A Guided Tour through Interval Temporal Logics
Lecture 2: Interval structures, relations, and logics.

Angelo Montanari
Department of Mathematics and Computer Science,
University of Udine, Italy
angelo.montanari@uniud.it

Gargnano, August 20-25, 2012
Intervals and interval structures in partial orders
Intervals and interval structures in partial orders

\[D = \langle D, < \rangle: \text{partially ordered set.} \]
Intervals and interval structures in partial orders

\[D = \langle D, \lt \rangle \]: partially ordered set.

An interval in \(D \): ordered pair \([a, b]\), where \(a, b \in D \) and \(a \leq b \).
Intervals and interval structures in partial orders

\(\mathcal{D} = \langle D, < \rangle \): partially ordered set.

An interval in \(\mathcal{D} \): ordered pair \([a, b]\), where \(a, b \in D \) and \(a \leq b \).

If \(a < b \) then \([a, b]\) is a strict interval; \([a, a]\) is a point interval.
Intervals and interval structures in partial orders

\(\mathbb{D} = \langle D, < \rangle \): partially ordered set.

An interval in \(\mathbb{D} \): ordered pair \([a, b]\), where \(a, b \in D \) and \(a \leq b \).

If \(a < b \) then \([a, b]\) is a strict interval; \([a, a]\) is a point interval.

The set of all intervals over \(\mathbb{D} \) forms the (non-strict) interval structure over \(\mathbb{D} \), denoted \(\mathbb{II}^+(\mathbb{D}) \).
$\mathbf{D} = \langle D, < \rangle$: partially ordered set.

An interval in \mathbf{D}: ordered pair $[a, b]$, where $a, b \in D$ and $a \leq b$.

If $a < b$ then $[a, b]$ is a strict interval; $[a, a]$ is a point interval.

The set of all intervals over \mathbf{D} forms the (non-strict) interval structure over \mathbf{D}, denoted $\mathbb{I}^+(\mathbf{D})$.

The set of all strict intervals over \mathbf{D} is the strict interval structure over \mathbf{D}, denoted $\mathbb{I}^-(\mathbf{D})$.
Intervals and interval structures in partial orders

\(D = \langle D, < \rangle\): partially ordered set.

An interval in \(D\): ordered pair \([a, b]\), where \(a, b \in D\) and \(a \leq b\).

If \(a < b\) then \([a, b]\) is a strict interval; \([a, a]\) is a point interval.

The set of all intervals over \(D\) forms the (non-strict) interval structure over \(D\), denoted \(\mathbb{I}^+(D)\).

The set of all strict intervals over \(D\) is the strict interval structure over \(D\), denoted \(\mathbb{I}^-(D)\).

We will use \(\mathbb{I}(D)\) to denote either of these.
Partial orders with the linear intervals property
Partial orders with the linear intervals property

Intervals in partial orders are partially ordered in general.
Partial orders with the linear intervals property

Intervals in partial orders are partially ordered in general.

An important particular case is the class of partial orders with the linear intervals property:
Partial orders with the linear intervals property

Intervals in partial orders are partially ordered in general.

An important particular case is the class of partial orders with the linear intervals property:

$$\forall x \forall y (x < y \rightarrow \forall z_1 \forall z_2 (x < z_1 < y \land x < z_2 < y \rightarrow z_1 < z_2 \lor z_1 = z_2 \lor z_2 < z_1))$$.
Partial orders with the linear intervals property

Intervals in partial orders are partially ordered in general. An important particular case is the class of partial orders with the linear intervals property:

$$\forall x \forall y (x < y \rightarrow \forall z_1 \forall z_2 (x < z_1 < y \land x < z_2 < y \rightarrow z_1 < z_2 \lor z_1 = z_2 \lor z_2 < z_1)).$$

An example of a non-linear order with this property:
Partial orders with the linear intervals property

Intervals in partial orders are partially ordered in general. An important particular case is the class of partial orders with the linear intervals property:

\[\forall x \forall y (x < y \rightarrow \forall z_1 \forall z_2 (x < z_1 < y \land x < z_2 < y \rightarrow z_1 < z_2 \lor z_1 = z_2 \lor z_2 < z_1)). \]

An example of a non-linear order with this property:

A non-example:
Some important types of linear interval structures
Some important types of linear interval structures

Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders.
Some important types of linear interval structures
Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders. A linear interval structure $I(D)$ is:
Some important types of linear interval structures

Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders. A linear interval structure $I(D)$ is:

- (weakly) discrete if every point with a successor/predecessor has an immediate successor/predecessor
Some important types of linear interval structures

Hereafter, we will mainly consider *linear interval structures*, i.e., interval structures over linear orders. A linear interval structure $\mathbb{I}(D)$ is:

• *(weakly) discrete* if every point with a successor/predecessor has an immediate successor/predecessor, that is,

$$\mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z \leq y \land \forall w (x < w \land w \leq y \rightarrow z \leq w)))$$

and

$$\mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x \leq z \land z < y \land \forall w (x \leq w \land w < y \rightarrow w \leq z)))$$
Some important types of linear interval structures

Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders. A linear interval structure $I(D)$ is:

- (weakly) discrete if every point with a successor/predecessor has an immediate successor/predecessor, that is,

 $$I(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z \leq y \land \forall w (x < w \land w \leq y \rightarrow z \leq w)))$$

 and

 $$I(D) \models \forall x \forall y (x < y \rightarrow \exists z (x \leq z \land z < y \land \forall w (x \leq w \land w < y \rightarrow w \leq z)))$$;

- dense if between every two different points there exists another point
Some important types of linear interval structures
Hereafter, we will mainly consider *linear interval structures*, i.e., interval structures over linear orders. A linear interval structure $\mathbb{I}(D)$ is:

- **(weakly) discrete** if every point with a successor/predecessor has an immediate successor/predecessor, that is,

 \[
 \mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z \leq y \land \forall w (x < w \land w \leq y \rightarrow z \leq w))),
 \]

 and

 \[
 \mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x \leq z \land z < y \land \forall w (x \leq w \land w < y \rightarrow w \leq z)));
 \]

- **dense** if between every two different points there exists another point, i.e.:

 \[
 \mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y));
 \]
Some important types of linear interval structures
Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders. A linear interval structure $I(D)$ is:

- (weakly) discrete if every point with a successor/predecessor has an immediate successor/predecessor, that is,
 $$
 I(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z \leq y \land \forall w (x < w \land w \leq y \rightarrow z \leq w))),
 $$
 and
 $$
 I(D) \models \forall x \forall y (x < y \rightarrow \exists z (x \leq z \land z < y \land \forall w (x \leq w \land w < y \rightarrow w \leq z))).
 $$

- dense if between every two different points there exists another point, i.e.:
 $$
 I(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y));
 $$

- unbounded above (resp., below) if every point has a successor (resp., predecessor); unbounded if unbounded above and below;
Some important types of linear interval structures

Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders. A linear interval structure $\mathbb{I}(D)$ is:

- **(weakly) discrete** if every point with a successor/predecessor has an immediate successor/predecessor, that is,

 $$\mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z \leq y \land \forall w (x < w \land w \leq y \rightarrow z \leq w)))$$

 and

 $$\mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x \leq z \land z < y \land \forall w (x \leq w \land w < y \rightarrow w \leq z)))$$

- **dense** if between every two different points there exists another point, i.e.:

 $$\mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$$

- **unbounded above** (resp., **below**) if every point has a successor (resp., predecessor); **unbounded** if unbounded above and below;

- **Dedekind complete** if every non-empty and bounded above set of points has a least upper bound.
Some important types of linear interval structures

Hereafter, we will mainly consider linear interval structures, i.e., interval structures over linear orders. A linear interval structure $\mathbb{I}(D)$ is:

- **(weakly) discrete** if every point with a successor/predecessor has an immediate successor/predecessor, that is,
 \[
 \mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z \leq y \land \forall w (x < w \land w \leq y \rightarrow z \leq w)),
 \]
 and
 \[
 \mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x \leq z \land z < y \land \forall w (x \leq w \land w < y \rightarrow w \leq z))).
 \]

- **dense** if between every two different points there exists another point, i.e.:
 \[
 \mathbb{I}(D) \models \forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y));
 \]

- **unbounded above** (resp., **below**) if every point has a successor (resp., predecessor); **unbounded** if unbounded above and below;

- **Dedekind complete** if every non-empty and bounded above set of points has a least upper bound.

We will also consider the single interval structures on \mathbb{N}, \mathbb{Z}, \mathbb{Q}, and \mathbb{R} with their usual orders.
Binary relations between intervals

There are 13 binary relations between two intervals on a linear order: those below and their inverses (the so-called Allen’s relations).
Binary relations between intervals

There are 13 binary relations between two intervals on a linear order: those below and their inverses (the so-called Allen’s relations).

- equals:
- ends:
- during:
- begins:
- overlaps:
- meets:
- before:
Sub-interval relations
Natural binary relations between intervals, definable in terms of Allen’s relations, are the *sub-interval relations* which come in three versions.
Natural binary relations between intervals, definable in terms of Allen’s relations, are the *sub-interval relations* which come in three versions.

Given a partial order $\langle D, < \rangle$ and intervals $[s_0, s_1]$ and $[d_0, d_1]$ in it:
Sub-interval relations

Natural binary relations between intervals, definable in terms of Allen’s relations, are the *sub-interval relations* which come in three versions.

Given a partial order \(\langle D, < \rangle \) and intervals \([s_0, s_1]\) and \([d_0, d_1]\) in it:

- \([s_0, s_1]\) is a sub-interval of \([d_0, d_1]\) if \(d_0 \leq s_0\) and \(s_1 \leq d_1\).

