
Model checking for LTL (= satisfiability
over a finite-state program)

Angelo Montanari

Department of Mathematics and Computer Science,
University of Udine, Italy

angelo.montanari@uniud.it

Gargnano, August 20-25, 2012

angelo.montanari@uniud.it


P-validity and P-satisfiability problems (of ϕ)

P-validity problem (of ϕ)
Main question: given a finite-state program P and a formula ϕ,
is ϕ P-valid, that is, do all P-computations satisfy ϕ?

P-satisfiability problem (of ϕ)
Main question: given a finite-state program P and a formula ϕ,
is there a P-computation which satisfies ϕ?

To determine whether ϕ is P-valid, it suffices to employ an
algorithm for deciding if there is a P-computation which
satisfied ¬ϕ.
The algorithm for solving the P-satisfiability of ϕ makes use of
the tableau for ϕ Tϕ



Basic definitions

For each atom A, let state(A) be the conjunction of all state
formulas in A (by Rsat , state(A) must be satisfiable).

Atom A is consistent with state s if s |= state(A), that is,
all state formulas in A are satisfiable by s.

Let θ : A0,A1, . . . be a path in Tϕ and let σ : s0, s1, . . . be a
computation of P. θ is trail of Tϕ over σ if Aj is consistent
with sj , for all j ≥ 0.

For each atom A ∈ Tϕ, δ(A) denotes the set of successors
of A in Tϕ.



The behavior graph

Given a finite-state program P and an LTL formula ϕ, we
construct the behavior graph of (P, ϕ), denoted B(P,ϕ), as the
product of the graph for P (GP) and the tableau for ϕ (Tϕ).

nodes (s,A), where s is a state of P and A is an atom
consistent with s;
there exists a τ -labeled edge from (s,A) to (s′,A′) only if
s′ = τ(s) (s′ is a τ -successor of s) and A′ ∈ δ(A) in the
pruned tableau Tϕ (A′ is a successor of A in Tϕ);
initial ϕ-nodes are pairs (s,A), where s is an initial state
for P, A is an initial ϕ-atom in Tϕ (that is, ϕ ∈ A), and A is
consistent with s.



Algorithm BEHAVIOR-GRAPH to construct B(P,ϕ)

Algorithm BEHAVIOR-GRAPH

Place in B(P,ϕ) all initial ϕ-nodes (s,A)
Repeat until no new nodes or new edges can be added the
following steps.
Let (s,A) be a node in B(P,ϕ), let τ ∈ T be a transition, and
let (s′,A′) be a pair such that: (i) s′ is a τ -successor of s,
A′ ∈ δ(A) in the pruned tableau Tϕ, and A′ is consistent
with s′.

Add (s′,A′) to B(P,ϕ), if it is not already there.
Draw a τ -edge from (s,A) to (s′,A′) if it not already there.



An example: the system LOOP

The system LOOP

Initially x = 0

Transitions: (i) the idling transition τI and (ii) a transition τ , with
transition relation ρτ : x ′ = (x + 1) mod 4

The set of weakly fair (just) transitions is J = {τ}

Let us consider the LTL formula ψ : ♦2(x 6= 3)

In the next transparencies, we respectively provide the
state-transition graph GLOOP , the pruned tableau Tψ, and the
behavior graph B(LOOP,ψ).



The state-transition graph of system LOOP (GLOOP)



The complete tableau



The pruned tableau (Tψ)



The behavior graph B(LOOP,ψ)



Paths in the behavior graph B(P,ϕ)

Proposition.
Let ϕ be an LTL formula.
The infinite sequence π : (s0,A0)(s1,A1) . . ., where (s0,A0) is
an initial ϕ-node, is a path in B(P,ϕ)

if and only

σπ : s0s1 . . . is a run of P (computation less fairness)
θπ : A0A1 . . . is a trail of Tϕ over σπ (for all j ≥ 0, Aj is
consistent with sj )

Example.
In B(LOOP,ψ), the path π : (s0,A5)(s1,A5)(s2,A5)(s3,A4))

ω

induces σπ : (s0s1s2s3)
ω (run of LOOP) and θπ : (A5A5A5A4)

ω

(trail of Tϕ over σπ)



P-satisfiability of ϕ by path

Proposition.
Let ϕ be an LTL formula.
There exists a P-computation which satisfies ϕ

if and only if
there is an infinite path π in B(P,ϕ), starting from an initial
ϕ-node, such that

σπ is a fair run (computation)
θπ is a fulfilling trail over σπ

Example.
The trail θπ : (A5A5A5A4)

ω is not fulfilling (both atoms A5 and A4
include ♦2(x 6= 3) and ¬2(x 6= 3)).



