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Interval logics: are they all undecidable?

Most fragments of HS (and CDT) are undecidable on most of the
interesting classes of interval structures.

Still, some pockets of decidability remain.

Various decidability results are based on some semantic restrictions
reducing the interval-based semantics to point-based.

But there are some quite non-trivial decidable cases of interval logics
with genuinely interval-based semantics.

This lecture will give an overview of decidable interval logics.
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Decidability of interval logics by semantic restrictions

Some strong semantic restrictions can restore decidability:

Locality: an atomic proposition is true over an interval if and only if
it is true at its starting point.

Homogeneity: an atomic proposition is true over an interval if and
only if it is true at every subinterval / every point in that interval.

Convexity: if a formula is true on two overlapping intervals, then it
is true on their union.

Considering incomplete interval structures, e.g., split structures,
where every interval can be chopped in a unique way (thus
creating a tree-like subinterval structure).
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Decidability of interval logics: a few easy cases

The above-mentioned decidability results have been obtained by
imposing drastic syntactic restrictions. The resulting logics can be
hardly considered genuine interval logics.

There exist a few cases of (genuine) interval logics which can be easily
checked:

the fragment BB of HS is essentially point-based, because the left
endpoint of the current interval remains fixed;

similarly, the fragment EE of HS is essentially point-based,
because the left endpoint of the current interval remains fixed.
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Decidability of interval neighborhood
logics via reduction to FO2[<] - 1

Recall that Propositional Neighborhood Logic AA
π+

is expressively
complete for FO2[<] (the first-order language with 2 variables, any set
of uninterpreted binary relations, =, and a linear order <).

D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, Propositional interval
neighborhood logics: Expressiveness, decidability, and undecidable extensions,
Annals of Pure and Applied Logic, 161(3):289–304, 2009

Satisfiability of formulae in FO2[<] was first proved decidable
(NEXPTIME-complete) by Martin Otto on various classes of linear
orders.

M. Otto, Two Variable First-order Logic Over Ordered Domains, Journal of
Symbolic Logic, 66(2):685–702, 2001
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Decidability of interval neighborhood
logics via reduction to FO2[<] - 2

More precisely, Otto proved the decidability of the satisfiability problem
for FO2[<] on the classes of all linear orders, of well-orders, and of
finite linear orders, as well as on the linear order on the natural
numbers.

His proofs are based on an elaborated model-theoretic argument,
analyzing the types of elements and pairs in models of FO2[<].

Decidability of AA
π+

on each of these classes immediately follows.

Moreover, since AA
+

and AA
−

are strictly less expressive than AA
π+

,
their decidability on the same classes of structures immediately follows
(AA

−
can be naturally embedded into AA

π+
via the translation clauses

τ(〈A〉ϕ) = 3r (¬π ∧ τ(ϕ)) and τ(〈A〉ϕ) = 3l(¬π ∧ τ(ϕ))).

Hereafter, we denote interval logic(s) of temporal neighborhood by
PNL.
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Tableau-based decision procedures for PNL - 1

This is not the end of the story as (i) it is far from being trivial to extract
a decision procedure from Otto’s proof, and (ii) some meaningful cases
are missing (dense linear orders, weakly discrete linear orders)

Tableau-based decision procedures have been developed for various
propositional interval logics of temporal neighborhood, including:

the future fragment of PNL (Right PNL, RPNL for short)
interpreted over 〈N, <〉 (or over a prefix of it)

D. Bresolin, A. Montanari, and G. Sciavicco, An Optimal Decision Procedure for
Right Propositional Neighborhood Logic, Journal of Automated Reasoning,
38(1-3):173–199, 2007
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Tableau-based decision procedures for PNL - 2

Two variants of RPNL:
I RPNL interpreted over trees, where every path is either 〈N, <〉 (or a

prefix of it)
I the logic BTNL (= RPNL + A / E), interpreted over trees, that

combines neighborhood modalities of RPNL with path quantifiers of
branching time temporal logics

D. Bresolin, A. Montanari, and P. Sala, An optimal tableau for Right Propositional
Neighborhood Logic over trees, TIME 2008

RPNL interpreted over all linear orders

D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco G., Optimal tableaux for
Right Propositional Neighborhood Logic over Linear Orders, JELIA 2008
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Tableau-based decision procedures for PNL - 3

full PNL interpreted over dense linear orders, (weakly) discrete
linear orders, and all linear orders, as well as over Z (or over a
subset of it) and over R

D. Bresolin, A. Montanari, and P. Sala, An Optimal Tableau-based Decision
Algorithm for Propositional Neighborhood Logic, STACS 2007

D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco, Optimal Tableau Systems for
Propositional Neighborhood Logic over All, Dense, and Discrete Linear Orders,
TABLEAUX 2011

