
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 5: Advanced SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 6th Edition

Outline

■ Accessing SQL From a Programming Language
■ Functions and Procedural Constructs
■ Triggers
■ Recursive Queries
■ Advanced Aggregation Features
■ OLAP

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

■ API (application-program interface) for a program to interact with a
database server

■ Application makes calls to
● Connect with the database server
● Send SQL commands to the database server
● Fetch tuples of result one-by-one into program variables

■ Various tools:
● ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic. Other API�s such as ADO.NET sit on top of
ODBC

● JDBC (Java Database Connectivity) works with Java
● Embedded SQL

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 6th Edition

ODBC

■ Open DataBase Connectivity (ODBC) standard
● standard for application program to communicate with a

database server.
● application program interface (API) to

4 open a connection with a database,
4 send queries and updates,
4 get back results.

■ Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 6th Edition

JDBC

■ JDBC is a Java API for communicating with database systems
supporting SQL.

■ JDBC supports a variety of features for querying and updating data,
and for retrieving query results.

■ JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

■ Model for communicating with the database:
● Open a connection
● Create a �statement� object
● Execute queries using the Statement object to send queries and

fetch results
● Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 6th Edition

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
{

try (Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
Statement stmt = conn.createStatement();

)
{

… Do Actual Work ….
}

catch (SQLException sqle) {
System.out.println("SQLException : " + sqle);

}
}

NOTE: Above syntax works with Java 7, and JDBC 4 onwards.
Resources opened in “try (….)” syntax (“try with resources”) are
automatically closed at the end of the try block

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 6th Edition

JDBC Code for
Older Versions of Java/JDBC

public static void JDBCexample(String dbid, String userid, String passwd)
{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
Statement stmt = conn.createStatement();

… Do Actual Work ….
stmt.close();
conn.close();

}
catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);
}

}
NOTE: Classs.forName is not required from JDBC 4 onwards. The try with
resources syntax in prev slide is preferred for Java 7 onwards.

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 6th Edition

JDBC Code (Cont.)

■ Update to database
try {

stmt.executeUpdate(
"insert into instructor values(�77987�, �Kim�, �Physics�,

98000)");
} catch (SQLException sqle)
{

System.out.println("Could not insert tuple. " + sqle);
}

■ Execute query and fetch and print results
ResultSet rset = stmt.executeQuery(

"select dept_name, avg (salary)
from instructor
group by dept_name");

while (rset.next()) {
System.out.println(rset.getString("dept_name") + " " +

rset.getFloat(2));
}

©Silberschatz, Korth and Sudarshan5.10Database System Concepts - 6th Edition

JDBC Code Details

■ Getting result fields:
● rs.getString(�dept_name�) and rs.getString(1) equivalent if

dept_name is the first argument of select result.
■ Dealing with Null values

int a = rs.getInt(�a�);
if (rs.wasNull()) Systems.out.println(�Got null value�);

©Silberschatz, Korth and Sudarshan5.11Database System Concepts - 6th Edition

Prepared Statement

■ PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

■ WARNING: always use prepared statements when taking an input
from the user and adding it to a query
● NEVER create a query by concatenating strings
● "insert into instructor values(� " + ID + " �, � " + name + " �, " + " �

+ dept name + " �, " � balance + ")�

● What if name is �D�Souza�?

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 6th Edition

SQL Injection

■ Suppose query is constructed using
● "select * from instructor where name = �" + name + "�"

■ Suppose the user, instead of entering a name, enters:
● X� or �Y� = �Y

■ then the resulting statement becomes:
● "select * from instructor where name = �" + "X� or �Y� = �Y" + "�"
● which is:

4 select * from instructor where name = �X� or �Y� = �Y�
● User could have even used

4 X�; update instructor set salary = salary + 10000; --
■ Prepared stament internally uses:

"select * from instructor where name = �X\� or \�Y\� = \�Y�
● Always use prepared statements, with user inputs as

parameters

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 6th Edition

Metadata Features

■ ResultSet metadata
■ E.g.after executing query to get a ResultSet rs:

● ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));
System.out.println(rsmd.getColumnTypeName(i));

}
■ How is this useful?

