
The monadic theory of one successor

Gabriele Puppis

LaBRI / CNRS

While FO talks of elements of N, MSO talks of subsets of Nsubsets of Nsubsets of N.

These subsets can be encoded by infinite words:

EvenEvenEven = { 0 , 2 , 4 , 6 , 8 , . . . } ⊆ N

[EvenEvenEven] ⊗ [SquaresSquaresSquares] = ⋯

SquareSquareSquare = { 0 , 1 , 4 , 9 , . . . } ⊆ N

Accordingly, a language L ⊆ Bω encodes a set of subsets of Nset of subsets of Nset of subsets of N.

While FO talks of elements of N, MSO talks of subsets of Nsubsets of Nsubsets of N.

These subsets can be encoded by infinite words:

EvenEvenEven = { 0 , 2 , 4 , 6 , 8 , . . . } ⊆ N

[EvenEvenEven] ⊗ [SquaresSquaresSquares] = (111111)(
000
111)(

111
000)(

000
000)(

111
111)(

000
000)(

111
000)(

000
000)(

111
000)(

000
111) ⋯

SquareSquareSquare = { 0 , 1 , 4 , 9 , . . . } ⊆ N

Accordingly, a language L ⊆ Bω encodes a set of subsets of Nset of subsets of Nset of subsets of N.

While FO talks of elements of N, MSO talks of subsets of Nsubsets of Nsubsets of N.

These subsets can be encoded by infinite words:

EvenEvenEven = { 0 , 2 , 4 , 6 , 8 , . . . } ⊆ N

[EvenEvenEven] ⊗ [SquaresSquaresSquares] = (111111)(
000
111)(

111
000)(

000
000)(

111
111)(

000
000)(

111
000)(

000
000)(

111
000)(

000
111) ⋯

SquareSquareSquare = { 0 , 1 , 4 , 9 , . . . } ⊆ N

Accordingly, a language L ⊆ Bω encodes a set of subsets of Nset of subsets of Nset of subsets of N.

Definition

A Büchi automaton is a tuple A = (Q,Σ,∆, I ,F), where

Q is a finite set of control states

Σ is a finite alphabet for transition labels

∆ ⊆ Q × Σ × Q is a finite set of transition rules

I ⊆ Q is a set of initial states

F ⊆ Q is a set of final states

A accepts a word w ∈ Σω if it admits a run ρ on w such that

inf(ρ) ∩ F ≠ ∅inf(ρ) ∩ F ≠ ∅inf(ρ) ∩ F ≠ ∅

where inf(ρ) = { q ∈ Q ∣ ∀i . ∃j ≥ i . ρ(j) = q }

Example

q0 qf

0
1

1

0 L (A) = (0⋆ 1)ω

Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y) = (X ⊆ Y) (
000
000
), (000

111
), (111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄)

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y) projection

(
111
000×
)

(111
111×)

Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y) = (X ⊆ Y) (
000
000
), (000

111
), (111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄)

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y) projection

(
111
000×
)

(111
111×)

Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y) = (X ⊆ Y) (
000
000
), (000

111
), (111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄)

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y) projection

(
111
000×
)

(111
111×)

Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y) = (X ⊆ Y) (
000
000
), (000

111
), (111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄)

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y) projection

(
111
000×
)

(111
111×)

Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y) = (X ⊆ Y) (
000
000
), (000

111
), (111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄) complementation

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y) projection

(
111
000×
)

(111
111×)

Decidability of S1S (Büchi ’60)

One can decide if a given sentence ψ of MSO[+1]MSO[+1]MSO[+1] holds over N.

