Model checking for LTL (= satisfiability over a finite-state program)

Angelo Montanari

Department of Mathematics and Computer Science, University of Udine, Italy angelo.montanari@uniud.it

Gargnano, August 20-25, 2012

P-validity and *P*-satisfiability problems (of φ)

P-validity problem (of φ)

Main question: given a finite-state program *P* and a formula φ , is φ *P*-valid, that is, do all *P*-computations satisfy φ ?

P-satisfiability problem (of φ)

Main question: given a finite-state program *P* and a formula φ , is there a *P*-computation which satisfies φ ?

To determine whether φ is *P*-valid, it suffices to employ an algorithm for deciding if there is a *P*-computation which satisfied $\neg \varphi$.

The algorithm for solving the P-satisfiability of φ makes use of the tableau for $\varphi~T_{\varphi}$

Basic definitions

- For each atom A, let state(A) be the conjunction of all state formulas in A (by R_{sat}, state(A) must be satisfiable).
- Atom A is consistent with state s if s ⊨ state(A), that is, all state formulas in A are satisfiable by s.
- Let θ : A₀, A₁,... be a path in T_φ and let σ : s₀, s₁,... be a computation of P. θ is trail of T_φ over σ if A_j is consistent with s_j, for all j ≥ 0.
- For each atom A ∈ T_φ, δ(A) denotes the set of successors of A in T_φ.

Given a finite-state program *P* and an LTL formula φ , we construct the **behavior graph** of (P, φ) , denoted $\mathcal{B}_{(\mathcal{P}, \varphi)}$, as the product of the graph for *P* (*G*_{*P*}) and the tableau for φ (*T*_{φ}).

- nodes (s, A), where s is a state of P and A is an atom consistent with s;
- there exists a *τ*-labeled edge from (*s*, *A*) to (*s'*, *A'*) only if *s'* = *τ*(*s*) (*s'* is a *τ*-successor of *s*) and *A'* ∈ δ(*A*) in the pruned tableau *T_φ* (*A'* is a successor of *A* in *T_φ*);
- initial φ-nodes are pairs (s, A), where s is an initial state for P, A is an initial φ-atom in T_φ (that is, φ ∈ A), and A is consistent with s.

Algorithm BEHAVIOR-GRAPH to construct $\mathcal{B}_{(\mathcal{P}, \varphi)}$

Algorithm **BEHAVIOR-GRAPH**

- Place in $\mathcal{B}_{(\mathcal{P},\varphi)}$ all initial φ -nodes (s, A)
- Repeat until no new nodes or new edges can be added the following steps.

Let (s, A) be a node in $\mathcal{B}_{(\mathcal{P}, \varphi)}$, let $\tau \in \mathcal{T}$ be a transition, and let (s', A') be a pair such that: (i) s' is a τ -successor of s, $A' \in \delta(A)$ in the pruned tableau T_{φ} , and A' is consistent with s'.

- Add (s', A') to $\mathcal{B}_{(\mathcal{P}, \varphi)}$, if it is not already there.
- Draw a τ -edge from (s, A) to (s', A') if it not already there.

An example: the system LOOP

The system LOOP

Initially x = 0

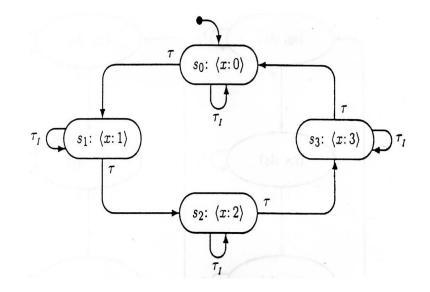
Transitions: (i) the idling transition τ_l and (ii) a transition τ , with transition relation $\rho_{\tau} : x' = (x + 1) \mod 4$

The set of weakly fair (just) transitions is $\mathcal{J} = \{\tau\}$

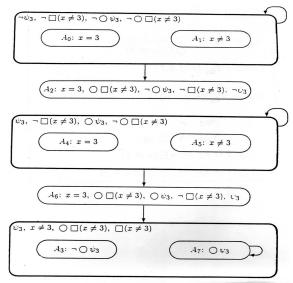
Let us consider the LTL formula $\psi : \Diamond \Box (x \neq 3)$

In the next transparencies, we respectively provide the state-transition graph G_{LOOP} , the pruned tableau T_{ψ} , and the behavior graph $\mathcal{B}_{(\mathcal{LOOP},\psi)}$.

