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Model checking

Model checking: the desired properties of a system are checked
against a model of it
I the model is usually a (finite) state-transition system
I system properties are specified by a temporal logic (LTL, CTL,

and the like)

Distinctive features of model checking:
I exaustive check of all the possible behaviours
I fully automatic process
I a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

Model checking is usually point-based:
I properties express requirements over points (snapshots) of a

computation (states of the state-transition system)
I they are specified by means of point-based temporal logics

such as LTL and CTL

Interval-based properties express conditions on computation
stretches, e.g., actions with duration, accomplishments, and
temporal aggregations, instead of on computation states

Little work has been done on interval temporal logic (ITL) model
checking (Bozzelli, Lomuscio, Michaliszyn, Molinari, Montanari,
Murano, Perelli, Peron, Sala)
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Outline of the talk

I the model checking problem for interval temporal logics

I complexity results: the general picture

I the case of the interval temporal logic AABBE

I model checking epistemic interval temporal logics

I a comparison with LTL, CTL, and CTL∗ model checking
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The modeling of the system: Kripke structures
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A finite Kripke structure

I HS formulas are interpreted
over (finite) state-transition
systems, whose states are
labeled with sets of
proposition letters (Kripke
structures)

I An interval is a trace (finite
path) in a Kripke structure
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HS: the modal logic of Allen’s interval relations
The thirteen binary ordering relations between two intervals on a
linear order form the set of Allen’s interval relations
They give rise to corresponding unary modalities over frames where
intervals are primitive entities:
I HS features a modality for any Allen ordering relation between

pairs of intervals (except for equality)

Allen rel. HS Definition Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x , y]RA[v , z] ⇐⇒ y � v
before 〈L〉 [x , y]RL[v , z] ⇐⇒ y < v

started-by 〈B〉 [x , y]RB[v , z] ⇐⇒ x � v ∧ z < y
finished-by 〈E〉 [x , y]RE [v , z] ⇐⇒ y � z ∧ x < v
contains 〈D〉 [x , y]RD[v , z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x , y]RO[v , z] ⇐⇒ x < v < y < z

All modalities can be expressed by means of 〈A〉, 〈B〉, 〈E〉, and
their transposed modalities only
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HS semantics and model checking

Truth of a formula ψ over a trace ρ of a Kripke structure K �

(AP ,W , δ, µ,w0) defined by induction on the complexity of ψ:
I K , ρ |� p iff p ∈

⋂
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption);
I negation, disjunction, and conjunction are standard;
I K , ρ |� 〈A〉 ψ iff there is a trace ρ′ s.t. lst(ρ) � fst(ρ′) and

K , ρ′ |� ψ;
I K , ρ |� 〈B〉 ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |� ψ;
I K , ρ |� 〈E〉 ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |� ψ;
I the semantic clauses for 〈A〉, 〈B〉, and 〈E〉 are similar

Model Checking
K |� ψ ⇐⇒ for all initial traces ρ of K , it holds that K , ρ |� ψ

Possibly infinitely many traces!



Interval Temporal Logic Model Checking Angelo Montanari

Remark: HS state semantics (HSst)

I According to the given semantics, HS modalities allow one to
branch both in the past and in the future

ϕ1

〈B〉 ϕ1

ϕ1

〈E〉 ϕ1

ϕ1

〈A〉 ϕ1

ϕ2

〈A〉 ϕ2
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An example: the Kripke structure KSched

v0
∅

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3

r1
r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2



Interval Temporal Logic Model Checking Angelo Montanari

A short account of KSched

KSched models the behaviour of a scheduler serving 3 processes
which are continuously requesting the use of a common resource

Initial state: v0 (no process is served in that state)
In vi and v i the i-th process is served (pi holds in those states)
The scheduler cannot serve the same process twice in two
successive rounds:
I process i is served in state vi , then, after “some time”, a

transition ui from vi to v i is taken; subsequently, process i
cannot be served again immediately, as vi is not directly
reachable from v i

I a transition rj , with j , i, from v i to vj is then taken and process
j is served

It can be easily generalised to an arbitrary number of processes
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Some meaningful properties to be checked over KSched
Validity of properties over all legal computation intervals can be
forced by modality [E] (they are suffixes of at least one initial trace)
Property 1: in any computation interval of length at least 4, at least 2
processes are witnessed (YES/no process can be executed twice in a row)

KSched |� [E]
(
〈E〉3> → (χ(p1 , p2) ∨ χ(p1 , p3) ∨ χ(p2 , p3))

