The monadic theory of one successor

Gabriele Puppis

LaBRI / CNRS

While FO talks of elements of \mathbb{N} , MSO talks of subsets of \mathbb{N} .

These subsets can be encoded by **infinite words**:

Even =
$$\{0, 2, 4, 6, 8, \dots\} \subseteq \mathbb{N}$$

Square =
$$\{0, 1, 4, 9, \dots\} \subseteq \mathbb{N}$$

While FO talks of elements of \mathbb{N} , MSO talks of subsets of \mathbb{N} .

These subsets can be encoded by **infinite words**:

$$[\text{Even}] \otimes [\text{Squares}] = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\$$

While FO talks of elements of \mathbb{N} , MSO talks of subsets of \mathbb{N} .

These subsets can be encoded by **infinite words**:

$$\text{Even} = \left\{ \begin{array}{l} 0 \,, \, 2 \,, \, 4 \,, \, 6 \,, \, 8 \,, \, \dots \, \right\} \subseteq \mathbb{N} \\ \\ [\text{Even}] \otimes [\text{Squares}] = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} \cdots \\ \\ \text{Square} = \left\{ \begin{array}{l} 0 \,, \, 1 \,, \, 4 \,, \, 9 \,, \, \dots \, \right\} \subseteq \mathbb{N} \\ \\ \end{array}$$

 \mathbb{R}^{ω} Accordingly, a language $L \subseteq \mathbb{B}^{\omega}$ encodes a **set of subsets of** \mathbb{N} .

Definition

A **Büchi automaton** is a tuple $A = (Q, \Sigma, \Delta, I, F)$, where

- Q is a finite set of control states
- ullet is a finite alphabet for transition labels
- $\Delta \subseteq Q \times \Sigma \times Q$ is a finite set of transition rules
- $I \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final states

 \mathcal{A} accepts a word $w \in \Sigma^{\omega}$ if it admits a run ρ on w such that

$$\inf(\rho) \cap F \neq \emptyset$$

where $\inf(\rho) = \{ q \in Q \mid \forall i. \exists j \ge i. \rho(j) = q \}$

Example

$$\mathscr{L}(\mathcal{A}) = (0^* \, 1)^{\omega}$$

One can decide if a given sentence ψ of MSO[+1] holds over \mathbb{N} .

1 Replace first-order variables x with set variables X satisfying $\varphi_{\text{singleton}}(X) = (X \neq \emptyset) \land \forall Y. (Y \subseteq X) \rightarrow (Y = \emptyset \lor Y = X)$

One can decide if a given sentence ψ of MSO[+1] holds over \mathbb{N} .

② By induction on all subformulas $\varphi(X_1, ..., X_m)$ of ψ , construct Büchi automata \mathcal{A}_{φ} over $\Sigma_m = \mathbb{B}^m$ such that

$$\mathcal{L}(\mathcal{A}_{\varphi}) \ = \ \left\{ \left[X_1 \right] \otimes \cdots \otimes \left[X_m \right] \in \Sigma_m^{\omega} \ \middle| \ (\mathbb{N}, +1) \vDash \varphi(X_1, ..., X_m) \right. \right\}$$

One can decide if a given sentence ψ of MSO[+1] holds over \mathbb{N} .

1 Replace first-order variables x with set variables X satisfying $\varphi_{\text{singleton}}(X) = (X \neq \emptyset) \land \forall Y. (Y \subseteq X) \rightarrow (Y = \emptyset \lor Y = X)$

② By induction on all subformulas $\varphi(X_1, ..., X_m)$ of ψ , construct Büchi automata \mathcal{A}_{φ} over $\Sigma_m = \mathbb{B}^m$ such that

$$\mathcal{L}(\mathcal{A}_{\varphi}) = \left\{ \left[X_1 \right] \otimes \cdots \otimes \left[X_m \right] \in \Sigma_m^{\omega} \mid (\mathbb{N}, +1) \vDash \varphi(X_1, ..., X_m) \right\}$$

$$\varphi(X,Y) = (Y = X + 1)$$

One can decide if a given sentence ψ of MSO[+1] holds over \mathbb{N} .

