c=d)

e Trans: (c'=c+d)A(d =d+1)
* Property: (d>2)—-(c>d)

Check abstract counterexample

Extract new predicates from
sequence interpolants:

Update P

d=2,d=3

A. Cimatti - Invited Lectures on Advanced Verification

- Predicates P

(d=1),(c=ad),
(d>2),(c>d),
(d =2),(d = 3)

- Trace

- Fy = Init

° F1°=_I(d>2)/\
(c=d)AF,

- F,:=(c>d)V
—(d > 2)

° F3 =T

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),
(d>2),(c>d),
e Update abstract Trans (d=2),(d=3)
« Resume IC3 from level 3 + Trace
| Fy = Init

1 FL==(d>2)A(c=d)AF,
1 FE=(c>dVvald>2)AF;

1T F=d=1)v(d=2)A
—-(c=d)AF,

1 F,=(c>d)Vv-a(d>?2)

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),

d>2),(c>d),

e Update abstract Trans (d=2),(d=3)
- Trace

¢ Resume IC3 from level 3
1 Fy = Init
: D F=ad>2)A(c=d)AF,
 Forward propagation
FoATeE(2d)Va@d =22) | f2= (c>d)Vald>2)AF;
CFB=d=1)vd=2)A
—(c=d)ANF,

D Fp=(c>d)Vva(d>2)

A. Cimatti - Invited Lectures on Advanced Verification

Example

 System with 2 state vars c and d
e Init: d=1)A(c=d)

. Trans: (¢’ =c+d)Ad =d+1) * Fredicates P

e Property: (d >2) - (c > d) (d=1),(c=d),
(d>2),(c>d),
e Update abstract Trans (d=2),(d=3)
« Resume IC3 from level 3 + Trace
| Fy = Init

Forward t CR=ad>2DACzdAR
¢ orwar ropagation
e CFR=F=(c2dvV

F,ATpE (¢'2d)V—(d =2) ~(d=2)A(d=1)V
Fixpoint = Property is true (d=22)A=lc2d)AF,
1 Fy=(>d)va(d>?2)

A. Cimatti - Invited Lectures on Advanced Verification

Infinite State
Model-Checking

Liveness Checking

LTL from Finite to Infinite

 Use first-order predicates instead of propositions:
. Gx=aNAx<Dh)
. GF(x =a) AGF(x = b)

* Predicates interpreted according to specific theory

« “next” variables to express changes/transitions:
e G(x=x+1)
« G —-a<bh)

« BMC
« Add encoding of lasso-shape and fairness

« Sound for finding traces, but not complete
e The only counterexaple may be not lasso-shape

« K-liveness
* No change
e Sound to prove properties, but not complete

. Property may hold, but fairness can be visited an unbounded number
of times

A. Cimatti - Invited Lectures on Advanced Verification

Liveness to Safety for Infinite States

 Unsound for infinite-state systems
 Not all counterexamples are lasso-shaped

I(=(x=0) TO=(@=z+1) ¢=FG(z<5H)

 Liveness to safety with Implicit Abstraction

 Apply the I2s transformation to the abstract system

« Save the values of the predicates instead of the
concrete state

Do it on-the-fly, tightly integrating I2s with IC3
 Sound but incomplete

o WP_en abstract loop found, simulate in the concrete and
refine

o Might still diverge during refinement
Intrinsic limitation of state predicate abstraction

A. Cimatti - Invited Lectures on Advanced Verification

Wrap-up

A. Cimatti - Invited Lectures on Advanced Verification

Lecture Summary

 Overview of SAT-based model checking techniques

* Details on IC3, as currently the prominent
algorithm

 Liveness reduced to safety

e Lifting SAT-based MC to SMT

 For invariant checking
« Easy for BMC and k-induction
 Predicate abstraction to reduce to finite-state MC

o Implicit abstraction to avoid explicit computation of
abstract state space

o Implicit abstraction to lift IC3 to SMT
 For liveness

« BMC and K-liveness sound but not complete

o Liveness2safety on abstract state space

A. Cimatti - Invited Lectures on Advanced Verification

Not covered

 Other MC approaches: BDD-Based,
Interpolation, ...

 QOther Properties: CTL, PSL,
termination, epistemic, ...

* Other kind of systems
 Continuous-time/hybrid systems
* Probabilistic Systems
* Software (control-flow graphs)

A. Cimatti - Invited Lectures on Advanced Verification

Next lecture

L1

L2

Functional ‘ Model-Checking
Verification

Model-Based
Safety ‘ Safety-
Assessment Assessment
Hierarchical Contract-Based

Decomposition Design

A. Cimatti - Invited Lectures on Advanced Verification

Contract-Based
Safety-
Assessment

Readings

A list of suggested readings on the topics of the course. The list is not meant to be
complete.

