

Chapter 2: Intro to Relational Model

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Example of a Relation

		4		attributes (or columns)
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	•
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Attribute Types

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value *null* is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations

Relation Schema and Instance

 $\blacksquare A_1, A_2, \dots, A_n \text{ are attributes}$

R = $(A_1, A_2, ..., A_n)$ is a *relation schema* Example:

instructor = (*ID*, *name*, *dept_name*, *salary*)

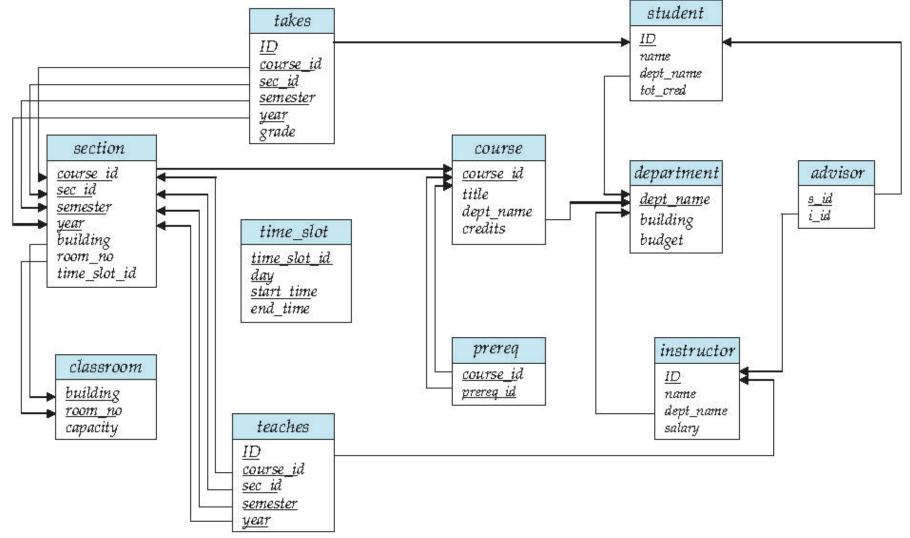
 Formally, given sets D₁, D₂, ..., D_n a relation r is a subset of D₁ x D₂ x ... x D_n
Thus, a relation is a set of *n*-tuples (a₁, a₂, ..., a_n) where each a_i ∈ D_i

- The current values (relation instance) of a relation are specified by a table
- An element *t* of *r* is a *tuple*, represented by a *row* in a table

Relations are Unordered

Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
Example: *instructor* relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000



Let $K \subseteq R$

- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {*ID*} and {ID,name} are both superkeys of *instructor*.
- Superkey K is a candidate key if K is minimal Example: {ID} is a candidate key for Instructor
- One of the candidate keys is selected to be the **primary key**.
 - which one?
- **Foreign key** constraint: Value in one relation must appear in another
 - **Referencing** relation
 - **Referenced** relation
 - Example dept_name in instructor is a foreign key from instructor referencing department

Schema Diagram for University Database

Relational Query Languages

- Procedural vs .non-procedural, or declarative
- "Pure" languages:
 - Relational algebra
 - Tuple relational calculus
 - Domain relational calculus
- The above 3 pure languages are equivalent in computing power
- We will concentrate in this chapter on relational algebra
 - Not Turing-machine equivalent
 - It consists of 6 basic operations

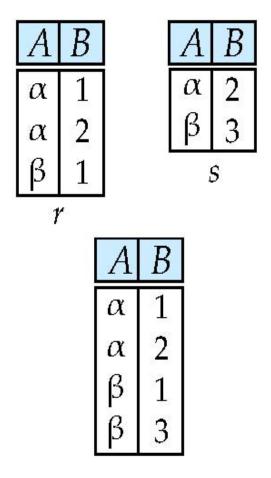
Select operation – selection of rows (tuples)

Relation r

ABCD
$$\alpha$$
 α 17 α β 57 β β 123 β β 2310

•
$$\sigma_{A=B^{n}D>5}(r)$$

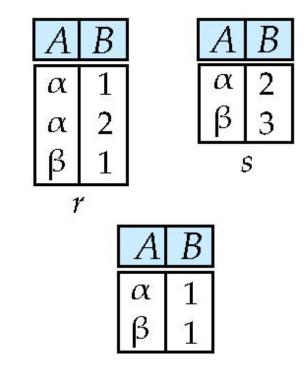
Project operation – selection of columns (attributes)