1 Replace first-order variables x with set variables X satisfying

ϕsingleton(X) = (X ≠ ∅) ∧ ∀Y . (Y ⊆ X) → (Y = ∅ ∨ Y = X)

2 By induction on all subformulas ϕ(X1, ...,Xm) of ψ,

construct Büchi automata Aϕ over Σm = Bm such that

L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }L (Aϕ) = { [X1] ⊗ ⋅ ⋅ ⋅ ⊗ [Xm] ∈ Σωm ∣ (N,+1) ⊧ ϕ(X1, ...,Xm) }

ϕ(X ,Y) = (Y = X + 1)
(
111
000
) (

000
111
)

(
000
000
) (

000
000
)

ϕ(X ,Y) = (X ⊆ Y) (
000
000
), (000

111
), (111

111
)

ϕ(X̄) = ϕ1(X̄) ∨ ϕ2(X̄) union

ϕ(X̄) = ¬ϕ1(X̄) complementationcomplementationcomplementation

ϕ(X̄) = ∃Y . ϕ1(X̄ ,Y) projection

(
111
000×
)

(111
111×)

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .
Complementation: L (A)C = ∪

L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω
f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .
Complementation: L (A)C = ∪

L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω
f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .
Complementation: L (A)C = ∪

L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω
f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A Büchi automaton A induces a function f ∶ Σ⋆→{−∞, 0, 1}Q
2

such that

f (w) =

↓q

Ð→
p

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ιp,qιp,qιp,q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ιp,q = −∞ if there is no path from p to q

ιp,q = 1 if there is a path from p to q

that visits a final state

ιp,q = 0 otherwise

1 f is compositional: f (w1 ⋅ w2) = f (w1) × f (w2)

2 w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f=f=f =f=f=f =f=f=f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

3 L (A) = ∪
L (A) ⊇ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

Proof: ⊇ straightforward, ⊆ follows from Ramsey’s Theorem

Every word can be factorized into w1,w2,w3, ... with f (w2) = f (w2) = ...

. . .

Complementation: L (A)C = ∪
L (A) ⊉⊉⊉ f −1(M) ⋅ f −1(N)ω

f −1(M) ⋅ f −1(N)ω

A converse translation: from automata to logic

One can translate every Büchi automaton A into a formula

ψA = ∃X̄ . ϕ(X̄)ψA = ∃X̄ . ϕ(X̄)ψA = ∃X̄ . ϕ(X̄), where ϕ is a first-order formula, such that

L (A) = {w ∈ Σω ∣ w ⊧ ψA}

Encode an accepting run of A into monadic variables X̄ :

w ∈ L (A) iff ∃ ρ accepting run of A on w

iff ∃(Xt)t ∈∆. exactly one transition on each position

∧ transitions respect symbols of w

∧ consecutive transitions agree on states

∧ first transition departs from initial state

∧ some final state is visited infinitely often

Corollary (collapse of quantifier hierarchy)

MSO[<] = Büchi automata = ∃MSO[+1]

A converse translation: from automata to logic

One can translate every Büchi automaton A into a formula

ψA = ∃X̄ . ϕ(X̄)ψA = ∃X̄ . ϕ(X̄)ψA = ∃X̄ . ϕ(X̄), where ϕ is a first-order formula, such that

L (A) = {w ∈ Σω ∣ w ⊧ ψA}

Encode an accepting run of A into monadic variables X̄ :

w ∈ L (A) iff ∃ ρ accepting run of A on w

iff ∃(Xt)t ∈∆. exactly one transition on each position

∧ transitions respect symbols of w

∧ consecutive transitions agree on states

∧ first transition departs from initial state

∧ some final state is visited infinitely often

Corollary (collapse of quantifier hierarchy)

MSO[<] = Büchi automata = ∃MSO[+1]

Application example 1 (interpretation of the integers)

0 1 2 3 4 . . .

One can logically define Z inside Nlogically define Z inside Nlogically define Z inside N:

ϕ≤Z(x , y) = (Even(x) ∧ Even(y) ∧ x ≤N y)

∨ (Odd(x) ∧ Odd(y) ∧ y ≤N x)

∨ (Odd(x) ∧ Even(y))

Corollary

The MSO[≤]MSO[≤]MSO[≤] theory of Z is decidable.

Application example 1 (interpretation of the integers)

0 1 2 3 4 . . .0 1 2 3 4

One can logically define Z inside Nlogically define Z inside Nlogically define Z inside N:

ϕ≤Z(x , y) = (Even(x) ∧ Even(y) ∧ x ≤N y)

∨ (Odd(x) ∧ Odd(y) ∧ y ≤N x)

∨ (Odd(x) ∧ Even(y))

Corollary

The MSO[≤]MSO[≤]MSO[≤] theory of Z is decidable.