② By induction on all subformulas $\varphi(X_1, ..., X_m)$ of ψ , construct Büchi automata \mathcal{A}_{φ} over $\Sigma_m = \mathbb{B}^m$ such that

$$\mathcal{L}(\mathcal{A}_{\varphi}) = \left\{ [X_1] \otimes \cdots \otimes [X_m] \in \Sigma_m^{\omega} \mid (\mathbb{N}, +1) \vDash \varphi(X_1, ..., X_m) \right\}$$

$$\varphi(X,Y) = (Y = X + 1)$$

$$\varphi(X,Y) = (X \subseteq Y)$$

$$\varphi(X,Y) = (X \subseteq Y)$$

One can decide if a given sentence ψ of MSO[+1] holds over \mathbb{N} .

Replace first-order variables x with set variables X satisfying $\varphi_{\text{singleton}}(X) = (X \neq \emptyset) \land \forall Y. (Y \subseteq X) \rightarrow (Y = \emptyset \lor Y = X)$

2 By induction on all subformulas $\varphi(X_1,...,X_m)$ of ψ , construct Büchi automata A_{ω} over $\Sigma_m = \mathbb{B}^m$ such that

$$\mathcal{L}(\mathcal{A}_{\varphi}) = \left\{ [X_1] \otimes \cdots \otimes [X_m] \in \Sigma_m^{\omega} \mid (\mathbb{N}, +1) \vDash \varphi(X_1, ..., X_m) \right\}$$

$$\varphi(X,Y) = (Y = X + 1)$$

$$\varphi(X,Y) = (X \subseteq Y)$$

$$\varphi(\bar{X}) = \varphi_1(\bar{X}) \vee \varphi_2(\bar{X})$$
 union
$$\varphi(\bar{X}) = \neg \varphi_1(\bar{X})$$
 comple

 $\varphi(\bar{X}) = \exists Y. \varphi_1(\bar{X}, Y)$

projection

One can decide if a given sentence ψ of MSO[+1] holds over \mathbb{N} .

Replace first-order variables x with set variables X satisfying $\varphi_{\text{singleton}}(X) = (X \neq \emptyset) \land \forall Y. (Y \subseteq X) \rightarrow (Y = \emptyset \lor Y = X)$

2 By induction on all subformulas $\varphi(X_1,...,X_m)$ of ψ , construct Büchi automata A_{ω} over $\Sigma_m = \mathbb{B}^m$ such that

$$\mathcal{L}(\mathcal{A}_{\varphi}) = \left\{ [X_1] \otimes \cdots \otimes [X_m] \in \Sigma_m^{\omega} \mid (\mathbb{N}, +1) \vDash \varphi(X_1, ..., X_m) \right\}$$

projection

$$\varphi(X,Y) = (Y = X + 1)$$

$$\varphi(X,Y) = (X \subseteq Y)$$

$$\varphi(\bar{X}) = \varphi_1(\bar{X}) \vee \varphi_2(\bar{X})$$

$$\varphi(\bar{X}) = \neg \varphi_1(\bar{X})$$

$$\varphi(\bar{X}) = \exists Y. \varphi_1(\bar{X},Y)$$

$$\varphi(\bar{X}) = \exists Y. \varphi_1(\bar{X},Y)$$

$$\varphi(\bar{X}) = \varphi_1(\bar{X})$$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1
$$f$$
 is **compositional**: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1
$$f$$
 is **compositional**: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

$$f(w) = \underset{p}{\rightarrow} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1 f is compositional:
$$f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$$