Adequate subgraphs

Given a behavior graph B(P,ϕ),
node (s′,A′) is a τ -successor of node (s,A) if B(P,ϕ) contains a
τ -edge connecting (s,A) to (s′,A′)

transition τ is enabled on node (s,A) if it is enabled on state s

Given a subgraph S ⊆ B(P,ϕ),
transition τ is taken in S if there exist two nodes (s,A) and
(s′,A′) in S such that (s′,A′) is a τ -successor of (s,A)

S is just (resp., compassionate) if every just (resp.,
compassionate) transition τ ∈ J (resp., τ ∈ C) is either taken in
S or is disabled on some nodes (resp., all nodes) in S

S is fair it is both just and compassionate

S is fulfilling if every promising formula is fulfilled by an atom A
such that (s,A) ∈ S for some state s

S is adequate if it is fair and fulfilling



Adequate strongly connected subgraphs and
satisfiability

Proposition.
A finite-state program P has a computation σ which satisfies ϕ
if and only if the behavior graph B(P,ϕ) has an adequate
strongly connected subgraph
Example (LOOP and ψ : ♦2(x 6= 3)).
The behavior graph B(LOOP,ψ) has no adequate subgraphs.



Example (cont’d)

Let us check the maximal strongly connected subgraphs
(MSCS):

{(s0,A5), (s1,A5), (s2,A5), (s3,A4)} is fair, but not fulfilling
(ψ belongs to both A4 and A5, and it promises 2(x 6= 3),
but 2(x 6= 3) 6∈ A4,A5)
{(s0,A7)}, {(s1,A7)}, and {(s2,A7)} are fulfilling, but not
fair (they are not just with respect to transition τ )
{(s3,A6)} is neither fair (it is not just with respect to τ ) nor
fulfilling (it is transient)

Hence, there are no adequate subgraphs in B(LOOP,ψ).
By the last proposition, it follows that LOOP has no
computation that satisfies ψ : ♦2(x 6= 3)



Another example

Example (LOOP and φ(= ¬ψ) : 2♦(x = 3)).
The pruned tableau is the following one:



Another example (cont’d)

The behavior graph B(LOOP,φ) is the following one:



Another example (cont’d)

The subgraph S = {(s0,A1), (s1,A1), (s2,A1), (s3,A0)} is an
adequate subgraph, as it is both fair (τ is taken in S) and
fulfilling (♦(x = 3) belongs to both A0 and A1, but x = 3
belongs to A0)

By the last proposition, it follows that LOOP has computation
that satisfies φ : 2♦(x = 3)

The periodic computation σ : (s0s1s2s3)
ω satisfies φ.

It induces the fulfilling trail θ : (A1A1A1A0)
ω in Tφ.



How to find adequate subgraphs?

Checking MSCS’ is not enough:
S′ ⊂ S

S′ just implies S just

S′ fulfilled implies S fulfilled

but

S′ compassionate do not imply S compassionate

Therefore, it is possible that S is not adequate, but S′ is
adequate



A counterexample

S′ compassionate do not imply S compassionate

Let τ2 belong to the set of compassionate transitions. τ2 is
enabled on s2 and disabled on s1



A counterexample (cont’d)

The strongly connected subgraph S′ = {(s1,A3)} is
compassionate (τ2 is disabled on all the states in this subgraph)

The strongly connected subgraph S = {(s1,A3)(s2,A4)}, that
includes S′, is not compassionate (τ2 is enabled on (s2,A4), but
it is not taken in S)



