
Advanced model checking
for verification and
safety assessment

Alessandro Cimatti

Fondazione Bruno Kessler (FBK)

Invited Lectures on Advanced Verification

Part 1

Lectures prepared in collaboration with

Stefano Tonetta and Marco Gario

Slides on IC3 borrowed from Alberto Griggio (VTSA’15)

A. Cimatti - Invited Lectures on Advanced Verification 1

Outline

• Motivation

• Finite-State Model Checking

• Invariant Checking

• IC3

• LTL Checking

• Infinite-State Model Checking

• Wrap-up

2A. Cimatti - Invited Lectures on Advanced Verification

Motivation

A. Cimatti - Invited Lectures on Advanced Verification 3

Embedded Safety-Critical Systems

• Embedded with software to
deliver intelligent:
• Transportation
• Communication
• Automation

• Across domains:
• Railways
• Avionics
• Automotive
• Space
• Health

• Key properties and
challenges:
• Interaction of components
• Decomposition of services
• Safety requirements

4A. Cimatti - Invited Lectures on Advanced Verification

Model-based system engineering

• Models used for system requirements, architectural design,
analysis, validation and verification

• Different system-level analysis (safety, reliability,
performance, …)

• Formal methods as back-end

• Formal specification to assign models a rigorous mathematical
semantics

• Formal verification to prove the properties on the models.

• Design models translated into input for verification
engine

• Requirements formalized into properties

• Model checking appealing because integrated as push-
button

5A. Cimatti - Invited Lectures on Advanced Verification

AIR6110 Wheel Braking System

• Joint scientific study with Boeing

• Aerospace Information Report 6110:

• Traditional Aircraft/System Development Process
Example

• Wheel Brake System of a fictional dual-engine
aircraft

• Objectives:

• Analyze the system safety through formal techniques

• Demonstrate the usefulness and suitability of formal
techniques for improving the overall traditional
development and supporting aircraft certification

6A. Cimatti - Invited Lectures on Advanced Verification

NASA NextGen Air Traffic Control

• Joint project with NASA Ames and Langley

• Allocation of tasks between Aircraft and Ground

• Model and Study a design space with more than 1600
configurations

• Objectives:

• Apply Formal Methods to study the quality and Safety of
many design proposals

• Highlight Implicit assumptions

7A. Cimatti - Invited Lectures on Advanced Verification

Finite-State
Model Checking
Invariant Checking

A. Cimatti - Invited Lectures on Advanced Verification 8

Model checking

A. Cimatti - Invited Lectures on Advanced Verification 9

Mutual exclusion example

A. Cimatti - Invited Lectures on Advanced Verification 10

N: non-critical
T: trying
C: critical
User1
User2

Property:
always
not C1 or not C2
i.e.
(C1 and C2)
is not reachable

Symbolic representation

• Symbolic Boolean variables 𝑉 = {𝑣1, … , 𝑣𝑛} to represent the
state space

• A state is an assignment to the variables

• Symbolic formulas used to represent:

• Set of states: 𝜙 𝑉 ≡ 𝑠 𝑠 ⊨ 𝜙

• Abuse of notation 𝑠 ∈ 𝜙 iff 𝑠 ⊨ 𝜙

• Set of transitions: 𝜙 𝑉, 𝑉′ ≡ 𝑠, 𝑠′ 𝑠, 𝑠′ ⊨ 𝜙

• Where the variables 𝑉′ = {𝑣′1, … , 𝑣′𝑛} represent next state variables

• A transition system is a tuple 〈𝑉, 𝐼, 𝑇〉 where:

• 𝑉 is the set of variables

• The set of initial states represented by the formula 𝐼(𝑉)

• The transition relation represented by the formula 𝑇(𝑉, 𝑉′)

11A. Cimatti - Invited Lectures on Advanced Verification

Example

• 𝑉 ≔ 𝑢, 𝑣

• 𝐼 ≔ ¬𝑢 ∧ ¬𝑣

• 𝑇 ≔ 𝑢′ ↔ ¬𝑢 ∧ 𝑣′ ↔ (𝑢 𝑥𝑜𝑟 𝑣)

12A. Cimatti - Invited Lectures on Advanced Verification

00 01 10 11

𝑢𝑣

Invariant properties

• A path of the system S is a sequence 𝑠0, 𝑠1, … , 𝑠𝑘 of
states such that 𝑠0 ⊨ 𝐼 and for all 𝑖, 0 ≤ 𝑖 < 𝑘,
𝑠𝑖 , 𝑠𝑖+1 ⊨ 𝑇

• A state 𝑠 is reachable iff there exists a path
𝑠0, 𝑠1, … , 𝑠𝑘 such that 𝑠 = 𝑠𝑘

• A formula 𝑃(𝑉) is an invariant iff for all paths
𝑠0, 𝑠1, … , 𝑠𝑘, for all 𝑖, 𝑠𝑖 ⊨ 𝑃

• Equivalent to say that no state in ¬𝑃 is reachable

13A. Cimatti - Invited Lectures on Advanced Verification

Forward reachability checking

• Forward image computation:

• Compute all states reachable from 𝑄 in one transition:
𝐹𝑤𝑑𝐼𝑚𝑔 𝑄 ≔ ∃𝑉(𝑄 𝑉 ∧ 𝑇 𝑉, 𝑉′)[𝑉/ 𝑉′]

• Prove that a set of states 𝐵𝑎𝑑 is not reachable:

• Start from initial states: 𝑅 ≔ 𝐼

• Apply 𝐹𝑤𝑑𝐼𝑚𝑔 iteratively: 𝑜𝑙𝑑𝑅 ≔ 𝑅;𝑅 ≔ 𝐹𝑤𝑑𝐼𝑚𝑔(𝑅) U 𝑅

• until fixpoint 𝑜𝑙𝑑𝑅 = 𝑅

14A. Cimatti - Invited Lectures on Advanced Verification

Bounded Model Checking

• Reachability encoded into a satisfiability problem
𝐼 𝑉0 ∧ 𝑇 𝑉0, 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ ⋯∧ 𝑇 𝑉𝑘−1, 𝑉𝑘 ∧ 𝐵𝑎𝑑(𝑉𝑘)