Proof: ⊇ straightforward, ⊆ follows from Ramsey's Theorem

Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

•
$$f$$
 is compositional: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

Proof: \supseteq straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

•
$$f$$
 is compositional: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

Proof: \supseteq straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

•
$$f$$
 is compositional: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

Proof:
$$\supseteq$$
 straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

•
$$f$$
 is compositional: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

Proof: \supseteq straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

•
$$f$$
 is compositional: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

Proof: \supseteq straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1 If is compositional:
$$f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$$

Proof: \supseteq straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1
$$f$$
 is **compositional**: $f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$

Proof: \supseteq straightforward, \subseteq follows from Ramsey's Theorem Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

Every word can be factorized into
$$w_1, w_2, w_3, \dots$$
 with $r(w_2) = r(w_2) = \dots$

$$f(w) = \underset{p}{\rightarrow} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1 f is compositional:
$$f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$$

Proof: ⊇ straightforward, ⊆ follows from Ramsey's Theorem

Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{p} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1 f is compositional:
$$f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$$

Every word can be factorized into $w_1, w_2, w_3, ...$ with $f(w_2) = f(w_2) = ...$

$$f(w) = \mathop{\rightarrow}\limits_{\rho} \left[\begin{array}{c} \iota_{p,q} = -\infty & \text{if there is no path from } p \text{ to } q \\ \iota_{p,q} = 1 & \text{if there is a path from } p \text{ to } q \\ & \text{that visits a final state} \\ \iota_{p,q} = 0 & \text{otherwise} \end{array} \right]$$

1 f is **compositional**:
$$f(w_1 \cdot w_2) = f(w_1) \times f(w_2)$$

Complementation:
$$\mathscr{L}(A)^{\mathsf{C}} = \bigcup_{\mathscr{L}(A) \not\supseteq f^{-1}(M) \cdot f^{-1}(N)^{\omega}} f^{-1}(M) \cdot f^{-1}(N)^{\omega}$$

A converse translation: from automata to logic

One can translate every Büchi automaton \mathcal{A} into a formula $\psi_{\mathcal{A}} = \exists \bar{X}. \ \varphi(\bar{X})$, where φ is a first-order formula, such that

$$\mathcal{L}(\mathcal{A}) = \left\{ w \in \Sigma^{\omega} \mid w \vDash \psi_{\mathcal{A}} \right\}$$

 $oldsymbol{Q}^-$ Encode an accepting run of ${\mathcal A}$ into monadic variables $ar{X}$:

$$w \in \mathcal{L}(\mathcal{A})$$
 iff $\exists \rho \ accepting \ run \ of \ \mathcal{A} \ on \ w$

- iff $\exists (X_t)_{t \in \Delta}$ exactly one transition on each position
 - ∧ transitions respect symbols of w
 - ∧ consecutive transitions agree on states
 - ∧ first transition departs from initial state
 - ∧ some final state is visited infinitely often

A converse translation: from automata to logic

One can translate every Büchi automaton \mathcal{A} into a formula $\psi_{\mathcal{A}} = \exists \bar{X}. \varphi(\bar{X})$, where φ is a first-order formula, such that

$$\mathcal{L}(\mathcal{A}) = \left\{ w \in \Sigma^{\omega} \mid w \vDash \psi_{\mathcal{A}} \right\}$$

`
$$\hat{V}$$
' Encode an accepting run of $\mathcal A$ into monadic variables $\bar X$:

$$w \in \mathcal{L}(\mathcal{A})$$
 iff $\exists \rho$ accepting run of \mathcal{A} on w

iff
$$\exists (X_t)_{t \in \Delta}$$
 exactly one transition on each position

- ∧ transitions respect symbols of w∧ consecutive transitions agree on states
- ∧ first transition departs from initial state
- ∧ some final state is visited infinitely often

Corollary (collapse of quantifier hierarchy)

MSO[<] = Büchi automata =
$$\exists$$
 MSO[+1]

