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While FO talks of elements of N, MSO talks of subsets of N.
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While FO talks of elements of N, MSO talks of subsets of N.

These subsets can be encoded by infinite words:

Even

1l
—=

[Even] ® [Squares]

Il
—
- p— -
N—"
—
o
N—"
—
oo
~—

Il
—~=

Square

§& Accordingly, a language L ¢ B encodes a set of subsets of N.



Definition
A Biichi automaton is a tuple A= (Q, X, A, /, F), where
@ Q is a finite set of control states
@ XY is a finite alphabet for transition labels
@ A ¢ QxXxQis a finite set of transition rules
e / ¢ Q is a set of initial states

@ £ ¢ Qis a set of final states
A accepts a word w € X% if it admits a run p on w such that
inf())NnF @
where inf(p) = {q €Q | Vi.3j>1i. p(J) = q}
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Decidability of S1S (Biichi '60)
One can decide if a given sentence 9 of MSO[+1] holds over N.

@ Replace first-order variables x with set variables X satisfying
(psingleton(X) = (X#22) A VY. (YEX)» (Y=2VY=X)
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Decidability of S1S (Biichi '60)
One can decide if a given sentence 9 of MSO[+1] holds over N.

@ Replace first-order variables x with set variables X satisfying
(psingleton(X) = (X#£2) A VY. (YEX)=>(Y=aVY=X)
@ By induction on all subformulas ¢ (X1, ..., Xim) of ¥,

construct Biichi automata Ay, over ¥, = B™ such that
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A converse translation: from automata to logic

One can translate every Biichi automaton A into a formula
Ya = 3IX. (X), where @ is a first-order formula, such that

L(A) = {weZ¥ | wrepa}

Q’ Encode an accepting run of A into monadic variables X:

we Z(A) iff 3 p accepting run of A on w

iff  3(Xt)ten. exactly one transition on each position
A transitions respect symbols of w
A consecutive transitions agree on states
A first transition departs from initial state
A some final state is visited infinitely often



A converse translation: from automata to logic

One can translate every Biichi automaton A into a formula
Ya = 3IX. (X), where @ is a first-order formula, such that

L(A) = {weZ¥ | wrepa}

Q’ Encode an accepting run of A into monadic variables X:

we Z(A) iff 3 p accepting run of A on w

iff  3(Xt)ten. exactly one transition on each position
A transitions respect symbols of w
A consecutive transitions agree on states
A first transition departs from initial state
A some final state is visited infinitely often

Corollary (collapse of quantifier hierarchy)
MSO[<] = Biichi automata = 3IMSO[+1]
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One can logically define Z inside N:

9o, (x,y) = (Even(x) A Even(y) A x<ny)
v (Odd(x) A Odd(y) A y <y x)
v (Odd(x) A Even(y))

Corollary
The MSQO[<] theory of Z is decidable. J




Application example 2 (interpretation of a counter system)

produce produce produce
A0 >® >® >

B, 0 | B 1 | B, 2 |

" consume \J‘ consume \J‘ consume

Any property of the above system expressed by an MSO formula

Y= ... ¥YX ... (y

consume z ) (

Yz ).
can be translated into an equi-satisfiable formula over (N, +1)
Y= VX, Xo (yvo+tl=2)...(n=22Vvym=2)...

and then checked for validity.
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Contraction method (Elgot & Rabin '66)
Let P be a subset of N that is (effectively) profinitely periodic

ie. [P] = wo wa wy ... and for every semigroup morphism f
the series f(wp) f(wy) f(wsa) ... is (effectively) periodic.

Then one can decide whether (N, +1, P) = 9.

Examples of effectively profinitely periodic subsets

@ Squares = {n® | neN}

@ Powers = {27 | neN}

@ Factorials = {n! | neN}

@ Fibonacci = {0,1,2,3,5,8,11,...}

@ basically all recursive series defined with + and -
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Composition method (Shelah '75)

m = number of free variables k = number of nested quantifiers
Definition
Let gk map words w over ¥, = {0, 1} to logical types:

gl (w) = {@(X4,.... Xm) with k nested quantifiers such that w & ¢ }

Bample: 69((2) (2) (1) (1)) = {XieX ..}




Composition method (Shelah '75) )

m = number of free variables k = number of nested quantifiers

Definition
Let gk map words w over ¥, = {0, 1} to logical types:

gl (w) = {@(X4,.... Xm) with k nested quantifiers such that w & ¢ }

Bample: 69((2) (2) (1) (1)) = {XieX ..} [

#%& Up to logical equivalence (e.g. =A = v—, =V =3, v =v3)