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 6th Edition

Metadata (Cont)

■ Database metadata
■ DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN_NAME, TYPE_NAME
// The value null indicates all Catalogs/Schemas.
// The value “” indicates current catalog/schema
// The value “%” has the same meaning as SQL like clause
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
while(rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME");

}
■ And where is this useful?

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 6th Edition

Metadata (Cont)

■ Database metadata
■ DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getTables: Catalog, Schema-pattern, Table-pattern,
// and Table-Type
// Returns: One row for each table; row has a number of attributes
// such as TABLE_NAME, TABLE_CAT, TABLE_TYPE, ..
// The value null indicates all Catalogs/Schemas.
// The value “” indicates current catalog/schema
// The value “%” has the same meaning as SQL like clause
// The last attribute is an array of types of tables to return.
// TABLE means only regular tables
ResultSet rs = dbmd.getTables (“”, "", “%", new String[] {“TABLES”});
while(rs.next()) {

System.out.println(rs.getString(“TABLE_NAME“));
}

■ And where is this useful?

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 6th Edition

Finding Primary Keys

■ DatabaseMetaData dmd = connection.getMetaData();

// Arguments below are: Catalog, Schema, and Table
// The value “” for Catalog/Schema indicates current catalog/schema
// The value null indicates all catalogs/schemas
ResultSet rs = dmd.getPrimaryKeys(“”, “”, tableName);

while(rs.next()){
// KEY_SEQ indicates the position of the attribute in
// the primary key, which is required if a primary key has multiple
// attributes
System.out.println(rs.getString(“KEY_SEQ”),

rs.getString("COLUMN_NAME");
}

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 6th Edition

Transaction Control in JDBC

■ By default, each SQL statement is treated as a separate transaction that
is committed automatically
● bad idea for transactions with multiple updates

■ Can turn off automatic commit on a connection
● conn.setAutoCommit(false);

■ Transactions must then be committed or rolled back explicitly
● conn.commit(); or
● conn.rollback();

■ conn.setAutoCommit(true) turns on automatic commit.

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 6th Edition

Other JDBC Features

■ Calling functions and procedures
● CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");
● CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");
■ Handling large object types

● getBlob() and getClob() that are similar to the getString() method,
but return objects of type Blob and Clob, respectively

● get data from these objects by getBytes()
● associate an open stream with Java Blob or Clob object to update

large objects
4 blob.setBlob(int parameterIndex, InputStream inputStream).

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 6th Edition

JDBC Resources

■ JDBC Basics Tutorial
● https://docs.oracle.com/javase/tutorial/jdbc/index.html

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 6th Edition

SQLJ

■ JDBC is overly dynamic, errors cannot be caught by compiler
■ SQLJ: embedded SQL in Java

● #sql iterator deptInfoIter (String dept name, int avgSal);
deptInfoIter iter = null;
#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };
while (iter.next()) {

String deptName = iter.dept_name();
int avgSal = iter.avgSal();
System.out.println(deptName + " " + avgSal);

}
iter.close();

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 6th Edition

Embedded SQL

■ The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, C++, Java, Fortran, and PL/1,

■ A language to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL.

■ The basic form of these languages follows that of the System R
embedding of SQL into PL/1.

■ EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement >;
Note: this varies by language:
● In some languages, like COBOL, the semicolon is replaced with

END-EXEC
● In Java embedding uses # SQL { …. };

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 6th Edition

Embedded SQL (Cont.)

■ Before executing any SQL statements, the program must first connect
to the database. This is done using:

EXEC-SQL connect to server user user-name using password;
Here, server identifies the server to which a connection is to be
established.

■ Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from
SQL variables (e.g., :credit_amount)

■ Variables used as above must be declared within DECLARE section,
as illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}
int credit-amount ;

EXEC-SQL END DECLARE SECTION;

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 6th Edition

Embedded SQL (Cont.)