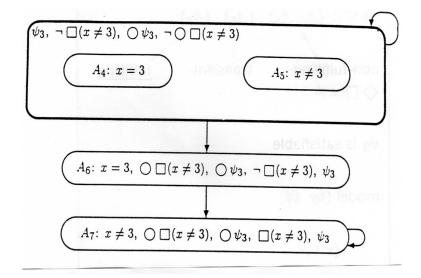
The state-transition graph of system LOOP (G_{LOOP})



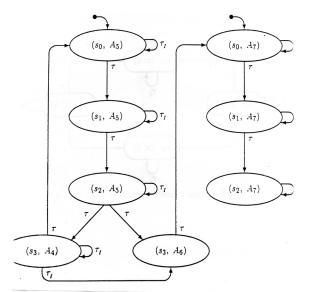
The complete tableau



The pruned tableau (T_{ψ})



The behavior graph $\mathcal{B}_{(\mathcal{LOOP},\psi)}$



Paths in the behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$

Proposition.

Let φ be an LTL formula. The infinite sequence $\pi : (s_0, A_0)(s_1, A_1) \dots$, where (s_0, A_0) is an initial φ -node, is a path in $\mathcal{B}_{(\mathcal{P}, \varphi)}$

if and only

- σ_{π} : $s_0 s_1 \dots$ is a run of *P* (computation less fairness)
- θ_π : A₀A₁... is a trail of T_φ over σ_π (for all j ≥ 0, A_j is consistent with s_j)

Example.

In $\mathcal{B}_{(\mathcal{LOOP},\psi)}$, the path $\pi : (s_0, A_5)(s_1, A_5)(s_2, A_5)(s_3, A_4))^{\omega}$ induces $\sigma_{\pi} : (s_0s_1s_2s_3)^{\omega}$ (run of LOOP) and $\theta_{\pi} : (A_5A_5A_5A_4)^{\omega}$ (trail of T_{φ} over σ_{π})

P-satisfiability of φ by path

Proposition.

Let φ be an LTL formula.

There exists a *P*-computation which satisfies φ

if and only if

there is an infinite path π in $\mathcal{B}_{(\mathcal{P},\varphi)}$, starting from an initial $\varphi\text{-node, such that}$

- σ_{π} is a fair run (computation)
- θ_{π} is a fulfilling trail over σ_{π}

Example.

The trail $\theta_{\pi} : (A_5A_5A_5A_4)^{\omega}$ is not fulfilling (both atoms A_5 and A_4 include $\Diamond \Box (x \neq 3)$ and $\neg \Box (x \neq 3)$).

Adequate subgraphs

Given a behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$,

- node (s', A') is a τ-successor of node (s, A) if B_(P,φ) contains a τ-edge connecting (s, A) to (s', A')
- transition \(\tau\) is enabled on node (s, A) if it is enabled on state s

Given a subgraph $S \subseteq \mathcal{B}_{(\mathcal{P},\varphi)}$,

- transition τ is taken in S if there exist two nodes (s, A) and (s', A') in S such that (s', A') is a τ-successor of (s, A)
- S is just (resp., compassionate) if every just (resp., compassionate) transition τ ∈ J (resp., τ ∈ C) is either taken in S or is disabled on some nodes (resp., all nodes) in S
- S is fair it is both just and compassionate
- S is fulfilling if every promising formula is fulfilled by an atom A such that (s, A) ∈ S for some state s
- S is **adequate** if it is fair and fulfilling

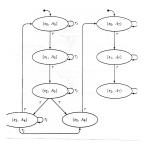
Adequate strongly connected subgraphs and satisfiability

Proposition.

A finite-state program *P* has a computation σ which satisfies φ if and only if the behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$ has an adequate strongly connected subgraph

Example (LOOP and $\psi : \Diamond \Box (x \neq 3)$).

The behavior graph $\mathcal{B}_{(\mathcal{LOOP},\psi)}$ has no adequate subgraphs.