• The formula is sat iff there exists a path of length
𝑘 that reaches 𝐵𝑎𝑑

• Checked for increasing values of 𝑘

• Exploited incrementality of SAT solvers

• Finite-state space ⇒ a completeness threshold
𝐾 exists

• If unsat for all 𝑘 ≤ 𝐾 then 𝐵𝑎𝑑 is not reachable

• 𝐾 is typically very large ⇒ unfeasible to reach in practice

15A. Cimatti - Invited Lectures on Advanced Verification

Example

• 𝑉 ≔ 𝑢, 𝑣

• 𝐼 ≔ ¬𝑢 ∧ ¬𝑣

• 𝑇 ≔ 𝑢′ ↔ 𝑢 ∧ 𝑣′ ↔ (𝑢 𝑥𝑜𝑟 𝑣)

• 𝐵𝑎𝑑 ≔ 𝑢 ∧ 𝑣

• BMC:
• ¬𝑢0 ∧ ¬𝑣0 ∧ (𝑢0 ∧ 𝑣0) UNSAT

• ¬𝑢0 ∧ ¬𝑣0 ∧ 𝑢1 ↔ 𝑢0 ∧ 𝑣1 ↔ 𝑢0 𝑥𝑜𝑟 𝑣0 ∧ (𝑢1 ∧ 𝑣1) UNSAT

• …

• ¬𝑢0 ∧ ¬𝑣0 ∧ 𝑢1 ↔ 𝑢0 ∧ 𝑣1 ↔ 𝑢0 𝑥𝑜𝑟 𝑣0
𝑢2 ↔ 𝑢1 ∧ 𝑣2 ↔ 𝑢1 𝑥𝑜𝑟 𝑣1 ∧

𝑢3 ↔ 𝑢2 ∧ 𝑣3 ↔ 𝑢2 𝑥𝑜𝑟 𝑣2 ∧ (𝑢3 ∧ 𝑣3)

SAT

16A. Cimatti - Invited Lectures on Advanced Verification

00 01 10 11

Induction and K-induction

• Induction
• Base case: check if the initial state satisfies 𝑃 (invariant)
• Inductive case: check if the transitions preserve the invariant

𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉′ ⊨ 𝑃(𝑉′)

• We say 𝑃 is inductive invariant

• K-induction
• Base case: check if all initial path satisfies 𝑃 (invariant) up to

𝑘 steps
• Inductive case: check if every path of 𝑘 + 1 steps preserve the

invariant
𝑃 𝑉0 ∧ 𝑇 𝑉0, 𝑉1 ∧ 𝑃 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ ⋯∧ 𝑃 𝑉𝑘−1 ∧ 𝑇 𝑉𝑘−1, 𝑉𝑘 ⊨ 𝑃(𝑉𝑘)

• Strengthened with simple path condition to avoid repeating
states

• We say 𝑃 is 𝑘-inductive invariant

• Typically however 𝑃 is not (𝑘-)inductive
 find 𝐼𝑛𝑣 such that 𝐼𝑛𝑣 is inductive invariant and 𝐼𝑛𝑣 ⊨ 𝑃

17A. Cimatti - Invited Lectures on Advanced Verification

Example

• 𝑉 ≔ 𝑥1, 𝑥2,, 𝑥3

• 𝐼 ≔ ¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3

• 𝐵𝑎𝑑 ≔ 𝑥1 ∧ 𝑥2

• 𝑃 ≔ ¬𝑥1 ∨ ¬𝑥2

• Inductive?

• No

• k-inductive?

• Yes for k=3

• Inductive invariant?

18A. Cimatti - Invited Lectures on Advanced Verification

000 10x 01x 11x

001

𝑥3𝑥1 𝑥2

Finite State Model-
Checking
IC3

A. Cimatti - Invited Lectures on Advanced Verification 19

IC3

• Very successful SAT-based model checking algorithm

• Based on induction

• Given a symbolic transition system and invariant property
𝑃, build an inductive invariant 𝐹 s.t. 𝐹 ⊨ 𝑃

• Inductive invariant built incrementally

• Trace of formulas 𝐹0 ≡ 𝐼, 𝐹1, … , 𝐹𝑘 s.t:

• for 𝑖 > 0, 𝐹𝑖 is a set of clauses, overapproximation of
states reachable in up to 𝑖 steps

• 𝐹𝑖+1 ⊆ 𝐹𝑖 (so 𝐹𝑖 ⊨ 𝐹𝑖+1)

• 𝐹𝑖 ∧ 𝑇 ⊨ 𝐹𝑖+1
′

• For all i < k, 𝐹𝑖 ⊨ 𝑃

• Strengthen formulas until 𝐹𝑘 = 𝐹𝑘+1

• Exploiting efficient SAT solvers

20A. Cimatti - Invited Lectures on Advanced Verification

A (very) high level view of IC3

• Blocking phase: incrementally strengthen trace
until 𝐹𝑘 ⊨ 𝑃

• Get bad cube s

21A. Cimatti - Invited Lectures on Advanced Verification

¬𝑃

𝐹𝑘−1 𝐹𝑘
𝐼 𝐹𝑘−2

𝑇 𝑇 𝑇
s

𝐹𝑘−1

A (very) high level view of IC3

• Blocking phase: incrementally strengthen trace
until 𝐹𝑘 ⊨ 𝑃

• Get bad cube s

• Call SAT solver on 𝐹𝑘−1 ∧ ¬𝑠 ∧ 𝑇 ∧ 𝑠′

(i.e., check if 𝐹𝑘−1 ∧ ¬𝑠 ∧ 𝑇 ⊨ ¬𝑠′)

22A. Cimatti - Invited Lectures on Advanced Verification

s
s

𝑇

Check if ¬𝑠 is inductive relative to F
k-1

𝐹𝑘−1

A (very) high level view of IC3

• Blocking phase: incrementally strengthen trace
until 𝐹𝑘 ⊨ 𝑃

• Get bad cube s

• Call SAT solver on 𝐹𝑘−1 ∧ ¬𝑠 ∧ 𝑇 ∧ 𝑠′

• SAT: s is reachable from 𝐹𝑘−1 in 1 step

• Get a cube c in the preimage of s and try
(recursively) to prove it unreachable from 𝐹𝑘−2, …

