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e Many good cryptographic primitives: RSA, DSA, ElGamal, AES,
SHA3, ...

e How can we construct secure distributed applications with them?

» E-commerce

» E-banking

» E-voting

» Mobile communication
» Digital contract signing

e Evenif cryptography is hard to break, this is not a trivial task

3/105



What Is a Protocol?

e A protocol consists of a set of rules (conventions) that determine the
exchange of messages between two or more principals

e In short, a distributed algorithm with emphasis on communication

o Security (or cryptographic protocols use cryptographic mechanisms
to achieve their security goals against a given threat model

» Entity or message authentication, message secrecy, key establishment,
integrity, non-repudiation, etc.

e Small recipes, but nontrivial to design and understand

e “Three-line programs that people still get wrong”

4/105



Preliminaries

e In a concrete execution of a protocol, the roles are played by agents
(or principals)

e Security goals:

» Key secrecy: at the end of a run of the protocol between A and B,
the session key is known only to 4 and B
» Key freshness: A and B know that the key is freshly generated

e How do we formalize the protocol steps and goals?

e How about “knowledge”, “secrecy”, “freshness”?
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Protocol Specification vs Protocol Execution

Protocol specification

Initiator

request

Responder

response

\ 4

Protocol execution

Alice as

Alice as
Responder

Initiator

L
IAl.u.:e as Bob as
nitiator Responder

6/105



Building a Key Establishment Protocol

e Let's try to design a cryptographic protocol from first principles
e Common scenario:

» A set of users, any two of who may wish to establish a new session
key for subsequent secure communication

» Users are not necessarily honest

» There is an honest server: it never cheats and never gives out secrets

e We thus design a protocol with three roles: initiator role A4,
responder role B, and server role S
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First Attempt (Alice & Bob Notation)

A-S: AB
S—-A4: kAB
A-B: ltfqlg, A

o Issue? Secrecy: kyp is sentin clear

e 'The session key k,p must be transported to A and B, but readable by
no other parties

Threat assumption 1: The adversary is able to eavesdrop on all sent messages

= Use cryptography
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Second Attempt

Assume that S initially shared a key kg(X) with each agent X
A-S: AB
S—>A: {kAB}kS(A)»{kAB}kS(B)
A—B: {ksplrg) A

e Iseavesdropping an issue? No, messages are encrypted

o Perfect cryptography assumption: encrypted messages may be
deciphered only by agents who have the required decryption key

Threat assumption 2: The adversary may also capture and modify messages
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Dolev-Yao Model (Dolev & Yao, 1983)

The adversary is able to intercept messages on the network and send to
anybody (under any sender name) modified or new messages based on any
information available

e 'The adversary has complete control over the network

e We assume the worst-case network adversary

» Although only a few messages are exchanged in a legitimate session,
there are infinitely many variations where the adversary can
participate

» These variations involve an unbounded number of messages and
each must satisfy the protocol's security requirements
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A Binding Attack on the Second Attempt

Let I be an adversary (intruder)

A-I1: AB
[-S: A1l
S—=>1: A{kadescay tkarkrsn (1)

I - A: {kAI}kS(A)’ {kAI}kS(I)
A-1T: {ka}rga) A

Threat assumption 3: The adversary may be a legitimate protocol participant
(an insider), or an external party (an outsider), or a combination of both
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Third Attempt

A-S: AB
S—oA: {kABr B}kS(A)r {kABr A}ks(B)
fl d l; . {’621[};-/1}7Qs(13)

o The previous attack now fails

e But old keys can be replayed at a later time...

Threat assumption 4: The adversary is able to obtain the value of a session key
used in any “sufficiently old” previous run of the protocol

12/105



Replay Attack and Session Key Compromise

Suppose that the intruder knows {k4p, B} a) and {ksp', A}k 5y from an old
session between A and B, and was able to discover k,p' (key compromise)

Then, I masquerades as S and replays k,p-

A-1: AB
I > A: {kAB" B}kS(A)r {kAB’rA}ks(B)
A-B:  {kap, Aligm)

After the protocol has run, the adversary can decrypt, modity, or inject
messages encrypted with k45 (no confidentiality or integrity)
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Thwarting the Replay Attack

o The replay attack can still be regarded as successful even if the
adversary has not obtained the value of k-

» Adversary gets A and B to accept an old session key!

» [ can therefore replay (encrypted) messages sent in the previous
session

» Various techniques may be used to guard against replay of session
key, such as incorporating challenge-response

e A nonce (“a number used only once”) is a random value generated by
one principal and returned to that principal to show that a message is
newly generated
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Fourth Attempt: NSCK

Let Ny denote a nonce generated by X
A-S: ABN,
S>> A: {kap, B, Ny, {kap, A}koB) ks(a)
A-B: {kAB»A}kS(B)
B->A: {Ng} B
A-B: {Ng—1},,
e Needham-Schroeder with Conventional Keys (1978)

e Assumes that only A can form correct reply to message 4 from B
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Attack on NSCK

The adversary masquerades as A and convinces B to use old key k,p
A-S: AB,Ny,
S—=>A:  {kap B, Ny, {knp, A}rg(m)}rsa)
I - B: {kap,A}lsm)
B-1: {NB}RAB'
I>B: {Ng— 1},

Attack found by Dennis and Sacco
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Fifth (and Final) Attempt (1)

B->A: AB,Ng
A->S: AB,NNg

S—> At {kap B, Na}tiscay {kap A N}ig(m)
A—->B: {kAB: A, NB}ks(B)

e 'The protocol is now initiated by B who sends his nonce Np, first to A

e A adds her nonce N4 and sends both to S, who now sends K4 in
separate messages for A and B, which can be verified as fresh by the
respective recipients
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Fifth (and Final) Attempt (2)

B—->A: AB,Ng
A—-S: AB,Ny N
S—>A:  {kap B, Na}kgcay {kag: A Ng}io(B)
A - B: {kap A Np}rys)
e In NSCK, A can verify that her communication partner actually

possesses the key (key confirmation), thanks to the last two
messages

e In above protocol, neither A nor B can deduce at the end of a
successful run that the partner actually has k,p (is this an issue?)
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Fifth (and Final) Attempt (3)