This relation of sub-interval will be denoted by \(\sqsubseteq\).
Natural binary relations between intervals, definable in terms of Allen’s relations, are the \textit{sub-interval relations} which come in three versions.

Given a partial order \(\langle D, \prec \rangle \) and intervals \([s_0, s_1]\) and \([d_0, d_1]\) in it:

- \([s_0, s_1]\) is a \textbf{sub-interval} of \([d_0, d_1]\) if \(d_0 \leq s_0\) and \(s_1 \leq d_1\).

 This relation of sub-interval will be denoted by \(\sqsubseteq\);

- \([s_0, s_1]\) is a \textbf{proper sub-interval} of \([d_0, d_1]\), denoted \([s_0, s_1] \sqsubset [d_0, d_1]\), if \([s_0, s_1] \sqsubseteq [d_0, d_1]\) and \([s_0, s_1] \neq [d_0, d_1]\).
Sub-interval relations

Natural binary relations between intervals, definable in terms of Allen’s relations, are the sub-interval relations which come in three versions.

Given a partial order $\langle D, < \rangle$ and intervals $[s_0, s_1]$ and $[d_0, d_1]$ in it:

- $[s_0, s_1]$ is a sub-interval of $[d_0, d_1]$ if $d_0 \leq s_0$ and $s_1 \leq d_1$. This relation of sub-interval will be denoted by \sqsubseteq;
- $[s_0, s_1]$ is a proper sub-interval of $[d_0, d_1]$, denoted $[s_0, s_1] \subset [d_0, d_1]$, if $[s_0, s_1] \sqsubseteq [d_0, d_1]$ and $[s_0, s_1] \neq [d_0, d_1]$.
- $[s_0, s_1]$ is a strict sub-interval of $[d_0, d_1]$ (Allen’s relation during), denoted $[s_0, s_1] \prec [d_0, d_1]$, if $d_0 < s_0$ and $s_1 < d_1$.
Ternary relations between intervals
Splitting of an interval in two defines the ternary relation \text{chop}:
Ternary relations between intervals

Splitting of an interval in two defines the ternary relation **chop**:

\[
\begin{array}{c}
\hline
k \\
\hline
i & j
\end{array}
\]

i.e., \(C_{ijk} \) if \(i \) meets \(j \), \(i \) begins \(k \), and \(j \) ends \(k \).
Ternary relations between intervals

Splitting of an interval in two defines the ternary relation \textit{chop}:

\[
\begin{array}{c}
\hline
k \\
\hline
i & j
\end{array}
\]

i.e., C_{ijk} if i meets j, i begins k, and j ends k.

The relation \textit{chop} has 5 associated ‘residual’ relations, e.g.:
Ternary relations between intervals

Splitting of an interval in two defines the ternary relation \textit{chop}: \[k \]
\[i \]
\[j \]

i.e., \(C_{ijk} \) if \(i \) meets \(j \), \(i \) begins \(k \), and \(j \) ends \(k \).

The relation \textit{chop} has 5 associated ‘residual’ relations, e.g.:

\[C'_{ijk} \text{ iff } C_{kji}, \]
Ternary relations between intervals

Splitting of an interval in two defines the ternary relation chop:

```
  k
 /  \
 i   j
```

i.e., C_{ijk} if i meets j, i begins k, and j ends k.

The relation chop has 5 associated ‘residual’ relations, e.g.:

C'_{ijk} iff C_{kji},

C''_{ijk} iff C_{ikj},
Relational interval structures and interval frames
Relational interval structures and interval frames

Relational interval structure: an interval structure enriched with one or more interval relations.
Relational interval structures and interval frames

Relational interval structure: an interval structure enriched with one or more interval relations. For instance:
Relational interval structures and interval frames

Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
- begin-end structures,
Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
- begin-end structures,
- neighborhood structures,
Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
- begin-end structures,
- neighborhood structures,
- chop structures, etc.
Relational interval structures and interval frames

Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
- begin-end structures,
- neighborhood structures,
- chop structures, etc.

More generally, let $\mathcal{R} = \{R_1, \ldots, R_k\}$ be a family of interval relations, hereafter called an interval relational type.
Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
- begin-end structures,
- neighborhood structures,
- chop structures, etc.

More generally, let $\mathcal{R} = \{R_1, \ldots, R_k\}$ be a family of interval relations, hereafter called an interval relational type.

An interval \mathcal{R}-structure is a relational interval structure of the type $\langle \mathbb{I}(D), R_1, \ldots, R_k \rangle$.
Relational interval structures and interval frames

Relational interval structure: an interval structure enriched with one or more interval relations. For instance:

- sub-interval structures,
- begin-end structures,
- neighborhood structures,
- chop structures, etc.

More generally, let \(\mathcal{R} = \{R_1, \ldots, R_k\} \) be a family of interval relations, hereafter called an interval relational type.

An interval \(\mathcal{R} \)-structure is a relational interval structure of the type \(\langle \mathbb{I}(D), R_1, \ldots, R_k \rangle \).

An interval \(\mathcal{R} \)-frame is any abstract relational structure of the type \(\langle I, R_1, \ldots, R_k \rangle \), where \(I \) is a non-empty set and \(R_1, \ldots, R_k \) are relations on \(I \) corresponding to \(R_1, \ldots, R_k \).
Example: Begin-End structures and frames
Example: Begin-End structures and frames

Interval BE-structure: $\langle \mathbb{I}(D), B, E \rangle$, where $\mathbb{I}(D)$ is a linear interval structure and B, E are the binary relations ‘begins’ and ‘ends’ in $\mathbb{I}(D)$
Example: Begin-End structures and frames

Interval BE-structure: $\langle \mathbb{I}(D), B, E \rangle$, where $\mathbb{I}(D)$ is a linear interval structure and B, E are the binary relations ‘begins’ and ‘ends’ in $\mathbb{I}(D)$, i.e.:
Example: Begin-End structures and frames

Interval BE-structure: \(\langle \mathbb{I}(D), B, E \rangle \), where \(\mathbb{I}(D) \) is a linear interval structure and \(B, E \) are the binary relations ‘begins’ and ‘ends’ in \(\mathbb{I}(D) \), i.e.:

- \(iBj \) holds if and only the interval \(i \) is a proper beginning of the interval \(j \), i.e., \(i = [d_0, d_1] \) and \(j = [d_0, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 \leq d_1 < d_2 \).
Example: Begin-End structures and frames

Interval BE-structure: \(\langle \mathbb{I}(D), B, E \rangle \), where \(\mathbb{I}(D) \) is a linear interval structure and \(B, E \) are the binary relations ‘begins’ and ‘ends’ in \(\mathbb{I}(D) \), i.e.:

- \(i B j \) holds if and only the interval \(i \) is a \textit{proper beginning} of the interval \(j \), i.e., \(i = [d_0, d_1] \) and \(j = [d_0, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 \leq d_1 < d_2 \).

- \(i E j \) holds if and only \(i \) is a \textit{proper end} of \(j \), i.e., \(i = [d_1, d_2] \) and \(j = [d_0, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 < d_1 \leq d_2 \).
Example: Begin-End structures and frames

Interval BE-structure: \(\langle \mathbb{I}(D), B, E \rangle \), where \(\mathbb{I}(D) \) is a linear interval structure and \(B, E \) are the binary relations ‘begins’ and ‘ends’ in \(\mathbb{I}(D) \), i.e.:

- \(iBj \) holds if and only the interval \(i \) is a proper beginning of the interval \(j \), i.e., \(i = [d_0, d_1] \) and \(j = [d_0, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 \leq d_1 < d_2 \).

- \(iEj \) holds if and only \(i \) is a proper end of \(j \), i.e., \(i = [d_1, d_2] \) and \(j = [d_0, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 < d_1 \leq d_2 \).

Strict interval BE-structure: \(\langle \mathbb{I}^-(D), B, E \rangle \).
Example: Begin-End structures and frames

Interval BE-structure: $\langle \mathbb{I}(D), B, E \rangle$, where $\mathbb{I}(D)$ is a linear interval structure and B, E are the binary relations ‘begins’ and ‘ends’ in $\mathbb{I}(D)$, i.e.:

- iBj holds if and only the interval i is a proper beginning of the interval j, i.e., $i = [d_0, d_1]$ and $j = [d_0, d_2]$ for some $d_0, d_1, d_2 \in D$ such that $d_0 \leq d_1 < d_2$.

- iEj holds if and only i is a proper end of j, i.e., $i = [d_1, d_2]$ and $j = [d_0, d_2]$ for some $d_0, d_1, d_2 \in D$ such that $d_0 < d_1 \leq d_2$.

Strict interval BE-structure: $\langle \mathbb{I}^-(D), B, E \rangle$.

BE-frame: a relational structure $F = \langle I, B, E \rangle$ where I is a non-empty set and B, E are binary relations on I.
Abstract (first-order) characterizations and representation theorems for interval frames
Abstract (first-order) characterizations and representation theorems for interval frames

Let $\mathcal{R} = \{R_1, \ldots, R_k\}$ be an interval relational type.
Abstract (first-order) characterizations
and representation theorems for interval frames

Let $\mathcal{R} = \{R_1, \ldots, R_k\}$ be an interval relational type.

A first-order isomorphism characterization of the type \mathcal{R} is a set of
sentences Γ in the first-order language respective to \mathcal{R} such that
any interval \mathcal{R}-frame satisfies all sentences in Γ iff it is isomorphic
to an interval \mathcal{R}-structure.
Abstract (first-order) characterizations and representation theorems for interval frames

Let \(\mathcal{R} = \{R_1, \ldots, R_k\} \) be an interval relational type.

