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Outline of Lecture 3

• Comparing the expressiveness of fragments of HS
(bisimulation and bisimulation games on interval structures)

• A complete classification of the expressiveness of HS
fragments on the class of all linear orders

• Standard translations for interval temporal logics

• Expressive completeness results



Definability and inter-definability equations

A modal operator 〈X 〉 of HS is definable in an HS-fragment F ,
denoted 〈X 〉� F , if 〈X 〉p ≡ ψ for some formula ψ = ψ(p) ∈ F ,
for any fixed propositional variable p.

In such a case, the equivalence 〈X 〉p ≡ ψ is called an
inter-definability equation for 〈X 〉 in F .

Notation.

For each modal operator 〈X 〉, we denote by RX the corresponding
Allen’s relation.

With every subset X = {〈X1〉, . . . , 〈Xk〉} of HS modalities we
associate the fragment FX of HS, denoted X1X2 . . .Xk, with
formulas only featuring modalities from X .

As an example, BB denotes the fragment involving the modalities
〈B〉 and 〈B〉 only.



Bisimulation - 1

To show undefinability of a given modality in a certain interval
logic, one can use bisimulation and invariance of modal formulas
with respect to bisimulations.

Let F be the considered interval logic. An F-bisimulation between
two interval models M = 〈I(D),V 〉 and M ′ = 〈I(D′),V ′〉 over the
set of proposition letters AP is a relation Z ⊆ I(D)× I(D′)
satisfying the following properties:

• local condition: pairs of Z -related intervals satisfy the same
proposition letters over AP

• forward condition: if ([i , j], [i ′, j ′]) ∈ Z and ([i , j], [h, k]) ∈ RX

for some 〈X 〉 ∈ F , then there exists [h′, k ′] such that
([i ′, j ′], [h′, k ′]) ∈ RX and ([h, k], [h′, k ′]) ∈ Z



Bisimulation - 2

• backward condition: if ([i , j], [i ′, j ′]) ∈ Z and
([i ′, j ′], [h′, k ′]) ∈ RX for some 〈X 〉 ∈ F , then there exists
[h, k] such that ([i , j], [h, k]) ∈ RX and ([h, k], [h′, k ′]) ∈ Z .

Since any F-bisimulation preserves the truth of all formulas in F ,
to prove that an operator 〈X 〉 is not definable in F ,

it suffices to construct a pair of interval models M and M ′ and an
F-bisimulation between them such that

M, [i , j] 
 〈X 〉p and

M ′, [i ′, j ′] 6
 〈X 〉p,

for a pair of F-bisimilar intervals [i , j] ∈ M and [i ′, j ′] ∈ M ′.



On the relationship between A and L over N - 1

Theorem. The modality 〈L〉 is not definable in A over N.
Proof. Let us consider the pair of interval models M = 〈I−(N),V 〉
and M ′ = 〈I−(N),V ′〉, over the set of proposition letters
AP = {p}, where V (p) = V ′(p) = {[i , i + 1] : i ≥ 0}. Moreover,
let Z ⊆ I−(N)× I−(N) be the set

{([i , j], [i , j]) : 0 ≤ i < j} ∪ {([i , j], [i + 1, j + 1]) : 0 ≤ i < j}

(Part of) the relation Z can be depicted as follows:

0 1 2 3 4 5
. . .

p p p p p

p p p p p



On the relationship between A and L over N - 2

Z is an A-bisimulation.

Checking that it satisfies the local condition is immediate.

As for the forward condition, we must distinguish two cases.

First, we must consider any pair of the form ([i , j], [i , j]). In such a
case, the 〈A〉-move from [i , j] to [j , k] in M can be simulated by
the very same 〈A〉-move from [i , j] to [j , k] in M ′. Notice that
p-intervals come into play when j = i + 1 or k = j + 1 (or both).

The second case is that of pairs of the form ([i , j], [i + 1, j + 1]). In
such a case, the 〈A〉-move from [i , j] to [j , k] in M can be
simulated by the 〈A〉-move from [i + 1, j + 1] to [j + 1, k + 1] in
M ′. As in the previous case, p-intervals come into play when
j = i + 1 or k = j + 1 (or both).

Satisfaction of the backward condition can be checked in a very
similar way.



On the relationship between A and L over N - 3

To conclude the proof, it suffices to show that Z does not preserve
the relation induced by the modality 〈L〉. To this end, consider the
pair ([1, 2], [2, 3]) ∈ Z .