)
,

where χ(p, q)� 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q
Property 2: in any computation interval of length at least 11, process 3 is
executed at least once (NO/the scheduler can postpone the execution of a
process ad libitum)

KSched 6 |� [E](〈E〉10> → 〈E〉 〈A〉 p3)

Property 3: in any computation interval of length at least 6, all processes
are witnessed (NO/the scheduler should be forced to execute them in a
strictly periodic manner, which is not the case)

KSched 6 |� [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3))
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Model checking: the key notion of BEk-descriptor
I The BE-nesting depth of an HS formula ψ (NestBE(ψ)) is the

maximum degree of nesting of modalities B and E in ψ
I Two traces ρ and ρ′ of a Kripke structure K are k-equivalent if

and only if K , ρ |� ψ iff K , ρ′ |� ψ for all HS-formulas ψ with
NestBE(ψ) ≤ k

We provide a suitable tree representation for a trace, called a
BEk-descriptor
The BEk-descriptor for a trace ρ � v0v1..vm−1 vm, denoted BEk (ρ),
is defined as follows:

(v0 , {v1 , .., vm−1}, vm)

. . .

. . .. . .. . .

BEk−1(ρS2 )

. . .. . .. . .

BEk−1(ρS1 )

. . .. . .. . .

. . .

. . .. . .. . .

BEk−1(ρP2 )

. . .. . .. . .

BEk−1(ρP1 )

. . .. . .. . .

← descriptor element

↑ ρP1 , ρP2 , . . . prefixes of ρ ↑ ρS1 , ρS2 , . . . suffixes of ρ

Remark: the descriptor does not feature sibling isomorphic subtrees
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An example of a BE2-descriptor

v0p
v1q

The BE2-descriptor for the
trace ρ � v0v1v40v1 (for the
sake of readability, only the
subtrees for prefixes are
displayed)

(v0 , {v0 , v1}, v1)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {}, v1)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)(v0 , {v0 , v1}, v0)

Remark: the subtree to the left is associated with both prefixes
v0v1v30 and v0v1v40 (there are no sibling isomorphic subtrees in the
descriptor)
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Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?



Interval Temporal Logic Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?



Interval Temporal Logic Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?



Interval Temporal Logic Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?



Interval Temporal Logic Model Checking Angelo Montanari

The logic BE

Theorem
The model checking problem for BE, over finite Kripke structures, is
EXPSPACE-hard

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval
Temporal Logic Model Checking: The Border Between Good and Bad HS
Fragments, IJCAR 2016

Proof (sketch): a polynomial-time reduction from a domino-tiling
problem for grids with rows of single exponential length
I for an instance I of the problem, we build a Kripke structure KI and

a BE formula ϕI in polynomial time
I there is an initial trace of KI satisfying ϕI iff there is a tiling of I
I KI |� ¬ϕI iff there exists no tiling of I
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BE hardness: encoding of the domino-tiling problem

Instance of the tiling problem: (C,∆, n, dinit , dfinal), with C a finite set
of colors and ∆ ⊆ C × C × C × C a set of tuples (cB , cL , cT , cR)

dk
0 dk

1 dk
2 dk

2n−2 dk
2n−1

d j+1
i

d j
i

d j−1
i

d j
i−1 d j

i+1

d0
2d0

1d0
0 d0

2n−2 d0
2n−1dInit

dFin

d j
icjiL cjiR

cjiB �

cjiT

d j−1
i

cj−1i T

String (interval) encoding of the problem

d0
0 0 · · · 00 d0

1 1 · · · 00 · · · d0
2n−1 1 · · · 11 $ d1

0 0 · · · 00 d1
1 1 · · · 00 · · · d1

2n−1 1 · · · 11 $
column 0 column 1 column 2n − 1 column 0 column 1 column 2n − 1

row 0 row 1
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The complexity picture

AABE PSPACE-complete B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete
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PNP[O(log2 n)]
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AB PNP-complete AE PNP-complete
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Prop coNP-complete

AABBE, AAEBE
EXPSPACE

PSPACE-hard

BE nonELEMENTARY

EXPSPACE-hard

full HS nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound
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Three main gaps to fill

The picture shows that there three main gaps to fill:
I full HS and BE are in between nonELEMENTARY and

EXPSPACE

I AABBE,AAEBE,ABBE,AEBE,ABBE, and AEBE are in
between EXPSPACE and PSPACE

I A,A,AA,AB, and AE are in between PNP[O(log2 n)] and
PNP[O(log n)]
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The logic AABBE