A first-order **isomorphism characterization** of the type \(\mathcal{R} \) is a set of sentences \(\Gamma \) in the first-order language respective to \(\mathcal{R} \) such that any interval \(\mathcal{R} \)-frame satisfies all sentences in \(\Gamma \) iff it is isomorphic to an interval \(\mathcal{R} \)-structure.

Likewise, a first-order **embedding characterization** of the type \(\mathcal{R} \) is a set of sentences \(\Gamma \) in the first-order language respective to \(\mathcal{R} \) such that any interval \(\mathcal{R} \)-frame satisfies all sentences in \(\Gamma \) iff it is isomorphically embeddable into an interval \(\mathcal{R} \)-structure.
Abstract (first-order) characterizations and representation theorems for interval frames

Let $\mathcal{R} = \{R_1, \ldots, R_k\}$ be an interval relational type.

A first-order isomorphism characterization of the type \mathcal{R} is a set of sentences Γ in the first-order language respective to \mathcal{R} such that any interval \mathcal{R}-frame satisfies all sentences in Γ iff it is isomorphic to an interval \mathcal{R}-structure.

Likewise, a first-order embedding characterization of the type \mathcal{R} is a set of sentences Γ in the first-order language respective to \mathcal{R} such that any interval \mathcal{R}-frame satisfies all sentences in Γ iff it is isomorphically embeddable into an interval \mathcal{R}-structure.

An important general problem is to establish abstract (first-order) characterizations of various interval relational types.
Abstract (first-order) characterizations
and representation theorems for interval frames

Let $\mathcal{R} = \{R_1, \ldots, R_k\}$ be an interval relational type.

A first-order isomorphism characterization of the type \mathcal{R} is a set of sentences Γ in the first-order language respective to \mathcal{R} such that any interval \mathcal{R}-frame satisfies all sentences in Γ iff it is isomorphic to an interval \mathcal{R}-structure.

Likewise, a first-order embedding characterization of the type \mathcal{R} is a set of sentences Γ in the first-order language respective to \mathcal{R} such that any interval \mathcal{R}-frame satisfies all sentences in Γ iff it is isomorphically embeddable into an interval \mathcal{R}-structure.

An important general problem is to establish abstract (first-order) characterizations of various interval relational types.

Such results are known as representation theorems.
Representation theorem for interval BE-frames - 1

Interval BE-frame: BE-frame $\mathcal{F} = \langle I, B, E \rangle$ satisfying the following:
Representation theorem for interval BE-frames - 1

Interval BE-frame: BE-frame $F = \langle I, B, E \rangle$ satisfying the following:

TR: *Transitivity* of B and E.
Representation theorem for interval BE-frames - 1

Interval BE-frame: BE-frame $\mathbf{F} = \langle I, B, E \rangle$ satisfying the following:

TR: *Transitivity of* B *and* E.

LL: *Left linearity of* B *and* E:

$$\forall x \forall y \forall z (xBz \land yBz \rightarrow xBy \lor x = y \lor yBx),$$

and likewise for E.
Representation theorem for interval BE-frames - 1

Interval BE-frame: $\mathbf{F} = \langle I, B, E \rangle$ satisfying the following:

TR: *Transitivity of B and E.*

$\forall x \forall y \forall z (x B z \land y B z \rightarrow x B y \lor x = y \lor y B x)$, and likewise for E.

LL: *Left linearity of B and E.*

$\forall x \forall y \forall z (x B z \land y B z \rightarrow x B y \lor x = y \lor y B x)$, and likewise for E.

AT: *Atomicity for B and E.*

$\forall x (\exists z (z B x) \rightarrow \exists y (y B x \land \neg \exists z (z B y)))$, and likewise for E.
Interval BE-frame: BE-frame $\mathbf{F} = \langle I, B, E \rangle$ satisfying the following:

TR: *Transitivity* of B and E:
$$\forall x \forall y \forall z (xBz \land yBz \rightarrow xBy \lor x = y \lor yBx),$$ and likewise for E.

LL: *Left linearity* of B and E:
$$\forall x \forall y \forall z (xBz \land yBz \rightarrow xBy \lor x = y \lor yBx),$$ and likewise for E.

AT: *Atomicity* for B and E:
$$\forall x (\exists z (zBx) \rightarrow \exists y (yBx \land \neg \exists z (zBy))),$$ and likewise for E.

PI: *Proper intervals*:
$$\forall x (\exists z (zBx) \leftrightarrow \exists z (zEx)).$$
Representation theorem for interval BE-frames - 1

Interval BE-frame $\mathbf{F} = \langle I, B, E \rangle$ satisfying the following:

TR: *Transitivity* of B and E:
\[
\forall x \forall y \forall z (xBz \land yBz \rightarrow xBy \lor x = y \lor yBx), \text{ and likewise for } E.
\]

LL: *Left linearity* of B and E:
\[
\forall x (\exists z (zBx) \rightarrow \exists y (yBx \land \neg \exists z (zBy))), \text{ and likewise for } E.
\]

AT: *Atomicity* for B and E:
\[
\forall x (\exists z (zBx) \leftrightarrow \exists z (zEx)), \text{ and likewise for } E.
\]

PI: *Proper intervals*:
\[
\forall x \forall y \forall z (xBy \land xEz \rightarrow \exists ! u (zBu \land y Eu)),
\]
\[
\forall x \forall y \forall z (xBy \land zEx \rightarrow \exists ! u (zBu \land uEy)),
\]
\[
\forall x \forall y \forall z (xEy \land zBx \rightarrow \exists ! u (uBy \land zEu)).
\]
Representation theorem for interval BE-frames - 1

Interval BE-frame $\mathbf{F} = \langle I, B, E \rangle$ satisfying the following:

TR: Transitivity of B and E:

$\forall x \forall y \forall z (x B z \land y B z \rightarrow x B y \lor x = y \lor y B x)$, and likewise for E.

LL: Left linearity of B and E:

$\forall x (\exists z (z B x) \rightarrow \exists y (y B x \land \neg \exists z (z B y)))$, and likewise for E.

AT: Atomicity for B and E:

$\forall x (\exists z (z B x) \leftrightarrow \exists z (z E x))$.

PI: Proper intervals:

$\forall x \forall y \forall z (x B y \land x E z \rightarrow \exists ! u (z B u \land y E u))$,

$\forall x \forall y \forall z (x B y \land z E x \rightarrow \exists ! u (z B u \land u E y))$,

$\forall x \forall y \forall z (x E y \land z B x \rightarrow \exists ! u (u B y \land z E u))$.

UD: Unique directedness of intervals:

$\forall x \forall y \forall z (x B y \land x E z \rightarrow \exists ! u (z B u \land y E u))$,

$\forall x \forall y \forall z (x B y \land z E x \rightarrow \exists ! u (z B u \land u E y))$,

$\forall x \forall y \forall z (x E y \land z B x \rightarrow \exists ! u (u B y \land z E u))$.

NO: No overlap of B and E:

$\neg \exists x \exists y (x B y \land x E y)$.
Representation theorem for interval BE-frames

A BE-frame is an interval BE-frame iff it is isomorphic to an interval BE-structure.

Interval neighborhood structures
Interval neighborhood structures

Interval neighborhood structure: $\langle \mathbb{I}(D), R, L \rangle$, where $\mathbb{I}(D)$ is a linear interval structure and R, L are the binary relations ‘right neighbor’ and ‘left neighbor’ in $\mathbb{I}(D)$.
Interval neighborhood structures: \(\langle \mathbb{I}(D), R, L \rangle \), where \(\mathbb{I}(D) \) is a linear interval structure and \(R, L \) are the binary relations ‘right neighbor’ and ‘left neighbor’ in \(\mathbb{I}(D) \), i.e.
Interval neighborhood structures

Interval neighborhood structure: \(\langle \mathbb{I}(D), R, L \rangle \), where \(\mathbb{I}(D) \) is a linear interval structure and \(R, L \) are the binary relations ‘right neighbor’ and ‘left neighbor’ in \(\mathbb{I}(D) \), i.e.:

- \(iRj \) holds if and only the interval \(j \) is a right neighbor of the interval \(i \), i.e. \(i = [d_0, d_1] \) and \(j = [d_1, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 \leq d_1 \leq d_2 \).
Interval neighborhood structure: $\langle \mathbb{I}(D), R, L \rangle$, where $\mathbb{I}(D)$ is a linear interval structure and R, L are the binary relations ‘right neighbor’ and ‘left neighbor’ in $\mathbb{I}(D)$, i.e.:

- $i R j$ holds if and only the interval j is a right neighbor of the interval i, i.e. $i = [d_0, d_1]$ and $j = [d_1, d_2]$ for some $d_0, d_1, d_2 \in D$ such that $d_0 \leq d_1 \leq d_2$.
- L is the inverse of R, i.e., $i L j$ iff $j R i$.

Interval neighborhood structures

Interval neighborhood structure: \(\langle I(D), R, L \rangle \), where \(I(D) \) is a linear interval structure and \(R, L \) are the binary relations ‘right neighbor’ and ‘left neighbor’ in \(I(D) \), i.e.:

- \(iRj \) holds if and only the interval \(j \) is a right neighbor of the interval \(i \), i.e. \(i = [d_0, d_1] \) and \(j = [d_1, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 \leq d_1 \leq d_2 \).

- \(L \) is the inverse of \(R \), i.e., \(iLj \iff jRi \).