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow \cdots$$

One can logically define $\mathbb Z$ inside $\mathbb N$:

$$\varphi_{\leq_{\mathbb{Z}}}(x,y) = \left(\operatorname{Even}(x) \wedge \operatorname{Even}(y) \wedge x \leq_{\mathbb{N}} y \right)$$

$$\vee \left(\operatorname{Odd}(x) \wedge \operatorname{Odd}(y) \wedge y \leq_{\mathbb{N}} x \right)$$

$$\vee \left(\operatorname{Odd}(x) \wedge \operatorname{Even}(y) \right)$$

Application example 1 (interpretation of the integers)

One can logically define
$$\mathbb{Z}$$
 inside \mathbb{N} :

$$\varphi_{\leq_{\mathbb{Z}}}(x,y) = \left(\operatorname{Even}(x) \wedge \operatorname{Even}(y) \wedge x \leq_{\mathbb{N}} y\right)$$

$$\vee \left(\operatorname{Odd}(x) \wedge \operatorname{Odd}(y) \wedge y \leq_{\mathbb{N}} x\right)$$

 \vee (Odd(x) \wedge Even(y))

Application example 1 (interpretation of the integers)

One can logically define \mathbb{Z} inside \mathbb{N} :

$$\varphi_{\leq_{\mathbb{Z}}}(x,y) = \left(\operatorname{Even}(x) \wedge \operatorname{Even}(y) \wedge x \leq_{\mathbb{N}} y \right)$$

$$\vee \left(\operatorname{Odd}(x) \wedge \operatorname{Odd}(y) \wedge y \leq_{\mathbb{N}} x \right)$$

$$\vee \left(\operatorname{Odd}(x) \wedge \operatorname{Even}(y) \right)$$

Corollary

The $MSO[\leq]$ theory of \mathbb{Z} is decidable.

Application example 2 (interpretation of a counter system)

Any property of the above system expressed by an MSO formula

$$\psi = \ldots \quad \forall X \quad \ldots \left(y \stackrel{\mathsf{consume}}{\longleftarrow} z \right) \ldots \left(\qquad y \downarrow_{\varepsilon} z \qquad \right) \ldots$$

can be translated into an **equi-satisfiable** formula over $(\mathbb{N}, +1)$ $\hat{\psi} = \ldots \forall X_1, X_2 \ldots (y_2 + 1 = z_2) \ldots (y_1 = z_2 \lor y_2 = z_1) \ldots$

and then checked for validity.

Recall inductive invariant: $\mathscr{L}(\mathcal{A}_{\varphi}) = \{ [\bar{X}] \in \Sigma_{m}^{\omega} \mid \mathbb{N} \models \varphi(\bar{X}) \}$

$$w = w_1 \cdot w_2 \cdot w_3 \cdot \dots \Rightarrow w \in \mathcal{L}(\mathcal{A})$$

$$\parallel_f \quad \parallel_f \quad \parallel_f \quad \parallel_f \quad \qquad \updownarrow$$

$$W = W_1 \cdot W_2 \cdot W_3 \cdot \dots \Rightarrow W \in \mathcal{Z}(\mathcal{A})$$

$$\parallel_f \parallel_f \parallel_f \parallel_f \qquad \uparrow$$

$$w' = w'_1 \cdot w'_2 \cdot w'_3 \cdot \dots \qquad \qquad w' \in \mathcal{L}(\mathcal{A})$$

Recall inductive invariant: $\mathscr{L}(\mathcal{A}_{\varphi}) = \{ [\bar{X}] \in \Sigma_{m}^{\omega} \mid \mathbb{N} \models \varphi(\bar{X}) \}$ and recall f-equivalence on factors of infinite words:

