Model checking for LTL (= satisfiability
over a finite-state program)

Angelo Montanari

Department of Mathematics and Computer Science,
University of Udine, Italy
angelo.montanari@uniud.it

Gargnano, August 20-25, 2012

angelo.montanari@uniud.it

P-validity and P-satisfiability problems (of ¢)

P-validity problem (of)

Main question: given a finite-state program P and a formula ¢,
is ¢ P-valid, that is, do all P-computations satisfy ©?

P-satisfiability problem (of ¢)

Main question: given a finite-state program P and a formula ¢,
is there a P-computation which satisfies ¢?

To determine whether ¢ is P-valid, it suffices to employ an
algorithm for deciding if there is a P-computation which
satisfied —¢.

The algorithm for solving the P-satisfiability of ¢ makes use of
the tableau for ¢ T,

Basic definitions

@ For each atom A, let state(A) be the conjunction of all state
formulas in A (by Rsat, State(A) must be satisfiable).

@ Atom A is consistent with state s if s |= state(A), that is,
all state formulas in A are satisfiable by s.

@ Letf: Ay, A1,...beapathin T,andleto : sg,4,... be a
computation of P. ¢ is trail of T, over o if A; is consistent
with s;, for all j > 0.

@ For each atom A € T, §(A) denotes the set of successors
of Ain T,,.

The behavior graph

Given a finite-state program P and an LTL formula ¢, we
construct the behavior graph of (P, ¢), denoted Bp), as the
product of the graph for P (Gp) and the tableau for ¢ (7).

@ nodes (s, A), where s is a state of P and A is an atom
consistent with s;

@ there exists a T-labeled edge from (s, A) to (s, A) only if
s’ = 7(s) (' is a 7-successor of s) and A’ € §(A) in the
pruned tableau T, (A’ is a successor of Ain T,);

@ initial o-nodes are pairs (s, A), where s is an initial state
for P, Ais an initial p-atomin T, (thatis, ¢ € A), and Ais
consistent with s.

Algorithm BEHAVIOR-GRAPH to construct B(p

Algorithm BEHAVIOR-GRAPH

@ Place in B(p) all initial p-nodes (s, A)
@ Repeat until no new nodes or new edges can be added the
following steps.
Let (s, A) be a node in Bep,,), let T € T be a transition, and
let (', A') be a pair such that: (i) s’ is a 7-successor of s,
A’ € §(A) in the pruned tableau T, and A’ is consistent
with s’
e Add (s, A') to Bip .y, if itis not already there.
e Draw a 7-edge from (s, A) to (§’, A) if it not already there.

An example: the system LOOP

The system LOOP
Initially x = 0

Transitions: (i) the idling transition 7, and (ii) a transition 7, with
transition relation p, : X’ = (x + 1) mod 4

The set of weakly fair (just) transitions is 7 = {7}
Let us consider the LTL formula ¢ : $O(x # 3)
In the next transparencies, we respectively provide the

state-transition graph G, pop, the pruned tableau T, and the
behavior graph B :oop,y)-

The state-transition graph of system LOOP (G, oop)

The complete tableau

=g, U2 #£3), ~Ova, ~ OO #£3)

A Ze= 3 Ay A3

!

sz =3 OO0 #3), ~Ota ~O(z #3). ~ua)

¥3, ~0O(z #3), Ovs, ~OO(z #3)

(As: =3, OO0 #£3), Oz ~O(z £3). m)

v3, £ #3, O0O(z #3), Oz #3)

The pruned tableau (T,)

7113, _'G(I¢3)1 Ow:h ﬁC) D(I#a)

Y
QG; =3, OOz 29 Os, ~D<x¢3),@

Y

((4n2#5,006#9, 0%, OG#9), u D

The behavior graph B:oop.

(s0, A4s) i (s0, A7)

3 T
(51, 4s) m (sl,ﬁ
T T

(s2, A7)

Paths in the behavior graph B)

Proposition.

Let ¢ be an LTL formula.