■ To write an embedded SQL query, we use the
declare c cursor for <SQL query>

statement. The variable c is used to identify the query
■ Example:

● From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

● Specify the query in SQL as follows:
EXEC SQL

declare c cursor for
select ID, name
from student
where tot_cred > :credit_amount

END_EXEC

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 6th Edition

Embedded SQL (Cont.)

■ Example:
● From within a host language, find the ID and name of

students who have completed more than the number of
credits stored in variable credit_amount in the host langue

■ Specify the query in SQL as follows:
EXEC SQL

declare c cursor for
select ID, name
from student
where tot_cred > :credit_amount

END_EXEC
■ The variable c (used in the cursor declaration) is used to

identify the query

©Silberschatz, Korth and Sudarshan5.25Database System Concepts - 6th Edition

Embedded SQL (Cont.)

■ The open statement for our example is as follows:

EXEC SQL open c ;
This statement causes the database system to execute the query

and to save the results within a temporary relation. The query uses
the value of the host-language variable credit-amount at the time the
open statement is executed.

■ The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

©Silberschatz, Korth and Sudarshan5.26Database System Concepts - 6th Edition

Embedded SQL (Cont.)

■ A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to �02000� to indicate no more data is available

■ The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c ;
Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.27Database System Concepts - 6th Edition

Updates Through Embedded SQL

■ Embedded SQL expressions for database modification (update, insert,
and delete)

■ Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC SQL
declare c cursor for
select *
from instructor
where dept_name = �Music�
for update

■ We then iterate through the tuples by performing fetch operations on
the cursor (as illustrated earlier), and after fetching each tuple we
execute the following code:

update instructor
set salary = salary + 1000
where current of c

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 6th Edition

Extensions to SQL

©Silberschatz, Korth and Sudarshan5.29Database System Concepts - 6th Edition

Functions and Procedures

■ SQL:1999 supports functions and procedures
● Functions/procedures can be written in SQL itself, or in an external

programming language (e.g., C, Java).
● Functions written in an external languages are particularly useful

with specialized data types such as images and geometric objects.
4 Example: functions to check if polygons overlap, or to compare

images for similarity.
● Some database systems support table-valued functions, which

can return a relation as a result.
■ SQL:1999 also supports a rich set of imperative constructs, including

● Loops, if-then-else, assignment
■ Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999.

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 6th Edition

SQL Functions

■ Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

■ The function dept_count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept_count (dept_name) > 12

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 6th Edition

SQL functions (Cont.)

■ Compound statement: begin … end
● May contain multiple SQL statements between begin and

end.
■ returns -- indicates the variable-type that is returned (e.g.,

integer)
■ return -- specifies the values that are to be returned as

result of invoking the function
■ SQL function are in fact parameterized views that generalize

the regular notion of views by allowing parameters.

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 6th Edition

Table Functions

■ SQL:2003 added functions that return a relation as a result
■ Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))
returns table (

ID varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

■ Usage
select *
from table (instructor_of (�Music�))

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 6th Edition

SQL Procedures

■ The dept_count function could instead be written as procedure:
create procedure dept_count_proc (in dept_name varchar(20),

out d_count integer)
begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end
■ Procedures can be invoked either from an SQL procedure or from

embedded SQL, using the call statement.
declare d_count integer;
call dept_count_proc(�Physics�, d_count);

Procedures and functions can be invoked also from dynamic SQL
■ SQL:1999 allows more than one function/procedure of the same name

(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 6th Edition

Language Constructs for Procedures & Functions

■ SQL supports constructs that gives it almost all the power of a general-
purpose programming language.
● Warning: most database systems implement their own variant of the

standard syntax below.
■ Compound statement: begin … end,

● May contain multiple SQL statements between begin and end.
● Local variables can be declared within a compound statements

■ While and repeat statements:
● while boolean expression do

sequence of statements ;
end while

● repeat
sequence of statements ;

until boolean expression
end repeat

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 6th Edition

Language Constructs (Cont.)