B—->A:
A—-S:
S—->A:
A-B:

A, B, Ny

A,B,Ny4, Ng

{kap» B, Na}gca) tkap, A, Npligm)
{kap A, Np}ry(m)

e 'This protocol avoids all the attacks shown so far

e Under the assumptions of perfect cryptography and honesty of S

e So,isit correct? (What does it mean to be “correct”?)
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Summary: Adversary, Attacks and Defense

The adversary must be expected to

e cavesdrop on messages (but cannot break cryptography)
e completely control the network
» immediately intercept, modify, drop, and fake messages
» compose/decompose messages with the available keys
» participate in the protocol (as insider or outsider)
» be able to obtain old session keys
e Attacks and defenses:
» Eavesdropping: encrypt session keys using long-term keys
» Binding attack: cryptographically bind names to session keys
» Replay attack: use challenge-response based on nonces
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(Informally Stated) Types of Protocol Attacks

o Intruder-in-the-middle attack: A < I < B

e Replay (or freshness) attack: reuse parts of previous messages

e Masquerading attack: pretend to be another principal

o Reflection attack: send transmitted information back to originator

e Oracle attack: take advantage of normal protocol responses as
encryption and decryption “services”

e Binding attack: using messages in a different context/for a different
purpose than originally intended

o Type flaw attack: substitute a different type of message field
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Prudent Engineering of Security Protocols

From (Abadi & Needham, 1996)

Every message should say what it means
Specify clear conditions for a message to be acted on
Mention names explicitly if they are essential to the meaning

Be clear about the purpose of encryption: confidentiality, message
authentication, binding of messages, etc.

Be explicit on what properties you are assuming
Beware of clock variations (for timestamps)

Etc... Is the protocol secure then? Is it optimal/minimal?
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Formal Analysis of Security Protocol

Goal: formally model protocols and their properties and provide a
mathematically sound means for reasoning about these models

Security Protocol Analysis

A

Formal (Symbolic) Models

Y

\/

Dolev-Yao (perfect cryptography)

Deductive

Computational Models

A4

Probabilistic cryptographic view
Cryptographically faithful proof

Inductive proofs

Automatic

A4

Interleaving trace models
State—based models

Bounded Sessions

A/

Unbounded Sessions
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Why Is Security Protocol Analysis Difficult?

Infinite state space

e Messages: adversary can produce messages of arbitrary size
e Sessions: unbounded number of parallel sessions

e Nonces: unbounded number of nonces (if sessions unbounded)
Undecidability

e Secrecy problem for security protocols is undecidable (Even &
Goldreich, 1983)

e Even if the number of nonces or the message size is bounded
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Unbounded messages
Unbounded sessions
Unbounded nonces

Bounded messages
Unbounded sessions
Unbounded nonces

Undecidable

Bounded messages
Unbounded sessions
Bounded nonces

Bounded messages
Bounded sessions
Bounded nonces

(Un)decidability: The Complete Picture

Bottom line: need at least two bounded parameters for decidability

Unbounded messages
Unbounded sessions
Bounded nonces

Decidable

Unbounded messages
Bounded sessions
Bounded nonces
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Tamarin: High Level Picture

Modeling protocol and adversary with multiset rewriting

e Specifies a labelled transition system

e Induces a set of traces
Property verification using a guarded fragment of first-order logic
e Specifies “good” traces

TAMARIN tries to prove that all traces are good, or to find a counterexample
trace (attack)

Verification algorithm is sound and complete; termination is not guaranteed
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Security Protocol Model

Security protocol = Labelled transition system
State:
e Adversary's knowledge
e Messages on the network
e Information about freshly generated values
e Protocol's state

The adversary and the protocol interact by updating network messages and
freshness information
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Transition Rules

Adversary capabilities and protocols are specified jointly as a set of (labeled)
multiset rewriting rules

Basic ingredients:

o terms (think “messages”)

o facts (think “sticky notes on the fridge”)
e Special facts: Fr(t), In(t), Out(t), K(t)
o State of the system = multiset of facts

e Transitionrules: L 4 A > R, with L, A, R are multisets of facts
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Informal Semantics of Transitions

e Let S be the current state of the system
e LetL — R bea transition rule
e Letl — rbeaground instance of the rule (ground = no variables)

o Applyingl — 7 to S yields the new state:
SV LUt r
where \ and U* are multiset difference and union, respectively

o Forlabelled rules of the form [ H{ a | 1, a is added to the trace of
the execution
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Transition Rules: Example

Current state P (X) —[A (X)]_) G (h (X)) Next state
fla) ' fla)
F(a) —[A(@)]- G(h(a))
>
fla) ‘ ¢(nlal

Trace: ..., [A(Q)])
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The Model at 10,000 Feet (1)

Term algebra

e enc/2,dec/2,h/1,_, 71 ..
Equational Theory

o dec(enc(mk),k)=m,x-y=y-x,x" & X, ..
Facts

o 1?(t1,.",tn)
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The Model at 10,000 Feet (2)

Transition system

e State: multiset of facts
o (Labelled)Rules: L { AP R

TAMARIN-specific

e Built-in Dolev-Yao attacker rules

» Out(x) > K(x), K(x) { K(x) P> In(x),...

e Special fresh rule:

> [ b Fr(x)
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Sorts and Signatures

We assume there are two countably infinite sets FN

Sorts: msg and PN of fresh and public names (i.e., constant
symbols), and a countably infinite set V; of variables
/ \ for each sort s

resh ub
Ji p Signature' X5y: enc/2,dec/2, h/1, (., .), fst/1,

snd/1, A, "1 % ,1

The set of cryptographic messages M is modelled as the set T of well-sorted
ground terms over Xppy

! User-defined signatures are supported, but for simplicity we stick to a fixed signature.
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Term Algebra

