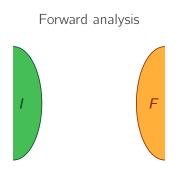
Reachability via saturation

Gabriele Puppis

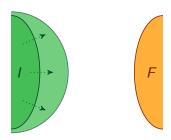
LaBRI / CNRS

A path connecting two sets, if exists, can be found in finitely many steps.



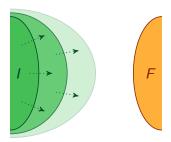
A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis



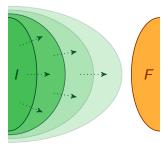
A path connecting two sets, if exists, can be found in finitely many steps.

Forward analysis

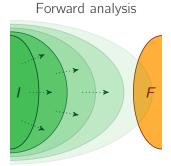


A path connecting two sets, if exists, can be found in finitely many steps.

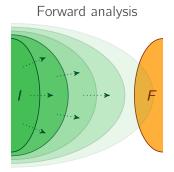
Forward analysis

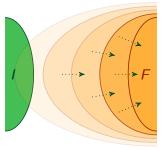


A path connecting two sets, if exists, can be found in finitely many steps.

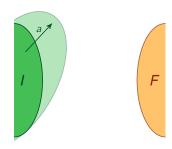


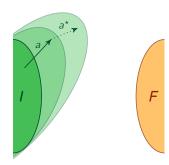
A path connecting two sets, if exists, can be found in finitely many steps.

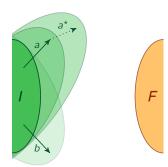


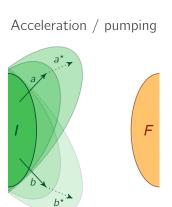


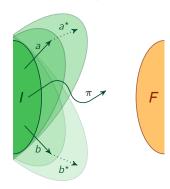
The problem is of course termination, namely, to detect non-reachability...

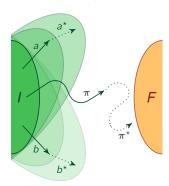


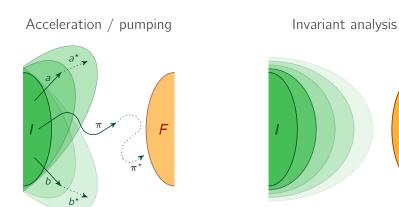


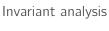


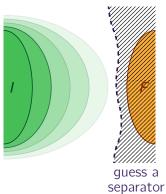




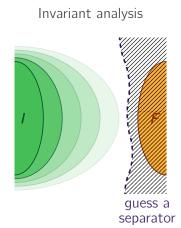








Acceleration / pumping



Both approaches require **symbolic representations** of infinite sets

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \{ qz \mid \exists q'z' \in B_n. \exists a \in \Sigma. qz \xrightarrow{a} q'z' \}$$

$$B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$$

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \ \exists a \in \Sigma. \ qz \xrightarrow{a} q'z' \right\}$$

$$B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$$

$$B_{\omega}$$
 contains the configurations from which one can reach B_0

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \left\{ qz \mid \exists q'z' \in B_n. \ \exists a \in \Sigma. \ qz \xrightarrow{a} q'z' \right\}$$

$$B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$$

 B_{ω} contains the configurations from which one can reach B_0 B_{ω} is usually infinite, but is it perhaps regular?

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \{ qz \mid \exists q'z' \in B_n. \ \exists a \in \Sigma. \ qz \xrightarrow{a} q'z' \}$$

$$B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$$

 B_{ω} contains the configurations from which one can reach B_0 B_{ω} is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system

$$q$$
 pop γ

$$B_0 = \{q\varepsilon\}$$
 $B_1 = \{q\varepsilon, q\gamma\}$ $B_2 = \{q\varepsilon, q\gamma, q\gamma\gamma\}$...

Given a pushdown system $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta)$ and a set $B_0 \subseteq Q \cdot \Gamma^*$ of target configurations, define:

$$B_{n+1} = B_n \cup \{ qz \mid \exists q'z' \in B_n. \ \exists a \in \Sigma. \ qz \xrightarrow{a} q'z' \}$$

$$B_{\omega} = \bigcup_{n \in \mathbb{N}} B_n$$

 B_{ω} contains the configurations from which one can reach B_0 B_{ω} is usually infinite, but is it perhaps regular?

Example

Consider the pushdown system

$$q$$
 pop γ

 $B_0 = \{q\varepsilon\}$ $B_1 = \{q\varepsilon, q\gamma\}$ $B_2 = \{q\varepsilon, q\gamma, q\gamma\gamma\}$...

$$B_{\omega} = q \varepsilon^{\star}$$
 is indeed regular, but how to efficiently compute it?