. Model checking:

. Edmund M. Clarke, Orna Grumberg, Doron A. Peled: Model Checking. The MIT Press, 1999

. Kenneth L. McMillan: Symbolic Model Checking. Kluwer, 1993

. Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. The MIT Press, 2008

. Bounded Model Checking:

. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan Zhu: Bounded
model checking. Advances in Computers 58: 117-148 (2003)

A. Cimatti - Invited Lectures on Advanced Verification

Readings

. K-induction:

. Mary Sheeran, Satnam Singh, Gunnar Stalmarck: Checking Safety Properties Using Induction
and a SAT-Solver. FMCAD 2000: 108-125

. Niklas Eén, Niklas Sérensson: Temporal induction by incremental SAT solving. Electr. Notes
Theor. Comput. Sci. 89(4): 543-560 (2003)

. IC3 for Finite-State Transition Systems:
. Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87

. galgio Somenzi, Aaron R. Bradley: IC3: where monolithic and incremental meet. FMCAD 2011:

. Aaron R. Bradley: Understanding IC3. SAT 2012: 1-14

. lfryistof Hoder, Nikolaj Bjgrner: Generalized Property Directed Reachability. SAT 2012: 157-
7

A. Cimatti - Invited Lectures on Advanced Verification

Readings

. LTL Model Checking:
. Amir Pnueli: The Temporal Logic of Programs. FOCS 1977: 46-57

. Moshe Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic. Banff Higher
Order Workshop 1995: 238-266

. Edmund M. Clarke, Orna Grumberg, Kiyoharu Hamaguchi: Another Look at LTL Model
Checking. Formal Methods in System Design 10(1): 47-71 (1997)

. Liveness to safety:

. Armin Biere, Cyrille Artho, Viktor Schuppan: Liveness Checking as Safety Checking. Electr.
Notes Theor. Comput. Sci. 66(2): 160-177 (2002)

. Yi Fang, Kenneth L. McMillan, Amir Pnueli, Lenore D. Zuck: Liveness by Invisible Invariants.
FORTE 2006: 356-371

. ggeggClaessen, Niklas Sérensson: A liveness checking algorithm that counts. FMCAD 2012:

A. Cimatti - Invited Lectures on Advanced Verification

Readings

. K-Induction for Infinite-State Systems:

. Leonardo Mendonga de Moura, Harald RueB, Maria Sorea: Bounded Model Checking and
Induction: From Refutation to Verification (Extended Abstract, Category A). CAV 2003: 14-26

. Temesghen Kahsai, Cesare Tinelli: PKind: A parallel k-induction based model checker. PDMC
2011: 55-62
. Alessandro Cimatti, Sergio Mover, Alessandro Cimatti: SMT-based scenario verification for

hybrid systems. Formal Methods in System Design 42(1): 46-66 (2013)

. Jonathan Laurent, Alwyn Goodloe, Lee Pike: Assuring the Guardians. RV 2015: 87-101

A. Cimatti - Invited Lectures on Advanced Verification

Readings

. Interpolation-based Model Checking:

. Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003: 1-13

. Kenneth L. McMillan: Applications of Craig Interpolants in Model Checking. TACAS 2005: 1-12

. Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

. Liveness to Safety for Infinite-State Systems:

. Viktor Schuppan, Armin Biere: Liveness Checking as Safety Checking for Infinite State
Spaces. Electr. Notes Theor. Comput. Sci. 149(1): 79-96 (2006)

. Andreas Podelski, Andrey Rybalchenko: Transition predicate abstraction and fair termination.
ACM Trans. Program. Lang. Syst. 29(3) (2007)

. Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: Verifying LTL
Properties of Hybrid Systems with K-Liveness. CAV 2014: 424-440

A. Cimatti - Invited Lectures on Advanced Verification

Readings

. Implicit Abstraction:

. ?g%fano Tonetta: Abstract Model Checking without Computing the Abstraction. FM 2009: 89-

. IC3 for Infinite-State Systems:
. Alessandro Cimatti, Alberto Griggio: Software Model Checking via IC3. CAV 2012: 277-293

. Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: IC3 Modulo Theories
via Implicit Predicate Abstraction. TACAS 2014: 46-61

. Johannes Birgmeier, Aaron R. Bradley, Georg Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014: 831-848

. Yakir Vizel, Arie Gurfinkel: Interpolating Property Directed Reachability. CAV 2014: 260-276

. §i8k10|aj Bjgrner, Arie Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015: 263-

A. Cimatti - Invited Lectures on Advanced Verification