Let X be a signature and X be a set of variables, with X N X = @
The set of Z-terms Jx (X)) is the least set such that

o X CTx(X)
o ifty, .., t, € Jx(X)and f € X isa function symbol of arity n then
f(t1; " tn) € :Til(x)

The set of ground terms T is T3 (0), i.e., it consists of terms built without
variables

The (Z)-term algebra has domain J5(X) and interprets each term as itself
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Substitutions

e A substitution is a function g: X = J5(X)

e A substitution can be extended to a mapping’ g: J5(X) = T3(X) in
an straightforward way:

f(ty, ... tn)o = f(ti0,..t,0)

Example:

o Lets=f(e,x)andt = f(y,f(x,¥))
o leto={xwri(y),ywHe}

e Thenso = f(e i(y))andto = f(e, f(i(y),e))

’ With abuse of notation, we keep calling it &
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Equational Theories

Equation (over X)
A pair of terms (¢, u), with t,u € J5(X), written t = u

(Z, E)-equational presentation
A set of equations E over a signature X

Equations can be oriented, written as t — u (rewriting), for use in simplifying
terms
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Algebraic Properties

e A set of equation E induces a congruence relation =g on terms
(equational theory) and thus equivalence classes [t]g

o The quotient algebra J3(X)/__ interprets each term by its
equivalence class

e Termst and u are equal (modulo E), written t =g w, iff [t]; = [u]g

Example

o LetX=1{s/1,4+/2,0}
o LetE={X+0=X,X+s()=sX+Y)}
o Then, s(s(0)) + s(0) =5 s(s(s(0)) + 0) = s(s(s(0)))
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o t,u€ Jx(X) are (I, E)-unifiable if there is 0 such that to = t'c

e For syntactic unification (i.e., when E = @) there is a most general
unifier, and unification is decidable

e Unification modulo theories (E # @) is undecidable in general

e = Restrictions on the form of the acceptable equational theories
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The Equational Theory Epy

(1) dec(enc(m, k), k) =m (6) x*x1=~x
(2) fst((x,y)) = x (7) x*x1=1
(3) snd({x,y) =y 8) (xH'=x
(4) x*x(y*xz)=(x*xy)*z (9) (x¥)? = x¥*2
(5) x*xy=yxx (10) x! =~ x

The theory can be extended with any subterm-convergent rewriting theory,
which permits, for instance, to model asymmetric encryption, signatures, etc.
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The Equational Theory Epy: Example

By equation (9), the term
Cl—-l
(99"
is equal (modulo Epy) to

*b)xa~1
g((a b)xa™")

and can be further simplified to

using Equations (4-7)
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Subterm-Convergent Rewriting

e Termination: it is always the case that after finitely many rule
applications no more rules can be applied—i.e., each term has a
normal form (or, is reduced)

o Confluence: if a given term t can be rewritten (in an arbitrary
number of steps) to t; and t,, then there is t’ such that both t; and
t, can be rewritten to t’

e A confluent and terminating theory is convergent

e A subterm-convergent theory is convergent and, for each rule L —
R of the theory, R is a proper subterm of L, or R is ground and in
normal form
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o 'The states of the transition system are finite multisets of facts

o A fixed set of fact symbols (In(), Out(), K(), Fr()) is used to encode
the adversary’s knowledge, freshness information, and the messages
on the network

e The remaining fact symbols are used to represent the protocol state
e Facts can be:

» linear: they model resources that can be only consumed once
» persistent: they model inexhaustible resources that can be
consumed arbitrarily often
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Special Facts

o K(m) (persistent): m is known to the adversary

e Out(m) (linear): message m has been sent, and can be received by
the adversary

e In(m) (linear): the adversary has sent message m, and m can be
received by the protocol

e Fr(n) (linear): the new name n was freshly generated
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Labelled Multiset Rewriting

Labeled multiset rewriting rule

e Atriple (L, A, R),denoted L { A > R, with

» L: multiset of facts called premises
» A: multiset of facts called actions
» R: multiset of facts called conclusions

e Three types of rules:

» A rule for fresh name generation
» Message deduction rules
» Protocol rules

44/105



Fresh Name Generation

All fresh names are created with the following built-in rule:

Fresn: [ ] P> Fr(x : fresh)

e 'This is the only rule that produces Fr() facts

e Ground instances of this rules are assumed to be unique, i.e., the
same fresh name is never generated twice
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Message Deduction Rules (1)

Out(x) > K(x)

e Allows an adversary to receive the messages sent by the protocol

K(x) 4 KX) b In(x)

e Allows the protocol to receive a message from the adversary

e Messages sent by the adversary are observable in the trace
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Message Deduction Rules (2)

[1 - K(x : pub)

e The adversary knows all public names

Fr(x) 4> K(x)

e 'The adversary can generate and use fresh names

For every k-ary function symbol f:

K(x1), o KOi) A K (x4, 0 X1))

e The adversary can apply any function to the known messages
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Protocol Rules

A protocol rule is a multiset rewriting rule L - A }> R such that

e there is no occurrence of K() anywhere in the rule
e Out() can appear only in the conclusions
e In() and Fr() can appear only in the premises

e all non-public variables in the conclusions must occur in the
premises

A protocol is a finite set of protocol rules
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Transition Relation

e Let S be the current state

e Letl 4 a P> rbeaground instance of a rule in P, a message
deduction rule, or a fresh name generating rule

o Letlin(l) be the multiset of linear facts in [
o Let pers(l) be the set of persistent facts in [

o Assume that lin(l) S* S and pers(l) S S (note that C* is multiset
inclusion, and equality is modulo the equational theory)

e Then, compute the new state S’ = S \¥ lin(l) U* r

e Append a to the end of the current trace
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Traces

e Trace: asequence (44, ..., 4,) of sets of ground facts denoting the
sequence of actions that happened during a protocol's execution

o traces(P) denotes the set of all traces generated by all possible
executions of the protocol P