Algorithm ADEQUATE-SUB

Algorithm ADEQUATE-SUB

accepts as input a strongly connected subgraph S and
returns as output a strongly connected subgraph S′ ⊆ S

If S′ = ∅ - S contains no adequate subgraphs

Otherwise - S′ is an adequate strongly connected
subgraph in S

Notation:

EN(τ,S) - the set of all nodes (s,A) in S on which τ is
enabled



Algorithm ADEQUATE-SUB (cont’d)

Algorithm ADEQUATE-SUB checks for adequate subgraphs
recursive function adequate-sub(S: SCS) returns SCS
if S is not fulfilling then return ∅ – failure
if S is not just then return ∅ – failure
if S is compassionate then return S – success
– S is fulfilling and just but not compassionate. Let T ⊆ C
– be the set of all compassionate transitions that are not taken
– in S. Clearly, EN(T ,S) 6= ∅.
let U = S − EN(T ,S). Decompose U into MSCSs U1 . . .Uk .
let V = ∅, i = 1
while V = ∅ and i ≤ k do
let V = adequate − sub(Ui); i := i + 1
end-while
return V



An example: the system LOOP+

The system LOOP+

Initially x = 0

LTL formula ψ : ♦2(x 6= 3)

Transitions: (i) the idling transition τI ; (ii) J = {τ1, τ2}; (iii)
C = {τ3}

New MSCS: S = {(s0,A7), (s1,A7), (s2,A7)}

In the next transparencies, we respectively provide the
state-transition graph GLOOP+, the pruned tableau Tψ, and the
behavior graph B(LOOP+,ψ).



The state-transition graph of system LOOP+ (GLOOP+)



The pruned tableau (Tψ)



The behavior graph B(LOOP+,ψ)



Application of the function ADEQUATE-SUB

Function ADEQUATE-SUB applied to S finds that it is

fulfilling: the formula ψ : ♦2(x 6= 3), that promises
2(x 6= 3), belongs to A7, but 2(x 6= 3) belongs to A7 as
well
just: τ2 ∈ J is taken in S and τ1 ∈ J is taken in S
not compassionate: τ3 ∈ C is not taken in S, but it is
enabled on (s1,A7)

Construct U : {(s0,A7), (s2,A7)} by removing (s1,A7)



The subgraph U



The subgraph U (cont’d)

U is a strongly connected subgraph (no decomposition is
needed)

U is adequate:

fulfilling – A7 fulfills his promise 2(x 6= 3)
fair – τ1 and τ2 are enabled s2 and s0, respectively, and
both are taken in U

Hence, system LOOP+ has a computation σ : (s0s2)
ω that

satisfies ψ : ♦2(x 6= 3)



Algorithms SAT and P-SAT

To summarize ..

Algorithm SAT to check whether a temporal formula ϕ is
satisfiable

Algorithm P-SAT to check the satisfiability of a formula ϕ over a
program (to check whether a finite-state program P has a
computation which satisfies a temporal formula ϕ)



Algorithm P-SAT

To check whether a finite-state program P has a computation
that satisfies a temporal formula ϕ, perform the following steps:
Construct the state-transition graph GP .
Construct the pruned tableau Tϕ.
Construct the behavior graph B(P,ϕ).
Decompose B(P,ϕ) into MSCS S1, . . . ,St .
For each i = 1, . . . , t , apply algorithm ADEQUATE-SUB to Si .

If any of these applications returns a nonempty result, P has a
computation satisfying ϕ. This computation can be constructed by
forming a path π that leads from an initial node to the returned
adequate subgraph S, and then continues to visit each node S
infinitely many times. The desired computation is the computation σπ
induced by π. If all applications return the empty set as result, P has
no computation satisfying ϕ.



P-validity of a formula ϕ

To check P-validity of a formula ϕ, apply algorithm P-SAT to
check whether there are P-computation satisfying ¬ϕ

If there is a P-computation satisfying ¬ϕ, then ϕ is not
P-valid

If there are no P-computations satisfying ¬ϕ, then ϕ is
P-valid