■ For loop
● Permits iteration over all results of a query

■ Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department
do

set n = n + r.budget
end for

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 6th Edition

Language Constructs (Cont.)

■ Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

■ Example procedure: registers student after ensuring classroom capacity
is not exceeded
● Returns 0 on success and -1 if capacity is exceeded
● See book (page 177) for details

■ Signaling of exception conditions, and declaring handlers for exceptions
declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats
begin
…
.. signal out_of_classroom_seats
end

● The handler here is exit -- causes enclosing begin..end to be exited
● Other actions possible on exception

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 6th Edition

External Language Routines

■ SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

■ Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name � /usr/avi/bin/dept_count_proc�

create function dept_count(dept_name varchar(20))
returns integer
language C
external name �/usr/avi/bin/dept_count�

©Silberschatz, Korth and Sudarshan5.38Database System Concepts - 6th Edition

External Language Routines

■ SQL:1999 allows the definition of procedures in an imperative programming
language, (Java, C#, C or C++) which can be invoked from SQL queries.

■ Functions defined in this fashion can be more efficient than functions defined
in SQL, and computations that cannot be carried out in SQL can be
executed by these functions.

■ Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name � /usr/avi/bin/dept_count_proc�

create function dept_count(dept_name varchar(20))
returns integer
language C
external name �/usr/avi/bin/dept_count�

©Silberschatz, Korth and Sudarshan5.39Database System Concepts - 6th Edition

External Language Routines (Cont.)

■ Benefits of external language functions/procedures:
● more efficient for many operations, and more expressive power.

■ Drawbacks
● Code to implement function may need to be loaded into database

system and executed in the database system�s address space.
4 risk of accidental corruption of database structures
4 security risk, allowing users access to unauthorized data

● There are alternatives, which give good security at the cost of
potentially worse performance.

● Direct execution in the database system�s space is used when
efficiency is more important than security.

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 6th Edition

Security with External Language Routines

■ To deal with security problems, we can do on of the following:
● Use sandbox techniques

4 That is, use a safe language like Java, which cannot be used
to access/damage other parts of the database code.

● Run external language functions/procedures in a separate
process, with no access to the database process� memory.
4 Parameters and results communicated via inter-process

communication
■ Both have performance overheads
■ Many database systems support both above approaches as well as

direct executing in database system address space.

©Silberschatz, Korth and Sudarshan5.41Database System Concepts - 6th Edition

Triggers

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 6th Edition

Triggers

■ A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

■ To design a trigger mechanism, we must:
● Specify the conditions under which the trigger is to be

executed.
● Specify the actions to be taken when the trigger executes.

■ Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.
● Syntax illustrated here may not work exactly on your

database system; check the system manuals

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

■ Triggering event can be insert, delete or update
■ Triggers on update can be restricted to specific attributes

● For example, after update of takes on grade
■ Values of attributes before and after an update can be referenced

● referencing old row as : for deletes and updates
● referencing new row as : for inserts and updates

■ Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = � �)
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan5.44Database System Concepts - 6th Edition

Trigger to Maintain credits_earned value

■ create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred +

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;

©Silberschatz, Korth and Sudarshan5.45Database System Concepts - 6th Edition

Statement Level Triggers

■ Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a transaction
● Use for each statement instead of for each row
● Use referencing old table or referencing new table to

refer to temporary tables (called transition tables) containing
the affected rows

● Can be more efficient when dealing with SQL statements that
update a large number of rows

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 6th Edition

When Not To Use Triggers

■ Triggers were used earlier for tasks such as
● Maintaining summary data (e.g., total salary of each

department)
● Replicating databases by recording changes to special

relations (called change or delta relations) and having a
separate process that applies the changes over to a replica

■ There are better ways of doing these now:
● Databases today provide built in materialized view facilities

to maintain summary data
● Databases provide built-in support for replication

■ Encapsulation facilities can be used instead of triggers in many
cases
● Define methods to update fields
● Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 6th Edition

When Not To Use Triggers (Cont.)