Ap Az Ap—1
traces(P) = {(A;..., A,) | 35,..35,,. 0¥ > §, > - — S, — S,

and no ground instance of FRESH is used twice }

Observable trace: trace (44, ..., A,) in which the empty A;'s are removed
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Executions and Traces: Example

Rule 1: [] - Init() ]» A(5)
Rule 2: A(x) - Step(x) J» B(x)

Example of execution:

Current state  Ground rule Next state Trace
o* [1 - Init() > A(5) [A(5)] ([InitQ])
[A(5)] [1- Init() > A(5) [AGG),A(D)]  ([InitQ], [InitO])

[AGG),A(S)]  A(5) H Step(5) > B(5)  [A(5),B(5)]  ([InitO], [InitQ], [Step(5)])
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Executions and Traces: Example (Persistent Facts)

Rule 1 (R1): []1 - 1() }» !C(a), D(1)
Rule 2 (R2): !1C(x), D(y) H S(x)y) }» D(h(»))

Example of execution:

Current state

Ground rule

Next state

Trace

@#
['C(a), D(1)]
['C(a), D(h(1))]

R1
R2[x/a,y/1]
R2[x/a,y/h(1)]

['C(a), D(D)]
[!C(a), D(r(1))]
[!C(a), D(h(R(1)))]

(10)
(10,5(a, 1))
(10,5(a, 1), 5(a, h(1)))
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Modeling Public-Key Infrastructure

A pre-distributed PKI with asymmetric keys for each party can be modeled by
a single rule that generates a key for a party

Fr(y) -l 15k(X,y), IPk(X, pk(y)), Out(pk(y))
o ISk(X : pub,y : fresh): y isa private key of agent X
o !Pk(X : pub,y : fresh): y isa public key of agent X
e pk(x): denotes the public key corresponding to private key x

For Diffie-Hellman-style key pairs (g is a constant, i.e., a 0-ary function):

Fr(y) > 'Sk(X,y), IPk(X,g”), Out(g”)
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The NAXOS Protocol

Initiator Responder

Knows skr, pkr, pkgr, g Knows skr, pkr, pkr, g
|

Generates ek
a := hy(eky, skr)

g
>
Generates ekr
b b:= hl(ekR,skR)
g
<
L b\skr a b\a L b a\skr a\b
k_h2((g) 7(ka) 7(9) 717R) k_hQ((ka) 7(9 ) 7(g ) 717R)
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Formalizing the NAXQOS Protocol (1)

Generate long-term keypair:

Fr(lky)
ILtk(X : pub, Iky), 'Pk(X, glkx), Out(glkx)

Initiator step 1:

Fr(ek,), ILtk(7, Ik,)
Start(ek;, 7, R : pub, lk;, 2%), 'Ephk(ek;, ek;), Out(g®)

where a = hl (ekl, lkl)
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Formalizing the NAXQOS Protocol (2)

Initiator step 2:

R, k),
Start(eks, 1, R, Ik, £, IPk(R,pky), In(n)| - AReePHEm A )
I » ) ) )
'Sessk(ek;, ;) Match(ek;, (Resp, R, 7, 2% Y))

where k; = h, (Ylkl, pk, %, Y% 7, R)

56/105



Formalizing the NAXQOS Protocol (3)

Responder step:

Fr(ekg), 'Ltk(R, k), 'Pk(7, pk,), In(X) Accept(ekg, R, 7, kg),

Sid(ekg, (Resp, R, 7, X, g?)),
ISessk(ekg, kr), 'Ephk(ekg, ekg), Out(g?) Matc(h(gké,(Init,?,R,X, g>12>)

where

() b = hl(ekR, lkR)
o kg =hy(pk, Xkr xP 7 R)
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Formalizing Additional Attacker's Capabilities

The session key and the ephemeral key of a principal can be exfiltrated:

ISessk(s, k)
Out(k)
|Ephk(s, eky)
()Ut(ekx)

[ SesskRev(s) ]

| EphkRev(s) |

The long term secret of a principal can be exfiltrated:

ILtk(X, Tky)
Out(lky)

| LtkRev(X) |
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Protocol Goals

A security goal defines what the protocol is intended to achieve

e Authenticate messages, binding them to their originator
e Ensure timeliness of messages (recent, fresh, ...)
e Guarantee secrecy of certain items (e.g., generated keys)

Most common goals:

e secrecy (many forms)
e authentication (many forms)

Other goals: anonymity, non-repudiation (of receipt, submission, delivery),
key confirmation, fairness, availability,...
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Protocol Properties and Correctness

Properties

e Semantics of protocol P is traces(P)

e A security goal/property ¢ also denotes a set of traces traces(p)

Correctness has an exact meaning:
PEq@ iff traces(P) C traces(¢)
(OPR,
Attack traces are those in
Ok, no attacks Attacks
traces(P) \ traces(¢)
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Security Properties

e Many-sorted first-order logic is used to specify security properties

e The logic supports quantification over both messages and time points
e Formulas are interpreted over traces (the temporal domain is Q)

e Trace atoms:

» 1 (false)

» Term equality: t; = t,

» Time point ordering and equality: { <jandi =

» Actions at time points: F @i, for a fact F and a time point i

e Trace formula: a first-order formula over trace atoms
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Semantics of Trace Formulas

Foratrace T = (44, .., A,) and sort-respecting valuation 6:

(T,0) F FOI iff 1 < 6(i) < nand 6(F) € T[0(1)]
(T,0) ki< it 6(0) < 6())

(T,0) ki =] it 630) = 6())

(T,0) Fty = t; ifft  6(ty) = 0(t2)

(T,0) E =@ iff  itis not the case that (T, 0) E ¢

(T,0) E AY iff (T,0)E@and (T,0)EY
(T,0) EJx:s.¢@ ift thereisv € Dy such that (T,0[x » v]) E @
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The NAXOS Protocol

Initiator Responder

Knows skr, pkr, pkgr, g Knows skr, pkr, pkr, g
|

Generates ek
a := hy(eky, skr)

g
>
Generates ekr
b b:::hl(ekR,SkR)
g
<
L b\skr a b\a L b a\skr a\b
k= h2((g ) 7(pkn?) 7(9 ) 71;}%) k= hQ((pkU) 7(9 ) 7(g ) 717]%)