Application example 1 (interpretation of the integers)

0 1 2 3 4 . . .0 1 2 3 4

One can logically define Z inside Nlogically define Z inside Nlogically define Z inside N:

ϕ≤Z(x , y) = (Even(x) ∧ Even(y) ∧ x ≤N y)

∨ (Odd(x) ∧ Odd(y) ∧ y ≤N x)

∨ (Odd(x) ∧ Even(y))

Corollary

The MSO[≤]MSO[≤]MSO[≤] theory of Z is decidable.

Application example 2 (interpretation of a counter system)

A, 0 A, 1 A, 2 . . .

B, 0 B, 1 B, 2 . . .

ε ε ε

produce produce produce

consume consume consume

Any property of the above system expressed by an MSO formula

ψ = . . . ∀X∀X∀X . . . (y
consume
←ÐÐÐÐÐ zy
consume
←ÐÐÐÐÐ zy
consume
←ÐÐÐÐÐ z) . . . (y ↕ε zy ↕ε zy ↕ε z) . . .

can be translated into an equi-satisfiable formula over (N,+1)

ψ̂ = . . . ∀X1,X2∀X1,X2∀X1,X2 . . . (y2 + 1 = z2y2 + 1 = z2y2 + 1 = z2) . . . (y1 = z2 ∨ y2 = z1y1 = z2 ∨ y2 = z1y1 = z2 ∨ y2 = z1) . . .

and then checked for validity.

Application example 3 (expanded theories)

Recall inductive invariant: L (Aϕ) = {[X̄] ∈ Σωm ∣ N ⊧ ϕ(X̄)}

and recall f -equivalence on factors of infinite words:

w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f =f =f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

We have

(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ

iff www === 111

®
w0

111 0 00 00 0

0 00 00 0
¯
w1

111 0 0 0 00 0 0 00 0 0 0

0 0 0 00 0 0 00 0 0 0
´¹¹¹¹¸¹¹¹¹¶
w2

111 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w3

111

¯
where wn = (00)nwn = (00)nwn = (00)n

∈ L (Aϕ)∈ L (Aϕ)∈ L (Aϕ)

iff w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)

since f (wn) = f (wn+`)f (wn) = f (wn+`)f (wn) = f (wn+`) for some ` > 0 and all n > n0

Application example 3 (expanded theories)

Recall inductive invariant: L (Aϕ) = {[X̄] ∈ Σωm ∣ N ⊧ ϕ(X̄)}

and recall f -equivalence on factors of infinite words:

w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f =f =f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

We have

(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ

iff www === 111

®
w0

111 0 00 00 0

0 00 00 0
¯
w1

111 0 0 0 00 0 0 00 0 0 0

0 0 0 00 0 0 00 0 0 0
´¹¹¹¹¸¹¹¹¹¶
w2

111 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w3

111

¯
where wn = (00)nwn = (00)nwn = (00)n

∈ L (Aϕ)∈ L (Aϕ)∈ L (Aϕ)

iff w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)

since f (wn) = f (wn+`)f (wn) = f (wn+`)f (wn) = f (wn+`) for some ` > 0 and all n > n0

Application example 3 (expanded theories)

Recall inductive invariant: L (Aϕ) = {[X̄] ∈ Σωm ∣ N ⊧ ϕ(X̄)}

and recall f -equivalence on factors of infinite words:

w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f =f =f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

We have

(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ

iff www === 111
®
w0

111 0 00 00 00 00 00 0
¯
w1

111 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0
´¹¹¹¹¸¹¹¹¹¶
w2

111 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w3

111
¯
where wn = (00)nwn = (00)nwn = (00)n

∈ L (Aϕ)∈ L (Aϕ)∈ L (Aϕ)

iff w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)

since f (wn) = f (wn+`)f (wn) = f (wn+`)f (wn) = f (wn+`) for some ` > 0 and all n > n0