Relation r:

$$\square \prod_{\mathrm{A},\mathrm{C}} (r)$$

Union of two relations

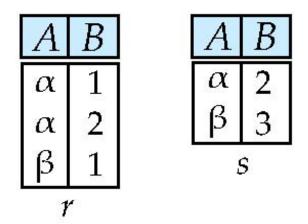
Relations *r, s:*



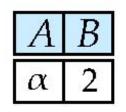
 \bullet r \cup s:

Set difference of two relations

Relations *r*, *s*:



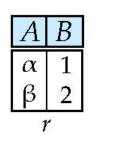
■ r − s:



Set intersection of two relations

Relation *r, s*:

r∩s


Note: $r \cap s = r - (r - s)$

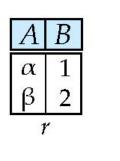
Database System Concepts - 6th Edition

Joining two relations – Cartesian product

Relations r, s:

С	D	Ε
α	10	а
β	10	а
β	20	b
γ	10	b

S


r x *s*:

A	В	С	D	E
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

Cartesian product – naming issue

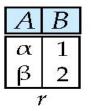
Relations r, s:

B	D	Е
α	10	a
β	10	а
β	20	b
γ	10	b

S

r x *s*:

A	r.B	s.B	D	E
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b


Renaming a table

Allows us to refer to a relation, (say E) by more than one name.

 $\rho_x(E)$

returns the expression E under the name X

Relations r

 $r \mathbf{x} \rho_s(\mathbf{r})$

Composition of operations

- Can build expressions using multiple operations
- Example: σ_{A=C} (*r x s*)

rxs

A
 B
 C
 D
 E

$$\alpha$$
 1
 α
 10
 a

 α
 1
 β
 10
 a

 α
 1
 β
 20
 b

 α
 1
 β
 20
 b

 α
 1
 γ
 10
 b

 β
 2
 α
 10
 a

 β
 2
 β
 10
 a

 β
 2
 β
 10
 a

 β
 2
 β
 20
 b

 β
 2
 β
 10
 a

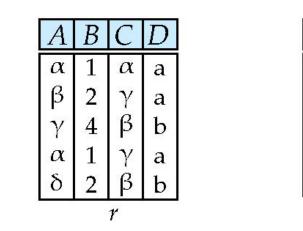
 β
 2
 β
 20
 b

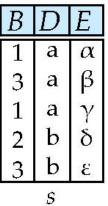
 β
 2
 β
 10
 a

 β
 2
 β
 20
 b

 β
 2
 γ
 10
 b

$$\sigma_{A=C}(r x s)$$


Joining two relations – Natural Join


- Let *r* and *s* be relations on schemas *R* and *S* respectively. Then, the "natural join" of relations *R* and *S* is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - *t* has the same value as t_r on *r*
 - *t* has the same value as t_S on *s*

Natural Join Example

Relations r, s:

■ r |<>| s

$$\prod_{A, r.B, C, r.D, E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s)))$$

Notes about relational languages

- Each query input is a table (or a set of tables)
- Each query output is a table.
- All data in the output table appears in one of the input tables
- Relational Algebra is not Turing complete
- Can we compute:
 - SUM
 - AVG
 - MAX
 - MIN

Summary of Relational Algebra Operators

Symbol (Name)	Example of Use
σ (Selection)	$^{\sigma}$ salary > = 85000 (<i>instructor</i>)
	Return rows of the input relation that satisfy the predicate.
П (Projection)	П ID, salary ^(instructor)
	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
x (Cartesian Product)	instructor x department
	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.
∪ (Union)	Π name (instructor) $\cup \Pi$ name (student)
	Output the union of tuples from the <i>two</i> input relations.
- (Set Difference)	П name (instructor) П name (student)
	Output the set difference of tuples from the two input relations.
⋈ (Natural Join)	instructor ⋈ department
	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.

End of Chapter 2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use