• c is a counterexample to induction (CTI)

23A. Cimatti - Invited Lectures on Advanced Verification

s
s

𝑇

c

If 𝐼 is reached, a
counterexample
to 𝑃 is found

𝐹𝑘−2

A (very) high level view of IC3

24A. Cimatti - Invited Lectures on Advanced Verification

cc

s

𝑇

• Blocking phase: incrementally strengthen trace
until 𝐹𝑘 ⊨ 𝑃

• Get bad cube s

• Call SAT solver on 𝐹𝑘−1 ∧ ¬𝑠 ∧ 𝑇 ∧ 𝑠′

• UNSAT: ¬𝑠 is inductive relative to 𝐹𝑘−2

• Generalize 𝑐 to 𝑔 and block by adding ¬𝑔 to
𝐹𝑖−1, 𝐹𝑖−2, … , 𝐹1

𝐹𝑘−2

A (very) high level view of IC3

25A. Cimatti - Invited Lectures on Advanced Verification

s

𝐹𝑘−1

• Blocking phase: incrementally strengthen trace
until 𝐹𝑘 ⊨ 𝑃

• Get bad cube s

• Call SAT solver on 𝐹𝑘−1 ∧ ¬𝑠 ∧ 𝑇 ∧ 𝑠′

• UNSAT: ¬𝑠 is inductive relative to 𝐹𝑘−2

• Generalize 𝑐 to 𝑔 and block by adding ¬𝑔 to
𝐹𝑖−1, 𝐹𝑖−2, … , 𝐹1

A (very) high level view of IC3

• Propagation: extend trace to 𝐹𝑘+1 and push

forward clauses

• For each i and each clause 𝑐 ∈ 𝐹𝑖:

• Call SAT solver on 𝐹𝑖 ∧ 𝑇 ∧ ¬𝑐′

• If UNSAT, add 𝑐 to 𝐹𝑖+1

26A. Cimatti - Invited Lectures on Advanced Verification

𝐼

¬𝑃

𝐹_𝑘𝐹𝑘−2 𝐹𝑘−1
𝑇 𝑇 𝑇

A (very) high level view of IC3

• Propagation: extend trace to 𝐹𝑘+1 and push

forward clauses

• For each i and each clause 𝑐 ∈ 𝐹𝑖:

• Call SAT solver on 𝐹𝑖 ∧ 𝑇 ∧ ¬𝑐′

• If UNSAT, add 𝑐 to 𝐹𝑖+1

27A. Cimatti - Invited Lectures on Advanced Verification

𝐼

¬𝑃

𝐹𝑘−2 𝐹𝑘−1 𝐹𝑘 𝐹𝑘+1
𝑇 𝑇 𝑇

𝑇

A (very) high level view of IC3

• Propagation: extend trace to 𝐹𝑘+1 and push

forward clauses

• For each i and each clause 𝑐 ∈ 𝐹𝑖:

• Call SAT solver on 𝐹𝑖 ∧ 𝑇 ∧ ¬𝑐′

• If UNSAT, add 𝑐 to 𝐹𝑖+1
• If 𝐹𝑖 ≡ 𝐹𝑖+1, P is proved,

• otherwise start another round of blocking and propagation

28A. Cimatti - Invited Lectures on Advanced Verification

𝐼

¬𝑃

𝐹𝑘−2 𝐹𝑘−1 𝐹𝑘 𝐹𝑘+1
𝑇 𝑇 𝑇

𝑇

Inductive Clause Generalization

• Crucial step of IC3

• Given a relatively inductive clause

• compute a generalization that is still inductive

• Drop literals from and check that (1) still holds

• Accelerate with unsat cores returned by the SAT solver

• Using SAT under assumptions

• However, make sure the base case still holds

• If , then cannot be dropped

29A. Cimatti - Invited Lectures on Advanced Verification

Example

A. Cimatti - Invited Lectures on Advanced Verification 30

No counterexamples of length 0

000 10x 01x 11x

001

[borrowed and adapted from F. Somenzi]

Example

A. Cimatti - Invited Lectures on Advanced Verification 31

Get bad cube in

000 10x 01x 11x

001

Example

A. Cimatti - Invited Lectures on Advanced Verification 32

000 10x 01x 11x

001

Is ¬𝑐 inductive relative to 𝐹0?

Example

A. Cimatti - Invited Lectures on Advanced Verification 33

000 10x 01x 11x

001

Yes, generalize

Example

A. Cimatti - Invited Lectures on Advanced Verification 34

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 35

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 36

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 37

000 10x 01x 11x

001

Update

Example

A. Cimatti - Invited Lectures on Advanced Verification 38

000 10x 01x 11x

001

Blocking done for . Add and propagate forward

Example

A. Cimatti - Invited Lectures on Advanced Verification 39

000 10x 01x 11x

001

No clause propagates from to

Example

A. Cimatti - Invited Lectures on Advanced Verification 40

000 10x 01x 11x

001

Get bad cube in

Example

A. Cimatti - Invited Lectures on Advanced Verification 41

000 10x 01x 11x

001

Is inductive relative to ?

Example

A. Cimatti - Invited Lectures on Advanced Verification 42

000 10x 01x 11x

001

No, found CTI

Example

A. Cimatti - Invited Lectures on Advanced Verification 43

000 10x 01x 11x

001

Try blocking at level 0:

Example

A. Cimatti - Invited Lectures on Advanced Verification 44

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 45

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 46

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 47

000 10x 01x 11x

001

Update

Example

A. Cimatti - Invited Lectures on Advanced Verification 48

000 10x 01x 11x

001

Return to the original bad cube

Example

A. Cimatti - Invited Lectures on Advanced Verification 49

000 10x 01x 11x

001

Is inductive relative to 𝐹1?