Example (cont'd)

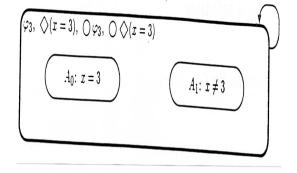
Let us check the maximal strongly connected subgraphs (MSCS):

- {(*s*₀, *A*₅), (*s*₁, *A*₅), (*s*₂, *A*₅), (*s*₃, *A*₄)} is fair, but not fulfilling (ψ belongs to both *A*₄ and *A*₅, and it promises □(*x* ≠ 3), but □(*x* ≠ 3) ∉ *A*₄, *A*₅)
- $\{(s_0, A_7)\}, \{(s_1, A_7)\}$, and $\{(s_2, A_7)\}$ are fulfilling, but not fair (they are not just with respect to transition τ)
- {(s₃, A₆)} is neither fair (it is not just with respect to τ) nor fulfilling (it is transient)

Hence, there are **no adequate subgraphs** in $\mathcal{B}_{(\mathcal{LOOP},\psi)}$. By the last proposition, it follows that LOOP has no computation that satisfies $\psi : \Diamond \Box (x \neq 3)$

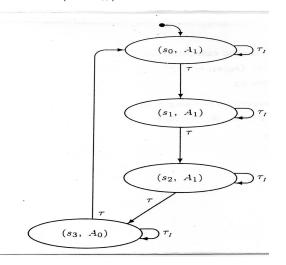
Another example

Example (LOOP and $\phi(=\neg\psi)$: $\Box\Diamond(x=3)$). The pruned tableau is the following one:



Another example (cont'd)

The behavior graph $\mathcal{B}_{(\mathcal{LOOP},\phi)}$ is the following one:



The subgraph $S = \{(s_0, A_1), (s_1, A_1), (s_2, A_1), (s_3, A_0)\}$ is an **adequate subgraph**, as it is both fair (τ is taken in *S*) and fulfilling ($\Diamond(x = 3)$ belongs to both A_0 and A_1 , but x = 3 belongs to A_0)

By the last proposition, it follows that LOOP has computation that satisfies ϕ : $\Box \diamondsuit (x = 3)$

The periodic computation $\sigma : (s_0 s_1 s_2 s_3)^{\omega}$ satisfies ϕ .

It induces the fulfilling trail θ : $(A_1A_1A_1A_0)^{\omega}$ in T_{ϕ} .

How to find adequate subgraphs?

Checking MSCS' is not enough:

 $\mathcal{S}'\subset \mathcal{S}$

S' just **implies** S just

S' fulfilled implies S fulfilled

but

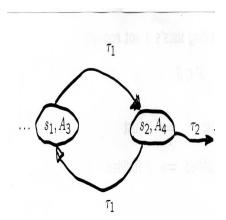
S' compassionate do not imply S compassionate

Therefore, it is possible that S is not adequate, but S' is adequate

A counterexample

S' compassionate **do not imply** S compassionate

Let τ_2 belong to the set of compassionate transitions. τ_2 is enabled on s_2 and disabled on s_1



The strongly connected subgraph $S' = \{(s_1, A_3)\}$ is compassionate (τ_2 is disabled on all the states in this subgraph)

The strongly connected subgraph $S = \{(s_1, A_3)(s_2, A_4)\}$, that includes S', is not compassionate (τ_2 is enabled on (s_2, A_4), but it is not taken in S)

Algorithm ADEQUATE-SUB

Algorithm **ADEQUATE-SUB**

• accepts as input a strongly connected subgraph S and returns as output a strongly connected subgraph $S' \subseteq S$

If $S' = \emptyset$ - S contains no adequate subgraphs

Otherwise - S' is an adequate strongly connected subgraph in S

Notation:

```
EN(\tau, S) - the set of all nodes (s, A) in S on which \tau is enabled
```

Algorithm ADEQUATE-SUB (cont'd)

Algorithm ADEQUATE-SUB checks for adequate subgraphs recursive function adequate-sub(S: SCS) returns SCS

- if *S* is not fulfilling then return \emptyset failure
- if S is not just then return \emptyset failure
- if S is compassionate then return S success
- S is fulfilling and just but not compassionate. Let $T \subseteq C$
- be the set of all compassionate transitions that are not taken

- in S. Clearly,
$$EN(T, S) \neq \emptyset$$
.

let U = S - EN(T, S). Decompose U into MSCSs $U_1 \dots U_k$. let $V = \emptyset$, i = 1

while $V = \emptyset$ and $i \le k$ do

let
$$V = adequate - sub(U_i)$$
; $i := i + 1$

end-while

return V

An example: the system LOOP+

The system LOOP+

Initially x = 0

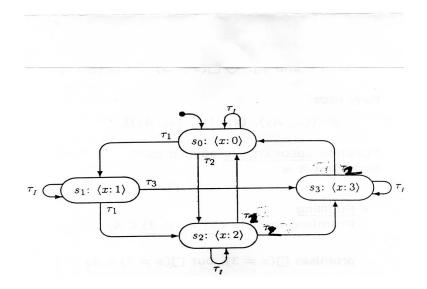
LTL formula $\psi : \Diamond \Box (x \neq 3)$