"Pump" the changes from B_n to B_{n+1} to obtain a new sequence C_0 , C_1 , ... that converges more quickly:

the limit $\bigcup_{n\in\mathbb{N}} C_n$ coincides with B_{ω}

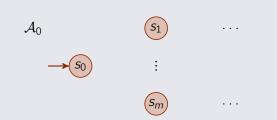
"Pump" the changes from B_n to B_{n+1} to obtain a new sequence C_0 , C_1 , ... that converges more quickly:

the limit $\bigcup_{n\in\mathbb{N}} C_n$ coincides with B_{ω}

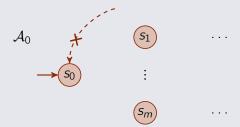
The sets C_0 , C_1 , ... will be defined by automata A_0, A_1, \ldots sharing the same state space...

ullet The pushdown system ${\mathcal P}$ has m states q_1,\ldots,q_m

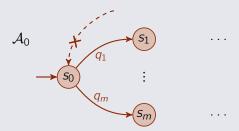
- The pushdown system \mathcal{P} has m states q_1, \ldots, q_m
- The automaton A_0 recognizing $C_0 = B_0$ has a single initial non-final state s_0 , m distinct states s_1, \ldots, s_m , and possibly other states



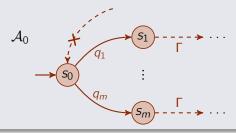
- ullet The pushdown system ${\mathcal P}$ has m states q_1,\ldots,q_m
- The automaton A_0 recognizing $C_0 = B_0$ has a single initial non-final state s_0 , m distinct states s_1, \ldots, s_m , and possibly other states
- ullet No transition in \mathcal{A}_0 reaches the initial state s_0



- ullet The pushdown system ${\mathcal P}$ has m states q_1,\ldots,q_m
- The automaton A_0 recognizing $C_0 = B_0$ has a single initial non-final state s_0 , m distinct states s_1, \ldots, s_m , and possibly other states
- ullet No transition in \mathcal{A}_0 reaches the initial state s_0
- The unique q_i -labelled transition in A_0 is (s_0, q_i, s_i)

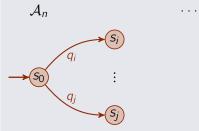


- ullet The pushdown system ${\mathcal P}$ has m states q_1,\ldots,q_m
- The automaton A_0 recognizing $C_0 = B_0$ has a single initial non-final state s_0 , m distinct states s_1, \ldots, s_m , and possibly other states
- ullet No transition in \mathcal{A}_0 reaches the initial state s_0
- The unique q_i -labelled transition in A_0 is (s_0, q_i, s_i)
- ullet The other transitions in \mathcal{A}_0 are labelled by stack symbols



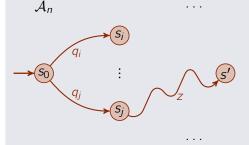
Construct A_{n+1} from A_n by adding transitions, as follows:

1 select a transition rule $(q_i \gamma, a, q_i z)$ in the pushdown system \mathcal{P}



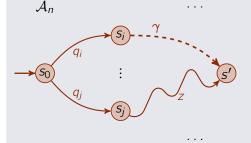
Construct A_{n+1} from A_n by adding transitions, as follows:

- lacksquare select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system $\mathcal P$
- $oldsymbol{@}$ select a state $oldsymbol{s'}$ in \mathcal{A}_n reachable from $oldsymbol{s_0}$ via a $oldsymbol{q_jz}$ -labelled path



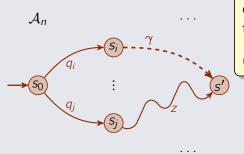
Construct A_{n+1} from A_n by adding transitions, as follows:

- lacktriangledown select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system $\mathcal P$
- $ext{@}$ select a state $ext{s'}$ in \mathcal{A}_n reachable from $ext{s_0}$ via a $ext{q}_j ext{z}$ -labelled path
- 3 add transition (s_i, γ, s')



Construct A_{n+1} from A_n by adding transitions, as follows:

- lacktriangledown select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system $\mathcal P$
- $ext{@}$ select a state extstyle s' in \mathcal{A}_n reachable from $extstyle s_0$ via a $extstyle q_j z$ -labelled path
- \bigcirc add transition (s_i, γ, s')