Application example 3 (expanded theories)

Recall inductive invariant: L (Aϕ) = {[X̄] ∈ Σωm ∣ N ⊧ ϕ(X̄)}

and recall f -equivalence on factors of infinite words:

w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f =f =f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

We have

(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ

iff www === 111
®
w0

111 0 00 00 00 00 00 0
¯
w1

111 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0
´¹¹¹¹¸¹¹¹¹¶
w2

111 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w3

111
¯
where wn = (00)nwn = (00)nwn = (00)n

∈ L (Aϕ)∈ L (Aϕ)∈ L (Aϕ)

iff w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)

since f (wn) = f (wn+`)f (wn) = f (wn+`)f (wn) = f (wn+`) for some ` > 0 and all n > n0

Application example 3 (expanded theories)

Recall inductive invariant: L (Aϕ) = {[X̄] ∈ Σωm ∣ N ⊧ ϕ(X̄)}

and recall f -equivalence on factors of infinite words:

w = w1 ⋅ w2 ⋅ w3 ⋅ . . .

=f =f =f

w ′ = w ′

1 ⋅ w ′

2 ⋅ w ′

3 ⋅ . . .

⇒ w ∈L (A)

↔

w ′ ∈L (A)

We have

(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ(N,+1,Squares) ⊧ ϕ

iff www === 111
®
w0

111 0 00 00 00 00 00 0
¯
w1

111 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0
´¹¹¹¹¸¹¹¹¹¶
w2

111 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

w3

111
¯
where wn = (00)nwn = (00)nwn = (00)n

∈ L (Aϕ)∈ L (Aϕ)∈ L (Aϕ)

iff w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)w ′ = (1w0...1wn0) ⋅ (1wn0+1...1wn0+`)
ω ∈ L (Aϕ)

since f (wn) = f (wn+`)f (wn) = f (wn+`)f (wn) = f (wn+`) for some ` > 0 and all n > n0

Contraction method (Elgot & Rabin ’66)

Let P be a subset of N that is (effectively) profinitely periodic

i.e. [P] = w0 w1 w2 . . . and for every semigroup morphism f

the series f (w0) f (w1) f (w2) . . . is (effectively) periodic.

Then one can decide whether (N,+1,P) ⊧ ψ.

Examples of effectively profinitely periodic subsets

Squares = {n2 ∣ n ∈ N}

Powers = {2n ∣ n ∈ N}

Factorials = {n! ∣ n ∈ N}

Fibonacci = {0, 1, 2, 3, 5, 8, 11, . . . }

basically all recursive series defined with + and ⋅

Contraction method (Elgot & Rabin ’66)

Let P be a subset of N that is (effectively) profinitely periodic

i.e. [P] = w0 w1 w2 . . . and for every semigroup morphism f

the series f (w0) f (w1) f (w2) . . . is (effectively) periodic.

Then one can decide whether (N,+1,P) ⊧ ψ.

Examples of effectively profinitely periodic subsets

Squares = {n2 ∣ n ∈ N}

Powers = {2n ∣ n ∈ N}

Factorials = {n! ∣ n ∈ N}

Fibonacci = {0, 1, 2, 3, 5, 8, 11, . . . }

basically all recursive series defined with + and ⋅

Composition method (Shelah ’75)

m = number of free variables k = number of nested quantifiers

Definition

Let gkmgkmgkm map words w over Σm = {0, 1}mΣm = {0, 1}mΣm = {0, 1}m to logical types:

gkm(w) = {ϕ(X1, ...,Xm)ϕ(X1, ...,Xm)ϕ(X1, ...,Xm) with k nested quantifiers such that w ⊧ ϕw ⊧ ϕw ⊧ ϕ }

Example: g02((
0
1) (01) (11) (11)) = { X1 ⊆ X2, . . . }

Up to logical equivalence (e.g. ¬∧ = ∨¬, ¬∀ = ∃¬, ∃∨ = ∨∃)

g0m(w) = { Xi ⊆ Xj ∣ ∀n. w(n)[i] = 1 → w(n)[j] = 1 }

∪ { ¬Xi ⊆ Xj ∣ ∃n. w(n)[i] = 1 ∧ w(n)[j] = 0 }

gk+1m (w) = { ∃Y . ϕ(X1, ...,Xm,Y) ∣
Y ⊆ dom(w)