■ Risk of unintended execution of triggers, for example, when
● Loading data from a backup copy
● Replicating updates at a remote site
● Trigger execution can be disabled before such actions.

■ Other risks with triggers:
● Error leading to failure of critical transactions that set off

the trigger
● Cascading execution

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 6th Edition

Recursive Queries

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 6th Edition

Recursion in SQL
■ SQL:1999 permits recursive view definition
■ Example: find which courses are a prerequisite, whether

directly or indirectly, for a specific course
with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id,
from rec_prereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;
This example view, rec_prereq, is called the transitive closure
of the prereq relation

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 6th Edition

The Power of Recursion

■ Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without recursion
or iteration.
● Intuition: Without recursion, a non-recursive non-iterative

program can perform only a fixed number of joins of prereq
with itself
4This can give only a fixed number of levels of managers
4Given a fixed non-recursive query, we can construct a

database with a greater number of levels of prerequisites on
which the query will not work

4Alternative: write a procedure to iterate as many times as
required
– See procedure findAllPrereqs in book

©Silberschatz, Korth and Sudarshan5.51Database System Concepts - 6th Edition

The Power of Recursion

■ Computing transitive closure using iteration, adding successive
tuples to rec_prereq
● The next slide shows a prereq relation
● Each step of the iterative process constructs an extended

version of rec_prereq from its recursive definition.
● The final result is called the fixed point of the recursive view

definition.
■ Recursive views are required to be monotonic. That is, if we add

tuples to prereq the view rec_prereq contains all of the tuples it
contained before, plus possibly more

©Silberschatz, Korth and Sudarshan5.52Database System Concepts - 6th Edition

Advanced Aggregation Features

©Silberschatz, Korth and Sudarshan5.53Database System Concepts - 6th Edition

Ranking
■ Ranking is done in conjunction with an order by specification.
■ Suppose we are given a relation

student_grades(ID, GPA)
giving the grade-point average of each student

■ Find the rank of each student.
select ID, rank() over (order by GPA desc) as s_rank
from student_grades

■ An extra order by clause is needed to get them in sorted order
select ID, rank() over (order by GPA desc) as s_rank
from student_grades
order by s_rank

■ Ranking may leave gaps: e.g. if 2 students have the same top GPA,
both have rank 1, and the next rank is 3
● dense_rank does not leave gaps, so next dense rank would be 2

©Silberschatz, Korth and Sudarshan5.54Database System Concepts - 6th Edition

Ranking

■ Ranking can be done using basic SQL aggregation, but
resultant query is very inefficient

select ID, (1 + (select count(*)
from student_grades B
where B.GPA > A.GPA)) as s_rank

from student_grades A
order by s_rank;

©Silberschatz, Korth and Sudarshan5.55Database System Concepts - 6th Edition

Ranking (Cont.)

■ Ranking can be done within partition of the data.
■ �Find the rank of students within each department.�

select ID, dept_name,
rank () over (partition by dept_name order by GPA desc)

as dept_rank
from dept_grades
order by dept_name, dept_rank;

■ Multiple rank clauses can occur in a single select clause.
■ Ranking is done after applying group by clause/aggregation
■ Can be used to find top-n results

● More general than the limit n clause supported by many
databases, since it allows top-n within each partition

©Silberschatz, Korth and Sudarshan5.56Database System Concepts - 6th Edition

Ranking (Cont.)

■ Other ranking functions:
● percent_rank (within partition, if partitioning is done)
● cume_dist (cumulative distribution)

4 fraction of tuples with preceding values
● row_number (non-deterministic in presence of duplicates)

■ SQL:1999 permits the user to specify nulls first or nulls last
select ID,

rank () over (order by GPA desc nulls last) as s_rank
from student_grades

©Silberschatz, Korth and Sudarshan5.57Database System Concepts - 6th Edition

Ranking (Cont.)

