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Intervals and interval structures in partial orders

D = 〈D, <〉: partially ordered set.

An interval in D: ordered pair [a, b], where a, b ∈ D and a ≤ b.

If a < b then [a, b] is a strict interval; [a, a] is a point interval.

The set of all intervals over D forms the (non-strict) interval
structure over D, denoted I+(D).

The set of all strict intervals over D is the strict interval structure
over D, denoted I−(D).

We will use I(D) to denote either of these.
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Partial orders with the linear intervals property
Intervals in partial orders are partially ordered in general.

An important particular case is the class of partial orders with the
linear intervals property:

∀x∀y(x < y → ∀z1∀z2(x < z1 < y ∧x < z2 < y → z1 < z2∨z1 = z2∨z2 < z1)).
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Some important types of linear interval structures
Hereafter, we will mainly consider linear interval structures, i.e., interval
structures over linear orders. A linear interval structure I(D) is:

• (weakly) discrete if every point with a successor/predecessor has an
immediate successor/predecessor, that is,

I(D) |= ∀x∀y(x < y → ∃z(x < z∧z ≤ y∧∀w(x < w∧w ≤ y → z ≤ w))),

and

I(D) |= ∀x∀y(x < y → ∃z(x ≤ z∧z < y∧∀w(x ≤ w∧w < y → w ≤ z)));

• dense if between every two different points there exists another point, i.e.:

I(D) |= ∀x∀y(x < y → ∃z(x < z ∧ z < y));

• unbounded above (resp., below) if every point has a successor (resp.,
predecessor); unbounded if unbounded above and below;

• Dedekind complete if every non-empty and bounded above set of points
has a least upper bound.

We will also consider the single interval structures on N,Z,Q, and R with their
usual orders.



Binary relations between intervals
There are 13 binary relations between two intervals on a linear
order: those below and their inverses (the so-called Allen’s
relations).



Binary relations between intervals
There are 13 binary relations between two intervals on a linear
order: those below and their inverses (the so-called Allen’s
relations).

current interval:

equals:

ends :

during:

begins:

overlaps:

meets:

before:



Sub-interval relations



Sub-interval relations

Natural binary relations between intervals, definable in terms of
Allen’s relations, are the sub-interval relations which come in three
versions.



Sub-interval relations

Natural binary relations between intervals, definable in terms of
Allen’s relations, are the sub-interval relations which come in three
versions.

Given a partial order 〈D, <〉 and intervals [s0, s1] and [d0, d1] in it:



Sub-interval relations

Natural binary relations between intervals, definable in terms of
Allen’s relations, are the sub-interval relations which come in three
versions.

Given a partial order 〈D, <〉 and intervals [s0, s1] and [d0, d1] in it:

• [s0, s1] is a sub-interval of [d0, d1] if d0 ≤ s0 and s1 ≤ d1.

This relation of sub-interval will be denoted by ⊑;



Sub-interval relations

Natural binary relations between intervals, definable in terms of
Allen’s relations, are the sub-interval relations which come in three
versions.

Given a partial order 〈D, <〉 and intervals [s0, s1] and [d0, d1] in it:

• [s0, s1] is a sub-interval of [d0, d1] if d0 ≤ s0 and s1 ≤ d1.

This relation of sub-interval will be denoted by ⊑;

• [s0, s1] is a proper sub-interval of [d0, d1], denoted
[s0, s1] < [d0, d1], if [s0, s1] ⊑ [d0, d1] and [s0, s1] 6= [d0, d1].



Sub-interval relations

Natural binary relations between intervals, definable in terms of
Allen’s relations, are the sub-interval relations which come in three
versions.

Given a partial order 〈D, <〉 and intervals [s0, s1] and [d0, d1] in it:

• [s0, s1] is a sub-interval of [d0, d1] if d0 ≤ s0 and s1 ≤ d1.

This relation of sub-interval will be denoted by ⊑;

• [s0, s1] is a proper sub-interval of [d0, d1], denoted
[s0, s1] < [d0, d1], if [s0, s1] ⊑ [d0, d1] and [s0, s1] 6= [d0, d1].