63/105



The NAXOS Protocol: Formalizing Secrecy (1)

“If A accepts key k in a test session s with B, and the adversary learns k,
then... something bad has happened”

Vs ABkiqiy. (Accept(s, 4, B, k)@i; A K(k)@i,) — (Bad things...)
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The NAXOS Protocol: Formalizing Secrecy (2)

Which bad things?

o The session key of test session s was revealed
Ji3. SesskRev(s) @i,

e Or, a session key for a matching session was revealed
35" sid i3 iy (Sid(s', sid)@i5 A Match(s, sid) @i, A Jis. SesskRev(s') @i

e Or... long term secrets and ephemeral keys were revealed (can be
formalized similarly—see (Schmidst, et al., 2012a))
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Issues with Multiset Rewriting

e Incrementally constructing attacks is difficult with (action-)traces

» No history of past states
» No causal dependencies between steps

e Symbolic reasoning modulo an equational theory is difficult, because
of cancellation equations

» If the adversary knows t = n * x for some nonce n, we cannot
conclude that n has been used to construct t, as x could be n™?

o Message deduction rules may be applied redundantly

» Encrypt some plaintext m then decrypt m and send it, instead of

just sending m
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Dependency Graphs

A dependency graph consists of

e nodes labelled with rule instances

e edges represent the dependencies between nodes

Dependency graphs are used to represent protocol executions together with
their causal dependencies
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Dependency Graph: Example

Fr(x)’ Fr(k) [ ] 1: m 2: %
St(x, k), Out(enc(x, k)), Key(k) O
3:
St(x, k), In({x, x St(a, k) Out(enc(a, k))) Key(k)
CIILICE) R -
kg —()[Rev(k)]]
N
Key(k) _ Out(enc(a, k)) _ Out(k)
Out(k) [ Rev(k) ] o K(enc(a, k)) 0 K(k)
K(enc(a, k)) K(k)
e Node indexes denote rule application order * K(dec(enc(a, k), k)
e The trace of the graph is the trace of the execution 8 Kéz(’za ZS)
e Anedge (i,F) — (j,G) denotes that F =g G and F is o, Kia l a)) K((a,2)]
generated by i and G is consumed by j In((a, a})

e Other technical conditions... (Schmidt, et al., 2012a) 10, St@®K (@)
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The Equational Theory AC

The equational theory AC is the theory generated by the following equations:
xx*x(y*xz)=(x*y)*z (Associativity)

x*y=yx*x (Commutativity)
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The Rewriting system DH

(1) dec(enc(m, k), k) > m (9) (x¥)? - xV*?

(2) fst({x,y)) = x (10) x! - x

(3) snd({x,y)) =¥

(@ (" tey)toxwy! () 171 -1

(b) xLxy™t > (xx )7t (9) x*1-x
(€) x*(xxy) Loy (D) ™ >«

d) x7Px(y x> (xxy)TTxz (D) xx (T xy) >y
(6) (xxy) ' x(yxz) >x " xz () xxx™t -1
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Dependency Graph Modulo AC

o It can be proved that any term t has a (unique) normal form ¢,
with respect to AC,DH-rewriting

o Inparticular, t = sifft, . =Ac Si,,

e A dependency graph is | -normal if all its rule instances are
1y -NOrmal

e Informally speaking, by reducing the rules to their AC,DH-normal
form, we obtain a graph that is “equivalent” modulo AC to the
original graph

e By switching to the simpler theory AC we get rid of cancellation
equations
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Dependency Graph Normalization: Example

To normalize the graph on the right, replace rule 7 SBEE CER
Fr(a) Fr(k)
3:
St(a, k) Out(enc(a, e
K(enc(a, k)) K(k) t(a,k) Out(enc(a, k) KK};(IE\I?()
Y
K(dec(enc(a, k), k)) 4: W{Rev(k)n
Out(enc(a, k)) Out(k)
with > Klenc@ ) O KK
- K(enc(a, k)) K(k)
K(enc(a, k)) K(k) ’ K(dec(jnc(a,i(),k))
K K@) K@)
(@) IO)
TR S
" In((a,a)) ’

/.
1) SE0lY '"(<a’a>){Fin(a,k)]
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Star-Restricted Protocols

A protocol P is *-restricted if no rule performs multiplication of the
exponents, or introduces products by other means

ForeveryruleL { A b R:

e L does not contain *, A, ~1, fst, snd, and dec

e R does not contain *

Protocols that use multiplication in the group of exponents can usually be
specified by using repeated exponentiation

73/105



Preventing Loops and Redundant Derivation

K{@,b) K@ K@ _Klac) K@ K@
K@ ~ K(ae) K@ | K(ad)

o Idea: split adversary knowledge into K" and K*

e Distinguish between construction rules and deconstruction rules

e Tagl means “deconstruction allowed”

o Tag T means “deconstruction forbidden”

e Using a deconstruction rule to deconstruct the result of a construction

rule is forbidden
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Construction and Deconstruction Rules: Example

Deconstruction rules:

K'((xy) K'({xy)

Construction rule:

K'v) K'(y)

K'(x) K'»)
Now:

K@@y | K@
K'(a) K'(a)

K'((x, y))

K'(@ K'©

K'((a, c))

Coerce rule:

K'(x)
K'(x)

K'(a, c))
K'(a)
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Preventing Repeated Exponentiation

K(g®) K(a*=b) K(g®) K@ '*o)
_)
K(g9") K(g°)
o Tags (exp/noexp) are also used to prevent repeated exponentiation,

which can always be replaced by a single exponentiation with the
product of all exponents

e A conclusion with a noexp-tag cannot be used with a premise that
requires an exp-tag
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Preventing Repeated Exponentiation: Example (1)

An exponentiation rule:

Kexp(®) Ki(y™'+2)

l
Khoexp (*%)