Strict interval neighborhood structure: \(\langle I^-(D), R, L \rangle \).
Interval neighborhood structure: \(\langle \mathbb{I}(D), R, L \rangle \), where \(\mathbb{I}(D) \) is a linear interval structure and \(R, L \) are the binary relations ‘right neighbor’ and ‘left neighbor’ in \(\mathbb{I}(D) \), i.e.:

- \(\textbf{i} R \textbf{j} \) holds if and only the interval \(\textbf{j} \) is a right neighbor of the interval \(\textbf{i} \), i.e. \(\textbf{i} = [d_0, d_1] \) and \(\textbf{j} = [d_1, d_2] \) for some \(d_0, d_1, d_2 \in D \) such that \(d_0 \leq d_1 \leq d_2 \).

- \(L \) is the inverse of \(R \), i.e., \(\textbf{i} L \textbf{j} \) iff \(\textbf{j} R \textbf{i} \).

Strict interval neighborhood structure: \(\langle \mathbb{I}^{-}(D), R, L \rangle \).

Thus, interval neighborhood structures correspond to the interval relation ‘meet’ and its inverse.
Neighborhood frames
Neighborhood frames

Neighborhood frame (NF):

\(\mathbf{F} = \langle I, R, L \rangle \) where \(I \neq \emptyset \) and \(R, L \subseteq I^2 \).
Neighborhood frame (NF):
\[F = \langle I, R, L \rangle \text{ where } I \neq \emptyset \text{ and } R, L \subseteq I^2. \]

We denote:
Neighborhood frame (NF):
\(F = \langle I, R, L \rangle \) where \(I \neq \emptyset \) and \(R, L \subseteq I^2 \).

We denote:

- \(B_F = \{ w \in I \mid \text{there is no } v \in I \text{ such that } wLv \} \),
Neighborhood frames

Neighborhood frame (NF): \(\mathbf{F} = \langle \mathbf{I}, R, L \rangle \) where \(\mathbf{I} \neq \emptyset \) and \(R, L \subseteq \mathbf{I}^2 \).

We denote:

- \(\mathbf{B}_F = \{ w \in \mathbf{I} \mid \text{there is no } v \in \mathbf{I} \text{ such that } wLv \} \),
- \(\mathbf{B}_F^2 = \{ w \in \mathbf{I} \mid \text{there are no } u, v \in \mathbf{I}, \text{ with } u \neq v, \text{ such that } wLv \text{ and } wLu \} \),
Neighborhood frames

Neighborhood frame (NF): \(F = \langle I, R, L \rangle \) where \(I \neq \emptyset \) and \(R, L \subseteq I^2 \).

We denote:

- \(B_F = \{ w \in I \mid \text{there is no } v \in I \text{ such that } wLv \} \),
- \(B^2_F = \{ w \in I \mid \text{there are no } u, v \in I, \text{ with } u \neq v, \text{ such that } wLv \text{ and } wLu \} \),
- \(E_F \) and \(E^2_F \) are defined likewise, by swapping \(L \) with \(R \).
Neighborhood frames

Neighborhood frame (NF): \(F = \langle I, R, L \rangle \) where \(I \neq \emptyset \) and \(R, L \subseteq I^2 \).

We denote:

- \(B_F = \{ w \in I \mid \text{there is no } v \in I \text{ such that } wLv \} \),
- \(B_F^2 = \{ w \in I \mid \text{there are no } u, v \in I, \text{ with } u \neq v, \text{ such that } wLv \text{ and } wLu \} \),
- \(E_F \) and \(E_F^2 \) are defined likewise, by swapping \(L \) with \(R \).

For every sequence \(S_1, ..., S_k \in \{ R, L \} \), we denote the composition of the relations \(S_1, ..., S_k \) by \(S_1...S_k \).
Interval neighborhood frames
Interval neighborhood frames

Interval neighborhood frame: neighborhood frame \(F = \langle I, R, L \rangle \) satisfying:
Interval neighborhood frames

Interval neighborhood frame: neighborhood frame $F = \langle I, R, L \rangle$ satisfying:

$(NF1)$ R and L are mutually inverse.
Interval neighborhood frames

Interval neighborhood frame: neighborhood frame NF \(F = \langle I, R, L \rangle \) satisfying:

NF1 \(R \) and \(L \) are mutually inverse.

NF2 \(\forall x \forall y (\exists z (xLz \land zRy) \rightarrow \forall z (xLz \rightarrow zRy)) \), and \(\forall x \forall y (\exists z (xRz \land zLy) \rightarrow \forall z (xRz \rightarrow zLy)) \).
Interval neighborhood frames

Interval neighborhood frame: neighborhood frame $\mathbf{F} = \langle I, R, L \rangle$ satisfying:

- **(NF1)** R and L are mutually inverse.

- **(NF2)** $\forall x \forall y (\exists z (xLz \land zRy) \rightarrow \forall z (xLz \rightarrow zRy))$, and $\forall x \forall y (\exists z (xRz \land zLy) \rightarrow \forall z (xRz \rightarrow zLy))$.

- **(NF3')** $RL \subseteq LRR \cup LLR \cup E$ on $I - B^2_F$, where E is the equality, i.e.,
Interval neighborhood frames

Interval neighborhood frame: neighborhood frame NF_F satisfying:

(NF1) R and L are mutually inverse.

(NF2) $\forall x \forall y (\exists z(xLz \land zRy) \rightarrow \forall z(xLz \rightarrow zRy))$, and $\forall x \forall y (\exists z(xRz \land zLy) \rightarrow \forall z(xRz \rightarrow zLy))$.

(NF3') $RL \subseteq LRR \cup LLR \cup E$ on $I - B_F^2$, where E is the equality, i.e., $\forall x \forall y (\exists z \exists u(xLz \land zLu) \land \exists z(xRz \land zLy) \rightarrow x = y \lor \exists w \exists z((xLw \land wRz \land zRy) \lor (xLw \land wLz \land zRy)))$.
Interval neighborhood frames

Interval neighborhood frame: neighborhood frame $F = \langle I, R, L \rangle$ satisfying:

(NF1) R and L are mutually inverse.

(NF2) $\forall x \forall y (\exists z (xLz \land zRy)) \rightarrow \forall z (xLz \rightarrow zRy)$, and $\forall x \forall y (\exists z (xRz \land zLy)) \rightarrow \forall z (xRz \rightarrow zLy)$.

(NF3') $RL \subseteq LRR \cup LLR \cup E$ on $I - F^2$, where E is the equality, i.e.,

$\forall x \forall y (\exists z \exists u (xLz \land zLu)) \land \exists z (xRz \land zLy) \rightarrow x = y \lor \exists w \exists z ((xLw \land wRz \land zRy) \lor (xLw \land wLz \land zRy))$.

(NF3'') Likewise, $LR \subseteq RLL \cup RRL \cup E$ on $I - E^2_F$.

Interval neighborhood frames

Interval neighborhood frame: neighborhood frame $NF F = \langle I, R, L \rangle$ satisfying:

1. **(NF1)** R and L are mutually inverse.

2. **(NF2)** $\forall x \forall y (\exists z (x L z \land z R y) \rightarrow \forall z (x L z \rightarrow z R y))$, and $\forall x \forall y (\exists z (x R z \land z L y) \rightarrow \forall z (x R z \rightarrow z L y))$.

3. **(NF3')** $R L \subseteq L R R \cup L L R \cup E$ on $I - B^2_F$, where E is the equality, i.e., $\forall x \forall y (\exists z \exists u (x L z \land z L u) \land \exists z (x R z \land z L y) \rightarrow x = y \lor \exists w \exists z ((x L w \land w R z \land z L y) \lor (x L w \land w L z \land z R y)))$.

4. **(NF3'')** Likewise, $L R \subseteq R L L \cup R R L \cup E$ on $I - E^2_F$.

5. **(NF4)** $R R R \subseteq R R$, i.e., $\forall w \forall x \forall y \forall z (w R x \land x R y \land y R z \rightarrow \exists u (w R u \land u R z))$.
Some properties of interval neighborhood frames
Some properties of interval neighborhood frames

An interval neighborhood frame $\mathbf{F} = \langle I, R, L \rangle$ is said to be:
Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive.
Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
Some properties of interval neighborhood frames

An interval neighborhood frame $\mathbf{F} = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);

- **open**, if $\mathbf{F} \models \forall x(\exists y(xLy) \land \exists y(xRy))$;
Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
- **open**, if $F \models \forall x (\exists y (xLy) \land \exists y (xRy))$;
- **rich**, if $F \models \forall x (\exists y (xRy \land yRy) \land \exists y (xLy \land yLy))$.

Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
- **open**, if $F \models \forall x (\exists y (xLy) \land \exists y (xRy))$;
- **rich**, if $F \models \forall x (\exists y (xRy \land yRy) \land \exists y (xLy \land yLy))$;
- **normal**, if $F \models \forall x \forall y (\forall z (zRx \leftrightarrow zRy) \land \forall z (zLx \leftrightarrow zLy) \rightarrow x = y)$;
Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
- **open**, if $F \models \forall x (\exists y (xLy) \land \exists y (xRy))$;
- **rich**, if $F \models \forall x \forall y (\forall z (zRx \leftrightarrow zRy) \land \forall z (zLx \leftrightarrow zLy) \rightarrow x = y)$;
- **normal**, if $F \models \forall x \forall y (\forall z (zRRy \land yRRx) \rightarrow x = y)$;
Some properties of interval neighborhood frames

An interval neighborhood frame $\mathbf{F} = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
- **open**, if $\mathbf{F} \models \forall x (\exists y (xLy) \land \exists y (xRy))$;
- **rich**, if $\mathbf{F} \models \forall x \forall y (\forall z (zRx \leftrightarrow zRy) \land \forall z (zLx \leftrightarrow zLy) \rightarrow x = y)$;
- **normal**, if $\mathbf{F} \models \forall x \forall y (\forall z (zRx \leftrightarrow zRy) \land \forall z (zLx \leftrightarrow zLy) \rightarrow x = y)$;
- **tight**, if $\mathbf{F} \models \forall x \forall y ((xRRy \land yRRx) \rightarrow x = y)$;
- **weakly left-connected** (resp., **weakly right-connected**) if the relation $LR \cup LRR \cup LLR$ (resp., $RL \cup RRL \cup RLL$) is an equivalence relation on $I - B_F$ (resp., $I - E_F$);
Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
- **open**, if $F \models \forall x (\exists y (xLy) \land \exists y (xRy))$;
- **rich**, if $F \models \forall x (\exists y (xRy \land yRy) \land \exists y (xLy \land yLy))$;
- **normal**, if $F \models \forall x \forall y (\forall z (zRx \leftrightarrow zRy) \land \forall z (zLx \leftrightarrow zLy) \rightarrow x = y)$;
- **tight**, if $F \models \forall x \forall y ((xRRy \land yRRx) \rightarrow x = y)$;
- **weakly left-connected** (resp., **weakly right-connected**) if the relation $LR \cup LRR \cup LLR$ (resp., $RL \cup RRL \cup RLL$) is an equivalence relation on $I - B_F$ (resp., $I - E_F$);
- **left-connected** (resp., **right-connected**) if that relation is the universal relation on $I - B_F$ (resp., $I - E_F$);
Some properties of interval neighborhood frames

An interval neighborhood frame $F = \langle I, R, L \rangle$ is said to be:

- **strict**, if the relation LRR is irreflexive, and **non-strict** if LRR is reflexive. (NB: not ‘strict’ does not imply ‘non-strict’);
- **open**, if $F \models \forall x(\exists y(xLy) \land \exists y(xRy))$;
- **rich**, if $F \models \forall x(\exists y(xRy \land yRy) \land \exists y(xLy \land yLy))$;
- **normal**, if $F \models \forall x\forall y(\forall z(zRx \leftrightarrow zRy) \land \forall z(zLx \leftrightarrow zLy) \rightarrow x = y)$;
- **tight**, if $F \models \forall x\forall y((xRRy \land yRRx) \rightarrow x = y)$;
- **weakly left-connected** (resp., **weakly right-connected**) if the relation $LR \cup LRR \cup LLR$ (resp., $RL \cup RRL \cup RLL$) is an equivalence relation on $I - B_F$ (resp., $I - E_F$);
- **left-connected** (resp., **right-connected**) if that relation is the universal relation on $I - B_F$ (resp., $I - E_F$);
- **weakly connected** if each of the relations $LR \cup LRR \cup LLR$ and $RL \cup RRL \cup RLL$ is an equivalence relation on I; **connected**, if each of these relations is the universal relation on I.
Representation theorems for interval neighborhood frames
Representation theorems for interval neighborhood frames

1. Every tight, rich, connected, and normal interval neighborhood frame is isomorphic to a non-strict interval neighborhood structure.
Representation theorems for interval neighborhood frames:

1. Every tight, rich, connected, and normal interval neighborhood frame is isomorphic to a non-strict interval neighborhood structure.

2. Every weakly connected, strict and normal interval neighborhood frame is isomorphic to a strict interval neighborhood structure.
Representation theorems for interval neighborhood frames:

1. Every tight, rich, connected, and normal interval neighborhood frame is isomorphic to a non-strict interval neighborhood structure.

2. Every weakly connected, strict and normal interval neighborhood frame is isomorphic to a strict interval neighborhood structure.

3. Every connected, open, strict and normal interval neighborhood frame is isomorphic to a strict unbounded interval neighborhood structure.

Other representation theorems for classes of interval frames
Other representation theorems for classes of interval frames

- for the *subinterval-precedence*-structure over the rational

Other representation theorems for classes of interval frames

- for the *subinterval-precedence*-structure over the rational numbers:

- for *meet*-structures over dense linear orders:
Other representation theorems for classes of interval frames

- for the subinterval-precedence-structure over the rational

- for meet-structures over dense linear orders

- for point-based structures with a quaternary relation encoding meeting of two intervals

There are still various unexplored representation problems
Summary

• Every partial order has an associated interval structure.
Summary

• Every partial order has an associated interval structure.
• There is a number of interval relations in an interval structure.
Summary

- Every partial order has an associated interval structure.
- There is a number of interval relations in an interval structure. In the case of linear interval structures: 13 ‘Allen’s relations’.
Summary

• Every partial order has an associated interval structure.

• There is a number of interval relations in an interval structure. In the case of linear interval structures: 13 ‘Allen’s relations’.

• Respectively, a large variety of relational interval structures and frames.
• Every partial order has an associated interval structure.

• There is a number of interval relations in an interval structure. In the case of linear interval structures: 13 ‘Allen’s relations’.

• Respectively, a large variety of relational interval structures and frames.

• Representation theorems characterize up to isomorphism (or isomorphic embedding) the class of concrete relational interval structures of a given type.
Summary

• Every partial order has an associated interval structure.

• There is a number of interval relations in an interval structure. In the case of linear interval structures: 13 ‘Allen’s relations’.

• Respectively, a large variety of relational interval structures and frames.

• Representation theorems characterize up to isomorphism (or isomorphic embedding) the class of concrete relational interval structures of a given type.

• Several representation theorems have been obtained, but many interesting cases are still unexplored.
Halpern-Shoham’s modal logic of interval relations
Allen’s interval relations give rise to respective unary modal operators over relational interval structures, thus defining the multimodal logic HS introduced by Halpern and Shoham in 1991.
Allen’s interval relations give rise to respective unary modal operators over relational interval structures, thus defining the multimodal logic HS introduced by Halpern and Shoham in 1991.

In the case of non-strict semantics, it suffices to choose as primitive the modalities $\langle B \rangle, \langle E \rangle, \langle \overline{B} \rangle, \langle \overline{E} \rangle$ corresponding to the relations begins, ends, and their inverses; the other modalities then become definable.
Halpern-Shoham’s modal logic of interval relations

Allen’s interval relations give rise to respective unary modal operators over relational interval structures, thus defining the multimodal logic HS introduced by Halpern and Shoham in 1991.

In the case of non-strict semantics, it suffices to choose as primitive the modalities $\langle B \rangle$, $\langle E \rangle$, $\langle \overline{B} \rangle$, $\langle \overline{E} \rangle$ corresponding to the relations begins, ends, and their inverses; the other modalities then become definable.

Thus, the formulas of HS are:

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \langle B \rangle \phi \mid \langle E \rangle \phi \mid \langle \overline{B} \rangle \phi \mid \langle \overline{E} \rangle \phi.$$
Models for propositional interval logics

\(\mathcal{AP} \): a set of atomic propositions (over intervals).
Models for propositional interval logics

\mathcal{AP}: a set of atomic propositions (over intervals).

Non-strict interval model:

\[M^+ = \langle \mathbb{I}(\mathbb{D})^+, V \rangle, \]

where $V : \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^+}$.
Models for propositional interval logics

\(\mathcal{AP} \): a set of atomic propositions (over intervals).

Non-strict interval model:

\[
\mathbf{M}^+ = \langle \mathbb{I}(\mathbb{D})^+, V \rangle,
\]

where \(V : \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^+} \).

Strict interval model:

\[
\mathbf{M}^- = \langle \mathbb{I}(\mathbb{D})^-, V \rangle,
\]

where \(V : \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^-} \).
Models for propositional interval logics

\(\mathcal{AP} \): a set of atomic propositions (over intervals).

Non-strict interval model:

\[
\mathbf{M}^+ = \langle \mathbb{I}(\mathbb{D})^+, V \rangle,
\]

where \(V : \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^+} \).

Strict interval model:

\[
\mathbf{M}^- = \langle \mathbb{I}(\mathbb{D})^-, V \rangle,
\]

where \(V : \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^-} \).

Thus, \(V(p) \) can be viewed as a binary relation on \(D \).
\mathcal{AP}: a set of atomic propositions (over intervals).

Non-strict interval model:

$$M^+ = \langle \mathbb{I}(\mathbb{D})^+, V \rangle,$$

where $V: \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^+}$.

Strict interval model:

$$M^- = \langle \mathbb{I}(\mathbb{D})^-, V \rangle,$$

where $V: \mathcal{AP} \mapsto 2^{\mathbb{I}(\mathbb{D})^-}$.

Thus, $V(p)$ can be viewed as a binary relation on D.

$I(\mathbb{D})$ will mean either $\mathbb{I}(\mathbb{D})^+$ or $\mathbb{I}(\mathbb{D})^-$, and M will denote a strict or a non-strict interval model.
Semantics of HS

The formal semantics of these modal operators:
Semantics of HS

The formal semantics of these modal operators:

$\langle B \rangle$: $M, [d_0, d_1] \models \langle B \rangle \phi$ if there exists d_2 such that $d_0 \leq d_2 < d_1$ and $M, [d_0, d_2] \not\models \phi$.
Semantics of HS

The formal semantics of these modal operators:

$$\langle B \rangle: \models M, [d_0, d_1] \models \langle B \rangle \phi \text{ if there exists } d_2 \text{ such that } d_0 \leq d_2 < d_1 \text{ and } M, [d_0, d_2] \models \phi.$$

$$\langle E \rangle: \models M, [d_0, d_1] \models \langle E \rangle \phi \text{ if there exists } d_2 \text{ such that } d_0 < d_2 \leq d_1 \text{ and } M, [d_2, d_1] \models \phi.$$
Semantics of HS

The formal semantics of these modal operators:

$\langle B \rangle$: $M, [d_0, d_1] \models \langle B \rangle \phi$ if there exists d_2 such that $d_0 \leq d_2 < d_1$ and $M, [d_0, d_2] \not\models \phi$.