Example

A. Cimatti - Invited Lectures on Advanced Verification 50

000 10x 01x 11x

001

Yes, generalize

Try dropping

Example

A. Cimatti - Invited Lectures on Advanced Verification 51

000 10x 01x 11x

001

Update and add new frame

Example

A. Cimatti - Invited Lectures on Advanced Verification 52

000 10x 01x 11x

001

Perform forward propagation

From to :
𝐹1 ∧ 𝑇 ⊨ (𝑥1

′ ∨ ¬𝑥3
′)

Example

A. Cimatti - Invited Lectures on Advanced Verification 53

000 10x 01x 11x

001

Perform forward propagation

Found fixpoint!

Example

A. Cimatti - Invited Lectures on Advanced Verification 54

000 10x 01x 11x

001

Perform forward propagation

Inductive invariant:

Finite State Model-
Checking
Liveness Checking

A. Cimatti - Invited Lectures on Advanced Verification 55

Linear Temporal Logic

• Linear models: state sequences (traces)

• Built over set of atomic propositions 𝐴𝑃

• LTL is the smallest set of formulas such that:

• any atomic proposition 𝑝 ∈ 𝐴𝑃 is an LTL formula

• if 𝜙1 and 𝜙2 are LTL formulas,

then ¬𝜙1, 𝜙1 ∧ 𝜙2 and 𝜙1 ∨ 𝜙2 are LTL formulas

• if 𝜙1 and 𝜙2 are LTL formulas,

then 𝑋𝜙1, 𝐹𝜙1, 𝐺𝜙1 and 𝜙1𝑈𝜙2 are LTL formulas

56
A. Cimatti - Invited Lectures on Advanced

Verification

LTL semantics

 Semantics defined for every
trace, for every 𝑖 ∈ ℕ .

 Given an infinite trace 𝜋 = 𝑠0, 𝑠1, …

• 𝜋, 𝑖 ⊨ 𝑝 iff 𝑠𝑖 ⊨ 𝑝

• Standard definition for ¬, ∧, ∨

• 𝜋, 𝑖 ⊨ 𝑋𝜙 iff 𝑠𝑖+1, 𝑠𝑖+2, … ⊨ 𝜙

• 𝜋, 𝑖 ⊨ 𝜙1𝑈 𝜙2 iff there exists 𝑗 ≥ 𝑖,
𝜋, 𝑗 ⊨ 𝜙2 and for all 𝑘, 𝑖 ≤ 𝑘 < 𝑗,
𝜋, 𝑘 ⊨ 𝜙1

• 𝜋, 𝑖 ⊨ 𝐹𝜙 iff there exists 𝑗 ≥ 𝑖,
𝜋, 𝑗 ⊨ 𝜙

• 𝜋, 𝑖 ⊨ 𝐺𝜙 iff for all 𝑗 ≥ 𝑖, 𝜋, 𝑗 ⊨ 𝜙

 𝑀 ⊨ 𝜙 iff 𝑀, 𝜋, 0 ⊨ 𝜙 for every
trace 𝜋 of 𝑀.

A. Cimatti - Invited Lectures on Advanced Verification 57

LTL examples

• 𝐺𝑝 “always p” – like invariant (if we assume

deadlock freedom)

• 𝐺(𝑝 → 𝐹𝑞) “p is always followed by q” - reaction

• 𝐺(𝑝 → 𝑋𝑞) “whenever p holds, q is set to true” –

immediate reaction

• 𝐺𝐹𝑝 “infinitely many times p” – fairness

• 𝐹𝐺𝑝 “eventually permanently p”

• 𝐺(𝑠𝑝𝑒𝑒𝑑_𝑎𝑏𝑜𝑣𝑒_𝑙𝑖𝑚𝑖𝑡 → 𝑏𝑟𝑎𝑘𝑒 𝑈 ¬𝑠𝑝𝑒𝑒𝑑_𝑎𝑏𝑜𝑣𝑒_𝑙𝑖𝑚𝑖𝑡)

A. Cimatti - Invited Lectures on Advanced Verification58

LTL verification

• Given an LTL property 𝜙, build a transition
system 𝑀¬𝜙 with a fairness condition 𝑓¬𝜙, such that

𝑀 ×𝑀¬𝜙 ⊨ 𝐹𝐺¬𝑓¬𝜙

• 𝐹𝐺 requires a doubly-nested fixpoint

• SAT-based approaches typically reduce the
problem to safety

59A. Cimatti - Invited Lectures on Advanced Verification

Liveness2safety

• Based on the existence of a lasso-shaped
counterexample, with 𝑓¬𝜙 at least once in the loop

• liveness to safety transformation: absence of
lasso-shaped counterexamples as an invariant
property

• Duplicate the state variables 𝑉𝑐𝑜𝑝𝑦 ≔ 𝑣𝑐 𝑣 ∈ 𝑉}

• Non-deterministically save the current state

• Remember when 𝑓¬𝜙 in extra state var 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑

• Invariant: 𝐺¬(𝑉 = 𝑉𝑐𝑜𝑝𝑦 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑)

60A. Cimatti - Invited Lectures on Advanced Verification

K-liveness

• Simple but effective technique for LTL verification
of finite-state systems

• Key insight: 𝑀 ×𝑀¬𝜙 ⊨ 𝐹𝐺¬𝑓¬𝜙 iff there exists k

such that 𝑓¬𝜙 is visited at most k times

• Again, a safety property

• K-liveness: increase k incrementally
• Liveness checking as a sequence of safety checks

• Using IC3 as safety checker

• Exploits the highly incremental nature of IC3

61A. Cimatti - Invited Lectures on Advanced Verification

Wrapping up…

• Motivations

• Finite-State Model Checking

• From BDD-based to SAT-based

• Invariant Checking

• IC3

• LTL Checking

• BMC: traces as models, found with SAT checks

• Liveness to safety

• Proving limit for violations to fairness

62A. Cimatti - Invited Lectures on Advanced Verification

Infinite State
Model-Checking

A. Cimatti - Invited Lectures on Advanced Verification 63

Infinite State Transition System

• Same definition as before: 〈𝑉, 𝐼, 𝑇〉

• First-order instead of propositional formulas:
• Signature: set Σ of constant, functional, and relational

symbols
• Structure: a domain 𝐷 and interpretation ℐ of the

symbols in the signature
• Theory: set 𝒯 of axioms (a model of 𝒯 is a structure

that satisfy 𝒯)