ϕ ∈ gkm+1(w ⊗Y)
}

∪ { ¬∃Y . ϕ(X1, ...,Xm,Y) ∣
Y ⊆ dom(w)

ϕ /∈ gkm+1(w ⊗Y)
}

Composition method (Shelah ’75)

m = number of free variables k = number of nested quantifiers

Definition

Let gkmgkmgkm map words w over Σm = {0, 1}mΣm = {0, 1}mΣm = {0, 1}m to logical types:

gkm(w) = {ϕ(X1, ...,Xm)ϕ(X1, ...,Xm)ϕ(X1, ...,Xm) with k nested quantifiers such that w ⊧ ϕw ⊧ ϕw ⊧ ϕ }

Example: g02((
0
1) (01) (11) (11)) = { X1 ⊆ X2, . . . }

Up to logical equivalence (e.g. ¬∧ = ∨¬, ¬∀ = ∃¬, ∃∨ = ∨∃)

g0m(w) = { Xi ⊆ Xj ∣ ∀n. w(n)[i] = 1 → w(n)[j] = 1 }

∪ { ¬Xi ⊆ Xj ∣ ∃n. w(n)[i] = 1 ∧ w(n)[j] = 0 }

gk+1m (w) = { ∃Y . ϕ(X1, ...,Xm,Y) ∣
Y ⊆ dom(w)

ϕ ∈ gkm+1(w ⊗Y)
}

∪ { ¬∃Y . ϕ(X1, ...,Xm,Y) ∣
Y ⊆ dom(w)

ϕ /∈ gkm+1(w ⊗Y)
}

Composition method (Shelah ’75)

Like f , the type function gkm is compositional, namely

gkm(w1 ⋅ w2) = gkm(w1) ⊙ gkm(w2)

Given a formula ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2), i.e. such that w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ,

separate syntactically the quantifications over w1 and over w2:

Example

∃x . ∃y . x < y ↦ (∃x1. ∃y1. x1 < y1) ∨ (∃x2.∃y2. x2 < y2)

∨ (∃x1. ∃y2. true) ∨ (∃x2. ∃y1. false)

∃X . ∃Y . X ⊆ Y ↦ (∃X1. ∃Y1. X1 ⊆ Y1) ∧ (∃X2. ∃Y2. X2 ⊆ Y2)

Transform ϕ into ∨
i=1...n

(ϕi ,1 ∧ ϕi ,2) in such a way that

w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ iff w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1 and w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2 for some i = 1...n

Accordingly, constuct gkm(w1 ⋅ w2) on the basis of gkm(w1) and gkm(w2).

Composition method (Shelah ’75)

Like f , the type function gkm is compositional, namely

gkm(w1 ⋅ w2) = gkm(w1) ⊙ gkm(w2)

Given a formula ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2), i.e. such that w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ,

separate syntactically the quantifications over w1 and over w2:

Example

∃x . ∃y . x < y ↦ (∃x1. ∃y1. x1 < y1) ∨ (∃x2.∃y2. x2 < y2)

∨ (∃x1. ∃y2. true) ∨ (∃x2. ∃y1. false)

∃X . ∃Y . X ⊆ Y ↦ (∃X1. ∃Y1. X1 ⊆ Y1) ∧ (∃X2. ∃Y2. X2 ⊆ Y2)

Transform ϕ into ∨
i=1...n

(ϕi ,1 ∧ ϕi ,2) in such a way that

w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ iff w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1 and w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2 for some i = 1...n

Accordingly, constuct gkm(w1 ⋅ w2) on the basis of gkm(w1) and gkm(w2).