W) = { XicX | Vo wm)[il=1-wm[]=1)}
O {=XieX | 3nwmlil=1 A w(n[]=0}

k+1(W)

{ EIY.(p(Xl,...,meY)’ Y ¢ dom(w) }

pegh(weY)
Y cdom(w) }
ptgn (weY)

C

{~3Y 00X, . Xm Y) |
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Composition method (Shelah '75)

Like f, the type function g,’; is compositional, namely

ga(wi-wo) = gf(m) © gk(wo)

Q’ Given a formula @ € g&(wy - wo), i.e. such that wy - ws E o,
separate syntactically the quantifications over wy and over ws:

Example

Ix.y. x <y > (Ix1.3Iy1. x1 <y1) vV (Ixe. Fyn. X2 < ¥o)
v (3x1. 3y true) v (Ixe. y;. false)

IxX.dy. Xcy — (3X1.E|Y1.X1‘_:Y1) A (3X2.E|Y2.X2EY2)

Transform ¢ into }/ (0i1 A ©j2) insuch a way that
1=1...n

Wi-wo EQ iff wi E i1 and wa E @;o forsome i =1...n

Accordingly, constuct gk (wy - wo) on the basis of gk (w1) and gk (ws).



In a similar way, one can “compute” types of w-products:
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Corollary
One can decide whether a formula 9 of MSO[ X, <] holds over N.J

@ Start by computing types of singleton words a, for all ae *
@ Saturate by @: this gives all types of finite words!

© Choose any two types 71, 7> and compute 71 © 7'2@

Q@ Checkif ¢ e 71 072



In a similar way, one can “compute” types of w-products:

gh(wi-wo-ws-..) = gi(wi) © gh(w) © gk(ws) @

Corollary
One can decide whether a formula 9 of MSO[ X, <] holds over N.J

@ Start by computing types of singleton words a, for all ae *
@ Saturate by @: this gives all types of finite words!
© Choose any two types 71, 7> and compute 71 © 7'2@

Q@ Checkif ¢ e 71 072

§& Ramsey’s Theorem implies completeness of the above procedure!



From Ramsey’'s Theorem to Factorization Forests (Simon '90) J

Fix a semigroup morphism f : X* - (S, ®) (e.g. logical types)
and recall that every infinite word has a Ramseyan factorization, i.e.
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From Ramsey’'s Theorem to Factorization Forests (Simon '90)

)

Fix a semigroup morphism f : X* - (S, ®) (e.g. logical types)
and recall that every infihité word has a Ramseyan factorization, i.e.

(. .) (. [ ] [ ] [ ] ° .J (. [ ] [ ] [ ] [ ] [ ] .] (. [ ] [ ] [ ] .] (. .)

741 %) w3 Wa Ws

with idempotent factors:  f(wz) = f(w3) = f(wo) @ f(ws) = ..

@ the first and last factors are “short” w.r.t. w
(i.e. they do not contain proper factors with similar f-images)



From Ramsey’'s Theorem to Factorization Forests (Simon '90)

)

Fix a semigroup morphism f : X* - (S, ®) (e.g. logical types)
and recall that every infihité word has a Ramseyan factorization, i.e.

w1 Wo w3 Wy Ws

with idempotent factors:  f(wo) = f(wz) = f(wa) ® f(w3) = ...

@ the first and last factors are “short” w.r.t. w
(i.e. they do not contain proper factors with similar f-images)

N

Q We can recursively factorize factors until we get single characters

@ only a few nested factorizations (linear in |S|, independent of |w|)

@ each factor is divided into a few non-idempotent sub-factors



An example of factorization forest
Consider the automaton recognizing (a b*)* and the induced function f:

' :b F(a) [_z_‘;_z] F(b) [Ez;]

—o00 1 -o0
a —00 —oo 1 —00 1 -o0
f(ab) |:<>o —00 oo:| f(aba) |:oo 1 <>o:|

—o0 —oo 1




An example of factorization forest
Consider the automaton recognizing (a b*)* and the induced function f:

