Symbolic Verification of

Security Protocols with Tamarin

Nicola Vitacolonna

University of Udine

Department of Mathematics, Computer Science, and Physics

May 25, 2021

References

(Schmidt, 2012b) (especially Ch. 3) and (Meier, 2013)
e PhD theses laying the foundations for Tamarin
(Schmidt, et al., 2012a)

e Main paper on Tamarin's foundations

1/105

Online Resources

e Summer School on Verification Technology, Systems & Applications
(David Basin' Slides)

» The present slides are eopied heavily inspired by Basin's presentation
e Teaching Materials for the Tamarin Prover

e Tamarin's manual

2/105

https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa18/
https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa18/
https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa18/
https://github.com/tamarin-prover/teaching
https://tamarin-prover.github.io/manual/book/001_introduction.html

e Many good cryptographic primitives: RSA, DSA, ElGamal, AES,
SHA3, ...

e How can we construct secure distributed applications with them?

» E-commerce

» E-banking

» E-voting

» Mobile communication
» Digital contract signing

e Evenif cryptography is hard to break, this is not a trivial task

3/105

What Is a Protocol?

e A protocol consists of a set of rules (conventions) that determine the
exchange of messages between two or more principals

e In short, a distributed algorithm with emphasis on communication

o Security (or cryptographic protocols use cryptographic mechanisms
to achieve their security goals against a given threat model

» Entity or message authentication, message secrecy, key establishment,
integrity, non-repudiation, etc.

e Small recipes, but nontrivial to design and understand

e “Three-line programs that people still get wrong”

4/105

Preliminaries

e In a concrete execution of a protocol, the roles are played by agents
(or principals)

e Security goals:

» Key secrecy: at the end of a run of the protocol between A and B,
the session key is known only to 4 and B
» Key freshness: A and B know that the key is freshly generated

e How do we formalize the protocol steps and goals?

e How about “knowledge”, “secrecy”, “freshness”?

5/105

Protocol Specification vs Protocol Execution

Protocol specification

Initiator

request

Responder

response

\ 4

Protocol execution

Alice as

Alice as
Responder

Initiator

L
IAl.u.:e as Bob as
nitiator Responder

6/105

Building a Key Establishment Protocol

e Let's try to design a cryptographic protocol from first principles
e Common scenario:

» A set of users, any two of who may wish to establish a new session
key for subsequent secure communication

» Users are not necessarily honest

» There is an honest server: it never cheats and never gives out secrets

e We thus design a protocol with three roles: initiator role A4,
responder role B, and server role S

7/105

First Attempt (Alice & Bob Notation)

A-S: AB
S—-A4: kAB
A-B: ltfqlg, A

o Issue? Secrecy: kyp is sentin clear

e 'The session key k,p must be transported to A and B, but readable by
no other parties

Threat assumption 1: The adversary is able to eavesdrop on all sent messages

= Use cryptography

8/105

Second Attempt

Assume that S initially shared a key kg(X) with each agent X
A-S: AB
S—>A: {kAB}kS(A)»{kAB}kS(B)
A—B: {ksplrg) A

e Iseavesdropping an issue? No, messages are encrypted

o Perfect cryptography assumption: encrypted messages may be
deciphered only by agents who have the required decryption key

Threat assumption 2: The adversary may also capture and modify messages

9/105

Dolev-Yao Model (Dolev & Yao, 1983)

The adversary is able to intercept messages on the network and send to
anybody (under any sender name) modified or new messages based on any
information available

e 'The adversary has complete control over the network

e We assume the worst-case network adversary

» Although only a few messages are exchanged in a legitimate session,
there are infinitely many variations where the adversary can
participate

» These variations involve an unbounded number of messages and
each must satisfy the protocol's security requirements

10/105

A Binding Attack on the Second Attempt

Let I be an adversary (intruder)

A-I1: AB
[-S: A1l
S—=>1: A{kadescay tkarkrsn (1)

I - A: {kAI}kS(A)’ {kAI}kS(I)
A-1T: {ka}rga) A

Threat assumption 3: The adversary may be a legitimate protocol participant
(an insider), or an external party (an outsider), or a combination of both

11/105

Third Attempt

A-S: AB
S—oA: {kABr B}kS(A)r {kABr A}ks(B)
fl d l; . {’621[};-/1}7Qs(13)

o The previous attack now fails

e But old keys can be replayed at a later time...

Threat assumption 4: The adversary is able to obtain the value of a session key
used in any “sufficiently old” previous run of the protocol

12/105

Replay Attack and Session Key Compromise

Suppose that the intruder knows {k4p, B} a) and {ksp', A}k 5y from an old
session between A and B, and was able to discover k,p' (key compromise)

Then, I masquerades as S and replays k,p-

A-1: AB
I > A: {kAB" B}kS(A)r {kAB’rA}ks(B)
A-B: {kap, Aligm)

After the protocol has run, the adversary can decrypt, modity, or inject
messages encrypted with k45 (no confidentiality or integrity)

13/105

Thwarting the Replay Attack

o The replay attack can still be regarded as successful even if the
adversary has not obtained the value of k-

» Adversary gets A and B to accept an old session key!