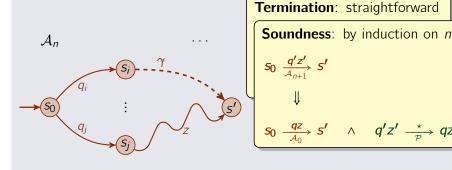
Termination: straightforward

Only polynomially many transitions can be added

(⇒ reachability in PTIME)

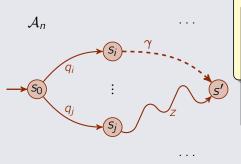
Construct A_{n+1} from A_n by adding transitions, as follows:

- lacksquare select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system $\mathcal P$
- $ext{@}$ select a state $ext{s'}$ in \mathcal{A}_n reachable from $ext{s_0}$ via a $ext{q}_j ext{z}$ -labelled path
- \bigcirc add transition (s_i, γ, s')



Construct A_{n+1} from A_n by adding transitions, as follows:

- lacktriangledown select a transition rule $(q_i \gamma, a, q_j z)$ in the pushdown system $\mathcal P$
- $ext{@}$ select a state $ext{s'}$ in \mathcal{A}_n reachable from $ext{s_0}$ via a $ext{q}_j ext{z}$ -labelled path
- 3 add transition (s_i, γ, s')



Termination: straightforward

Soundness: by induction on *n*

Completeness:

 \forall config. $q_i \gamma w \in B_{n+1} \setminus B_n$ \exists trans. $q_i \gamma w \xrightarrow{a} q_j zw$ with $q_i zw \in B_n$

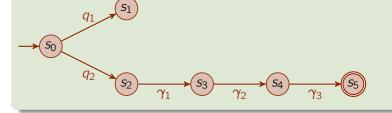
Select rule $(q_i \gamma, a, q_j z)$ in \mathcal{P}

and path $s_0 \xrightarrow{q_j z} s'$ in A_n to prove that $q_i \gamma w \in \mathcal{L}(A_{n+1})$

Example

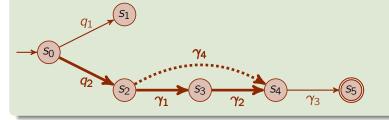
Consider the target set $B_0 = \{q_2\gamma_1\gamma_2\gamma_3\}$ over the pushdown system

$$\gamma_6/\varepsilon \qquad \gamma_4/\gamma_1\gamma_2 \\
C_0 = \{q_2\gamma_1\gamma_2\gamma_3\}$$



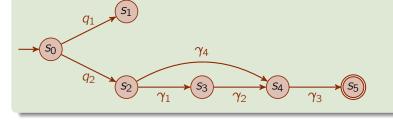
$$\gamma_6/\varepsilon \qquad \gamma_4/\gamma_1\gamma_2 \\
Q_1 \qquad \gamma_5/\gamma_4\gamma_3 \qquad Q_2$$

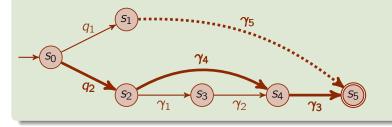
$$C_0 = \{q_2\gamma_1\gamma_2\gamma_3\}$$

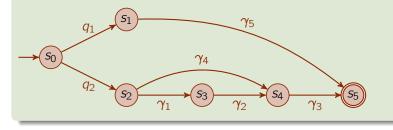


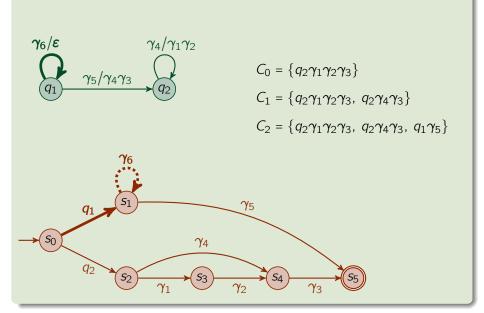
$$\begin{array}{cccc}
\gamma_6/\varepsilon & \gamma_4/\gamma_1\gamma_2 \\
\hline
q_1 & \gamma_5/\gamma_4\gamma_3 & q_2
\end{array}$$

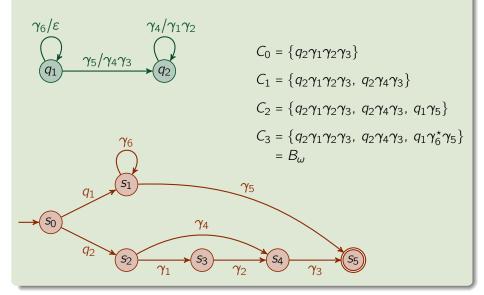
$$C_0 = \{q_2\gamma_1\gamma_2\gamma_3\} \\
C_1 = \{q_2\gamma_1\gamma_2\gamma_3, q_2\gamma_4\gamma_3\}$$











Theorem (Bouajjani, Esparza & Maler '97)

Given a pushdown system \mathcal{P} and a regular set B of configurations, the set of configurations that can reach B is regular and can be computed in polynomial time.