We have that M ′, [2, 3] |= 〈L〉p, while M, [1, 2] 6|= 〈L〉p.

Corollary. The modality 〈A〉 is not definable in A over N.

Proof. As the modal operator 〈L〉 is definable in any interval logic
featuring the modal operator 〈A〉 (for any fixed proposition letter
p, it holds that 〈L〉p ≡ 〈A〉〈A〉p), the thesis immediately follows
from the above theorem.

It is worth pointing out that the bisimulation exploited in the proof
of the above theorem still works if we replace N by Z, Q, or R.

Exercise. To show that the modality 〈A〉 is not definable in AL
over N.
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Bisimulations and bisimulation games

Existence of bisimulation between two models is equivalent to
existence of winning strategies in associated bisimulation games.

These are two-player games, played in a (finite or infinite) number
of rounds; in every round Player I, and then Player II, picks an
element from the one, respectively the other model, according to
certain rules.

Player I (the Spoiler) tries to break the match between the selected
elements, while Player II (the Simulator) tries to maintain it.

The Simulator has a winning strategy in this game iff there is a
(finite or infinite) bisimulation between the models.

We illustrate such games by an example.
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Bisimulation games for AA
+
and AA

−
are defined likewise.
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Proposition. Let P be a finite set of propositional letters. For all
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AA-formulas over P with modal operator depth at most k .

Corollary. Player II has a winning strategy in the infinite
AA-bisimulation game on M0 and M1, with initial configuration
([a0, b0], [a1, b1]), iff [a0, b0] and [a1, b1] satisfy the same
AA-formulas over P.
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Proposition. The modal constant π is not definable in AA
+
.

Proof. Let M = 〈I(Z)+,V 〉, where all variables hold everywhere.

The intervals [0, 1] and [1, 1] are distinguished in AA
π+

by π.

However, this pair of intervals cannot be distinguished in AA
+
.

Indeed, consider the k-round AA
+
-bisimulation game on (M,M)

with initial configuration ([0, 1], [1, 1]).

Winning strategy for Player II in the AA
+
-bisimulation game with

k-rounds on (M,M) with initial configuration ([0, 1], [1, 1]):

if Player I plays a 3r -move from an interval in the current configuration,

then Player II chooses any right-neighbor of the other interval in the

configuration, and vice versa. The same for 3l -moves.
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Classification of HS fragments w.r.to expressiveness

We compare and classify the expressiveness of all fragments of HS
on the class of all interval structures over linear orders (with strict
semantics). Formally, let F1 and F2 be any pair of such fragments.
We say that:

• F2 is at least as expressive as F1, denoted F1 � F2, if every
operator 〈X 〉 ∈ F1 is definable in F2 (〈X 〉� F2).

• F1 is strictly less expressive than F2, denoted F1 ≺ F2, if
F1 � F2 but not F2 � F1.

• F1 and F2 are equally expressive (or expressively equivalent),
denoted F1 ≡ F2, if F1 � F2 and F2 � F1.

• F1 and F2 are expressively incomparable, denoted F1 6≡ F2, if
neither F1 � F2 nor F2 � F1.

A definability 〈X 〉� F is optimal if 〈X 〉 6� F ′ for any fragment F ′

such that F ′ ≺ F . A set of such definabilities is optimal if it
consists of optimal definabilities.



The complete set of inter-definability equations

〈L〉p ≡ 〈A〉〈A〉p 〈L〉 � A

〈L〉p ≡ 〈A〉〈A〉p 〈L〉 � A

〈O〉p ≡ 〈E 〉〈B〉p 〈O〉� BE

〈O〉p ≡ 〈B〉〈E 〉p 〈O〉� BE
〈D〉p ≡ 〈E 〉〈B〉p 〈D〉� BE

〈D〉p ≡ 〈E 〉〈B〉p 〈D〉� BE

〈L〉p ≡ 〈B〉[E ]〈B〉〈E 〉p 〈L〉 � BE

〈L〉p ≡ 〈E 〉[B ]〈E 〉〈B〉p 〈L〉 � BE

Theorem. The above set of inter-definability equations is sound,
complete, and optimal.

Soundness is easy; completeness is hard.



The structure of the completeness proof

The completeness proof is organized as follows.
For each HS operator 〈X 〉, we show that 〈X 〉 is not definable in
any fragment of HS that does not contain as definable (according
to given table) all operators of some of the fragments in which 〈X 〉
is definable (according to the given table).