Let us consider the case of the logic AABBE, which is obtained
from full HS (AABBEE) by removing modality 〈E〉

A high-level account of the solution:
I we can restrict our attention to prefixes (Bk-descriptors suffice)
I the size of the tree representation of Bk-descriptors is larger

than necessary (redundancy) and it prevents their efficient
exploitation in model checking algorithms

I a trace representative can be chosen to represent a (possibly
infinite) set of traces with the same Bk-descriptor

I a bound, which depends on both the number |W | of states of
the Kripke structure and the B-nesting depth k, can be given to
the length of trace representatives
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Prefix-bisimilarity

Definition (Prefix-bisimilarity)
Two traces ρ and ρ′ are h-prefix bisimilar if the following conditions
inductively hold:
I for h � 0:

fst(ρ) � fst(ρ′), lst(ρ) � lst(ρ′), and states(ρ) � states(ρ′)
I for h > 0:
ρ and ρ′ are 0-prefix bisimilar and for each proper prefix ν of ρ
(resp., proper prefix ν′ of ρ′), there exists a proper prefix ν′ of
ρ′ (resp., proper prefix ν of ρ) such that ν and ν′ are
(h − 1)-prefix bisimilar

I h-prefix bisimilarity is an equivalence relation over the set of
traces

I h-prefix bisimilarity propagates downwards
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h-prefix bisimilarity⇒ h-equivalence

Proposition
Let h ≥ 0, and ρ and ρ′ be two h-prefix bisimilar traces of a Kripke
structure K . For each AABBE formula ψ, with B-nesting of ψ less
than or equal to h, it holds that

K , ρ |� ψ ⇐⇒ K , ρ′ |� ψ
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Induced trace

Definition (Induced trace)
Let ρ be a trace of length n of a Kripke structure K . A trace induced
by ρ is a trace π of K such that there exists an increasing
sequence of ρ-positions i1 < . . . < ik , where i1 � 1, ik � n, and

π � ρ(i1) · · · ρ(ik )

ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

If π is induced by ρ ⇒ fst(π) � fst(ρ), lst(π) � lst(ρ), and
|π | ≤ |ρ |
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Prefix-skeleton sampling

Definition (Prefix-skeleton sampling)
Let ρ be a trace of a Kripke structure K � (AP ,W , δ, µ,w0).
Given two ρ-positions i and j, with i ≤ j, the prefix-skeleton
sampling of ρ(i , j) is the minimal set P of ρ-positions in the interval
[i , j] satisfying:
I i , j ∈ P;
I for each state w ∈ W occurring along ρ(i + 1, j − 1), the

minimal position k ∈ [i + 1, j − 1] such that ρ(k) � w is in P

i j

w1 w1 w1 w1 w2 w1 w3 w1 w2 w3 w1 w3

ρ(i, j)

P = {i, i+ 1, i+ 4, i+ 6, j}
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h-prefix sampling

Definition (h-prefix sampling)
For each h ≥ 1, the h-prefix sampling of ρ is the minimal set Ph of
ρ-positions inductively satisfying the following conditions:
I for h � 1: P1 is the prefix-skeleton sampling of ρ;
I for h > 1:

I Ph ⊇ Ph−1 and
I for all pairs of consecutive positions i , j in Ph−1, the

prefix-skeleton sampling of ρ(i , j) is in Ph

Proposition
The h-prefix sampling Ph of (any) ρ is such that |Ph | ≤ (|W | + 2)h
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A small model (trace) result

Given a trace ρ, we can derive another trace ρ′, induced by ρ and
h-prefix bisimilar to ρ, such that |ρ′ | ≤ (|W | + 2)h+2 as follows:

1. we first compute the (h+ 1)-prefix sampling Ph+1 of ρ;
2. then, for all pairs of consecutive ρ-positions i , j in Ph+1, we

consider a trace induced by ρ(i , j), with no repeated
occurrences of any state, except at most the first and last ones
(hence no longer than (|W | + 2));

3. ρ′ is just the ordered concatenation of all these traces

ρ and ρ′ can be proved to be h-prefix bisimilar, and thus
ρ′ is indistinguishable from ρ with respect to the fulfilment of any
formula ψ, with B-nesting of ψ (abbreviated NestB(ψ)) ≤ h