Theorem (Bouajjani, Esparza & Maler '97)

Given an alternating pushdown system \mathcal{P} and a regular set B of conf., the winning region for the B-reachability game is regular and can be computed in polynomial time.

Theorem (Bouajjani, Esparza & Maler '97)

Given an **alternating** pushdown system \mathcal{P} and a regular set B of conf., the **winning region** for the **B-reachability game** is regular and can be computed in polynomial time.

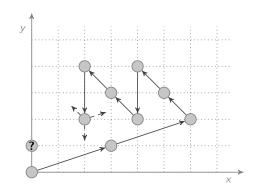
Similar generalizations can be proved for:

- tree rewriting systems (Löding '06, ...)
- reachability games on higher-order pushdown systems (Bouajjani & Meyer '04, Hague & Ong '07, ...)
- . . .

Next we will focus on reachability for systems that use **variables over natural numbers** instead of a stack...

$$(x,y) := (0,0)$$

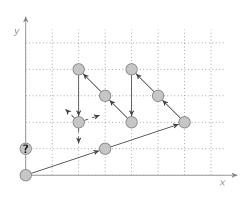
while $(x,y) \neq (0,1)$ do
if $[input \ is \ north \ west]$ then
 $(x,y) := (x,y) + (1,3)$
else if $[input \ is \ north \ east]$ then
 $(x,y) := (x,y) + (-1,1)$
else if $[input \ is \ south]$ then
 $(x,y) := (x,y) + (0,-2)$



Next we will focus on reachability for systems that use **variables over natural numbers** instead of a stack...

$$(x,y) := (0,0)$$
while $(x,y) \neq (0,1)$ do

if $[input \ is \ north \ west]$ then
$$(x,y) := (x,y) + (1,3)$$
else if $[input \ is \ north \ east]$ then
$$(x,y) := (x,y) + (-1,1)$$
else if $[input \ is \ south]$ then
$$(x,y) := (x,y) + (0,-2)$$



Definition

A **vector addition system** (**VAS**) is a transition system (\mathbb{N}^k , Δ), where Δ is a finite subset of \mathbb{Z}^k and

$$ar{x} \longrightarrow ar{y} \quad \text{iff} \quad \left\{ egin{array}{ll} ar{x}, ar{y} \geq 0 \\ ar{y} - ar{x} \in \Delta \end{array} \right.$$

Definition

A **lossy VAS** is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

where
$$\Delta$$
 is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and
$$\overline{x} \longrightarrow \overline{y} \qquad \text{iff} \qquad \begin{cases} \overline{x}, \overline{y} \geq 0 \\ \overline{y'} - \overline{x} \in \Delta \quad \text{for some } \overline{y'} \geq \overline{y} \end{cases}$$

Definition

A **lossy VAS** is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

where
$$\Delta$$
 is a finite subset of $Q \times \mathbb{Z}^n \times Q$ and $ar{x} \longrightarrow ar{y}$ iff $\left\{ \begin{array}{l} ar{x}, ar{y} \geq 0 \\ \\ ar{y}' - ar{x} \in \Delta \end{array} \right.$ for some $ar{y}' \geq ar{y}$

A **VAS** with states is a transition system $(Q \times \mathbb{N}^k, \Delta)$, where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$(p, \bar{x}) \longrightarrow (q, \bar{y})$$
 iff
$$\begin{cases} \bar{x}, \bar{y} \ge 0 \\ (p, \bar{y} - \bar{x}, q) \in \Delta \end{cases}$$

Definition

A **lossy VAS** is a transition system (\mathbb{N}^k, Δ) , where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

$$ar{x} \longrightarrow ar{y}$$
 iff $\begin{cases} ar{x}, ar{y} \ge 0 \\ ar{y}' - ar{x} \in \Delta \end{cases}$ for some $ar{y}' \ge ar{y}$

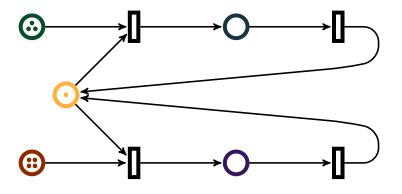
A **VAS** with states is a transition system $(Q \times \mathbb{N}^k, \Delta)$, where Δ is a finite subset of $Q \times \mathbb{Z}^k \times Q$ and