$\langle E \rangle$: $M, [d_0, d_1] \models \langle E \rangle \phi$ if there exists d_2 such that $d_0 < d_2 \leq d_1$ and $M, [d_2, d_1] \not\models \phi$.

$\langle \overline{B} \rangle$: $M, [d_0, d_1] \models \langle \overline{B} \rangle \phi$ if there exists d_2 such that $d_1 < d_2$ and $M, [d_0, d_2] \not\models \phi$.
Semantics of HS

The formal semantics of these modal operators:

\[\langle B \rangle: M, [d_0, d_1] \models \langle B \rangle \phi \text{ if there exists } d_2 \text{ such that } d_0 \leq d_2 < d_1 \text{ and } M, [d_0, d_2] \not\models \phi. \]

\[\langle E \rangle: M, [d_0, d_1] \models \langle E \rangle \phi \text{ if there exists } d_2 \text{ such that } d_0 < d_2 \leq d_1 \text{ and } M, [d_2, d_1] \not\models \phi. \]

\[\langle \overline{B} \rangle: M, [d_0, d_1] \models \langle \overline{B} \rangle \phi \text{ if there exists } d_2 \text{ such that } d_1 < d_2 \text{ and } M, [d_0, d_2] \not\models \phi. \]

\[\langle \overline{E} \rangle: M, [d_0, d_1] \models \langle \overline{E} \rangle \phi \text{ if there exists } d_2 \text{ such that } d_2 < d_0 \text{ and } M, [d_2, d_1] \not\models \phi. \]
The formal semantics of these modal operators:

$\langle B \rangle$: $M, [d_0, d_1] \vDash \langle B \rangle \phi$ if there exists d_2 such that $d_0 \leq d_2 < d_1$
and $M, [d_0, d_2] \vDash \phi$.

$\langle E \rangle$: $M, [d_0, d_1] \vDash \langle E \rangle \phi$ if there exists d_2 such that $d_0 < d_2 \leq d_1$
and $M, [d_2, d_1] \vDash \phi$.

$\langle \overline{B} \rangle$: $M, [d_0, d_1] \vDash \langle \overline{B} \rangle \phi$ if there exists d_2 such that $d_1 < d_2$
and $M, [d_0, d_2] \vDash \phi$.

$\langle \overline{E} \rangle$: $M, [d_0, d_1] \vDash \langle \overline{E} \rangle \phi$ if there exists d_2 such that $d_2 < d_0$
and $M, [d_2, d_1] \vDash \phi$.

Thus, every HS-formula is interpreted in an interval model by a set
of ordered pairs of points, i.e., a binary relation.
Semantics of HS

The formal semantics of these modal operators:

\[\langle B \rangle :: \text{if there exists } d_2 \text{ such that } d_0 \leq d_2 < d_1 \text{ and } M, [d_0, d_2] \models \phi. \]

\[\langle E \rangle :: \text{if there exists } d_2 \text{ such that } d_0 < d_2 \leq d_1 \text{ and } M, [d_2, d_1] \models \phi. \]

Thus, every HS-formula is interpreted in an interval model by a set of ordered pairs of points, i.e., a binary relation.

A useful new symbol is the modal constant \(\pi \) for point-intervals interpreted as follows:

\[M, [d_0, d_1] \models \pi \text{ if } d_0 = d_1. \]
Semantics of HS

The formal semantics of these modal operators:

\[\langle B \rangle: \quad \mathcal{M}, [d_0, d_1] \models \langle B \rangle \phi \text{ if there exists } d_2 \text{ such that } d_0 \leq d_2 < d_1 \text{ and } \mathcal{M}, [d_0, d_2] \not\models \phi.\]

\[\langle E \rangle: \quad \mathcal{M}, [d_0, d_1] \models \langle E \rangle \phi \text{ if there exists } d_2 \text{ such that } d_0 < d_2 \leq d_1 \text{ and } \mathcal{M}, [d_2, d_1] \not\models \phi.\]

\[\overline{\langle B \rangle}: \quad \mathcal{M}, [d_0, d_1] \not\models \overline{\langle B \rangle} \phi \text{ if there exists } d_2 \text{ such that } d_1 < d_2 \text{ and } \mathcal{M}, [d_0, d_2] \not\models \phi.\]

\[\overline{\langle E \rangle}: \quad \mathcal{M}, [d_0, d_1] \not\models \overline{\langle E \rangle} \phi \text{ if there exists } d_2 \text{ such that } d_2 < d_0 \text{ and } \mathcal{M}, [d_2, d_1] \not\models \phi.\]

Thus, every HS-formula is interpreted in an interval model by a set of ordered pairs of points, i.e., a binary relation.

A useful new symbol is the modal constant \(\pi\) for point-intervals interpreted as follows:

\[\mathcal{M}, [d_0, d_1] \not\models \pi \text{ if } d_0 = d_1.\]

It is definable as either \([B] \perp\) or \([E] \perp\), so it is only needed in weaker fragments of HS.
Defining the other interval modalities in HS
Defining the other interval modalities in HS

In the non-strict semantics:
In the non-strict semantics:

- **Right neighbor**: \(\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi) \).
In the non-strict semantics:

- **Right neighbor:** $\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle \overline{B} \rangle \varphi)$. Also denoted \Diamond_r.
Defining the other interval modalities in HS

In the non-strict semantics:

- **Right neighbor**: $\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle \overline{B} \rangle \varphi)$. Also denoted \Diamond_r.
- **Left neighbor**: $\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle \overline{E} \rangle \varphi)$.
Defining the other interval modalities in HS

In the non-strict semantics:

- **Right neighbor:** \(\langle R \rangle \varphi \coloneqq \langle E \rangle (\pi \land \langle B \rangle \varphi) \). Also denoted \(\Diamond_r \).
- **Left neighbor:** \(\langle L \rangle \varphi \coloneqq \langle B \rangle (\pi \land \langle E \rangle \varphi) \). Also denoted \(\Diamond_l \).
Defining the other interval modalities in HS

In the non-strict semantics:

- **Right neighbor**: \(\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi) \). Also denoted \(\Diamond_r \).
- **Left neighbor**: \(\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi) \). Also denoted \(\Diamond_l \).
- **After**: \(\langle L \rangle \varphi := \langle R \rangle (\neg \pi \land \langle R \rangle \varphi) \).
Defining the other interval modalities in HS

In the non-strict semantics:

- **Right neighbor**: $\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi)$. Also denoted \lozenge_r.
- **Left neighbor**: $\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi)$. Also denoted \lozenge_l.
- **After**: $\langle L \rangle \varphi := \langle R \rangle (\neg \pi \land \langle R \rangle \varphi)$.
- **Before**: $\langle \overline{L} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle L \rangle \varphi)$.
Defining the other interval modalities in HS

In the non-strict semantics:

- **Right neighbor**: \(\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi) \). Also denoted \(\Diamond_r \).
- **Left neighbor**: \(\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi) \). Also denoted \(\Diamond_l \).
- **After**: \(\langle \overline{L} \rangle \varphi := \langle R \rangle (\overline{\pi} \land \langle R \rangle \varphi) \).
- **Before**: \(\langle \overline{L} \rangle \varphi := \langle L \rangle (\overline{\pi} \land \langle L \rangle \varphi) \).
- **Overlaps on the right**: \(\langle O \rangle \varphi := \langle E \rangle \langle B \rangle \varphi \);
Defining the other interval modalities in HS

In the non-strict semantics:

- **Right neighbor:** \(\langle R \rangle \varphi := \langle E \rangle(\pi \land \langle B \rangle \varphi) \). Also denoted \(\diamond_r \).
- **Left neighbor:** \(\langle L \rangle \varphi := \langle B \rangle(\pi \land \langle E \rangle \varphi) \). Also denoted \(\diamond_l \).
- **After:** \(\langle L \rangle \varphi := \langle R \rangle(\neg \pi \land \langle R \rangle \varphi) \).
- **Before:** \(\langle L \rangle \varphi := \langle L \rangle(\neg \pi \land \langle L \rangle \varphi) \).
- **Overlaps on the right:** \(\langle O \rangle \varphi := \langle E \rangle \langle B \rangle \varphi \);
- **Overlaps on the left:** \(\langle O \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \);
Defining the other interval modalities in HS

In the non-strict semantics:

- Right neighbor: \(\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi) \). Also denoted \(\Diamond_r \).
- Left neighbor: \(\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi) \). Also denoted \(\Diamond_l \).
- After: \(\langle L \rangle \varphi := \langle R \rangle (\neg \pi \land \langle R \rangle \varphi) \).
- Before: \(\langle \overline{L} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle L \rangle \varphi) \).
- Overlaps on the right: \(\langle O \rangle \varphi := \langle E \rangle \langle B \rangle \varphi \);
- Overlaps on the left: \(\langle \overline{O} \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \);
- During (strict sub-interval): \(\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \).
Defining the other interval modalities in HS

In the non-strict semantics:

- Right neighbor: $\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle \overline{B} \rangle \varphi)$. Also denoted \lozenge_r.
- Left neighbor: $\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi)$. Also denoted \lozenge_l.
- After: $\langle \overline{L} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle R \rangle \varphi)$.
- Before: $\langle \overline{O} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle L \rangle \varphi)$.
- Overlaps on the right: $\langle O \rangle \varphi := \langle E \rangle \langle \overline{B} \rangle \varphi$;
- Overlaps on the left: $\langle \overline{O} \rangle \varphi := \langle B \rangle \langle E \rangle \varphi$;
- During (strict sub-interval): $\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \equiv \langle E \rangle \langle B \rangle \varphi$.
Defining the other interval modalities in HS

In the non-strict semantics:

- Right neighbor: \(\langle R \rangle \varphi := \langle E \rangle(\pi \land \langle B \rangle \varphi)\). Also denoted \(\lozenge_r\).
- Left neighbor: \(\langle L \rangle \varphi := \langle B \rangle(\pi \land \langle E \rangle \varphi)\). Also denoted \(\lozenge_l\).
- After: \(\langle L \rangle \varphi := \langle R \rangle(\lnot \pi \land \langle R \rangle \varphi)\).
- Before: \(\langle L \rangle \varphi := \langle L \rangle(\lnot \pi \land \langle L \rangle \varphi)\).
- Overlaps on the right: \(\langle O \rangle \varphi := \langle E \rangle \langle B \rangle \varphi\);
- Overlaps on the left: \(\langle O \rangle \varphi := \langle B \rangle \langle E \rangle \varphi\);
- During (strict sub-interval): \(\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \equiv \langle E \rangle \langle B \rangle \varphi\).
- Strict super-interval: \(\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi\).
Defining the other interval modalities in HS

In the non-strict semantics:

- Right neighbor: $\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle \overline{B} \rangle \varphi)$. Also denoted \lozenge_r.
- Left neighbor: $\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle \overline{E} \rangle \varphi)$. Also denoted \lozenge_l.
- After: $\langle \overline{L} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle R \rangle \varphi)$.
- Before: $\langle \overline{L} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle L \rangle \varphi)$.
- Overlaps on the right: $\langle O \rangle \varphi := \langle E \rangle \langle \overline{B} \rangle \varphi$;
- Overlaps on the left: $\langle \overline{O} \rangle \varphi := \langle B \rangle \langle \overline{E} \rangle \varphi$;
- During (strict sub-interval): $\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \equiv \langle E \rangle \langle B \rangle \varphi$.
- Strict super-interval: $\langle \overline{D} \rangle \varphi := \langle B \rangle \langle \overline{E} \rangle \varphi \equiv \langle \overline{E} \rangle \langle B \rangle \varphi$.
Defining the other interval modalities in HS

In the non-strict semantics:

- Right neighbor: $\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi)$. Also denoted \blacklozenge_r.
- Left neighbor: $\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi)$. Also denoted \blacklozenge_l.
- After: $\langle L \rangle \varphi := \langle R \rangle (\neg \pi \land \langle R \rangle \varphi)$.
- Before: $\langle \neg L \rangle \varphi := \langle L \rangle (\neg \pi \land \langle L \rangle \varphi)$.
- Overlaps on the right: $\langle O \rangle \varphi := \langle E \rangle \langle B \rangle \varphi$;
- Overlaps on the left: $\langle \neg O \rangle \varphi := \langle B \rangle \langle E \rangle \varphi$;
- During (strict sub-interval): $\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \equiv \langle E \rangle \langle B \rangle \varphi$.
- Strict super-interval: $\langle \neg D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \equiv \langle E \rangle \langle B \rangle \varphi$.

What happens in the strict semantics?
Defining the other interval modalities in HS

In the non-strict semantics:

- Right neighbor: \(\langle R \rangle \varphi := \langle E \rangle (\pi \land \langle B \rangle \varphi) \). Also denoted \(\lozenge_r \).
- Left neighbor: \(\langle L \rangle \varphi := \langle B \rangle (\pi \land \langle E \rangle \varphi) \). Also denoted \(\lozenge_l \).
- After: \(\langle L \rangle \varphi := \langle R \rangle (\neg \pi \land \langle R \rangle \varphi) \).
- Before: \(\langle \overline{L} \rangle \varphi := \langle L \rangle (\neg \pi \land \langle L \rangle \varphi) \).
- Overlaps on the right: \(\langle O \rangle \varphi := \langle E \rangle \langle \overline{B} \rangle \varphi \);
- Overlaps on the left: \(\langle \overline{O} \rangle \varphi := \langle B \rangle \langle \overline{E} \rangle \varphi \);
- During (strict sub-interval): \(\langle D \rangle \varphi := \langle B \rangle \langle E \rangle \varphi \equiv \langle E \rangle \langle B \rangle \varphi \).
- Strict super-interval: \(\langle \overline{D} \rangle \varphi := \langle B \rangle \langle \overline{E} \rangle \varphi \equiv \langle \overline{E} \rangle \langle B \rangle \varphi \).

What happens in the strict semantics? The modalities over the neighborhood relations must be added
Some important fragments of HS
Some important fragments of HS

• Sub-interval logics
Some important fragments of HS

- Sub-interval logics
- Neighborhood logics
Some important fragments of HS

• Sub-interval logics
• Neighborhood logics
• Logics of interval extensions
Some important fragments of HS

- Sub-interval logics
- Neighborhood logics
- Logics of interval extensions
- Overlap logics
Some important fragments of HS

- Sub-interval logics
- Neighborhood logics
- Logics of interval extensions
- Overlap logics
- Begin-End logics
Some important fragments of HS

- Sub-interval logics
- Neighborhood logics
- Logics of interval extensions
- Overlap logics
- Begin-End logics
- Before-After logics
Some important fragments of HS

- Sub-interval logics
- Neighborhood logics
- Logics of interval extensions
- Overlap logics
- Begin-End logics
- Before-After logics.

Each of these, considered over various classes of interval structures: all, dense, (weakly) discrete, finite, etc., with strict or non-strict semantics.
Fragments of HS: logics of sub-intervals

The generic logic of sub-intervals \mathbf{D}: $\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \langle D \rangle \phi$.
Fragments of HS: logics of sub-intervals

The generic logic of sub-intervals \(\textbf{D} \): \(\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \langle \textbf{D} \rangle \phi \).

Semantics: \(\mathcal{M}, [d_0, d_1] \models \langle \textbf{D} \rangle \phi \) iff there exists a sub-interval \([d_2, d_3]\) of \([d_0, d_1]\) such that \(\mathcal{M}, [d_2, d_3] \models \phi \).
Fragments of HS: logics of sub-intervals

The generic logic of sub-intervals D: $\phi ::= p \mid \neg\phi \mid \phi \land \psi \mid \langle D \rangle \phi$.

Semantics: $M, [d_0, d_1] \models \langle D \rangle \phi$ iff there exists a sub-interval $[d_2, d_3]$ of $[d_0, d_1]$ such that $M, [d_2, d_3] \models \phi$.

Variations: reflexive, proper, or strict subinterval relation.
Fragments of HS: logics of sub-intervals

The generic logic of sub-intervals \mathbf{D}: $\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \langle D \rangle \phi$.

Semantics: $M, [d_0, d_1] \models \langle D \rangle \phi$ iff there exists a sub-interval $[d_2, d_3]$ of $[d_0, d_1]$ such that $M, [d_2, d_3] \not\models \phi$.

Variations: reflexive, proper, or strict subinterval relation.

\mathbf{D} is quite expressive, e.g.: for non-trivial combinatorial relationships between width and depth of an interval, of the type:

$$\bigwedge_{i=1}^{d(n)} \langle D \rangle \left(p_i \land \bigwedge_{j \neq i} \langle D \rangle \neg p_j \right) \rightarrow \langle D \rangle^n \top$$

for a large enough $d(n)$.
Fragments of HS: logics of sub-intervals

The generic logic of sub-intervals D: $\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \langle D \rangle \phi$.

Semantics: $M, [d_0, d_1] \models \langle D \rangle \phi$ iff there exists a sub-interval $[d_2, d_3]$ of $[d_0, d_1]$ such that $M, [d_2, d_3] \models \phi$.

Variations: reflexive, proper, or strict subinterval relation.

D is quite expressive, e.g.: for non-trivial combinatorial relationships between width and depth of an interval, of the type:

$$\bigwedge_{i=1}^{d(n)} \langle D \rangle \left(p_i \land \bigwedge_{j \neq i} \langle D \rangle \neg p_j \right) \rightarrow \langle D \rangle^n \top$$

for a large enough $d(n)$.

Also, for special properties of the models, e.g.: the formula

$$\langle D \rangle \langle D \rangle \top \land [D](\langle D \rangle \top \rightarrow \langle D \rangle \langle D \rangle \top \land \langle D \rangle[D] \bot)$$

for proper subinterval relation has no discrete or dense models in the strict semantics, but is satisfiable in the Cantor space over \mathbb{R}.
Fragments of HS: propositional neighborhood logics
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation *meets* (right neighbor) and its inverse *met-by* (left neighbor).
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation *meets* (right neighbor) and its inverse *met-by* (left neighbor).

These modalities are denoted in HS respectively by $\langle A \rangle$ and $\langle \overline{A} \rangle$ and are based on the strict semantics.
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation *meets* (right neighbor) and its inverse *met-by* (left neighbor).

These modalities are denoted in HS respectively by $\langle A \rangle$ and $\langle \overline{A} \rangle$ and are based on the strict semantics.

The language of propositional neighborhood logics for non-strict semantics PNL^+:

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \Diamond_r \phi \mid \Diamond_l \phi.$$
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation *meets* (right neighbor) and its inverse *met-by* (left neighbor).