■ For a given constant n, the ranking the function ntile(n) takes
the tuples in each partition in the specified order, and divides
them into n buckets with equal numbers of tuples.

■ E.g.,
select ID, ntile(4) over (order by GPA desc) as quartile

from student_grades;

©Silberschatz, Korth and Sudarshan5.58Database System Concepts - 6th Edition

Windowing

■ Used to smooth out random variations.
■ E.g., moving average: �Given sales values for each date, calculate

for each date the average of the sales on that day, the previous day,
and the next day�

■ Window specification in SQL:
● Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

©Silberschatz, Korth and Sudarshan5.59Database System Concepts - 6th Edition

Windowing

■ Examples of other window specifications:
● between rows unbounded preceding and current
● rows unbounded preceding
● range between 10 preceding and current row

4All rows with values between current row value –10 to
current value

● range interval 10 day preceding
4Not including current row

©Silberschatz, Korth and Sudarshan5.60Database System Concepts - 6th Edition

Windowing (Cont.)

■ Can do windowing within partitions
■ E.g., Given a relation transaction (account_number, date_time,

value), where value is positive for a deposit and negative for a
withdrawal
● �Find total balance of each account after each transaction

on the account�
select account_number, date_time,

sum (value) over
(partition by account_number
order by date_time
rows unbounded preceding)

as balance
from transaction
order by account_number, date_time

©Silberschatz, Korth and Sudarshan5.61Database System Concepts - 6th Edition

OLAP

©Silberschatz, Korth and Sudarshan5.62Database System Concepts - 6th Edition

Data Analysis and OLAP

■ Online Analytical Processing (OLAP)
● Interactive analysis of data, allowing data to be summarized and

viewed in different ways in an online fashion (with negligible
delay)

■ Data that can be modeled as dimension attributes and measure
attributes are called multidimensional data.
● Measure attributes

4measure some value
4can be aggregated upon
4e.g., the attribute number of the sales relation

● Dimension attributes
4define the dimensions on which measure attributes (or

aggregates thereof) are viewed
4e.g., attributes item_name, color, and size of the sales relation

©Silberschatz, Korth and Sudarshan5.63Database System Concepts - 6th Edition

Example sales relation

...

...
...
...

...

...
...
...

©Silberschatz, Korth and Sudarshan5.64Database System Concepts - 6th Edition

Cross Tabulation of sales by item_name and color

■ The table above is an example of a cross-tabulation (cross-tab),
also referred to as a pivot-table.
● Values for one of the dimension attributes form the row headers
● Values for another dimension attribute form the column headers
● Other dimension attributes are listed on top
● Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.

skirt
dress
shirt
pants

color

item_name

clothes_size all

dark pastel white total

total

8 35 10 53
20 10 5 35
14 7 28 49
20 2 5 27
62 54 48 164

©Silberschatz, Korth and Sudarshan5.65Database System Concepts - 6th Edition

Data Cube
■ A data cube is a multidimensional generalization of a cross-tab
■ Can have n dimensions; we show 3 below
■ Cross-tabs can be used as views on a data cube

©Silberschatz, Korth and Sudarshan5.67Database System Concepts - 6th Edition

Cross Tabulation With Hierarchy

■ Cross-tabs can be easily extended to deal with hierarchies
l Can drill down or roll up on a hierarchy

©Silberschatz, Korth and Sudarshan5.68Database System Concepts - 6th Edition

Relational Representation of Cross-tabs

■ Cross-tabs can be represented
as relations
l We use the value all is used

to represent aggregates.
l The SQL standard actually

uses null values in place of
all despite confusion with
regular null values.

©Silberschatz, Korth and Sudarshan5.69Database System Concepts - 6th Edition

Extended Aggregation to Support OLAP
■ The cube operation computes union of group by�s on every subset of the

specified attributes
■ Example relation for this section

sales(item_name, color, clothes_size, quantity)
■ E.g. consider the query

select item_name, color, size, sum(number)
from sales
group by cube(item_name, color, size)

This computes the union of eight different groupings of the sales relation:
{ (item_name, color, size), (item_name, color),
(item_name, size), (color, size),
(item_name), (color),
(size), () }

where () denotes an empty group by list.
■ For each grouping, the result contains the null value

for attributes not present in the grouping.