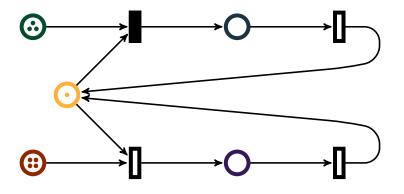
$$(p, \bar{x}) \longrightarrow (q, \bar{y}) \quad \text{iff} \quad \begin{cases} \bar{x}, \bar{y} \geq 0 \\ (p, \bar{y} - \bar{x}, q) \in \Delta \end{cases}$$

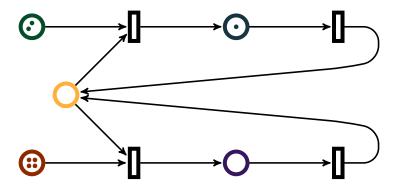
States do not add power, as they can be implemented by counters

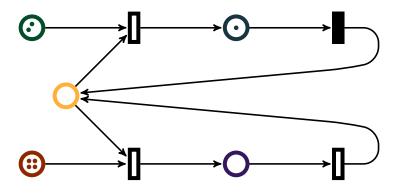
e.g. 2 states = 2 additional counters that sum up to 1

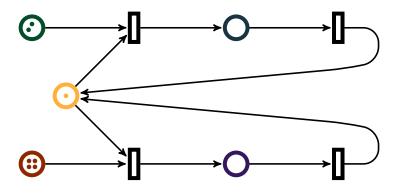
e.g. 2 states = 2 additional counters that sum up to 1
$$(p, \bar{x}) \longrightarrow (q, \bar{y})$$
 becomes $(0, 1, \bar{x}) \longrightarrow (1, 0, \bar{y})$

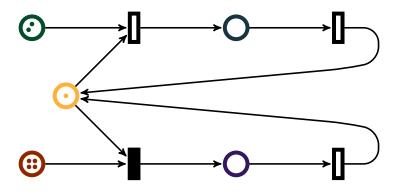


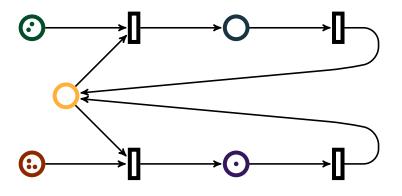


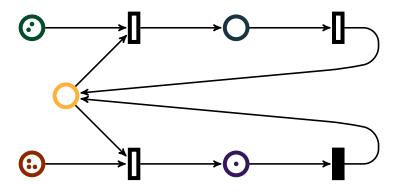


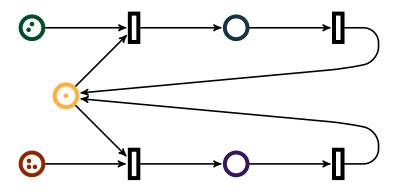


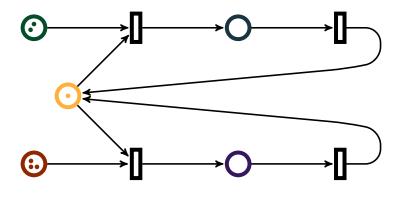






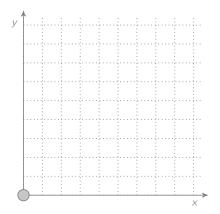




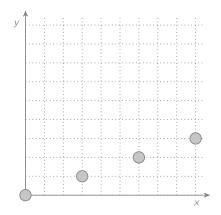


```
configurations = tokens per location (e.g. (2, 1, 3, 0, 0)) transitions = transfers of tokens (e.g. (0, -1, -1, 0, 1))
```

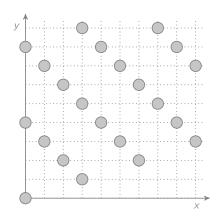
(0,0)



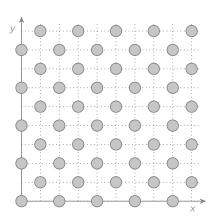
$$(0,0) + (3,1)\mathbb{N}$$



$$(0,0) + (3,1)\mathbb{N} + (-1,1)\mathbb{N}$$



$$(0,0) + (3,1)\mathbb{N} + (-1,1)\mathbb{N} + (0,-2)\mathbb{N}$$

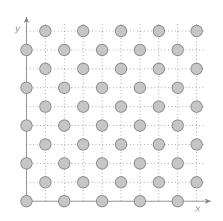


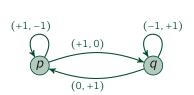
$$(0,0) + (3,1)\mathbb{N} + (-1,1)\mathbb{N} + (0,-2)\mathbb{N}$$