These modalities are denoted in HS respectively by $\langle A \rangle$ and $\langle \overline{A} \rangle$ and are based on the strict semantics.

The language of propositional neighborhood logics for non-strict semantics PNL^+:

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \Diamond_r \phi \mid \Diamond_l \phi.$$

The dual operators: $\square_r \phi ::= \neg \Diamond_r \neg \phi$ and $\square_l \phi ::= \neg \Diamond_l \neg \phi$.
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation *meets* (right neighbor) and its inverse *met-by* (left neighbor).

These modalities are denoted in HS respectively by $\langle A \rangle$ and $\langle \overline{A} \rangle$ and are based on the strict semantics.

The language of propositional neighborhood logics for non-strict semantics PNL^+:

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \Diamond_r \phi \mid \Diamond_l \phi.$$

The dual operators: $\Box_r \phi ::= \neg \Diamond_r \neg \phi$ and $\Box_l \phi ::= \neg \Diamond_l \neg \phi$.

The formal semantics of the modal operators \Diamond_r and \Diamond_l:
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation \textit{meets} (right neighbor) and its inverse \textit{met-by} (left neighbor).

These modalities are denoted in HS respectively by $\langle A \rangle$ and $\langle \overline{A} \rangle$ and are based on the strict semantics.

The language of propositional neighborhood logics for non-strict semantics PNL$^+$:

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \Diamond_r \phi \mid \Diamond_l \phi.$$

The dual operators: $\Box_r \phi ::= \neg \Diamond_r \neg \phi$ and $\Box_l \phi ::= \neg \Diamond_l \neg \phi$.

The formal semantics of the modal operators \Diamond_r and \Diamond_l:

$$(\Diamond_r) \; M^+, [d_0, d_1] \models \Diamond_r \phi \text{ if there exists } d_2 \text{ such that } d_1 \leq d_2 \text{ and } M^+, [d_1, d_2] \models \phi;$$
Fragments of HS: propositional neighborhood logics

Neighborhood logics: interval logics based on the relation *meets* (right neighbor) and its inverse *met-by* (left neighbor).

These modalities are denoted in HS respectively by $\langle A \rangle$ and $\langle \overline{A} \rangle$ and are based on the strict semantics.

The language of propositional neighborhood logics for non-strict semantics PNL^+:

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \Diamond_r \phi \mid \Diamond_l \phi.$$

The dual operators:

$$\Box_r \phi ::= \neg \Box_l \neg \phi \text{ and } \Box_l \phi ::= \neg \Box_r \neg \phi.$$

The formal semantics of the modal operators \Diamond_r and \Diamond_l:

$$(\Diamond_r) \quad \mathbf{M}^+, [d_0, d_1] \models \Diamond_r \phi \text{ if there exists } d_2 \text{ such that } d_1 \leq d_2 \text{ and } \mathbf{M}^+, [d_1, d_2] \models \phi;$$

$$(\Diamond_l) \quad \mathbf{M}^+, [d_0, d_1] \models \Diamond_l \phi \text{ iff there exists } d_2 \text{ such that } d_2 \leq d_0 \text{ and } \mathbf{M}^+, [d_2, d_0] \models \phi,$$
Venema’s logic CDT
Venema’s logic CDT

Recall the ternary relation *chop*:

```
    k
   __________
  i       j
```
Venema’s logic CDT

Recall the ternary relation \textit{chop}:

\[
\begin{array}{c}
i \\
\hline
k \\
\hline
j \\
\end{array}
\]

The logic CDT contains binary modalities associated with the relation \textit{chop} and its residuals.
Recall the ternary relation \textit{chop}:

\[
\begin{array}{c}
 k \\
 i \quad j \\
\end{array}
\]

The logic CDT contains binary modalities associated with the relation \textit{chop} and its residuals.

Syntax of CDT:

\[
\phi ::= \pi \mid p \mid \neg \phi \mid \phi \land \psi \mid \phi \mathsf{C} \psi \mid \phi \mathsf{D} \psi \mid \phi \mathsf{T} \psi.
\]
Semantics of CDT
Semantics of CDT

Semantics over partial orderings with the linear intervals property:
Semantics of CDT

Semantics over partial orderings with the linear intervals property:

\[C: \ M, [d_0, d_1] \models \phi \quad C \psi \text{ iff there exists } d_2 \in \mathbb{D} \text{ such that:} \]
\[d_0 \leq d_2 \leq d_1, \ M, [d_0, d_2] \models \phi, \text{ and } M, [d_2, d_1] \models \psi. \]
Semantics of CDT

Semantics over partial orderings with the linear intervals property:

\[C: \text{ } M, [d_0, d_1] \models \phi C \psi \text{ iff there exists } d_2 \in \mathbb{D} \text{ such that: } d_0 \leq d_2 \leq d_1, \text{ } M, [d_0, d_2] \models \phi, \text{ and } M, [d_2, d_1] \models \psi. \]

\[D: \text{ } M, [d_0, d_1] \models \phi D \psi \text{ iff there exists } d_2 \in \mathbb{D} \text{ such that: } d_2 \leq d_0, \text{ } M, [d_2, d_0] \models \phi, \text{ and } M, [d_2, d_1] \models \psi. \]
Semantics of CDT

Semantics over partial orderings with the linear intervals property:

\[\text{C: } \mathcal{M}, [d_0, d_1] \models \phi \land \psi \text{ iff there exists } d_2 \in \mathfrak{D} \text{ such that: } d_0 \leq d_2 \leq d_1, \mathcal{M}, [d_0, d_2] \models \phi, \text{ and } \mathcal{M}, [d_2, d_1] \models \psi. \]

\[\text{D: } \mathcal{M}, [d_0, d_1] \models \phi \land \psi \text{ iff there exists } d_2 \in \mathfrak{D} \text{ such that: } d_2 \leq d_0, \mathcal{M}, [d_2, d_0] \models \phi, \text{ and } \mathcal{M}, [d_2, d_1] \models \psi. \]

\[\text{T: } \mathcal{M}, [d_0, d_1] \models \phi \land \psi \text{ iff there exists } d_2 \in \mathfrak{D} \text{ such that: } d_1 \leq d_2, \mathcal{M}, [d_1, d_2] \models \phi, \text{ and } \mathcal{M}, [d_0, d_2] \models \psi. \]

\(\mathfrak{D} \) can be read as **Done**, \(\mathfrak{T} \) as **To do**.
CDT subsumes HS
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C(\neg \pi), \]
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C(\neg \pi), \]

\[\langle E \rangle \phi ::= (\neg \pi) C \phi, \]
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C(\neg \pi), \]
\[\langle E \rangle \phi ::= (\neg \pi) C \phi, \]
\[\langle B \rangle \phi ::= (\neg \pi) T \phi, \]
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C(\neg \pi), \]
\[\langle E \rangle \phi ::= (\neg \pi) C \phi, \]
\[\langle B \rangle \phi ::= (\neg \pi) T \phi, \]
\[\langle E \rangle \phi ::= (\neg \pi) D \phi. \]
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C (\neg \pi), \]
\[\langle E \rangle \phi ::= (\neg \pi) C \phi, \]
\[\langle \overline{B} \rangle \phi ::= (\neg \pi) T \phi, \]
\[\langle \overline{E} \rangle \phi ::= (\neg \pi) D \phi. \]
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C (\neg \pi), \]
\[\langle E \rangle \phi ::= (\neg \pi) C \phi, \]
\[\langle \overline{B} \rangle \phi ::= (\neg \pi) T \phi, \]
\[\langle \overline{E} \rangle \phi ::= (\neg \pi) D \phi. \]

What happens in the strict semantics?

In the strict semantics: replace \(\neg \pi \) by \(\top \).

Thus, CDT is at least as expressive as HS.
CDT subsumes HS

\[\langle B \rangle \phi ::= \phi C (\neg \pi) , \]
\[\langle E \rangle \phi ::= (\neg \pi) C \phi , \]
\[\langle \overline{B} \rangle \phi ::= (\neg \pi) T \phi , \]
\[\langle \overline{E} \rangle \phi ::= (\neg \pi) D \phi . \]

What happens in the strict semantics?

In the strict semantics: replace $\neg \pi$ by \top.

Thus, CDT is at least as expressive as HS.

On the other hand, none of C, D, T is expressible in HS (CDT is strictly more expressive than HS).
Summary

There is a variety of interval logics, based on several parameters:
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
Summary

There is a variety of interval logics, based on several parameters:

• the set of modal operators and the interval relations associated with them;

• the class of ordered structures underlying the models;

• the type of semantics: strict or non-strict.
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
- the type of semantics: strict or non-strict.

Major research problems:
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
- the type of semantics: strict or non-strict.

Major research problems:

- Semantic characterization, representation results;
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
- the type of semantics: strict or non-strict.

Major research problems:

- Semantic characterization, representation results;
- Expressiveness, (un)definability;
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
- the type of semantics: strict or non-strict.

Major research problems:

- Semantic characterization, representation results;
- Expressiveness, (un)definability;
- (Un)decidability of the satisfiability problem and of model checking;
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
- the type of semantics: strict or non-strict.

Major research problems:

- Semantic characterization, representation results;
- Expressiveness, (un)definability;
- (Un)decidability of the satisfiability problem and of model checking;
- Deductive systems;
Summary

There is a variety of interval logics, based on several parameters:

- the set of modal operators and the interval relations associated with them;
- the class of ordered structures underlying the models;
- the type of semantics: strict or non-strict.

Major research problems:

- Semantic characterization, representation results;
- Expressiveness, (un)definability;
- (Un)decidability of the satisfiability problem and of model checking;
- Deductive systems;
- Applications.