• [s0, s1] is a strict sub-interval of [d0, d1] (Allen’s relation
during), denoted [s0, s1] ≺ [d0, d1], if d0 < s0 and s1 < d1.
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Ternary relations between intervals

Splitting of an interval in two defines the ternary relation chop:

k

i j

i.e., Cijk if i meets j , i begins k , and j ends k .

The relation chop has 5 associated ‘residual’ relations, e.g.:

C ′ijk iff Ckji ,

C ′′ijk iff Cikj ,
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Relational interval structure: an interval structure enriched with
one or more interval relations. For instance:

• sub-interval structures,

• begin-end structures,

• neighborhood structures,

• chop structures, etc.

More generally, let R = {R1, . . . ,Rk} be a family of interval
relations, hereafter called an interval relational type.

An interval R-structure is a relational interval structure of the type
〈I(D),R1, . . . ,Rk〉.

An interval R-frame is any abstract relational structure of the type
〈I,R1, . . . ,Rk〉, where I is a non-empty set and R1, . . . ,Rk are
relations on I corresponding to R1, . . . ,Rk.



Example: Begin-End structures and frames



Example: Begin-End structures and frames

Interval BE-structure: 〈I(D),B,E〉, where I(D) is a linear interval
structure and B,E are the binary relations ‘begins’ and ‘ends’ in
I(D)



Example: Begin-End structures and frames

Interval BE-structure: 〈I(D),B,E〉, where I(D) is a linear interval
structure and B,E are the binary relations ‘begins’ and ‘ends’ in
I(D), i.e.:



Example: Begin-End structures and frames

Interval BE-structure: 〈I(D),B,E〉, where I(D) is a linear interval
structure and B,E are the binary relations ‘begins’ and ‘ends’ in
I(D), i.e.:

• iBj holds if and only the interval i is a proper beginning of the
interval j, i.e., i = [d0, d1] and j = [d0, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 < d2.



Example: Begin-End structures and frames

Interval BE-structure: 〈I(D),B,E〉, where I(D) is a linear interval
structure and B,E are the binary relations ‘begins’ and ‘ends’ in
I(D), i.e.:

• iBj holds if and only the interval i is a proper beginning of the
interval j, i.e., i = [d0, d1] and j = [d0, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 < d2.

• iEj holds if and only i is a proper end of j, i.e., i = [d1, d2] and
j = [d0, d2] for some d0, d1, d2 ∈ D such that d0 < d1 ≤ d2.



Example: Begin-End structures and frames

Interval BE-structure: 〈I(D),B,E〉, where I(D) is a linear interval
structure and B,E are the binary relations ‘begins’ and ‘ends’ in
I(D), i.e.:

• iBj holds if and only the interval i is a proper beginning of the
interval j, i.e., i = [d0, d1] and j = [d0, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 < d2.

• iEj holds if and only i is a proper end of j, i.e., i = [d1, d2] and
j = [d0, d2] for some d0, d1, d2 ∈ D such that d0 < d1 ≤ d2.

Strict interval BE-structure: 〈I−(D),B,E〉.



Example: Begin-End structures and frames

Interval BE-structure: 〈I(D),B,E〉, where I(D) is a linear interval
structure and B,E are the binary relations ‘begins’ and ‘ends’ in
I(D), i.e.:

• iBj holds if and only the interval i is a proper beginning of the
interval j, i.e., i = [d0, d1] and j = [d0, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 < d2.

• iEj holds if and only i is a proper end of j, i.e., i = [d1, d2] and
j = [d0, d2] for some d0, d1, d2 ∈ D such that d0 < d1 ≤ d2.

Strict interval BE-structure: 〈I−(D),B,E〉.

BE-frame: a relational structure F = 〈I,B ,E 〉 where I is a
non-empty set and B ,E are binary relations on I.



Abstract (first-order) characterizations
and representation theorems for interval frames



Abstract (first-order) characterizations
and representation theorems for interval frames

Let R = {R1, . . . ,Rk} be an interval relational type.