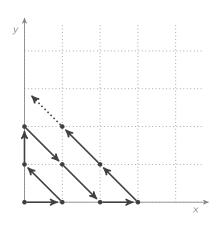
Theorem (Ginsburg '66)

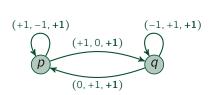
Finite unions of linear sets are precisely the **Presburger sets** i.e. sets definable in FO[N, +]

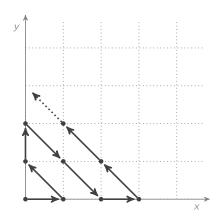
e.g.
$$\varphi(x, y) = \exists z. \ x + y = z + z$$

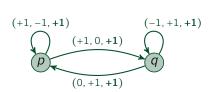


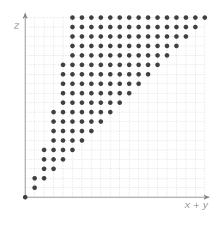












$$(x+y) \le \mathbf{z} \le \mathcal{O}((x+y)^2)$$

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \bar{y} \in V. \ \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

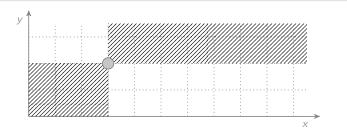
The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

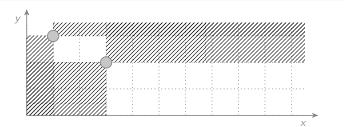


$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \bar{y} \in V. \ \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

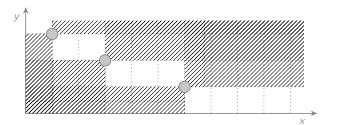


$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \bar{y} \in V. \ \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

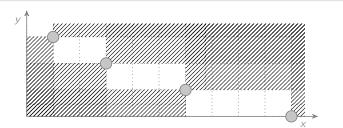


$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \bar{y} \in V. \ \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for lossy VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)



$$V^{\downarrow} = \left\{ \bar{z} \mid \exists \, \bar{y} \in V. \, \bar{z} \leq \bar{y} \right\}$$

This is not an approximation for **lossy** VAS!

Dickson's Lemma 1913

The pointwise order \leq on \mathbb{N}^k is a **well partial order** (i.e. all **decreasing chains** and all **antichains** are finite)

Lemma

For all subsets V of $(\mathbb{N} \cup \{\infty\})^k$, there is an **antichain** W such that

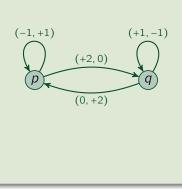
$$V^{\downarrow} = W^{\downarrow}$$

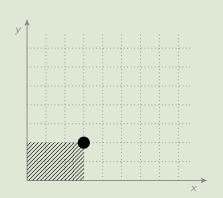
⇒ we can finitely represent downward-closed sets by antichains

Saturation of downward-closed sets via transition function Δ

• acceleration on emerging dominating sets...

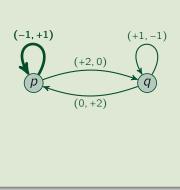
Saturation of downward-closed sets via transition function Δ

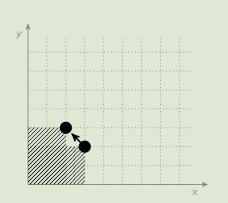




Saturation of downward-closed sets via transition function Δ

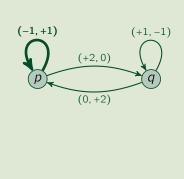
😝 acceleration on emerging dominating sets...

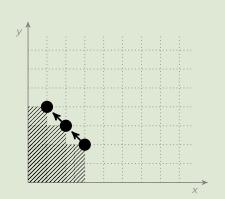




Saturation of downward-closed sets via transition function Δ

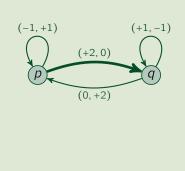
celeration on emerging dominating sets...

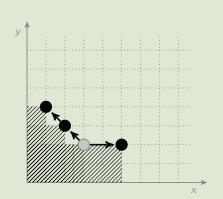




Saturation of downward-closed sets via transition function Δ

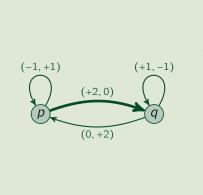
celeration on emerging dominating sets...