Now:

Kexp(@®) Ki (@™ #b) Kexp(@?) K (7% 0)

s

l \
Khoexp(9”) Khoexp(99)
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Preventing Repeated Exponentiation: Example (2)

What you can do instead (using suitable exponentiation rules):

Ke@txb) Ky(b7txo) Kexp(@®) Kexp(@™ % 0)
Kéxp(a‘l *C) noexp(gc)
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Normal Deduction Rules

{ Out(z t
Coerce rule: COERCE KTE (z) Communication rules: IRECV Ké (( )) ISEND }I(neT(x))[K(z)]
Ke(z) e ‘

Construction rules:

Kip(®) Ki(y) Fr(zifresh) Kl(z) Kl (@) KL,(») K, (=) K,
K;oexp (z"y) Kgxp (z:pub) K(Texp(w:fres}l) Kgxp (m_l) K;xp(l) K;xp(enc(a:’ ) K;xp (dec(z,y))

Kl(z) Kl(z) Kl(z) Kl (z) KL(w) Kl (z) ... Kl () Kl (2na1) ... Kl (=)
Kio(h(z)) Klp(fst(z)) Klo(nd(z))  Klo((e,y)) Ko (@1 % .. % @) % (Tpe1 +..ox2y) ™)
Kéxp(z “y) Kl(y_l) Kéxp(m Ay_l) Kl (v) Kéxp(zA (y* Z_l)) Kg(y_l *2)
i 1 1
Deconstruction rules: K"°e"p(m) K""e"p () K"°e"p (z)
Ki((z,y)  Ki((my) K@) K (enc(z,y)) Kl (v)
Kclaxp (z) Kéxp(y) Kéxp (=) Kelaxp (=)

Exponentiation rules: Kéxp(m Ay) K(TE(Z) Kéxp(wA y) Kl(y_l o Z) . Kéxp(x " (y & Z_l)) KL(G’ * b_l)

Krimexp(w “(y*2)) K#oexp(x "z) Krimexp(wA (y*rax*(z* b)_l))
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Normal Dependency Graph

(a) 5. Out) | | (b) . Out(k) a. Dependency graph modulo AC
Out (enc(a, k)) k Out(enc(a, k)) Kixp(k)
K(enc(a, k ® K (enc(a, k) <t b. Normal dependency graph
" KoK
K(enc(a k) KK ||, Khplencari) le;/k) Lemma. For a large class of

K(2) ' Kol protocols P (“*-restricted”), the set

)
.. m of normalized traces of executions
)

K/va(a of P and the set of traces of the
L K@) K@ o, KZX,,(aT Kl (@) normal dependency graph of P are
K(<7a>) Kon((3,2)) equal modulo AC
K(2/2) e qaapt | | 11 M[K«a a))]
In((a,a)) In({a, ))
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Verification Strategy at 10,000 Feet

Backward reachability analysis —searching for insecure states
e Negate security property, search for solutions
Constraint solving

e Constraint systems are used to represent the intermediate states of
the search
e Dependency graphs denote the solutions of the constraint systems

e Uses normal dependency graphs for state-space reduction

o Efficient in practice, despite undecidability
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Tamarin's Constraint Solving Procedure

function Solve(P kg, @)
@ < =@ rewritten into negation normal form

O < {oh
while Q # @ and solved(Q) =0 do
choose I wp {I}, .., I} such that I'e Q
Q< Q\{THu{ly,.. Ik}
if solved(Q) # 0
then return "attack(s) found: ", solved(Q)
else return "verification successful"
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Guarded Trace Formulas

e In negation normal form

» Negation is only applied to trace atoms
» all logical connectives are A, V, V, 3

e All quantifiers are of the form:
IX. (F@i)AY or VX.-(F@i)Vy

where 1 is guarded and all X appear in F @i

e Terms can only be built out of the quantified variables and public
names

e A guarded trace property is a closed guarded trace formula
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Guarded Trace Properties

e 'The set of guarded trace properties is closed under negation
e They support quantifier alternation and comparison of time points

e Guarded trace properties are invariant under |, -normalization of
traces

e = Verification if multiset rewriting semantics modulo Epy =
verification in a dependency graph semantics modulo AC

Theorem. For every (x-restricted) protocol P and every guarded trace
property :
P kg, @ iff {traces(G) | Gisanormald.g. for P} k4c ¢
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Guarded Trace Properties: Example

“Fresh values (nonces) are all distinct®
vn: fresh, i, j. Act(n)@i A Act(n)@j - i =

The above is equivalent to a guarded formula, which can be obtained by
pushing quantifiers and negation inwards as far as possible:

vn,i,j. 2Act(n)@i V -Act(n)@j Vi =j
vn, L =Act(m)@i V (Vj(=Act () @] V i = j))
This property is trivially valid, given the definition of traces
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How to Ensure Guardedness in Tamarin

For universally quantified variables:

e they must occur in an action atom right after the quantifier

o the outermost logical operator inside the quantifier is an implication
For existentially quantified variables:

e theyall occur in an action atom right after the quantifier

e the outermost logical operator inside the quantifier is a conjunction
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Graph constraints

e Anodei: r (wherer isa rule instance with index i)
e Anedge(i,F)— (J,G)
e A “deconstruction chain”

e An “implicit construction”
A constraint is either a graph constraint or a guarded trace formula

o Constraints are evaluated with respect to a d.g. (and a valuation)

e Constraint system: set of constraints
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The Constraint Reduction Relation wp

e A normal dependency graph for a protocol P with a valuation that
satisfies each constraint of a constraint system is called a P-solution

e So, to find a counterexample for a guarded trace property ¢, one tries
to find a P-solution to {¢} (i.e., =¢ in negated normal form)

e Intuitively, wp is used to refine the initial constraint system {¢} until
it either encounters a solved system or all systems contain (trivially)
contradictory constraints

o There are 27 reduction rules for w p

e A solved constraint system is one that is irreducible w.r.t. wp
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Trace Formula Reduction Rules