©Silberschatz, Korth and Sudarshan5.70Database System Concepts - 6th Edition

Online Analytical Processing Operations
■ Relational representation of cross-tab that we saw earlier, but with

null in place of all, can be computed by
select item_name, color, sum(number)
from sales
group by cube(item_name, color)

■ The function grouping() can be applied on an attribute
● Returns 1 if the value is a null value representing all, and returns

0 in all other cases.
select item_name, color, size, sum(number),

grouping(item_name) as item_name_flag,
grouping(color) as color_flag,
grouping(size) as size_flag,

from sales
group by cube(item_name, color, size)

©Silberschatz, Korth and Sudarshan5.71Database System Concepts - 6th Edition

Online Analytical Processing Operations
■ Can use the function decode() in the select clause to replace

such nulls by a value such as all
● E.g., replace item_name in first query by

decode(grouping(item_name), 1, �all�, item_name)

©Silberschatz, Korth and Sudarshan5.72Database System Concepts - 6th Edition

Extended Aggregation (Cont.)
■ The rollup construct generates union on every prefix of specified list

of attributes
■ E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name, color, size)

Generates union of four groupings:
{ (item_name, color, size), (item_name, color), (item_name), () }

■ Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

■ E.g., suppose table itemcategory(item_name, category) gives the
category of each item. Then

select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)

would give a hierarchical summary by item_name and by category.

©Silberschatz, Korth and Sudarshan5.73Database System Concepts - 6th Edition

Extended Aggregation (Cont.)

■ Multiple rollups and cubes can be used in a single group by clause
● Each generates set of group by lists, cross product of sets gives

overall set of group by lists
■ E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name), rollup(color, size)

generates the groupings
{item_name, ()} X {(color, size), (color), ()}

= { (item_name, color, size), (item_name, color), (item_name),
(color, size), (color), () }

©Silberschatz, Korth and Sudarshan5.74Database System Concepts - 6th Edition

Online Analytical Processing Operations

■ Pivoting: changing the dimensions used in a cross-tab is called
■ Slicing: creating a cross-tab for fixed values only

● Sometimes called dicing, particularly when values for
multiple dimensions are fixed.

■ Rollup: moving from finer-granularity data to a coarser
granularity

■ Drill down: The opposite operation - that of moving from
coarser-granularity data to finer-granularity data

©Silberschatz, Korth and Sudarshan5.75Database System Concepts - 6th Edition

OLAP Implementation

■ The earliest OLAP systems used multidimensional arrays in
memory to store data cubes, and are referred to as
multidimensional OLAP (MOLAP) systems.

■ OLAP implementations using only relational database features are
called relational OLAP (ROLAP) systems

■ Hybrid systems, which store some summaries in memory and
store the base data and other summaries in a relational database,
are called hybrid OLAP (HOLAP) systems.

©Silberschatz, Korth and Sudarshan5.76Database System Concepts - 6th Edition

OLAP Implementation (Cont.)
■ Early OLAP systems precomputed all possible aggregates in order to

provide online response
● Space and time requirements for doing so can be very high

42n combinations of group by
● It suffices to precompute some aggregates, and compute others on

demand from one of the precomputed aggregates
4Can compute aggregate on (item_name, color) from an

aggregate on (item_name, color, size)
– For all but a few �non-decomposable� aggregates such as median
– is cheaper than computing it from scratch

■ Several optimizations available for computing multiple aggregates
● Can compute aggregate on (item_name, color) from an aggregate

on (item_name, color, size)
● Can compute aggregates on (item_name, color, size),

(item_name, color) and (item_name) using a single sorting
of the base data

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 5

http://www.db-book.com/