Formally, for each HS operator 〈X 〉, the proof consists of the
following steps:

1. using the given table, find all fragments Fi such that
〈X 〉� Fi ;

2. identify the list M1, . . . ,Mm of all ⊆-maximal fragments of
HS that contain neither the operator 〈X 〉 nor any of the
fragments Fi identified by the previous step;

3. for each fragment Mi , with i ∈ {1, . . . ,m}, provide a
bisimulation for Mi which is not a bisimulation for X.



Some cases are easier

Lemma. The set of inter-definability equations for 〈L〉 and 〈L〉
given in the table is complete.

Proof. According to the given table, 〈L〉 is definable in terms of A
and BE. Hence, the fragments BEDOALEDO and BDOALBEDO
are the only ⊆-maximal ones not featuring 〈L〉 and containing
neither A nor BE.

To prove the thesis, it suffices to exhibit a bisimulation for each
one of these two fragments that does not preserve the relation
induced by 〈L〉.

Thanks to soundness, BEDOALEDO and BDOALBEDO are
expressively equivalent to BEOAED and BDOABE, respectively.
Thus, we can refer to the latter ones instead of the former ones.
We give the details for BEOAED and leave the case of BDOABE
as an exercise.



The fragment BEOAED

Let M1 = 〈I−(N),V1〉 and M2 = 〈I−(N),V2〉 be two models and
let V1 and V2 be such that V1(p) = {[2, 3]} and V2(p) = ∅, where
p is the only propositional letter of the language.

Moreover, let Z be a relation between (intervals of) M1 and M2

defined as Z = {([0, 1], [0, 1])}.

It can be easily shown that Z is a BEOAED-bisimulation.

The local property is trivially satisfied, since all Z -related intervals
satisfy ¬p.

As for the forward and backward conditions, it suffices to notice
that, starting from the interval [0, 1], it is not possible to reach any
other interval using any of the modal operators of the fragment.

It can be easily checked that Z does not preserve the relation
induced by the modality 〈L〉. Indeed, ([0, 1], [0, 1]) ∈ Z and M1,

[0, 1] 
 〈L〉p, but M2, [0, 1] 
 ¬〈L〉p. Therefore, 〈L〉 is not
definable in BEDOALEDO.



Other cases are much more difficult

Lemma. The set of inter-definability equations for 〈A〉 and 〈A〉
given in the table is complete.

To get the requested bisimulation, we exploit a well-known
property of the set of real numbers R: R (resp., Q, Q = R \Q)
can be partitioned into a countable number of pairwise disjoint
subsets, each one of which is dense in R.

Formally, there are countably many nonempty sets Ri (resp., Qi ,
Qi), with i ∈ N, such that, for each i ∈ N, Ri (resp., Qi , Qi) is
dense in R, R =

⋃
i∈NRi (resp., Q =

⋃
i∈NQi , Q =

⋃
i∈NQi), and

Ri ∩Rj = ∅, (resp., Qi ∩Qj = ∅, Qi ∩Qj = ∅), for each i , j ∈ N

with i 6= j .
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FO2[<]: first-order language with equality and a countable set of
binary relational symbols {P1,P2 . . .} and a distinguished binary
relation <, always interpreted as a linear order.

FO
k
2 [<]: the fragment of FO2[<] involving only k individual

variables x1, . . . , xk .

Hereafter we omit the lower index 2.
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Note that the only free variables in STxi ,xj ,xk (ϕ) are xi , xj .
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Corollary. CDT is expressively complete for FO3[<].
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The two-variable fragment of first-order logic

Assuming that x and y are two distinct variables, formulas of
FO

2[<] can be defined recursively as follows:

A0 ::= x = x | x = y | y = x | y = y | x < y | y < x ,

A1 ::= P(x , x) | P(x , y) | P(y , x) | P(y , y),

α ::= A0 | A1 | ¬α | α ∨ β | ∃xα | ∃yα.

For technical convenience, we can assume that both variables x
and y occur as (possibly vacuous) free variables in every formula
α ∈ FO

2[<], that is, α = α(x , y).
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• the set of modal operators associated with interval relations;

• the class of ordered structures underlying the models;

• the type of semantics: strict or non-strict.

Expressiveness issues:

∗ Bisimulations and bisimulation games on interval structures

∗ Classification of HS (and CDT) fragments with respect to
expressiveness on the class of all linear orders (done in the case of
strict semantics) and on meaningful subclasses (to do)

∗ Comparative expressiveness study of fragments of HS and CDT
in terms of definability of properties of interval structures.

∗ Expressive completeness of interval logics for fragments of
first-order logics