A. Montanari and P. Sala, An Optimal Tableau System for the Logic of Temporal
Neighborhood over the Reals, TIME 2012
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A decision procedure for RPNL over 〈N, <〉

The decision procedure for RPNL partly resembles that for (future) LTL

The decision procedure for (future) LTL takes advantage of the
fix-point definition of temporal operators (expansion rules), which splits
every temporal formula into a (possibly empty) part related to the
current state and a part related to the next state, and completely
forgets the past

Expansion rules

Gp = p ∧ XGp; Fp = p ∨ XFp; pUq = q ∨ (p ∧ X (pUq))

The decision procedure for RPNL must keep track of universal
requests as well as pending existential requests coming from the past
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The idea: a step-by-step model building process

d0

d1A[d0,d1]

d2A[d1,d2]A[d0,d2]

d3A[d2,d3]A[d1,d3]A[d0,d3]

. . .· · ·· · ·· · ·

djA[dj−1,dj ]
. . .. . .A[d1,dj ]

· · ·

A[d0,dj ]
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Graph components

The nodes of the graph
For any interval [di ,dj ], A[di ,dj ] is the set of all and only the formulas
that hold over it (the formula to be tested must belong to A[d0,d1])

The edges of the graph
For any pair of adjacent intervals [di ,dj ] and [dj ,dk ], there exists an
edge that links A[di ,dj ] to A[dj ,dk ].

Graph construction
The construction starts from the node A[d0,d1] corresponding to the
initial interval [d0,d1].

At the j-th step, it adds all nodes A[di ,dj ], with i < j (and the relevant
edges).
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Consistency constraints

Constraint 1
If [A]ψ belongs to A[di ,dj ], then ψ must belong to A[dj ,dk ].

Constraint 2
Since every right neighbor of [di ,dk ] is a right neighbor of [dj ,dk ],
A[di ,dk ] and A[dj ,dk ] must agree on their (universal and existential)
temporal formulas.
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Critical aspects

How do we guarantee that existential temporal requests are
eventually satisfied?
If, after the execution of the i-th step, there still exists a pending
existential temporal request, that is, a 〈A〉ψ formula belonging to a
node A[dh,dj ] such that there exists no node A[dj ,dk ] including ψ, we (try
to) satisfy it by adding a new node A[dj ,di+1] (in fact, a new bunch of
nodes A[d0,di+1], . . . ,A[di ,di+1]) and the relevant edges.

How do we guarantee termination?
New nodes may introduce new existential temporal requests.

Such a model building process can be turned into an effective
procedure.
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The main technical ingredient

Problem
Interval structures satisfying ϕ may be arbitrarily large or even infinite.

A small (pseudo)model theorem for RPNL over 〈N, <〉

Result 1. We give a bound on the size of finite interval structures that
must be checked for satisfiability, when searching for finite ϕ-models

Result 2. We show that we can restrict ourselves to infinite interval
structures with a finite bounded representation, when searching for
infinite ϕ-models.
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The key step: removing points from a model

d de

〈A〉ψ1 ψ1

f points to the right of de

with the same set of requests of de
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The distinctive features

The removal of a point de causes the removal of all intervals either
beginning or ending at it.

Since RPNL features only future time modalities, the removal of
intervals beginning at de is not critical.

The removal of intervals ending at de may introduce “defects”.

By properly choosing the point de to remove, we can guarantee
that there exist sufficiently many points in the future of d which
allows us to fix such defects.
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The tableau system for RPNL over 〈N, <〉

Tableau construction is based on two expansion rules:
step rule
fill-in rule

and a blocking condition, that guarantees termination.

It does not need to differentiate the search for a finite model from that
for an infinite one!

NEXPTIME-completeness
The procedure has a nondeterministic time complexity which is
exponential in the size of ϕ. Moreover, a NEXPTIME lower bound can
be obtained by a reduction from the NEXPTIME-complete exponential
tiling problem.
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From RPNL over 〈N, <〉 to full PNL over 〈Z, <〉
In the case of full PNL, the removal process is still possible, but it turns
out to be much more involved.

Complications
The removal of a point d from a PNL model may affect the
satisfiability of formulae over intervals in the past as well as in the
future of d .
To fix the defects possibly caused by the removal of d , one must
guarantee that there exist sufficiently many points with the same
characteristics as d both in the future and in the past of d .
Moreover, one must guarantee that changing the valuation of
intervals that either end or start at these points does not generate
new defects.

Theorem
The decision problem for PNL over 〈Z, <〉 is NEXPTIME-complete.
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From RPNL over 〈N, <〉 to RPNL over all linear orders

There exist RPNL formulae that cannot be satisfied over 〈N, <〉, but
turn out to be satisfiable over other linearly-ordered domains.