Abstract (first-order) characterizations
and representation theorems for interval frames

Let R = {R1, . . . ,Rk} be an interval relational type.

A first-order isomorphism characterization of the type R is a set of
sentences Γ in the first-order language respective to R such that
any interval R-frame satisfies all sentences in Γ iff it is isomorphic
to an interval R-structure.



Abstract (first-order) characterizations
and representation theorems for interval frames

Let R = {R1, . . . ,Rk} be an interval relational type.

A first-order isomorphism characterization of the type R is a set of
sentences Γ in the first-order language respective to R such that
any interval R-frame satisfies all sentences in Γ iff it is isomorphic
to an interval R-structure.

Likewise, a first-order embedding characterization of the type R is
a set of sentences Γ in the first-order language respective to R
such that any interval R-frame satisfies all sentences in Γ iff it is
isomorphically embeddable into an interval R-structure.



Abstract (first-order) characterizations
and representation theorems for interval frames

Let R = {R1, . . . ,Rk} be an interval relational type.

A first-order isomorphism characterization of the type R is a set of
sentences Γ in the first-order language respective to R such that
any interval R-frame satisfies all sentences in Γ iff it is isomorphic
to an interval R-structure.

Likewise, a first-order embedding characterization of the type R is
a set of sentences Γ in the first-order language respective to R
such that any interval R-frame satisfies all sentences in Γ iff it is
isomorphically embeddable into an interval R-structure.

An important general problem is to establish abstract (first-order)
characterizations of various interval relational types.



Abstract (first-order) characterizations
and representation theorems for interval frames

Let R = {R1, . . . ,Rk} be an interval relational type.

A first-order isomorphism characterization of the type R is a set of
sentences Γ in the first-order language respective to R such that
any interval R-frame satisfies all sentences in Γ iff it is isomorphic
to an interval R-structure.

Likewise, a first-order embedding characterization of the type R is
a set of sentences Γ in the first-order language respective to R
such that any interval R-frame satisfies all sentences in Γ iff it is
isomorphically embeddable into an interval R-structure.

An important general problem is to establish abstract (first-order)
characterizations of various interval relational types.

Such results are known as representation theorems.
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Interval BE-frame: BE-frame F = 〈I,B ,E 〉 satisfying the following:

TR: Transitivity of B and E .

LL: Left linearity of B and E :
∀x∀y∀z(xBz ∧ yBz → xBy ∨ x = y ∨ yBx), and likewise for E .

AT: Atomicity for B and E :
∀x(∃z(zBx) → ∃y(yBx ∧ ¬∃z(zBy))), and likewise for E .

PI: Proper intervals: ∀x(∃z(zBx) ↔ ∃z(zEx)).

UD: Unique directedness of intervals:

∀x∀y∀z(xBy ∧ xEz → ∃!u(zBu ∧ yEu)),

∀x∀y∀z(xBy ∧ zEx → ∃!u(zBu ∧ uEy)),

∀x∀y∀z(xEy ∧ zBx → ∃!u(uBy ∧ zEu)).

NO: No overlap of B and E : ¬∃x∃y(xBy ∧ xEy).
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Representation theorem for interval BE-frames

A BE-frame is an interval BE-frame iff it is isomorphic to an
interval BE-structure.

Y. Venema, Expressiveness and completeness, Research Report
LP-1988-02, ILLC Publications, University of Amsterdam, 1988



Interval neighborhood structures



Interval neighborhood structures

Interval neighborhood structure: 〈I(D),R,L〉, where I(D) is a
linear interval structure and R,L are the binary relations ‘right
neighbor’ and ‘left neighbor’ in I(D)



Interval neighborhood structures

Interval neighborhood structure: 〈I(D),R,L〉, where I(D) is a
linear interval structure and R,L are the binary relations ‘right
neighbor’ and ‘left neighbor’ in I(D), i.e.:



Interval neighborhood structures

Interval neighborhood structure: 〈I(D),R,L〉, where I(D) is a
linear interval structure and R,L are the binary relations ‘right
neighbor’ and ‘left neighbor’ in I(D), i.e.:

• iRj holds if and only the interval j is a right neighbor of the
interval i, i.e. i = [d0, d1] and j = [d1, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 ≤ d2.