We have

$$(\mathbb{N}, +1, \text{Squares}) \models \varphi$$

iff
$$w = 1$$
 100100001000001 ... $\in \mathcal{L}(\mathcal{A}_{\varphi})$

Recall inductive invariant: $\mathscr{L}(\mathcal{A}_{\varphi}) = \{ [\bar{X}] \in \Sigma_{m}^{\omega} \mid \mathbb{N} \models \varphi(\bar{X}) \}$ and recall f-equivalence on factors of infinite words:

We have

$$(\mathbb{N}, +1, \text{Squares}) \models \varphi$$

iff
$$\mathbf{w} = \underbrace{1}_{w_0} \underbrace{1}_{w_1} \underbrace{000}_{w_2} \underbrace{1}_{w_2} \underbrace{000000}_{w_3} \underbrace{1}_{\text{where } \mathbf{w_n} = (00)^n}$$

 $(\mathbb{N}, +1, \text{Squares}) \models \varphi$

Recall inductive invariant: $\mathscr{L}(\mathcal{A}_{\varphi}) = \{ [\bar{X}] \in \Sigma_{m}^{\omega} \mid \mathbb{N} \models \varphi(\bar{X}) \}$ and recall f-equivalence on factors of infinite words:

$$w = w_1 \cdot w_2 \cdot w_3 \cdot \dots \Rightarrow w \in \mathcal{L}(\mathcal{A})$$

$$\parallel_f \quad \parallel_f \quad \parallel_f \quad \downarrow$$

$$w' = w'_1 \cdot w'_2 \cdot w'_3 \cdot \dots \qquad w' \in \mathcal{L}(\mathcal{A})$$

We have

iff
$$\mathbf{w} = \underbrace{1}_{w_0} \underbrace{1001}_{w_1} \underbrace{0000}_{w_2} \underbrace{1000000}_{w_3} \underbrace{1 \dots \epsilon}_{w_n = (00)^n}$$

since
$$f(w_n) = f(w_{n+\ell})$$
 for some $\ell > 0$ and all $n > n_0$

Recall inductive invariant: $\mathscr{L}(\mathcal{A}_{\varphi}) = \{ [\bar{X}] \in \Sigma_{m}^{\omega} \mid \mathbb{N} \models \varphi(\bar{X}) \}$ and recall f-equivalence on factors of infinite words:

$$w = w_1 \cdot w_2 \cdot w_3 \cdot \dots \Rightarrow w \in \mathcal{L}(\mathcal{A})$$

$$\parallel_f \quad \parallel_f \quad \parallel_f \quad \downarrow$$

$$w' = w'_1 \cdot w'_2 \cdot w'_3 \cdot \dots \qquad w' \in \mathcal{L}(\mathcal{A})$$

We have

 $(\mathbb{N}, +1, \text{Squares}) \models \varphi$

iff
$$\mathbf{w} = \underbrace{1}_{w_0} \underbrace{1}_{w_1} \underbrace{000}_{w_1} \underbrace{1}_{w_2} \underbrace{000000}_{w_3} \underbrace{1}_{w_3} \dots \in \mathscr{L}(\mathcal{A}_{\varphi})$$

iff $w' = (1w_0...1w_{n_0}) \cdot (1w_{n_0+1}...1w_{n_0+\ell})^{\omega} \in \mathcal{L}(\mathcal{A}_{\varphi})$ since $f(w_n) = f(w_{n+\ell})$ for some $\ell > 0$ and all $n > n_0$

Contraction method (Elgot & Rabin '66)

Let P be a subset of \mathbb{N} that is (effectively) **profinitely periodic** i.e. $[P] = w_0 \ w_1 \ w_2 \dots$ and for every *semigroup morphism f* the series $f(w_0) \ f(w_1) \ f(w_2) \dots$ is (effectively) periodic.

Then one can decide whether $(\mathbb{N}, +1, P) \models \psi$.