—00 0 -0 —00 —00 —00
b b f(a) |:—oo —00 —oo:| f(b) |:oo —00 1:|
)._a)‘C%) —oc0 1 -0 —00 —o0 1

a —00 —co 1 00 1 -oo

f(ab) {oooooo] f(aba) [oo 1 oo]

—co —oco 1 —00 —00 —00

w=a bb...b a bb...b ... a bb...b

| | | | | |

| | | | | |
f(a) f(b)f(b) f(b) f(a) f(b)7(b) f(b) f(a) f(b)f(b) f(b)




An example of factorization forest
Consider the automaton recognizing (a b*)* and the induced function f:

' :b F(a) [_2_20_2} F(b) [EE;]

—o00 1 -o0
a —00 —oo 1 —00 1 -o0
f(ab) |:<><> —00 w] f(aba) |:t>o 1 <>o:|

—oc0 —oo 1
w= a bb...b a bb...b ... a b b...b
| | | | | | | | | | | |
f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b)

-/ N/ N

f(b) f(b) f(b)




An example of factorization forest

Consider the automaton recognizing (a b*)* and the induced function f:

b L fa) - [_Z_‘L_Z] (e) = [~ =1 |
'S 1 o

a —00 —oo 1 —00 1 -o0
f(ab) = |:<><> —00 w] f(aba) = |:t>o 1 <>o:|
—co —oco 1 —00 —00 —00
w=a bb...b a bb...b ... a bb...b
I [ I I [ I I [ I
f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b)
% N % N
£ (b) f(b) f(b)

/ / /

f(ab) f(ab) f(ab)




An example of factorization forest

Consider the automaton recognizing (a b*)* and the induced function f:

b L fa) - [_Z_‘L_Z] (e) = [~ =1 |
'S 1 o

a —o00 —o0 1 -0 1 -oo
f(ab) = {oo —oo oo] f(aba) = [oo 1 oo]
—co —oco 1 —00 —00 —00
w= a bb...b a bb...b ... a bb...b
I o I I o I I o I
f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b)
N\ \i/ \i/
f(b) f(b) f(b)
f(ab) f(ab) f(ab)

N\,

f(ab)




An example of factorization forest

Consider the automaton recognizing (a b*)* and the induced function f:

b L fa) - [—i—i—:] (e) = [~ =1 |
'S 1 o

a —o00 —o0 1 -0 1 -o0
f(ab) = {oo —oo oo] f(aba) = {oo 1 oo]
—co —oco 1 —00 —00 —00

w=a bb..(b a bb...b ... a bb...b

| | | | | | | | | | | |

f(a) f(b)F(b)  f(b) f(a) f(b)F(b)  f(b) f(a) f(b)F(b)  f(b)

N N N
f(b) f(b) f(b)
f(ab) f(ab) f(ab)

N

f(ab)




An example of factorization forest

Consider the automaton recognizing (a b*)* and the induced function f:

b L fa) - [—:—1—:] (e) = [~ =1 |
'S 1 o

a —00 —oo 1 -0 1 -oo
f(ab) = |:<>o —00 oo:| f(aba) = |:oo 1 oo:|
—co —oco 1 —00 —00 —00
w=a bb..(b a bb...b ... a bb...b
| | | I I I I | | |
F(a) F(b)r(b) F) FB)FL)  F(b) FYFD)  f(b)
N N N
f(b) f(b) f(b)
f(ab) ( f(ab) . ) f(ab)

,//’/////////

f(ab)




An example of factorization forest

Consider the automaton recognizing (a b*)* and the induced function f:

b F(a) = [_2 2 _:] F(b) = [: - fo]

b
)._a).Cj@ —0 1 -0 —00 —o0 1

a —00 —oo0 1 -0 1 -o0
f(ab) = {oo —o0 oo] f(aba) = [oo 1 oo]
—co —oco 1 —00 —00 —00
w=a bb...b a bb...b ... a bb..b
| | | I I I I I I I I |
f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b) f(a) f(b)f(b) f(b)
NE% N/ N/
/ F(b) F(b)
f(ab) ( f(ab) o f(ab) )

f(ab)




An application: infix matching

For a fixed morphism f (or automaton, or formula),

one can receive a word w, construct its factorization forest, and
then use it as an index structure to evaluate in constant time
the f-image of any given infix of w.

Other applications:
@ constant-delay enumeration of answers to a query
@ number of nested Kleene * needed in a regular expression
@ determinization of Biichi automata (— parity automata)

@ convert semigroups to formulas