• Some constant symbols are used as the variables of
the transition system
• They have a flexible interpretation that varies along

time
• The other symbols are rigid

• In the following ⊨ implicitly means ⊨𝒯, i.e. is
restricted to the models of a given theory

64A. Cimatti - Invited Lectures on Advanced Verification

Example

• 𝑉 ≔ 𝑥, 𝑦

• 𝐼 ≔ 𝑦 ≤ 𝑥

• 𝑇 ≔ (𝑥′= 𝑥 + 1) ∧ (𝑦′ ≤ 𝑦)

• Σ ≔ 𝑥, 𝑦, 0, 1, +,≤,…

• 𝒯 ≔ theory of reals

• 𝑦 ≤ 𝑥 ∧ 𝑇 ⊨𝒯 𝑦′ ≤ 𝑥′

65A. Cimatti - Invited Lectures on Advanced Verification

From SAT to SMT

• Previous algorithms assume to have a solver for the
satisfiability of formulas

• First developed for finite-state systems with the support
of SAT solvers

• SAT solvers substituted by Satisfiability Modulo Theory
(SMT) solvers:
• Satisfiability for decidable fragments of first-order logic
• SAT solver used to enumerate Boolean models
• Integrated with decision procedure for specific theories, e.g.,

theory of real linear arithmetic

• Search algorithms applied to infinite-state systems
(although in general undecidable)

• Lift to SMT straightforward for BMC and k-induction

• Not for IC3:
• Requires alternative effective generalization

66A. Cimatti - Invited Lectures on Advanced Verification

Counter-Example Guided Abstraction-Refinement
(CEGAR)

P0

P1

not P1

0100

10 11

P2

not P2

000

010 011

001

100 101

Ψ0(X)

Ψ1(X)

Ψ2(X)

I(X)

R(X, X')

State vars X

Abstract State vars P

AI (P)

AR(P,P')

not P0

Predicate abstraction

Predicate Abstraction

• Reduction to finite-state MC

• Predicates ℙ over concrete
variables to define the abstraction

• Abstract state space given by
Boolean variables, one for each

predicate ෡V = 𝑣𝑝 𝑝 ∈ ℙ}

• Abstract state 𝛼 𝑠 = 𝑣𝑝 𝑠 𝑝 = ⊤}

69

• Abstract transition iff there exists a concrete transition between
two corresponding concrete states

෠𝑇 = Ƹ𝑠, Ƹ𝑠′ ∃𝑠, 𝑠′, 𝛼 𝑠 = Ƹ𝑠, 𝛼 𝑠′ = Ƹ𝑠′, 𝑇(𝑠, 𝑠′)}

• Transitions computed with ALLSMT:

෠𝑇 ෠𝑉, ෠𝑉′ = ∃𝑉, 𝑉′(𝑇 𝑉, 𝑉′ ∧ሥ

𝑝∈ℙ

𝑣𝑝 ↔ 𝑝 𝑉 ∧ሥ

𝑝∈ℙ

𝑣′𝑝 ↔ 𝑝 𝑉′)

A. Cimatti - Invited Lectures on Advanced Verification

Interpolation

Interpolation-based model checking

Interpolation-based model checking

Abstraction Refinement

• Abstract traces are overapproximations

• Spurious counterexamples can be generated

• Standard abstraction refinement techniques based on
interpolation

• Sequence of abstract states Ƹ𝑠0, Ƹ𝑠1, … , Ƹ𝑠𝑘

• SMT check on

Ƹ𝑠0(𝑉0) ∧ 𝑇 𝑉0, 𝑉1 ∧ Ƹ𝑠1(𝑉1) ∧ 𝑇 𝑉1, 𝑉2 ∧ ⋯∧ 𝑇 𝑉𝑘−1, 𝑉𝑘 ∧ Ƹ𝑠𝑘 𝑉𝑘

• If unsat, compute sequence of interpolants for

Ƹ𝑠0 𝑉0 ∧ 𝑇 𝑉0, 𝑉1 ∧ ⋯∧ 𝑇 𝑉𝑖−1, 𝑉𝑖

Ƹ𝑠𝑖 𝑉𝑖 ∧ 𝑇 𝑉0, 𝑉1 ∧⋯∧ 𝑇 𝑉𝑘−1, 𝑉𝑘 ∧ Ƹ𝑠𝑘 𝑉𝑘

using the same UNSAT proof (called sequence interpolants)

• Add all the predicates in the interpolants to ℙ

73A. Cimatti - Invited Lectures on Advanced Verification

Implicit Predicate Abstraction

• Abstract version of BMC and k-induction, avoiding explicit

computation of the abstract transition relation

• By embedding the abstraction in the SMT encoding

• 𝐸𝑄(𝑉1, 𝑉2) ≔ 𝑝∈ℙ𝑝ٿ 𝑉1 ↔ 𝑝(𝑉2)

• The abstract unrolling is

𝑇 𝑉0, 𝑉1 ∧ 𝐸𝑄 𝑉1, 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ 𝐸𝑄 𝑉2, 𝑉2 ∧ 𝑇 𝑉2, 𝑉3 ∧ ⋯

74A. Cimatti - Invited Lectures on Advanced Verification

T

T

T

E
Q

E
Q

E
Q

E
Q

Infinite State
Model-Checking
IC3 with Implicit Abstraction

A. Cimatti - Invited Lectures on Advanced Verification 75

IC3 with Implicit Abstraction

• Integrate the idea of Implicit Abstraction within IC3

• Use abstract transition relation

• Learn clauses only over predicates

• Use abstract relative induction check:

𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑 𝐹, 𝑇, c, ℙ

≔ 𝐹 𝑉 ∧ c 𝑉 ∧ 𝑇 𝑉, 𝑉 ∧ሥ

𝑝∈ℙ

𝑝 𝑉′ ↔ 𝑝 𝑉 ∧ ¬𝑐(𝑉′)

• If UNSAT ⇨ inductive strengthening as in the Boolean
case

• No theory-specific technique needed

76A. Cimatti - Invited Lectures on Advanced Verification

IC3 with Implicit Abstraction

• Integrate the idea of Implicit Abstraction within IC3

• Use abstract transition relation

• Learn clauses only over predicates

• Use abstract relative induction check:

𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑 𝐹, 𝑇, c, ℙ

≔ 𝐹 𝑉 ∧ c 𝑉 ∧ 𝑇 𝑉, 𝑉 ∧ሥ

𝑝∈ℙ

𝑝 𝑉′ ↔ 𝑝 𝑉 ∧ ¬𝑐(𝑉′)

• If SAT ⇨ abstract predecessor from the SMT model

• No preimage needed

77A. Cimatti - Invited Lectures on Advanced Verification

Example

• 𝑇 ≔ 2𝑥1
′ − 3𝑥1 ≤ 4𝑥2

′ + 2𝑥2 + 3 ∧ 3𝑥1 − 2𝑥2
′ = 0

• ℙ ≔ 𝑥1 − 𝑥2 ≥ 4 , 𝑥1 < 3

• 𝑠 ≔ ¬ 𝑥1 − 𝑥2 ≥ 4 ∧ (𝑥1 < 3)

• 𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑 ∅, 𝑇, ¬𝑠, ℙ = 𝑇 𝑉, 𝑉
′
∧ ¬𝑠 𝑉 ∧ 𝑠 𝑉′ ∧

𝑥1 − 𝑥2 ≥ 4 ↔ 𝑥1 − 𝑥2 ≥ 4 ∧ 𝑥1 < 3 ↔ (𝑥1 < 3)

• 𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑(∅, 𝑇, 𝑠, ℙ) is SAT

• Compute a predecessor from SMT model:

78A. Cimatti - Invited Lectures on Advanced Verification

Abstraction refinement

• Abstract counterexample check can use incremental SMT

• Abstraction refinement is fully incremental

• No restart from scratch

• Can keep all the clauses of 𝐹1, … , 𝐹𝑘

• Refinements monotonically strengthen 𝑇

𝑇𝑛𝑒𝑤 ≔ 𝑇𝑜𝑙𝑑 ∧ ሥ

𝑝∈𝑛𝑒𝑤ℙ

𝑝 𝑉 ↔ 𝑝 𝑉 ∧ 𝑝 𝑉′ ↔ 𝑝 𝑉
′

• All IC3 invariants on 𝐹1, … , 𝐹𝑘 are preserved

• 𝐹𝑖+1 ⊆ 𝐹𝑖 (so 𝐹𝑖 ⊨ 𝐹𝑖+1)

• 𝐹𝑖 ∧ 𝑇 ⊨ 𝐹𝑖+1
′

• For all i < k, 𝐹𝑖 ⊨ 𝑃

79A. Cimatti - Invited Lectures on Advanced Verification

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Check base case:

80

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Get bad cube

• SMT check 𝐹1 ∧ ¬𝑃

• SAT with model 𝜇 ≔ {𝑐 = 0, 𝑑 = 3}

• Evaluate predicates wrt. 𝜇

• Return
𝑠 ≔ {¬ 𝑑 = 1 ,¬ 𝑐 ≥ 𝑑 , 𝑑 > 2 ,¬ 𝑐 > 𝑑 }

81A. Cimatti - Invited Lectures on Advanced Verification

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Rec. block 𝑠
• Check
𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑 𝐹0, 𝑇, ¬𝑠, ℙ

≔ 𝐼𝑛𝑖𝑡 ∧ 𝑐 = 𝑐 + 𝑑 ∧ 𝑑 = 𝑑 + 1

∧ 𝑑′ = 1 ↔ 𝑑 = 1 ∧ 𝑐′ ≥ 𝑑′ ↔ 𝑐 ≥ 𝑑

∧ 𝑑′ > 2 ↔ 𝑑 > 2 ∧ 𝑐′ > 𝑑′ ↔ 𝑐 > 𝑑 ∧ ¬𝑠 ∧ 𝑠′

82A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Rec. block 𝑠
• Check 𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑 𝐹0, 𝑇, ¬𝑠, ℙ : UNSAT

• Generalize: {¬ 𝑑 > 2 }

• Update 𝐹1 ≔ 𝐹1 ∧ ¬(𝑑 > 2)

83A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Forward propagation

84A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2

• 𝐹2 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Get bad cube at 2

• 𝑠 ≔ {¬ 𝑑 = 1 ,¬ 𝑐 ≥ 𝑑 ,

𝑑 > 2 ,¬(𝑐 > 𝑑)}

85A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2

• 𝐹2 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Recursively block 𝑠
• …

• Update 𝐹1 ≔ 𝐹1 ∧ (𝑐 ≥ 𝑑)

• …

• Update 𝐹2 ≔ 𝐹2 ∧ 𝑐 ≥ 𝑑 ∨ ¬(𝑑 > 2)

86A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2

• 𝐹2 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Forward propagation

87A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2 ∧
𝑐 ≥ 𝑑 ∧ 𝐹2

• 𝐹2 ≔ c > d ∨
¬ 𝑑 > 2

• 𝐹3 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Get cube at 3

• 𝑠 ≔ {¬ 𝑑 = 1 ,¬ 𝑐 ≥ 𝑑 ,

𝑑 > 2 ,¬(𝑐 > 𝑑)}

88A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2 ∧
𝑐 ≥ 𝑑 ∧ 𝐹2

• 𝐹2 ≔ c > d ∨
¬ 𝑑 > 2

• 𝐹3 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Recursively block 𝑠
• 𝐴𝑏𝑠𝑅𝑒𝑙𝐼𝑛𝑑 is sat

• SMT model:

𝜇 ≔ {𝑐 = 0, 𝑑 = 2, 𝑐′ = 0, 𝑑 = 3, 𝑐 = 2, 𝑑 = 3}

• Abstract predecessor:
{¬ 𝑑 > 2 ,¬ 𝑐 > 𝑑 ,¬ 𝑑 = 1 ,¬(𝑐 ≥ 𝑑)}

89A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2 ∧
𝑐 ≥ 𝑑 ∧ 𝐹2

• 𝐹2 ≔ c > d ∨
¬ 𝑑 > 2

• 𝐹3 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Recursively block 𝑐
• …