Transitions: (i) the idling transition τ_I ; (ii) $\mathcal{J} = \{\tau_1, \tau_2\}$; (iii) $\mathcal{C} = \{\tau_3\}$

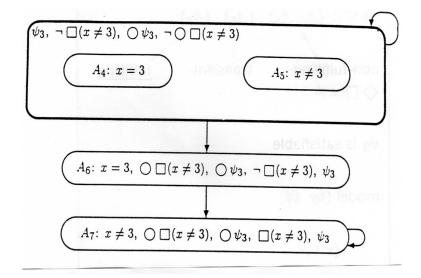
New MSCS: $S = \{(s_0, A_7), (s_1, A_7), (s_2, A_7)\}$

In the next transparencies, we respectively provide the state-transition graph G_{LOOP+} , the pruned tableau T_{ψ} , and the behavior graph $\mathcal{B}_{(\mathcal{LOOP+},\psi)}$.

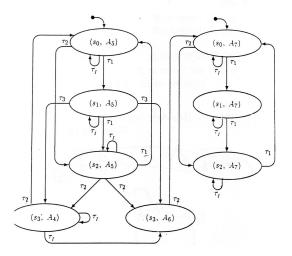
The state-transition graph of system LOOP+ (G_{LOOP+})



The pruned tableau (T_{ψ})



The behavior graph $\mathcal{B}_{(\mathcal{LOOP}+,\psi)}$



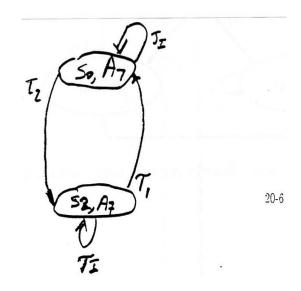
Application of the function ADEQUATE-SUB

Function **ADEQUATE-SUB** applied to *S* finds that it is

- fulfilling: the formula ψ : ◊□(x ≠ 3), that promises
 □(x ≠ 3), belongs to A₇, but □(x ≠ 3) belongs to A₇ as well
- just: $\tau_2 \in \mathcal{J}$ is taken in *S* and $\tau_1 \in \mathcal{J}$ is taken in *S*
- not compassionate: τ₃ ∈ C is not taken in S, but it is enabled on (s₁, A₇)

Construct $U : \{(s_0, A_7), (s_2, A_7)\}$ by removing (s_1, A_7)

The subgraph U



U is a strongly connected subgraph (no decomposition is needed)

U is adequate:

- **fulfilling** A_7 fulfills his promise $\Box(x \neq 3)$
- fair τ₁ and τ₂ are enabled s₂ and s₀, respectively, and both are taken in U

Hence, system LOOP+ has a computation $\sigma : (s_0 s_2)^{\omega}$ that satisfies $\psi : \Diamond \Box (x \neq 3)$

To summarize ..

Algorithm **SAT** to check whether a temporal formula φ is satisfiable

Algorithm **P-SAT** to check the satisfiability of a formula φ over a program (to check whether a finite-state program *P* has a computation which satisfies a temporal formula φ)

To check whether a finite-state program *P* has a computation that satisfies a temporal formula φ , perform the following steps: **Construct** the state-transition graph G_P . **Construct** the pruned tableau T_{φ} . **Construct** the behavior graph $\mathcal{B}_{(\mathcal{P},\varphi)}$. **Decompose** $\mathcal{B}_{(\mathcal{P},\varphi)}$ into MSCS S_1, \ldots, S_t . For each $i = 1, \ldots, t$, **apply** algorithm **ADEQUATE-SUB** to S_i .

If any of these applications returns a nonempty result, *P* has a computation satisfying φ . This computation can be constructed by forming a path π that leads from an initial node to the returned adequate subgraph *S*, and then continues to visit each node *S* infinitely many times. The desired computation is the computation σ_{π} induced by π . If all applications return the empty set as result, *P* has no computation satisfying φ .

To check *P*-validity of a formula φ , apply algorithm P-SAT to check whether there are *P*-computation satisfying $\neg \varphi$

- If there is a *P*-computation satisfying ¬φ, then φ is not *P*-valid
- If there are no *P*-computations satisfying ¬φ, then φ is *P*-valid