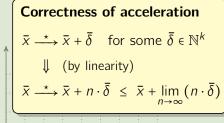




Saturation of downward-closed sets via transition function Δ

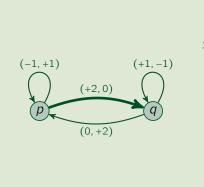
😝 acceleration on emerging dominating sets...

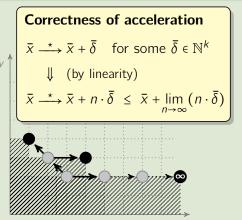




Saturation of downward-closed sets via transition function Δ

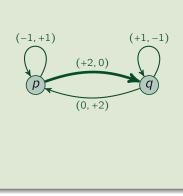
😝 acceleration on emerging dominating sets...

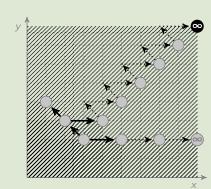




Saturation of downward-closed sets via transition function Δ

celeration on emerging dominating sets...





Theorem (Rackoff '78)

Coverability on VAS (i.e. given \bar{x} , \bar{y} , tell if $\exists \bar{z} \geq \bar{y}$. $\bar{x} \xrightarrow{*} \bar{z}$) is EXPSPACE-complete.

Theorem (Rackoff '78)

Coverability on VAS (i.e. given \bar{x} , \bar{y} , tell if $\exists \bar{z} \geq \bar{y}$. $\bar{x} \xrightarrow{\star} \bar{z}$) is EXPSPACE-complete.

Corollary 1

Reachability on lossy VAS is EXPSPACE-complete.

Corollary 2

Control-state reachability on VAS is EXPSPACE-complete.

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)

Coverability is decidable (non-primitive recursive) on VAS with

- resets (e.g. x = 0)
- transfers (e.g. x := y + z)
- positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of **lossy VAS**.

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)

Coverability is decidable (non-primitive recursive) on VAS with

- resets (e.g. x = 0)
- transfers (e.g. x := y + z)
- positive guards (e.g. if [x > 0] then ...)

Reachability is decidable on analogous extensions of lossy VAS.

Unfortunately, acceleration for the above systems does not work, e.g. $(1,0) \xrightarrow{reset x} (0,1) \xrightarrow{x:=x+2} (2,0)$, but $(1,0) \xrightarrow{x} (3,0)$

There are other results similar in spirit...

Theorem (Adbulla, Cerans & Jonsson '96, ...)

Coverability is decidable (non-primitive recursive) on VAS with

- resets (e.g. x = 0)
- transfers (e.g. x := y + z)
- positive guards (e.g. if [x > 0] then ...)

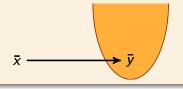
Reachability is decidable on analogous extensions of **lossy VAS**.

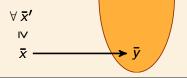
Unfortunately, acceleration for the above systems does not work,

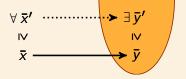
e.g.
$$(1,0) \xrightarrow{reset x} (0,1) \xrightarrow{x:=x+2} (2,0)$$
, but $(1,0) \xrightarrow{*} (3,0)$

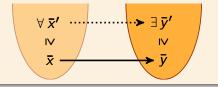
However, we can still exploit Dickson's Lemma with

- upward-closed sets they cover more vectors than downward-closed sets!
- a backward reachability i.e. compute $B_{n+1} = \{ \bar{x} \mid \exists \bar{y} \in B_n. \bar{x} \longrightarrow \bar{y} \}$

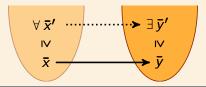


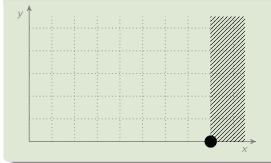




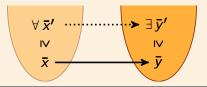


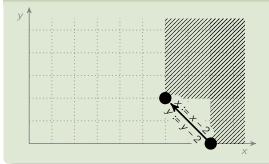
VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.



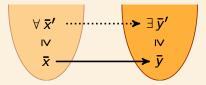


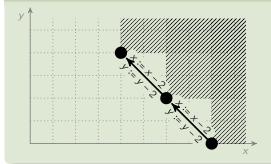
VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.



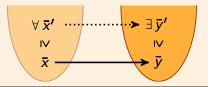


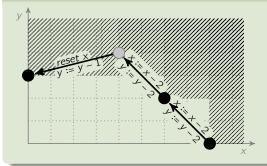
VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.