• Reached level 0, abstract cex:
𝑠0 ≔ ¬ 𝑑 > 2 ,¬ 𝑐 > 𝑑 , 𝑑 = 1 , 𝑐 ≥ 𝑑
𝑠1 ≔ ¬ 𝑑 > 2 ,¬ 𝑐 > 𝑑 ,¬ 𝑑 = 1 , 𝑐 ≥ 𝑑
𝑠2 ≔ ¬ 𝑑 > 2 ,¬ 𝑐 > 𝑑 ,¬ 𝑑 = 1 ,¬ 𝑐 ≥ 𝑑
𝑠 ≔ ¬ 𝑑 = 1 ,¬ 𝑐 ≥ 𝑑 , 𝑑 > 2 ,¬(𝑐 > 𝑑)

90A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2 ∧
𝑐 ≥ 𝑑 ∧ 𝐹2

• 𝐹2 ≔ c > d ∨
¬ 𝑑 > 2

• 𝐹3 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Check abstract counterexample
𝑠0 𝑉0 ∧ 𝑇 𝑉0, 𝑉1 ∧ 𝑠1 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ 𝑠2 𝑉2
∧ 𝑇 𝑉2, 𝑉3 ∧ 𝑠 𝑉3

UNSAT

91A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2 ∧
𝑐 ≥ 𝑑 ∧ 𝐹2

• 𝐹2 ≔ c > d ∨
¬ 𝑑 > 2

• 𝐹3 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Check abstract counterexample

• Extract new predicates from
sequence interpolants:

𝑑 ≥ 2, 𝑑 ≥ 3

• Update ℙ

92A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑 ,

𝑑 ≥ 2 , (𝑑 ≥ 3)

• Trace

• 𝐹0 ≔ 𝐼𝑛𝑖𝑡

• 𝐹1 ≔ ¬ 𝑑 > 2 ∧
𝑐 ≥ 𝑑 ∧ 𝐹2

• 𝐹2 ≔ c > d ∨
¬ 𝑑 > 2

• 𝐹3 ≔ ⊤

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Update abstract Trans

• Resume IC3 from level 3

93A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑 ,

𝑑 ≥ 2 , (𝑑 ≥ 3)

• Trace

𝐹0 ≔ 𝐼𝑛𝑖𝑡

𝐹1 ≔ ¬ 𝑑 > 2 ∧ 𝑐 ≥ 𝑑 ∧ 𝐹2

𝐹2 ≔ c > d ∨ ¬ 𝑑 > 2 ∧ 𝐹3

𝐹3 ≔ 𝑑 = 1 ∨ 𝑑 ≥ 2 ∧
¬ 𝑐 ≥ 𝑑 ∧ 𝐹4

𝐹4 ≔ 𝑐 > 𝑑 ∨ ¬(𝑑 > 2)

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Update abstract Trans

• Resume IC3 from level 3

• …

• Forward propagation

𝐹2 ∧ ෠𝑇ℙ ⊨ 𝑐′ ≥ 𝑑′ ∨ ¬(𝑑′ ≥ 2)

94A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑 ,

𝑑 ≥ 2 , (𝑑 ≥ 3)

• Trace

𝐹0 ≔ 𝐼𝑛𝑖𝑡

𝐹1 ≔ ¬ 𝑑 > 2 ∧ 𝑐 ≥ 𝑑 ∧ 𝐹2

𝐹2 ≔ c > d ∨ ¬ 𝑑 > 2 ∧ 𝐹3

𝐹3 ≔ 𝑑 = 1 ∨ 𝑑 ≥ 2 ∧
¬ 𝑐 ≥ 𝑑 ∧ 𝐹4

𝐹4 ≔ 𝑐 > 𝑑 ∨ ¬(𝑑 > 2)

Example

• System with 2 state vars c and d

• Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

• Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

• Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Update abstract Trans

• Resume IC3 from level 3

• …

• Forward propagation

𝐹2 ∧ ෠𝑇ℙ ⊨ 𝑐′ ≥ 𝑑′ ∨ ¬(𝑑′ ≥ 2)

• Fixpoint ⇒ Property is true

95A. Cimatti - Invited Lectures on Advanced Verification

• Predicates ℙ

𝑑 = 1 , 𝑐 ≥ 𝑑 ,

𝑑 > 2 , 𝑐 > 𝑑 ,

𝑑 ≥ 2 , (𝑑 ≥ 3)

• Trace

𝐹0 ≔ 𝐼𝑛𝑖𝑡

𝐹1 ≔ ¬ 𝑑 > 2 ∧ 𝑐 ≥ 𝑑 ∧ 𝐹2

𝐹2 ≔ 𝐹3 ≔ 𝑐 ≥ 𝑑 ∨
¬ 𝑑 ≥ 2 ∧ 𝑑 = 1 ∨
𝑑 ≥ 2 ∧ ¬ 𝑐 ≥ 𝑑 ∧ 𝐹4

𝐹4 ≔ 𝑐 > 𝑑 ∨ ¬(𝑑 > 2)

Infinite State
Model-Checking
Liveness Checking

A. Cimatti - Invited Lectures on Advanced Verification 96

LTL from Finite to Infinite

• Use first-order predicates instead of propositions:

• 𝐺 𝑥 ≥ 𝑎 ∧ 𝑥 ≤ 𝑏

• 𝐺𝐹 𝑥 = 𝑎 ∧ 𝐺𝐹 𝑥 = 𝑏

• Predicates interpreted according to specific theory

• “next” variables to express changes/transitions:

• 𝐺 𝑥′ = 𝑥 + 1

• 𝐺(𝑎′ − 𝑎 ≤ 𝑏)

• BMC
• Add encoding of lasso-shape and fairness
• Sound for finding traces, but not complete
• The only counterexaple may be not lasso-shape

• K-liveness
• No change
• Sound to prove properties, but not complete
• Property may hold, but fairness can be visited an unbounded number

of times

97A. Cimatti - Invited Lectures on Advanced Verification

Liveness to Safety for Infinite States

• Unsound for infinite-state systems
• Not all counterexamples are lasso-shaped

• Liveness to safety with Implicit Abstraction
• Apply the l2s transformation to the abstract system

• Save the values of the predicates instead of the
concrete state

• Do it on-the-fly, tightly integrating l2s with IC3
• Sound but incomplete

• When abstract loop found, simulate in the concrete and
refine

• Might still diverge during refinement
• Intrinsic limitation of state predicate abstraction