The infinite sequence 7 : (Sg, Ao)(S1, A1) ..., where (Sg, Ag) is
an initial p-node, is a path in B(p

if and only

@ o, :5yS1...isarun of P (computation less fairness)
@ 0. :AoA;...isatrail of T, over o (forall j > 0, A; is
consistent with s;)

Example.

In Bicoop), the path 7 : (s, As)(S1, As)(S2, As)(S3, Ag))”
induces o : (S9815253)“ (run of LOOP) and 0. : (AsAsAsA4)”
(trail of T, over o)

P-satisfiability of ¢ by path

Proposition.
Let ¢ be an LTL formula.
There exists a P-computation which satisfies ¢

if and only if
there is an infinite path = in B(p), starting from an initial
p-node, such that
@ o, is a fair run (computation)
@ 0, is a fulfilling trail over o
Example.

The trail 0, : (AsAsAsA4)“ is not fulfilling (both atoms As and Ay
include $0O(x # 3) and —=0O(x # 3)).

Adequate subgraphs

Given a behavior graph Bp),

@ node (s',A’) is a T-successor of node (s, A) if Bp) contains a
7-edge connecting (s, A) to (s, A')

@ fransition 7 is enabled on node (s, A) if it is enabled on state s
Given a subgraph S C Bp),

@ fransition 7 is taken in S if there exist two nodes (s, A) and
(8',A) in Ssuch that (s, A’) is a T-successor of (s, A)

@ Sis just (resp., compassionate) if every just (resp.,
compassionate) transition 7 € J (resp., 7 € C) is either taken in
S or is disabled on some nodes (resp., all nodes) in S

@ Sis fair it is both just and compassionate

@ S is fulfilling if every promising formula is fulfilled by an atom A
such that (s, A) € S for some state s

@ Sis adequate if it is fair and fulfilling

Adequate strongly connected subgraphs and
satisfiability

Proposition.

A finite-state program P has a computation o which satisfies ¢
if and only if the behavior graph Bp) has an adequate
strongly connected subgraph

Example (LOOP and ¢ : $O(x # 3)).

The behavior graph B(s0op) has no adequate subgraphs.

Example (cont’d)

Let us check the maximal strongly connected subgraphs
(MSCS):

@ {(50,A5),(51,A5),(S2,A5), (S3,A4)} is fair, but not fulfilling
(v belongs to both A4 and As, and it promises O(x # 3),
but O(x # 3) € As, As)

@ {(s0,A7)}, {(s1,A7)}, and {(s2, A7)} are fulfilling, but not
fair (they are not just with respect to transition 7)

@ {(s3,As)} is neither fair (it is not just with respect to 7) nor
fulfilling (it is transient)

Hence, there are no adequate subgraphs in B:00p y)-
By the last proposition, it follows that LOOP has no
computation that satisfies ¢ : $O(x # 3)

Another example

Example (LOOP and ¢(= —¢) : O{(x = 3)).
The pruned tableau is the following one:

Another example (cont’d)

The behavior graph B(s0op,¢) is the following one:

Another example (cont’d)

The subgraph S = {(so, A1), (51, A1), (52, A1), (S3,A0)} is an
adequate subgraph, as it is both fair (is taken in S) and
fulfilling ($(x = 3) belongs to both Ay and A+, but x = 3
belongs to Ap)

By the last proposition, it follows that LOOP has computation
that satisfies ¢ : OQ(x = 3)

The periodic computation o : (S9S15253)* satisfies ¢.

It induces the fulfilling trail 6 : (A1A1A1Ag)* in Ty.

How to find adequate subgraphs?