Composition method (Shelah ’75)

Like f , the type function gkm is compositional, namely

gkm(w1 ⋅ w2) = gkm(w1) ⊙ gkm(w2)

Given a formula ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2)ϕ ∈ gkm(w1 ⋅ w2), i.e. such that w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ,

separate syntactically the quantifications over w1 and over w2:

Example

∃x . ∃y . x < y ↦ (∃x1. ∃y1. x1 < y1) ∨ (∃x2. ∃y2. x2 < y2)

∨ (∃x1. ∃y2. true) ∨ (∃x2. ∃y1. false)

∃X . ∃Y . X ⊆ Y ↦ (∃X1. ∃Y1. X1 ⊆ Y1) ∧ (∃X2. ∃Y2. X2 ⊆ Y2)

Transform ϕ into ∨
i=1...n

(ϕi ,1 ∧ ϕi ,2) in such a way that

w1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕw1 ⋅ w2 ⊧ ϕ iff w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1w1 ⊧ ϕi ,1 and w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2w2 ⊧ ϕi ,2 for some i = 1...n

Accordingly, constuct gkm(w1 ⋅ w2) on the basis of gkm(w1) and gkm(w2).

In a similar way, one can “compute” types of ω-productstypes of ω-productstypes of ω-products:

gkm(w1 ⋅ w2 ⋅ w3 ⋅ . . .) = gkm(w1) ⊙ gkm(w2) ⊙ gkm(w3) ⊙ . . .

Corollary

One can decide whether a formula ψ of MSO[Σ, <] holds over N.

1 Start by computing types of singleton words a, for all a ∈ Σ

2 Saturate by ⊙: this gives all types of finite words!

3 Choose any two types τ1, τ2 and compute τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2

4 Check if ψ ∈ τ1 ⊙ τ
ω◯

2

Ramsey’s Theorem implies completeness of the above procedure!

In a similar way, one can “compute” types of ω-productstypes of ω-productstypes of ω-products:

gkm(w1 ⋅ w2 ⋅ w3 ⋅ . . .) = gkm(w1) ⊙ gkm(w2) ⊙ gkm(w3) ⊙ . . .

Corollary

One can decide whether a formula ψ of MSO[Σ, <] holds over N.

1 Start by computing types of singleton words a, for all a ∈ Σ

2 Saturate by ⊙: this gives all types of finite words!

3 Choose any two types τ1, τ2 and compute τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2

4 Check if ψ ∈ τ1 ⊙ τ
ω◯

2

Ramsey’s Theorem implies completeness of the above procedure!

In a similar way, one can “compute” types of ω-productstypes of ω-productstypes of ω-products:

gkm(w1 ⋅ w2 ⋅ w3 ⋅ . . .) = gkm(w1) ⊙ gkm(w2) ⊙ gkm(w3) ⊙ . . .

Corollary

One can decide whether a formula ψ of MSO[Σ, <] holds over N.

1 Start by computing types of singleton words a, for all a ∈ Σ

2 Saturate by ⊙: this gives all types of finite words!

3 Choose any two types τ1, τ2 and compute τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2τ1 ⊙ τ
ω◯

2

4 Check if ψ ∈ τ1 ⊙ τ
ω◯

2

Ramsey’s Theorem implies completeness of the above procedure!

From Ramsey’s Theorem to Factorization Forests (Simon ’90)

Fix a semigroup morphism f ∶ Σ⋆ → (S ,⊙) (e.g. logical types)

and recall that every infinite

///////infinite

word has a Ramseyan factorization, i.e.

. . .

w1 w2 w3 w4 w5

with idempotent factors: f (w2) = f (w3) = f (w2) ⊙ f (w3) = . . .

the first and last factors are “short” w.r.t. w

(i.e. they do not contain proper factors with similar f -images)

We can recursively factorize factors until we get single characters

only a few nested factorizationsa few nested factorizationsa few nested factorizations (linear in ∣S ∣, independent of ∣w ∣)

each factor is divided into a few non-idempotent sub-factorsa few non-idempotent sub-factorsa few non-idempotent sub-factors

From Ramsey’s Theorem to Factorization Forests (Simon ’90)

Fix a semigroup morphism f ∶ Σ⋆ → (S ,⊙) (e.g. logical types)

and recall that every

infinite

///////infinite word has a Ramseyan factorization, i.e.