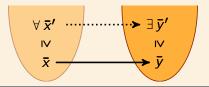


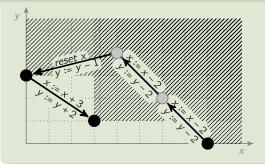
VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.

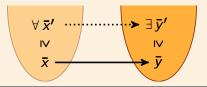


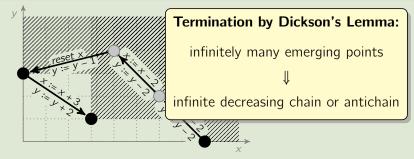


VAS transitions with resets, transfers, and positive guards are **backward-compatible with upward-closures**, i.e.









These ideas for coverability analysis can be extended to:

Lossy Channel Systems

(instead of Dickson's Lemma, use Higman's Lemma for the sub-sequence partial order)

Timed Petri nets

(token have time-stamps, transitions have time constraints)

Alternating Finite Memory Automata

(finite control states + one register to store and compare symbols from an infinite alphabet)

. . . .

Separation Theorem (Leroux '92, '09, ..., '12)

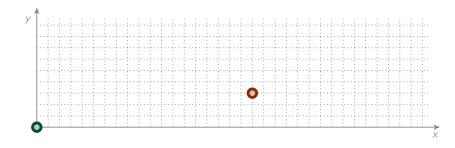
If $\bar{X} \xrightarrow{\star} \bar{Y}$, then there is a partition (X, Y) of \mathbb{N}^k such that

- \bigcirc X and Y are finite unions of linear sets (or, equally, sets definable in Presburder logic FO[N, +])
- **3** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
- **4** Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$

Separation Theorem (Leroux '92, '09, ..., '12)

If $\bar{X} \xrightarrow{\star} \bar{Y}$, then there is a partition (X, Y) of \mathbb{N}^k such that

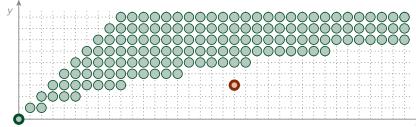
- ① X and Y are finite unions of linear sets (or, equally, sets definable in Presburder logic FO[\mathbb{N} , +])
- **3** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
- **4** Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$



Separation Theorem (Leroux '92, '09, ..., '12)

If $\bar{x} \xrightarrow{*}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that

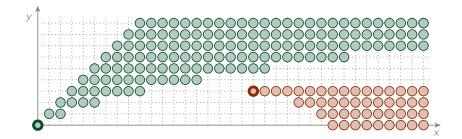
- ① X and Y are finite unions of linear sets (or, equally, sets definable in Presburder logic FO[\mathbb{N} , +])
- **3** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
- **4** Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$



Separation Theorem (Leroux '92, '09, ..., '12)

If $\bar{x} \xrightarrow{\star}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that

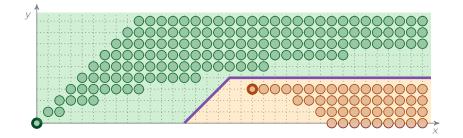
- ① X and Y are finite unions of linear sets (or, equally, sets definable in Presburder logic FO[\mathbb{N} , +])
- \bigcirc $\bar{x} \in X$ and $\bar{y} \in Y$
- **3** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
- **4** Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$



Separation Theorem (Leroux '92, '09, ..., '12)

If $\bar{x} \xrightarrow{*}_{\Delta} \bar{y}$, then there is a partition (X, Y) of \mathbb{N}^k such that

- ① X and Y are finite unions of linear sets (or, equally, sets definable in Presburder logic FO[\mathbb{N} , +])
- **3** X is a **forward invariant**, i.e. $(X + \Delta) \cap \mathbb{N}^k \subseteq X$
- **4** Y is a **backward invariant**, i.e. $(Y \Delta) \cap \mathbb{N}^k \subseteq Y$



Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...)

The reachability problem for VAS is decidable with complexity between EXPSPACE and non-primitive recursive.

Corollary (Lipton '76, Mayr '81, Kosaraju '82, Reutenauer '90, ...)

The reachability problem for VAS is decidable with complexity between EXPSPACE and non-primitive recursive.

Enumerate in parallel:

- **1** the possible finite sequences π of transitions (answer positively if $\bar{x} \xrightarrow{\pi} \bar{y}$)
- ② the possible Presburger formulas defining partitions (X, Y) of \mathbb{N}^k (answer negatively if (X, Y) is an invariant separating \bar{x} and \bar{y})

"That's all Folks!"