Checking MSCS' is not enough:
ScsS

S’ just implies S just

S’ fulfilled implies S fulfilled

but

S’ compassionate do not imply S compassionate

Therefore, it is possible that S is not adequate, but S’ is
adequate

A counterexample

S’ compassionate do not imply S compassionate

Let 7o belong to the set of compassionate transitions. 7 is
enabled on s, and disabled on s

A counterexample (cont'd)

The strongly connected subgraph S’ = {(s1,As3)} is
compassionate (» is disabled on all the states in this subgraph)

The strongly connected subgraph S = {(s1, A3)(S2,A4)}, that
includes S, is not compassionate (7, is enabled on (s2, A4), but
it is not taken in S)

Algorithm ADEQUATE-SUB

Algorithm ADEQUATE-SUB

@ accepts as input a strongly connected subgraph S and
returns as output a strongly connected subgraph &' C S

If S’ = () - S contains no adequate subgraphs
Otherwise - S’ is an adequate strongly connected
subgraph in S

@ Notation:

EN(r, S) - the set of all nodes (s, A) in S on which 7 is
enabled

Algorithm ADEQUATE-SUB (cont'd)

Algorithm ADEQUATE-SUB checks for adequate subgraphs
recursive function adequate-sub(S: SCS) returns SCS

if S is not fulfilling then return § — failure

if Sis not just then return () — failure

if S is compassionate then return S — success

— Sis fulfilling and just but not compassionate. Let T C C

— be the set of all compassionate transitions that are not taken
—in S. Clearly, EN(T, S) # 0.

let U=S— EN(T,S). Decompose U into MSCSs U, ... U.
let V=0,i=1

while V =0 and i < k do

let V = adequate — sub(U;); i =i+ 1

end-while

return V

An example: the system LOOP+

The system LOOP+
Initially x = 0
LTL formula ¢ : $O(x # 3)

Transitions: (i) the idling transition 7; (i) J = {71, 72}; (iii)
C ={ms}

New MSCS: S = {(s0, A7), (s1, A7), (S2, A7)}

In the next transparencies, we respectively provide the

state-transition graph G, pop., the pruned tableau T, and the
behavior graph B:oop+,4)-

The state-transition graph of system LOOP+ (G oop-)

The pruned tableau (T,)

7113, _'G(I¢3)1 Ow:h ﬁC) D(I#a)

Y
QG; =3, OOz 29 Os, ~D<x¢3),@

Y

((4n2#5,006#9, 0%, OG#9), u D

The behavior graph Boop+)

Application of the function ADEQUATE-SUB

Function ADEQUATE-SUB applied to S finds that it is

o fulfilling: the formula ¢ : $O(x # 3), that promises
O(x # 3), belongs to A7, but O(x # 3) belongs to A7 as
well

@ just: » € Jistakenin Sand ry € J istakenin S
@ not compassionate: 73 € C is not taken in S, but it is
enabled on (s1, A7)

Construct U : {(sp, A7), (S2, A7)} by removing (s1, A7)

The subgraph U

20-6

The subgraph U (cont'd)

U is a strongly connected subgraph (no decomposition is
needed)

U is adequate:
o fulfilling — Ay fulfills his promise O(x # 3)

@ fair — 7y and » are enabled s, and sy, respectively, and
both are taken in U

Hence, system LOOP+ has a computation o : (spS2)“ that
satisfies ¢ : $O(x # 3)

Algorithms SAT and P-SAT

To summarize ..

Algorithm SAT to check whether a temporal formula ¢ is
satisfiable

Algorithm P-SAT to check the satisfiability of a formula ¢ over a
program (to check whether a finite-state program P has a
computation which satisfies a temporal formula)

Algorithm P-SAT

To check whether a finite-state program P has a computation
that satisfies a temporal formula ¢, perform the following steps:
Construct the state-transition graph Gp.

Construct the pruned tableau T,.

Construct the behavior graph B(p).

Decompose Bp . into MSCS Sy, ..., St
Foreachi=1,...,t, apply algorithm ADEQUATE-SUB to S,.

If any of these applications returns a nonempty result, P has a
computation satisfying . This computation can be constructed by
forming a path = that leads from an initial node to the returned
adequate subgraph S, and then continues to visit each node S
infinitely many times. The desired computation is the computation o,
induced by =. If all applications return the empty set as result, P has
no computation satisfying ¢.

P-validity of a formula ¢

To check P-validity of a formula ¢, apply algorithm P-SAT to
check whether there are P-computation satisfying —¢

@ If there is a P-computation satisfying —, then ¢ is not
P-valid

@ If there are no P-computations satisfying -, then ¢ is
P-valid