Interval neighborhood structures

Interval neighborhood structure: 〈I(D),R,L〉, where I(D) is a
linear interval structure and R,L are the binary relations ‘right
neighbor’ and ‘left neighbor’ in I(D), i.e.:

• iRj holds if and only the interval j is a right neighbor of the
interval i, i.e. i = [d0, d1] and j = [d1, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 ≤ d2.

• L is the inverse of R, i.e., iLj iff jRi.



Interval neighborhood structures

Interval neighborhood structure: 〈I(D),R,L〉, where I(D) is a
linear interval structure and R,L are the binary relations ‘right
neighbor’ and ‘left neighbor’ in I(D), i.e.:

• iRj holds if and only the interval j is a right neighbor of the
interval i, i.e. i = [d0, d1] and j = [d1, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 ≤ d2.

• L is the inverse of R, i.e., iLj iff jRi.

Strict interval neighborhood structure: 〈I−(D),R,L〉.



Interval neighborhood structures

Interval neighborhood structure: 〈I(D),R,L〉, where I(D) is a
linear interval structure and R,L are the binary relations ‘right
neighbor’ and ‘left neighbor’ in I(D), i.e.:

• iRj holds if and only the interval j is a right neighbor of the
interval i, i.e. i = [d0, d1] and j = [d1, d2] for some
d0, d1, d2 ∈ D such that d0 ≤ d1 ≤ d2.

• L is the inverse of R, i.e., iLj iff jRi.

Strict interval neighborhood structure: 〈I−(D),R,L〉.

Thus, interval neighborhood structures correspond to the interval
relation ‘meet’ and its inverse.
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Neighborhood frame (NF):
F = 〈I,R , L〉 where I 6= ∅ and R , L ⊆ I2.

We denote:

• BF = {w ∈ I | there is no v ∈ I such that wLv},

• B2
F = {w ∈ I | there are no u, v ∈ I, with u 6= v , such that

wLv and wLu},

• EF and E2
F are defined likewise, by swapping L with R .

For every sequence S1, ...,Sk ∈ {R , L}, we denote the composition
of the relations S1, ...,Sk by S1...Sk .
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(NF2) ∀x∀y(∃z(xLz ∧ zRy) → ∀z(xLz → zRy)), and
∀x∀y(∃z(xRz ∧ zLy) → ∀z(xRz → zLy)).

(NF3’) RL ⊆ LRR ∪ LLR ∪ E on I−B2
F, where E is the equality, i.e.,

∀x∀y(∃z∃u(xLz ∧ zLu) ∧ ∃z(xRz ∧ zLy)
→ x = y ∨ ∃w∃z((xLw ∧wRz ∧ zRy)∨ (xLw ∧wLz ∧ zRy))).

(NF3”) Likewise, LR ⊆ RLL ∪ RRL ∪ E on I− E2
F.

(NF4) RRR ⊆ RR , i.e.,
∀w∀x∀y∀z(wRx ∧ xRy ∧ yRz → ∃u(wRu ∧ uRz)).
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An interval neighborhood frame F = 〈I,R , L〉 is said to be:

• strict, if the relation LRR is irreflexive, and non-strict if LRR is
reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);

• open, if F |= ∀x(∃y(xLy) ∧ ∃y(xRy));

• rich, if F |= ∀x(∃y(xRy ∧ yRy) ∧ ∃y(xLy ∧ yLy)).

• normal, if F |= ∀x∀y(∀z(zRx ↔ zRy)∧ ∀z(zLx ↔ zLy) → x = y);

• tight, if F |= ∀x∀y((xRRy ∧ yRRx) → x = y);

• weakly left-connected (resp., weakly right-connected) if the relation
LR ∪ LRR ∪ LLR (resp., RL ∪ RRL∪ RLL) is an equivalence relation
on I− BF (resp., I− EF);

• left-connected (resp., right-connected) if that relation is the
universal relation on I− BF (resp., I− EF);

• weakly connected if each of the relations LR ∪ LRR ∪ LLR and
RL ∪ RRL ∪ RLL is an equivalence relation on I; connected, if each
of these relations is the universal relation on I.
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Representation theorems for interval neighborhood frames

Representation theorems for interval neighborhood frames:

1. Every tight, rich, connected, and normal interval
neighborhood frame is isomorphic to a non-strict interval
neighborhood structure.