By the previous bound on |Ph |, it holds that |ρ′ | ≤ (|W | + 2)h+2
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2. then, for all pairs of consecutive ρ-positions i , j in Ph+1, we

consider a trace induced by ρ(i , j), with no repeated
occurrences of any state, except at most the first and last ones
(hence no longer than (|W | + 2));

3. ρ′ is just the ordered concatenation of all these traces

ρ and ρ′ can be proved to be h-prefix bisimilar, and thus
ρ′ is indistinguishable from ρ with respect to the fulfilment of any
formula ψ, with B-nesting of ψ (abbreviated NestB(ψ)) ≤ h

By the previous bound on |Ph |, it holds that |ρ′ | ≤ (|W | + 2)h+2
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An EXPSPACE model checking algorithm for AABBE

Algorithm 1 ModCheck(K , ψ)
1: h← NestB(ψ)
2: u← New (Unravelling(K ,w0 , h)) / w0 initial state of K
3: while u.hasMoreTracks() do
4: ρ′ ← u.getNextTrack()

5: if Check(K , h, ψ, ρ′) � 0 then return 0: “K , ρ′ 6 |� ψ”/ Counterexample foundX
return 1: “K |� ψ” /Model checking OKX

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval
Temporal Logic Model Checking Based on Track Bisimilarity and Prefix
Sampling, ICTCS 2016
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PSPACE-hardness of AABBE model checking

PSPACE-hardness of the model checking problem for the fragment
B (and thus for AABBE) can be proved by a reduction from the QBF
problem

Theorem
The model checking problem for B, and thus for AABBE, over finite
Kripke structures is PSPACE-hard

AABBE model checking is thus in between PSPACE and
EXPSPACE (remind: BE model checking is EXPSPACE-hard)

A. Molinari, A. Montanari, A. Peron, and P. Sala, Model Checking
Well-Behaved Fragments of HS: The (Almost) Final Picture, KR 2016
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Epistemic HS (Lomuscio and Michaliszyn)

Distinctive feature of Epistemic HS (EHS for short): the labelling
function is defined on the endpoints of the (finite) traces/intervals

Lomuscio and Michaliszyn proved that the local model checking
problem (verification of a given specification against a single initial
trace) for the fragment EHS[BE] is PSPACE-complete
If epistemic modalities are removed, it is in PTIME (notice that
modalities 〈B〉 and 〈E〉 allow one to access only sub-intervals of the
given initial one, whose number is quadratic in the length of it)

A. Lomuscio and J. Michaliszyn, An Epistemic Halpern-Shoham Logic, IJCAI
2013
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Epistemic HS (Lomuscio and Michaliszyn) - cont’d

Later on, they showed that the picture drastically changes with other
fragments of HS that allow one to access infinitely many traces

They proved that the model checking problem for the HS fragment
AB, extended with epistemic modalities, is decidable, with a
non-elementary upper bound

Notice that formulas of this logic can possibly refer to infinitely many
(future) traces

A. Lomuscio and J. Michaliszyn, Decidability of model checking multi-agent
systems against a class of EHS specifications, ECAI 2014
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Epistemic HS (Lomuscio and Michaliszyn) - cont’d

In their most recent contribution, Lomuscio and Michaliszyn
generalized the labeling function by allowing it to be given by any
regular expression on the states of intervals

Such a generalization results in a considerable increase in the
expressiveness of the specifications at no computational cost in
terms of the corresponding model checking problem

A. Lomuscio and J. Michaliszyn, Model Checking Multi-Agent Systems
against Epistemic HS Specifications with Regular Expressions, KR 2016
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A comparison with LTL, CTL, and CTL∗ model checking

In order to compare the expressiveness of HS model checking with
that of LTL, CTL, and CTL∗ model checking, we define alternative
semantics for HS:

I trace semantics (HSlin) - the infinite paths (computations) of
the Kripke structure are the main semantic entities

I computation tree semantics (HSct) - the future is branching,
but the past is linear (as well as finite and cumulative)

Trace (resp., computation tree) semantics allowed us to establish a
bridge between HS model checking and LTL (resp., CTL/CTL∗)
model checking
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The expressiveness picture
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L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval vs. Point
Temporal Logic Model Checking: an Expressiveness Comparison, FSTTCS
2016
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Current and future research agenda

I To complete the picture of interval temporal logic model
checking under the homogeneity assumption (and the HSst
state semantics)

I Planning as Model Checking in Interval Temporal Logic

I To remove the homogeneity assumption

I To replace finite Kripke structures with more complex ones
(pushdown systems, other infinite state transition systems,
systems based on timelines)
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