S_,’g, :
S.a:
S_ <
Sy:
S\
S3:
Sy :

r
r
r
r
r
r
r
r
r
r
r
r

P | oeunify s (t1,82) (L) if (t1~t2) el and ¢ #4c to

~p I{i/j} if (¢2zj)elandi+j

P | ierp1omugisenny | freacs(riy (878, f o f',T)  if (f@i) €T and (f@i) ¢ac as(T')

~p L if Lel’

~p L if +(t~t)eacT

o L if ~(i=i) el

~p 1 if =(f@7) eI and (fQ¢) € as(T")

~p (1<3,T) | (T{i/5}) if -=(j <) €T and neither 7 < j nor i = j
~p (¢1,1) || (g2, T) if (¢1V ¢2) €ac I and {¢1,¢2} NacT =2
~p (¢1, 2, T) if (¢1 Ap2) €ac T and not {¢1,¢2} Sac T
~p (¢{y/z}, T) if (Jz:s.¢) €T, p{w/x} ¢ac T for every term w of sort s, and y:s fresh
~p (Yo, T) if (VZ.-(f@i)v) el dom(o) =set(z), (fQi)o eac as(T), and Yo ¢4c T
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Graph Constraint Reduction Rules

Up T ~p (rismi',T) if {i:ri,i:ri’}cTand ri +a¢c 1’

DGl;: I ~p 1 if i <p i

DGly: [ ~p (fef,T) ifc»pel, (¢, f) ecs(T), (p,f') eps(T), and f #4¢0 f'
DG2;: I ~p (if u=v then T'{i/5} else 1) if {(4,v)»p, (j,u)»p}cTandi+j

DG22,p: I' ~p ”m‘e[P]DHu{ISEND,FRESH} ”ueidx(concs(r’i))(i i, (Z’u) »p,T)
if p is an open f-premise in T, f is not a K'- or K'-fact, and 4 fresh

DG3: I' ~p (if u=v then I'{¢/j} else 1) if {¢> (4,v),c¢> (j,u)} cT, clinear in I, and ¢ # j,
DG4 : T ~p I'{i/j} if {i: {]pFr(m), j: {PFr(m)} cacT andi+j
N1: I' ~p 1 if (i:71) el and ri not | pg-normal

N56: T ~p (i} if {((5,1),KE(2)), ((5,:1),KE ()} Cac es(T), i # j, and
d=d" or {i,j}n{k|3ri €insts({PAIR?,INV1,COERCE}). (k:1i) e} =@

N6 : T ~p (i<j,T) if ((§,v),KL(t)) e ps(T), m eac inp(t), ((3,u),K:(m)) € cs(T'), and not i <r j
N7: [~p ol if (i Kéxp(sl)a K(Te(tl)—[]_’K#oexp(@ “t3)) €T, sg is of sort pub, and inp(tz) < inp(t1)
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Message Deduction Constraint Reduction Rules

DG2j 4; :

DG23 pe :

DG2; | :

DG2 , :

T ~p ok yevpeen (i (H{KL(E)), t »m, (5,1) » p, T)
if p is an open implicit m-construction in I', m non-trivial, and % fresh

I' ~p ”m‘eNDC-exPl (i:ri, (4,1)»p, T)
if p is an open K!(m)-premise in T', {m} = inp(m), m non-trivial, and 4 fresh

T ~p (i: Out(y)—[]»KéXp(y), (¢,1) -» p, T') if p is an open K!(m)-premise in I" and y, 4 fresh

(c->p,T) ~p (c»p,T) | "'rieNDde-‘” (i:ri, c>(4,1), (4,1)->p, T)
if (¢,K:(m)) € cs(T), M ¢ Vygg, and i fresh
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Properties of wp

Theorem. The constraint-reduction relation »p is sound and complete; i.e.,
for every I' wp {I}, ..., I},}, the set of P-solutions of I is equal to the union of
the sets of P-solutions of all [}

Theorem. A P-solution can be constructed from every solved system in the
state ()
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Intuition for Backward Reachability (1)

Fr(x), Fr(k) St(x, k), In({x, x))

Key(k)
St(x, k), Out(enc(x, k)), Key(k) L] o#

Out(k)

| Fin(x, k) | | Rev(k) |

e We want to prove the unreachability of a Rev-action

e Formally: ¢ = VkVi.=Rev(k)@i

e We do so by solving a constraint system [\ = {3k3i. Rev(k)@i}
e To solve the constraint system, we apply some transformations

e First, note that [j has the same solutions as {Rev(k) @i}, because the
free variables of a constraint system are existentially quantified
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Intuition for Backward Reachability (2)

Fr(x), Fr(k) St(x, k), In({x, x)) Key(k)

St(x, k), Out(enc(x, k), Key (k) | 1 o (M) g P

As there is only one rule in whose instances have a Rev-action, the
solutions of {Rev(k) @i} are therefore equal to the solutions of

. Key(k)
I = {l ; Out(k)[Rev(k)]}

Le., the dependency graph must contain the above node

In all solutions of I';, the Key-premise must have an incoming edge
from a Key-conclusion
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Intuition for Backward Reachability (3)

Fr(x), Fr(k) St(x, k), In((x, x)) Key(k)

St(x, k), Out(enc(x, k)), Key(k) o#

| Fin(x, k) | = (k)[Rev(k)]

As there is only one rule in whose instances have a Key-conclusion,
the solutions of I'; are therefore equal to the solutions of

(. Key(®) . Fr(x), Fr(k) o
Iz = {‘ ' Out(k)[ReV(k)]' J1* Sttx 1), Out(enc(x, b)), Key ey’ Jv3) = (@ 1)}

L.e., the dependency graph must contain the two nodes above,
connected by the specified edge
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Intuition for Backward Reachability (4)

System I's: System I's:
i Fr(ax:fresh) 9 ¢ Fr(k:fresh)
o Fr(z) Fr(k) o Fr(z) Fr(k)
M St(z,k) Out(enc(z, k)) Key(k) 7 St(z, k) Out(enc(z, k)) Key(k)
. Ke£(k) Ke£(k)
e e )] Sug e ()]