2. Every weakly connected, strict and normal interval
neighborhood frame is isomorphic to a strict interval
neighborhood structure.

3. Every connected, open, strict and normal interval
neighborhood frame is isomorphic to a strict unbounded
interval neighborhood structure.

V. Goranko, A. Montanari, and G. Sciavicco, On Propositional Interval

Neighborhood Temporal Logics, Journal of Universal Computer Science,
9(9):1137–1167, 2003
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Other representation theorems for classes of interval frames

• for the subinterval-precedence-structure over the rational

J. van Benthem, The Logic of Time (2nd Edition), Kluwer Academic
Press, 1991

• for meet-structures over dense linear orders

J. Allen and P. Hayes, A Common-sense Theory of Time, IJCAI 1985

• for point-based structures with a quaternary relation encoding
meeting of two intervals

P. Ladkin, The Logic of Time Representation, PhD thesis, University
of California, Berkeley, 1987

There are still various unexplored representation problems
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Summary

• Every partial order has an associated interval structure.

• There is a number of interval relations in an interval structure.

In the case of linear interval structures: 13 ‘Allen’s relations’.

• Respectively, a large variety of relational interval structures
and frames.

• Representation theorems characterize up to isomorphism (or
isomorphic embedding) the class of concrete relational interval
structures of a given type.

• Several representation theorems have been obtained, but
many interesting cases are still unexplored.
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Halpern-Shoham’s modal logic of interval relations

Allen’s interval relations give rise to respective unary modal
operators over relational interval structures, thus defining the
multimodal logic HS introduced by Halpern and Shoham in 1991.

In the case of non-strict semantics, it suffices to choose as
primitive the modalities 〈B〉, 〈E 〉, 〈B〉, 〈E 〉 corresponding to the
relations begins, ends, and their inverses; the other modalities then
become definable.

Thus, the formulas of HS are:

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈E 〉φ | 〈B〉φ | 〈E 〉φ.
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Models for propositional interval logics

AP : a set of atomic propositions (over intervals).

Non-strict interval model:

M+ = 〈I(D)+,V 〉,

where V : AP 7→ 2I(D)
+
.

Strict interval model:

M− = 〈I(D)−,V 〉,

where V : AP 7→ 2I(D)
−

.

Thus, V (p) can be viewed as a binary relation on D.

I(D) will mean either I(D)+ or I(D)−, and M will denote a strict
or a non-strict interval model.
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〈B〉: M, [d0, d1]  〈B〉φ if there exists d2 such that d0 ≤ d2 < d1
and M, [d0, d2]  φ.

〈E 〉: M, [d0, d1]  〈E 〉φ if there exists d2 such that d0 < d2 ≤ d1
and M, [d2, d1]  φ.

〈B〉: M, [d0, d1]  〈B〉φ if there exists d2 such that d1 < d2 and
M, [d0, d2]  φ.

〈E 〉: M, [d0, d1]  〈E 〉φ if there exists d2 such that d2 < d0 and
M, [d2, d1]  φ.

Thus, every HS-formula is interpreted in an interval model by a set
of ordered pairs of points, i.e., a binary relation.
A useful new symbol is the modal constant π for point-intervals

interpreted as follows:

M, [d0, d1]  π if d0 = d1.

It is definable as either [B ]⊥ or [E ]⊥, so it is only needed in
weaker fragments of HS.
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In the non-strict semantics:

• Right neighbor: 〈R〉ϕ := 〈E 〉(π ∧ 〈B〉ϕ). Also denoted ♦r .

• Left neighbor: 〈L〉ϕ := 〈B〉(π ∧ 〈E 〉ϕ). Also denoted ♦l .