The formula AccPoints

[G]ψ = ψ ∧ [A]ψ ∧ [A][A]ψ
seqp = p → 〈A〉p

AccPoints = 〈A〉p ∧ [G]seqp ∧ 〈A〉[G]¬p

The formula AccPoints is unsatisfiable over 〈N, <〉, but it is satisfiable
over the class of all linear orders.
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Satisfiablity of AccPoints

AccPoints = 〈A〉p ∧ [G]seqp ∧ 〈A〉[G]¬p

Every model of AccPoints contains at least one accumulation point dω
placed after an infinite sequence of points:

AccPointsd0 d1 dω¬p, [A]¬p, [A][A]¬p

p, 〈A〉p,
[A]seqp,

[A][A]seqp

p,
〈A〉p

p,
〈A〉p

¬p
¬p

¬p...

Theorem
The decision problem for RPNL over all linear orders is
NEXPTIME-complete.
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Propositional Logics of Subinterval Structures

Three different subinterval relations are possible.

The reflexive subinterval relation v:
[c,d ] v [a,b] iff a ≤ c and d ≤ b;
The irreflexive subinterval relation <:
[c,d ] < [a,b] iff a ≤ c, d ≤ b and
[a,b] 6= [c,d ];
The strict subinterval relation <· :
[c,d ]<· [a,b] iff a < c and d < b.
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The logics of dense subinterval structures

We focus our attention on dense subinterval structures I(D)−, devoid
of point intervals, for all three versions of the subinterval relation.

� The reflexive case: this is the logic S4 (van Benthem’91).

� The strict (irreflexive) case.

� The proper (irreflexive) case.
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General features of tableau systems for dense
subinterval structures

� All (standard) models are infinite.

� Every model can be assumed to be built on the rational interval [0,1].

� The tableaux require special looping control mechanism to
guarantee termination.

� Open terminating tableaux do not produce models, but only finite
pseudo-models, which then are expanded to infinite standard models.

� Thus, there are three stages in proving satisfiability of a formula in a
dense subinterval structure:
open saturated tableau⇒ pseudo-model⇒ standard model.

� Both transitions are provably successful and constructive, thus
reducing the task to the construction of an open saturated tableau for
the formula.
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The logic D<· of the strict subinterval relation

Syntax
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈D〉ϕ

A model for D<· is a pair 〈〈I(D)−,D〉,V 〉 where
〈I(D)−,D〉 is a dense subinterval structure
V is a valuation function that assigns to every propositional
variable p a set of intervals

Semantics
〈D〉ϕ is true on [a,b] iff there exists [c,d ] <· [a,b] where ϕ holds.
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D<· -structures

A D<· -structure is a special kind of rooted graph

reflexive and irreflexive vertices

the root is an irreflexive vertex

every irreflexive vertex is followed
by a unique reflexive one

a reflexive vertex can have many
irreflexive successors

vertices are labelled with sets of formulas
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An example of a D<· -structure

A reflexive vertex may have no successors (different from itself)
There can be loops involving irreflexive vertices
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From interval models to D<· -structures

ϕ, 〈D〉ψ1, 〈D〉ψ2, 〈D〉ψ3

ψ1

ψ2
ψ3

ϕ

ψ1 ψ2 ψ3

Theorem
ϕ is satisfiable if and only if there exists a D<· -structure for it.
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Building the tableau for ϕ

. . .

Start from the initial tableau {ϕ}

Apply the propositional rules:

(NOT)
¬¬ψ,F
ψ,F

(OR)
ψ1 ∨ ψ2,F
ψ1,F | ψ2,F

(AND)
ψ1 ∧ ψ2,F
ψ1, ψ2,F
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Building the tableau for ϕ

. . .

Apply once the (2-DENS) rule:

[D]ψ1, . . . , [D]ψm,
〈D〉ϕ1, . . . , 〈D〉ϕn,F

ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm,
〈D〉ϕ1, . . . , 〈D〉ϕn

Apply the propositional rules

Apply the reflexivity rule:

(REFL)
[D]ψ,F
ψ, [D]ψ,F
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Building the tableau for ϕ

. . .ϕ1 ϕn

Apply once the (STEP) rule:

[D]ψ1, . . . , [D]ψm,
〈D〉ϕ1, . . . , 〈D〉ϕn,F

ϕ1, ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm |
. . .

| ϕi , ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm |
. . .

| ϕn, ψ1, . . . , ψm, [D]ψ1, . . . , [D]ψm

Proceed recursively in the
expansion
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Looping condition

n′

n

When the application of the 2-DENS
rule to a node n would generate a
new reflexive node such that there
exists another reflexive node n′ in the
tableau with the same set of temporal
formulas, add an edge from n to n′

instead of generating such a new
node.
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Open and closed tableau

A node n in a tableau is closed if one of the following conditions holds:

1 there exists a formula ψ such that ψ,¬ψ ∈ n;

2 in the tableau construction, the NOT, OR, AND, 2-DENS, or REFL
rules has been applied to n and all the immediate successors of n
are closed;

3 in the tableau construction, the STEP rule has been applied to n
and at least one of the immediate successors of n is closed.