Examples of effectively profinitely periodic subsets

- Squares = $\{n^2 \mid n \in \mathbb{N}\}$
- Powers = $\{2^n \mid n \in \mathbb{N}\}$
- Factorials = $\{n! \mid n \in \mathbb{N}\}$
- Fibonacci = {0, 1, 2, 3, 5, 8, 11, ...}
- basically all recursive series defined with + and ·

Contraction method (Elgot & Rabin '66)

Let P be a subset of $\mathbb N$ that is (effectively) **profinitely periodic**

i.e. $[P] = w_0 \ w_1 \ w_2 \dots$ and for every semigroup morphism f the series $f(w_0) \ f(w_1) \ f(w_2) \dots$ is (effectively) periodic.

Then one can decide whether $(\mathbb{N}, +1, P) \models \psi$.

Examples of effectively profinitely periodic subsets

- Squares = $\{n^2 \mid n \in \mathbb{N}\}$
- Powers = $\{2^n \mid n \in \mathbb{N}\}$
- Factorials = $\{n! \mid n \in \mathbb{N}\}$
- Fibonacci = {0, 1, 2, 3, 5, 8, 11, ...}
- basically all recursive series defined with + and ·

m = number of free variables

k = number of nested quantifiers

Definition

Let g_m^k map words w over $\Sigma_m = \{0, 1\}^m$ to logical types:

$$g_m^k(w) = \{ \varphi(X_1, ..., X_m) \text{ with } k \text{ nested quantifiers such that } w \models \varphi \}$$

Example:
$$g_2^0\left(\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\right) = \left\{X_1 \subseteq X_2, \ldots\right\}$$

m = number of free variables

k = number of nested quantifiers

Definition

Let g_m^k map words w over $\Sigma_m = \{0, 1\}^m$ to logical types:

$$g_m^k(w) = \{ \varphi(X_1, ..., X_m) \text{ with } k \text{ nested quantifiers such that } w \models \varphi \}$$

Example:
$$g_2^0\left(\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right)\right) = \left\{X_1 \subseteq X_2, \ldots\right\}$$

Up to logical equivalence (e.g.
$$\neg \land = \lor \neg$$
, $\neg \forall = \exists \neg$, $\exists \lor = \lor \exists$)
$$g_m^0(w) = \{ X_i \subseteq X_j \mid \forall n. \ w(n)[i] = 1 \rightarrow w(n)[j] = 1 \}$$

$$\cup \{ \neg X_i \subseteq X_j \mid \exists n. \ w(n)[i] = 1 \land w(n)[j] = 0 \}$$

$$g_{m}^{k+1}(w) = \left\{ \exists Y. \varphi(X_{1}, ..., X_{m}, Y) \mid \begin{array}{c} Y \subseteq \text{dom}(w) \\ \varphi \in g_{m+1}^{k}(w \otimes Y) \end{array} \right\}$$

$$\cup \left\{ \neg \exists Y. \varphi(X_{1}, ..., X_{m}, Y) \mid \begin{array}{c} Y \subseteq \text{dom}(w) \\ \varphi \notin g_{m+1}^{k}(w \otimes Y) \end{array} \right\}$$

Like f, the type function g_m^k is **compositional**, namely

$$g_m^k(w_1 \cdot w_2) = g_m^k(w_1) \odot g_m^k(w_2)$$

Like f, the type function g_m^k is **compositional**, namely

$$g_m^k(w_1 \cdot w_2) = g_m^k(w_1) \odot g_m^k(w_2)$$

Given a formula $\varphi \in g_m^k(w_1 \cdot w_2)$, i.e. such that $w_1 \cdot w_2 \models \varphi$, separate syntactically the quantifications over w_1 and over w_2 :

Like f, the type function g_m^k is **compositional**, namely

$$g_m^k(w_1\cdot w_2)\ =\ g_m^k(w_1)\ \odot\ g_m^k(w_2)$$

Given a formula $\varphi \in g_m^k(w_1 \cdot w_2)$, i.e. such that $w_1 \cdot w_2 \models \varphi$, separate syntactically the quantifications over w_1 and over w_2 :