• After: 〈L〉ϕ := 〈R〉(¬π ∧ 〈R〉ϕ).
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• Overlaps on the left: 〈O〉ϕ := 〈B〉〈E 〉ϕ;

• During (strict sub-interval): 〈D〉ϕ := 〈B〉〈E 〉ϕ ≡ 〈E 〉〈B〉ϕ.

• Strict super-interval: 〈D〉ϕ := 〈B〉〈E 〉ϕ ≡ 〈E 〉〈B〉ϕ.

What happens in the strict semantics? The modalities over the
neighborhood relations must be added
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• Sub-interval logics

• Neighborhood logics

• Logics of interval extensions

• Overlap logics

• Begin-End logics

• Before-After logics.

Each of these, considered over various classes of interval
structures: all, dense, (weakly) discrete, finite, etc., with strict or
non-strict semantics.
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D is quite expressive, e.g.: for non-trivial combinatorial
relationships between width and depth of an interval, of the type:

d(n)
∧

i=1

〈D〉



pi ∧
∧

j 6=i

〈D〉¬pj



 → 〈D〉n⊤

for a large enough d(n).

Also, for special properties of the models, e.g.: the formula

〈D〉〈D〉⊤ ∧ [D](〈D〉⊤ → 〈D〉〈D〉⊤ ∧ 〈D〉[D]⊥)

for proper subinterval relation has no discrete or dense models in
the strict semantics, but is satisfiable in the Cantor space over R.
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Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation meets

(right neihbor) and its inverse met-by (left neihbor).

These modalities are denoted in HS respectively by 〈A〉 and 〈A〉
and are based on the strict semantics.

The language of propositional neighborhood logics for non-strict
semantics PNL+:

φ ::= p | ¬φ | φ ∧ ψ | ♦rφ | ♦lφ.

The dual operators: 2rφ ::= ¬♦r¬φ and 2lφ ::= ¬♦l¬φ.

The formal semantics of the modal operators ♦r and ♦l :

(♦r ) M+, [d0, d1]  ♦rφ if there exists d2 such that
d1 ≤ d2 and M+, [d1, d2]  φ;

(♦l) M+, [d0, d1]  ♦lφ iff there exists d2 such that
d2 ≤ d0 and M+, [d2, d0]  φ,
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Venema’s logic CDT

Recall the ternary relation chop:

k

i j

The logic CDT contains binary modalities associated with the
relation chop and its residuals.

Syntax of CDT:

φ ::= π | p | ¬φ | φ ∧ ψ | φCψ | φDψ | φTψ.
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Semantics of CDT

Semantics over partial orderings with the linear intervals property:

C : M, [d0, d1]  φCψ iff there exists d2 ∈ D such that:
d0 ≤ d2 ≤ d1, M, [d0, d2]  φ, and M, [d2, d1]  ψ.

D: M, [d0, d1]  φDψ iff there exists d2 ∈ D such that:
d2 ≤ d0, M, [d2, d0]  φ, and M, [d2, d1]  ψ.

T : M, [d0, d1]  φTψ iff there exists d2 ∈ D such that:
d1 ≤ d2, M, [d1, d2]  φ, and M, [d0, d2]  ψ.

D can be read as Done, T as To do.
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CDT subsumes HS

〈B〉φ ::= φC (¬π),

〈E 〉φ ::= (¬π)Cφ,

〈B〉φ ::= (¬π)Tφ,

〈E 〉φ ::= (¬π)Dφ.

What happens in the strict semantics?

In the strict semantics: replace ¬π by ⊤.

Thus, CDT is at least as expressive as HS.

On the other hand, none of C , D, T is expressible in HS (CDT is
strictly more expressive than HS).
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Summary

There is a variety of interval logics, based on several parameters:

• the set of modal operators and the interval relations
associated with them;

• the class of ordered structures underlying the models;

• the type of semantics: strict or non-strict.

Major research problems:

• Semantic characterization, representation results;

• Expressiveness, (un)definability;

• (Un)decidability of the satisfiability problem and of model
checking;

• Deductive systems;

• Applications.