. . .

w1 w2 w3 w4 w5

with idempotent factors: f (w2) = f (w3) = f (w2) ⊙ f (w3) = . . .

the first and last factors are “short” w.r.t. w

(i.e. they do not contain proper factors with similar f -images)

We can recursively factorize factors until we get single characters

only a few nested factorizationsa few nested factorizationsa few nested factorizations (linear in ∣S ∣, independent of ∣w ∣)

each factor is divided into a few non-idempotent sub-factorsa few non-idempotent sub-factorsa few non-idempotent sub-factors

From Ramsey’s Theorem to Factorization Forests (Simon ’90)

Fix a semigroup morphism f ∶ Σ⋆ → (S ,⊙) (e.g. logical types)

and recall that every

infinite

///////infinite word has a Ramseyan factorization, i.e.

. . .

w1 w2 w3 w4 w5

with idempotent factors: f (w2) = f (w3) = f (w2) ⊙ f (w3) = . . .

the first and last factors are “short” w.r.t. w

(i.e. they do not contain proper factors with similar f -images)

We can recursively factorize factors until we get single characters

only a few nested factorizationsa few nested factorizationsa few nested factorizations (linear in ∣S ∣, independent of ∣w ∣)

each factor is divided into a few non-idempotent sub-factorsa few non-idempotent sub-factorsa few non-idempotent sub-factors

From Ramsey’s Theorem to Factorization Forests (Simon ’90)

Fix a semigroup morphism f ∶ Σ⋆ → (S ,⊙) (e.g. logical types)

and recall that every

infinite

///////infinite word has a Ramseyan factorization, i.e.

. . .

w1 w2 w3 w4 w5

with idempotent factors: f (w2) = f (w3) = f (w2) ⊙ f (w3) = . . .

the first and last factors are “short” w.r.t. w

(i.e. they do not contain proper factors with similar f -images)

We can recursively factorize factors until we get single characters

only a few nested factorizationsa few nested factorizationsa few nested factorizations (linear in ∣S ∣, independent of ∣w ∣)

each factor is divided into a few non-idempotent sub-factorsa few non-idempotent sub-factorsa few non-idempotent sub-factors

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (ab)

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (ab)

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (b)

...

f (b)

...

f (b)

...

f (ab)

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (b)

...

f (b)

...

f (b)

...

f (ab) f (ab) f (ab)

f (ab)

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (b)

...

f (b)

...

f (b)

...

f (ab) f (ab) f (ab)

f (ab)

. . .

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (b)

...

f (b)

...

f (b)

...

f (ab) f (ab) f (ab)

f (ab)

. . .

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (b)

...

f (b)

...

f (b)

...

f (ab) f (ab) f (ab)

f (ab)

. . .

An example of factorization forest

Consider the automaton recognizing (a b+)+(a b+)+(a b+)+ and the induced function f :

a
b

b

a

f (a) = [

−∞ 0 −∞

−∞ −∞ −∞

−∞ 1 −∞

] f (b) = [

−∞ −∞ −∞

−∞ −∞ 1

−∞ −∞ 1

]

f (a b) = [

−∞ −∞ 1

−∞ −∞ −∞

−∞ −∞ 1

] f (a b a) = [

−∞ 1 −∞

−∞ 1 −∞

−∞ −∞ −∞

]

w =w =w = aaa bbb bbb bbb aaa bbb bbb bbb aaa bbb bbb bbb

f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b) f (a) f (b) f (b) f (b)

f (b)

...

f (b)

...

f (b)

...

f (ab) f (ab) f (ab)

f (ab)

. . .

An application: infix matching

For a fixed morphism f (or automaton, or formula),

one can receive a word w , construct its factorization forest, and

then use it as an index structure to evaluate in constant time

the f -image of any given infix of w .

Other applications:

constant-delay enumeration of answers to a query

number of nested Kleene ⋆ needed in a regular expression

determinization of Büchi automata (→ parity automata)

convert semigroups to formulas

Next