Example

$$\exists x. \exists y. \ x < y$$
 \mapsto $(\exists x_1. \exists y_1. \ x_1 < y_1) \lor (\exists x_2. \exists y_2. \ x_2 < y_2)$ $\lor (\exists x_1. \exists y_2. \ \text{true}) \lor (\exists x_2. \exists y_1. \ \text{false})$ $\exists X. \exists Y. \ X \subseteq Y$ \mapsto $(\exists X_1. \exists Y_1. \ X_1 \subseteq Y_1) \land (\exists X_2. \exists Y_2. \ X_2 \subseteq Y_2)$

Transform
$$\varphi$$
 into $\bigvee_{i=1...n} (\varphi_{i,1} \wedge \varphi_{i,2})$ in such a way that $w_1 \cdot w_2 \models \varphi$ iff $w_1 \models \varphi_{i,1}$ and $w_2 \models \varphi_{i,2}$ for some $i = 1...n$

Accordingly, constuct $g_m^k(w_1 \cdot w_2)$ on the basis of $g_m^k(w_1)$ and $g_m^k(w_2)$.

In a similar way, one can "compute" **types of** ω **-products**:

 $g_m^k(w_1 \cdot w_2 \cdot w_3 \cdot ...) = g_m^k(w_1) \odot g_m^k(w_2) \odot g_m^k(w_3) \odot ...$

In a similar way, one can "compute" types of ω -products:

$$g_m^k(w_1 \cdot w_2 \cdot w_3 \cdot \ldots) = g_m^k(w_1) \odot g_m^k(w_2) \odot g_m^k(w_3) \odot \ldots$$

Corollary

One can decide whether a formula ψ of MSO[Σ , <] holds over \mathbb{N} .

- **①** Start by computing types of singleton words a, for all $a \in \Sigma$
- ② Saturate by ⊙: this gives all types of finite words!
- **1** Choose any two types au_1, au_2 and compute $au_1 \odot au_2^{@}$
- Check if $\psi \in \tau_1 \odot \tau_2^{\overline{\omega}}$

In a similar way, one can "compute" types of ω -products:

$$g_m^k(w_1 \cdot w_2 \cdot w_3 \cdot \ldots) = g_m^k(w_1) \odot g_m^k(w_2) \odot g_m^k(w_3) \odot \ldots$$

Corollary

One can decide whether a formula ψ of MSO[Σ , <] holds over \mathbb{N} .

- **1** Start by computing types of singleton words a, for all $a \in \Sigma$
- Saturate by ⊙: this gives all types of finite words!
- **③** Choose any two types au_1, au_2 and compute $au_1 \odot au_2^{ ext{@}}$
- **4** Check if $\psi \in \tau_1 \odot \tau_2^{\overline{\omega}}$

Fix a semigroup morphism $f: \Sigma^* \to (S, \odot)$ (e.g. logical types) and recall that every infinite word has a Ramseyan factorization, i.e.

$$W_1$$
 W_2 W_3 W_4 W_5 with idempotent factors: $f(w_0) = f(w_0) =$

with **idempotent** factors: $f(w_2) = f(w_3) = f(w_2) \odot f(w_3) = \dots$

Fix a semigroup morphism $f: \Sigma^* \to (S, \odot)$ (e.g. logical types) and recall that every in the word has a Ramseyan factorization, i.e.

$$w_1$$
 w_2 w_3 w_4 w_5 with **idempotent** factors: $f(w_2) = f(w_3) = f(w_2) \odot f(w_3) = \dots$

Fix a semigroup morphism $f: \Sigma^* \to (S, \odot)$ (e.g. logical types) and recall that every if which word has a Ramseyan factorization, i.e.

with **idempotent** factors: $f(w_2) = f(w_3) = f(w_2) \odot f(w_3) = ...$

the first and last factors are "**short**" w.r.t. w (i.e. they do not contain proper factors with similar f-images)