I3 is the solved constraint system, and a counterexample to ¢
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Constraint Solving: Example (1) (Meier, 2013)

Same protocol as before:

Fr(x), Fr(k) St(x, k), In((x, x))

Key(k)
St(x, k), Out(enc(x, k)), Key(k) L] o#

Out(k)

| Fin(x, k) | [ Rev(k) |

We want to prove:

(p = Vx1 xZ k il izFin(xl, k)@ll N\ Fin(xZ, k)@lz —d (1'1 = lz) N\ (x1 = XZ)
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Constraint Solving: Example (2)

@ holds iff {(} has no solutions, where:
¢ = 3, k iy, Fin(xy, k) @iy A (3%, iy Fin(xy, k) @iy A (=(iy = iy) V =(x1 = %,)))
We start by applying S5, S), S, S, to {@}, in this order, which results in a new
constraint system:
I':={ 3z1 k1. Fin(x1,k)Qi1 A (Fz2dg. Fin(xg, k)Qig A (=(i1 = 42) V =(x1 ~ 22)))
, Fin(z1,k)Qiq A (3x242. Fin(xg, k)Qig A (=(i1 =i2) vV =(z1 » 22)))
, Fin(z1,k)Qiq , (Jz2is. Fin(ze, k)Qig A (=(i1 =42) V ~(x1 ~ x2)))
, Fin(z9,k)Qig A (=(i1 2 42) V ~(21 » x2))
, Fin(ze,k)Qiy , =(i1 =42) V-(x1 ~x2) }.
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Constraint Solving: Example (3)

All constraints in I' except for the greyed ones are solved (no other rule
applies to them)

We continue by solving Fin(x4, k) @i, using rule Sg, which produces:

St(x', k"), In({x', x"))
@#

I, =Tu {il : [ Fin(x', k') |, Fin(xy, k) = Fin(x/, k’)}

and

r,=TU {il : gzﬁ’;)) [Rev(k") ], Fin(xy, k) = Rev(k’)}

I, reduces to L because the terms in the equality cannot be unified
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Constraint Solving: Example (4)

We proceed by solving Fin(x, k) = Fin(x’, k") with rule S, which results in:

. St(xl; k), In((xl, xl))

F12 - Fl U{ll 5

@#

| Fin(xy, k) |, Fin(xy, k) = Fin(xy, k)}

Below, the gray element is the one chosen for the next reduction, and only the
new formulas at each step are shown

System I'y2:

: St(z1, k) In(<x1’$1))[Fin(x1,k)] Fin(zq, k)@Qiqy

+

System T'ya:

11

. Fr(zy1) Fr(k)
' St(z1,k) Out(enc(zy,k)) Key(k)

Fin(zs, k)Qiqy
] :St(asl,k) In({z1,21))

[Fin(z1,k)]
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Constraint Solving: Example (5)

System I';s: . Fr(zy) Fr(k)
e St(x1,k) Out(enc(z1,k)) Key(k)

Fin(wg,k)@ig
_ :St(xl,k) In({x1,21))

11

[Fin(z1,k)]

4

System I'ja:
- Fr(z1) Fr(k) - Fr(z2) Fr(k)
e St(z1,k) Out(enc(z1,k)) Key(k) 2 St(zo,k) Out(enc(zz,k)) Key(k)
. St(x1,k) In((xl’xl))[Fin(:rl,k)] i St(zo, k) In(<m2’w2>)[Fin(x2,k)]
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Constraint Solving: Example (6)

System ['qa: v
o Fr(z1) Fr(k) - Fr(zz) Fr(k)
M St(z1, k) Out(enc(zr, k)) Key(k) 7 St(za,k) Out(enc(za, k)) Key(k)
. St(ik) In(($1’x1))[Fin(m1,k)] . St(22, k) In(($2,x2))[Fin(.}32,k)]
System L Sl Fr(k) o Fr(k) = J4 =73
o Fr(zy) Fr(k) - Fr(zs2) Fr(k)
M St(z1, k) Out(enc(zr, k)) Key(k) 7 St(za, k) Out(enc(za, k)) Key(k)
e St(xlvk) In((xhxl))[Fin(.’El,k)] T St((l?g,ki) In(<x2,x2))[Fin(ZIZ2,k)]
|
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Constraint Solving: Example (7)

v
system L R "OFR) =datis
o Fr(z1) Fr(k) o Fr(z2) Fr(k)
M St(z1,k) Out(enc(zr, k) Key(k) 7 St(za,k) Out(enc(za,k)) Key(k)
i St(ﬂfl,k) |n(<x1,$1))[Fin(m1’k)] iy - St(l‘g,k) In(<m2,x2))[Fin($zyk)]
System I'je: s : = = jy 2 i1
/// \%hiil,mmm
Fr(z1) Fr(k) Fr(zs) Fr(k)

i 8

St(z1,k) Out(enc(z1,k)) Key(k) j2: St(za,k) Out(enc(ze,k)) Key(k)

. St(z1,k) |n(<1'1,$1))[Fin(xl7k)] W St(z2,k) In({z2,72))

[Fin(iL‘z, k)]
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Constraint Solving: Example (8)

System I'ys: j3 : Fr(k) = J"Q =
=i =11, T2 ¥ T1
i Fr(z1) Fr(k) , Fr(z2) Fr(k)
1 - 3
St(z1,k) Out(enc(z1,k)) Key(k) 7 St(z2,k) Out(enc(ze,k)) Key(k)
~ St(z1, k) In({z1,21)) St(zo,k) | ,
P CatL L LD TR e L L I TR
System I'y7: .
" Frk)
=(i1 2 42) v (21 ~ 32), 2 =01, T2 ¥ T1
ji: Friz,) Frik) = =(i1 =i1) v =(z1 % 21)
St(z1,k) Out(enc(z1,k)) Key(k) = contradiction
St k) |
o SHenk) Inlena)) oo
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