98A. Cimatti - Invited Lectures on Advanced Verification

Wrap-up

A. Cimatti - Invited Lectures on Advanced Verification 99

Lecture Summary

• Overview of SAT-based model checking techniques

• Details on IC3, as currently the prominent
algorithm

• Liveness reduced to safety

• Lifting SAT-based MC to SMT
• For invariant checking

• Easy for BMC and k-induction
• Predicate abstraction to reduce to finite-state MC
• Implicit abstraction to avoid explicit computation of

abstract state space
• Implicit abstraction to lift IC3 to SMT

• For liveness
• BMC and K-liveness sound but not complete
• Liveness2safety on abstract state space

100A. Cimatti - Invited Lectures on Advanced Verification

Not covered

• Other MC approaches: BDD-Based,
Interpolation, …

• Other Properties: CTL, PSL,
termination, epistemic, …

• Other kind of systems

• Continuous-time/hybrid systems

• Probabilistic Systems

• Software (control-flow graphs)

• …

101A. Cimatti - Invited Lectures on Advanced Verification

Next lecture

A. Cimatti - Invited Lectures on Advanced Verification 102

Functional
Verification

Safety
Assessment

Hierarchical
Decomposition

Model-Checking

Model-Based
Safety-
Assessment

Contract-Based
Design

Contract-Based
Safety-
Assessment

L2

L1

Readings

A list of suggested readings on the topics of the course. The list is not meant to be
complete.

• Model checking:

• Edmund M. Clarke, Orna Grumberg, Doron A. Peled: Model Checking. The MIT Press, 1999

• Kenneth L. McMillan: Symbolic Model Checking. Kluwer, 1993

• Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. The MIT Press, 2008

• Bounded Model Checking:

• Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, Yunshan Zhu: Bounded
model checking. Advances in Computers 58: 117-148 (2003)

103A. Cimatti - Invited Lectures on Advanced Verification

Readings

• K-induction:

• Mary Sheeran, Satnam Singh, Gunnar Stålmarck: Checking Safety Properties Using Induction
and a SAT-Solver. FMCAD 2000: 108-125

• Niklas Eén, Niklas Sörensson: Temporal induction by incremental SAT solving. Electr. Notes
Theor. Comput. Sci. 89(4): 543-560 (2003)

• IC3 for Finite-State Transition Systems:

• Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87

• Fabio Somenzi, Aaron R. Bradley: IC3: where monolithic and incremental meet. FMCAD 2011:
3-8

• Aaron R. Bradley: Understanding IC3. SAT 2012: 1-14

• Krystof Hoder, Nikolaj Bjørner: Generalized Property Directed Reachability. SAT 2012: 157-
171

104A. Cimatti - Invited Lectures on Advanced Verification

Readings

• LTL Model Checking:

• Amir Pnueli: The Temporal Logic of Programs. FOCS 1977: 46-57

• Moshe Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic. Banff Higher
Order Workshop 1995: 238-266

• Edmund M. Clarke, Orna Grumberg, Kiyoharu Hamaguchi: Another Look at LTL Model
Checking. Formal Methods in System Design 10(1): 47-71 (1997)

• Liveness to safety:

• Armin Biere, Cyrille Artho, Viktor Schuppan: Liveness Checking as Safety Checking. Electr.
Notes Theor. Comput. Sci. 66(2): 160-177 (2002)

• Yi Fang, Kenneth L. McMillan, Amir Pnueli, Lenore D. Zuck: Liveness by Invisible Invariants.
FORTE 2006: 356-371

• Koen Claessen, Niklas Sörensson: A liveness checking algorithm that counts. FMCAD 2012:
52-59

105A. Cimatti - Invited Lectures on Advanced Verification

Readings

• K-Induction for Infinite-State Systems:

• Leonardo Mendonça de Moura, Harald Rueß, Maria Sorea: Bounded Model Checking and
Induction: From Refutation to Verification (Extended Abstract, Category A). CAV 2003: 14-26

• Temesghen Kahsai, Cesare Tinelli: PKind: A parallel k-induction based model checker. PDMC
2011: 55-62

• Alessandro Cimatti, Sergio Mover, Alessandro Cimatti: SMT-based scenario verification for
hybrid systems. Formal Methods in System Design 42(1): 46-66 (2013)

• Jonathan Laurent, Alwyn Goodloe, Lee Pike: Assuring the Guardians. RV 2015: 87-101

106A. Cimatti - Invited Lectures on Advanced Verification

Readings

• Interpolation-based Model Checking:

• Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003: 1-13

• Kenneth L. McMillan: Applications of Craig Interpolants in Model Checking. TACAS 2005: 1-12

• Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

• Liveness to Safety for Infinite-State Systems:

• Viktor Schuppan, Armin Biere: Liveness Checking as Safety Checking for Infinite State
Spaces. Electr. Notes Theor. Comput. Sci. 149(1): 79-96 (2006)

• Andreas Podelski, Andrey Rybalchenko: Transition predicate abstraction and fair termination.
ACM Trans. Program. Lang. Syst. 29(3) (2007)

• Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: Verifying LTL
Properties of Hybrid Systems with K-Liveness. CAV 2014: 424-440

107A. Cimatti - Invited Lectures on Advanced Verification

Readings

• Implicit Abstraction:

• Stefano Tonetta: Abstract Model Checking without Computing the Abstraction. FM 2009: 89-
105

• IC3 for Infinite-State Systems:

• Alessandro Cimatti, Alberto Griggio: Software Model Checking via IC3. CAV 2012: 277-293

• Alessandro Cimatti, Alberto Griggio, Sergio Mover, Alessandro Cimatti: IC3 Modulo Theories
via Implicit Predicate Abstraction. TACAS 2014: 46-61

• Johannes Birgmeier, Aaron R. Bradley, Georg Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014: 831-848

• Yakir Vizel, Arie Gurfinkel: Interpolating Property Directed Reachability. CAV 2014: 260-276

• Nikolaj Bjørner, Arie Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015: 263-
281

108A. Cimatti - Invited Lectures on Advanced Verification