Fix a semigroup morphism $f: \Sigma^* \to (S, \odot)$ (e.g. logical types) and recall that every in the word has a Ramseyan factorization, i.e.

with **idempotent** factors:
$$f(w_2) = f(w_3) = f(w_2) \odot f(w_3) = ...$$

the first and last factors are "**short**" w.r.t. w (i.e. they do not contain proper factors with similar f-images)

We can recursively factorize factors until we get single characters

- only a few nested factorizations (linear in |S|, independent of |w|)
- each factor is divided into a few non-idempotent sub-factors

$$f(a) = \begin{bmatrix} -\infty & 0 & -\infty \\ -\infty & -\infty & -\infty \\ -\infty & 1 & -\infty \end{bmatrix}$$

$$f(a) = \begin{bmatrix} -\infty & 0 & -\infty \\ -\infty & -\infty & -\infty \\ -\infty & 1 & -\infty \end{bmatrix} \qquad f(b) = \begin{bmatrix} -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix}$$
$$f(ab) = \begin{bmatrix} -\infty & -\infty & 1 \\ -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$w = a \quad b \quad b \dots b \quad a \quad b \quad b \dots b \quad \dots \quad a \quad b \quad b \dots b$$

$$f(a) = \begin{bmatrix} -\infty & 0 & -\infty \\ -\infty & -\infty & -\infty \\ -\infty & 1 & -\infty \end{bmatrix} \qquad f(b) = \begin{bmatrix} -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix}$$

$$f(a) = \begin{bmatrix} -\infty - \infty - \infty \\ -\infty & 1 - \infty \end{bmatrix} \qquad f(b) = \begin{bmatrix} -\infty - \infty & 1 \\ -\infty - \infty & 1 \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty - \infty & 1 \\ -\infty - \infty - \infty \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty - \infty - \infty \end{bmatrix}$$

$$f(a) = \begin{bmatrix} -\infty & 0 & -\infty \\ -\infty & -\infty & -\infty \\ -\infty & 1 & -\infty \end{bmatrix} \qquad f(b) = \begin{bmatrix} -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$\mathbf{w} = \mathbf{a} \quad \mathbf{b} \quad \mathbf{b} \dots \mathbf{b} \quad \mathbf{a} \quad \mathbf{b} \quad \mathbf{b} \dots \mathbf{b} \quad \mathbf{b} \quad$$

$$f(a) = \begin{bmatrix} -\infty & 0 & -\infty \\ -\infty & -\infty & -\infty \\ -\infty & 1 & -\infty \end{bmatrix} \qquad f(b) = \begin{bmatrix} -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$f(a) = \begin{bmatrix} -\infty & 0 & -\infty \\ -\infty & -\infty & -\infty \\ -\infty & 1 & -\infty \end{bmatrix} \qquad f(b) = \begin{bmatrix} -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \\ -\infty & -\infty & 1 \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & -\infty & 1 \\ -\infty & -\infty & -\infty \\ -\infty & -\infty & 1 \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$w = \begin{bmatrix} a & b & b & \dots & b \\ -\infty & -\infty & -\infty & 1 \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & -\infty & 1 \end{bmatrix} \qquad f(aba) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

$$f(ab) = \begin{bmatrix} -\infty & 1 & -\infty \\ -\infty & 1 & -\infty \\ -\infty & -\infty & -\infty \end{bmatrix}$$

Consider the automaton recognizing $(ab^+)^+$ and the induced function f:

f(ab)

An application: infix matching

For a fixed morphism f (or automaton, or formula), one can receive a word w, construct its factorization forest, and then use it as an **index structure** to evaluate in **constant time** the f-image of any given infix of w.

Other applications:

- constant-delay enumeration of answers to a query
- number of nested Kleene * needed in a regular expression
- determinization of Büchi automata (→ parity automata)
- convert semigroups to formulas