A tableau is closed iff the root is closed, otherwise it is open.

Theorem (Soundness and completeness)
A formula ϕ is satisfiable if and only if its tableau is open
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Computational complexity

Every node has a number of successors that is bounded by |ϕ|
The length of every path without repetition is linear in |ϕ|

⇒ The tableau can be explored using a polynomial amount of space.

The logic is PSPACE-hard: the validity problem for prenex
quantified boolean formulas can be reduced to the satisfiability
problem for D<·

⇒ The proposed method is of optimal complexity (PSPACE).
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The logic D< of the proper subinterval relation

The case of D< is much more complex than that of D<· .

� The main complication is the presence of three distinct types of
proper subintervals of the current interval: beginning, ending, and
middle.

� Formulas of D< can impose conditions on the type of subintervals
needed to satisfy subformulas.

For instance, the formula

〈D〉(p ∧ [D]q) ∧ 〈D〉(p ∧ [D]¬q) ∧ [D]¬(〈D〉(p ∧ [D]q) ∧ 〈D〉(p ∧ [D]¬q))

forces p to be true at some beginning and at some ending subinterval.

� This brings additional complications on the construction of the
tableau and makes the pseudo-models for D< quite complicate.
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The general case (and beyond)

The logic of subinterval structures on discrete linear orders (as well as
on finite linear orders) has been recently shown to be undecidable.

J. Marcinkowski and J. Michaliszyn, The Ultimate Undecidability Result for the
Halpern-Shoham Logic, LICS 2011

The general case is still open.
It can combine the dense and discrete case in a recurrently
interleaving way.

As an example, consider the formula

〈D〉〈D〉> ∧ [D](〈D〉> → 〈D〉〈D〉> ∧ 〈D〉[D]⊥)

It has neither discrete nor dense models, but it is satisfiable in Cantor’s
space.
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Decidable interval logics: the logic ABB - 1

The logic ABB of Allen’s relations “meets”, “begins”, and “begun by” is
quite expressive and decidable (EXPSPACE-complete).

A. Montanari, G. Puppis, P. Sala, and G. Sciavicco, Decidability of the interval
temporal logic ABBbar over the natural numbers, STACS 2010

It allows one:
to encode conditions of accomplishment (think of formula ϕ as the
assertion: “Mr. Jones flew from Venice to Nancy”):

〈A〉
(
ϕ ∧ [B](¬ϕ ∧ [A]¬ϕ) ∧ [B]¬ϕ

)
;
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Decidable interval logics: the logic ABB - 2

to encode formulas of point-based temporal logics of the form
ψ U ϕ, using the standard until operator (where atomic intervals
are two-point intervals) as follows:

〈A〉
(
[B]⊥ ∧ ϕ

)
∨ 〈A〉

(
〈A〉([B]⊥ ∧ ϕ) ∧ [B](〈A〉([B]⊥ ∧ ψ))

)
;

to specify metric conditions like: “ϕ holds over a right neighbor
interval of length greater than k (resp., less than k , equal to k )”:

〈A〉
(
ϕ ∧ 〈B〉k>

)
(resp., 〈A〉

(
ϕ ∧ [B]k−1⊥

)
,

〈A〉
(
ϕ ∧ [B]k⊥ ∧ 〈B〉k−1>

)
).
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The finite case: a contraction method

F1 F2 F3

F2 F3 F1 F4 F3 F2

y0

y1

ff f

G

F1 F2 F3

G ′
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The infinite case: a periodic compass structure

...

ỹ0

ỹ0 + ỹ

ỹ0 + 2ỹ

g̃ g̃ g̃ g̃ g̃ g̃
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The maximal decidable fragment ABBA

〈B〉ψ
ψ

ψ

〈B〉ψ

〈A〉ψ
ψ

ABBA is NONPRIMITIVE RECURSIVE-hard over finite linear orders;
undecidable elsewhere

A. Montanari, G. Puppis, and P. Sala, Maximal decidable
fragments of Halpern and Shoham’s modal logic of intervals,
ICALP 2010

〈A〉ψ
ψ
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The maximal decidable fragment ABBL

〈B〉ψ
ψ

ψ

〈B〉ψ

〈A〉ψ
ψ

We replace 〈A〉 by 〈L〉: ABBL is EXSPACE-complete over the classes of all,
dense, and (weakly) discrete linear orders

D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco, What’s
decidable about Halpern and Shoham’s interval logic? The
maximal fragment ABBL, LICS 2011

ψ 〈L〉ψ
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