» [can therefore replay (encrypted) messages sent in the previous
session

» Various techniques may be used to guard against replay of session
key, such as incorporating challenge-response

e A nonce (“a number used only once”) is a random value generated by
one principal and returned to that principal to show that a message is
newly generated

14/105

Fourth Attempt: NSCK

Let Ny denote a nonce generated by X
A-S: ABN,
S>> A: {kap, B, Ny, {kap, A}koB) ks(a)
A-B: {kAB»A}kS(B)
B->A: {Ng} B
A-B: {Ng—1},,
e Needham-Schroeder with Conventional Keys (1978)

e Assumes that only A can form correct reply to message 4 from B

15/105

Attack on NSCK

The adversary masquerades as A and convinces B to use old key k,p
A-S: AB,Ny,
S—=>A: {kap B, Ny, {knp, A}rg(m)}rsa)
I - B: {kap,A}lsm)
B-1: {NB}RAB'
I>B: {Ng— 1},

Attack found by Dennis and Sacco

16/105

Fifth (and Final) Attempt (1)

B->A: AB,Ng
A->S: AB,NNg

S—> At {kap B, Na}tiscay {kap A N}ig(m)
A—->B: {kAB: A, NB}ks(B)

e 'The protocol is now initiated by B who sends his nonce Np, first to A

e A adds her nonce N4 and sends both to S, who now sends K4 in
separate messages for A and B, which can be verified as fresh by the
respective recipients

17/105

Fifth (and Final) Attempt (2)

B—->A: AB,Ng
A—-S: AB,Ny N
S—>A: {kap B, Na}kgcay {kag: A Ng}io(B)
A - B: {kap A Np}rys)
e In NSCK, A can verify that her communication partner actually

possesses the key (key confirmation), thanks to the last two
messages

e In above protocol, neither A nor B can deduce at the end of a
successful run that the partner actually has k,p (is this an issue?)

18/105

Fifth (and Final) Attempt (3)

B—->A:
A—-S:
S—->A:
A-B:

A, B, Ny

A,B,Ny4, Ng

{kap» B, Na}gca) tkap, A, Npligm)
{kap A, Np}ry(m)

e 'This protocol avoids all the attacks shown so far

e Under the assumptions of perfect cryptography and honesty of S

e So,isit correct? (What does it mean to be “correct”?)

19/105

Summary: Adversary, Attacks and Defense

The adversary must be expected to

e cavesdrop on messages (but cannot break cryptography)
e completely control the network
» immediately intercept, modify, drop, and fake messages
» compose/decompose messages with the available keys
» participate in the protocol (as insider or outsider)
» be able to obtain old session keys
e Attacks and defenses:
» Eavesdropping: encrypt session keys using long-term keys
» Binding attack: cryptographically bind names to session keys
» Replay attack: use challenge-response based on nonces

20/105

(Informally Stated) Types of Protocol Attacks

o Intruder-in-the-middle attack: A < I < B

e Replay (or freshness) attack: reuse parts of previous messages

e Masquerading attack: pretend to be another principal

o Reflection attack: send transmitted information back to originator

e Oracle attack: take advantage of normal protocol responses as
encryption and decryption “services”

e Binding attack: using messages in a different context/for a different
purpose than originally intended

o Type flaw attack: substitute a different type of message field

21/105

Prudent Engineering of Security Protocols

From (Abadi & Needham, 1996)

Every message should say what it means
Specify clear conditions for a message to be acted on
Mention names explicitly if they are essential to the meaning

Be clear about the purpose of encryption: confidentiality, message
authentication, binding of messages, etc.

Be explicit on what properties you are assuming
Beware of clock variations (for timestamps)

Etc... Is the protocol secure then? Is it optimal/minimal?

22/105

Formal Analysis of Security Protocol

Goal: formally model protocols and their properties and provide a
mathematically sound means for reasoning about these models

Security Protocol Analysis

A

Formal (Symbolic) Models

Y

\/

Dolev-Yao (perfect cryptography)

Deductive

Computational Models

A4

Probabilistic cryptographic view
Cryptographically faithful proof

Inductive proofs

Automatic

A4

Interleaving trace models
State—based models

Bounded Sessions

A/

Unbounded Sessions

23/105

Why Is Security Protocol Analysis Difficult?

Infinite state space

e Messages: adversary can produce messages of arbitrary size
e Sessions: unbounded number of parallel sessions

e Nonces: unbounded number of nonces (if sessions unbounded)
Undecidability

e Secrecy problem for security protocols is undecidable (Even &
Goldreich, 1983)

e Even if the number of nonces or the message size is bounded

24/105

Unbounded messages
Unbounded sessions
Unbounded nonces

Bounded messages
Unbounded sessions
Unbounded nonces

Undecidable

Bounded messages
Unbounded sessions
Bounded nonces

Bounded messages
Bounded sessions
Bounded nonces

(Un)decidability: The Complete Picture

Bottom line: need at least two bounded parameters for decidability

Unbounded messages
Unbounded sessions
Bounded nonces

Decidable

Unbounded messages
Bounded sessions
Bounded nonces

25/105

Tamarin: High Level Picture

Modeling protocol and adversary with multiset rewriting

e Specifies a labelled transition system

e Induces a set of traces
Property verification using a guarded fragment of first-order logic
e Specifies “good” traces

TAMARIN tries to prove that all traces are good, or to find a counterexample
trace (attack)

Verification algorithm is sound and complete; termination is not guaranteed

26/105

Security Protocol Model

Security protocol = Labelled transition system
State:
e Adversary's knowledge
e Messages on the network
e Information about freshly generated values
e Protocol's state

The adversary and the protocol interact by updating network messages and
freshness information

27/105

Transition Rules

Adversary capabilities and protocols are specified jointly as a set of (labeled)
multiset rewriting rules

Basic ingredients:

o terms (think “messages”)

o facts (think “sticky notes on the fridge”)
e Special facts: Fr(t), In(t), Out(t), K(t)
o State of the system = multiset of facts

e Transitionrules: L 4 A > R, with L, A, R are multisets of facts

28/105

Informal Semantics of Transitions

e Let S be the current state of the system
e LetL — R bea transition rule
e Letl — rbeaground instance of the rule (ground = no variables)

o Applyingl — 7 to S yields the new state:
SV LUt r
where \ and U* are multiset difference and union, respectively

o Forlabelled rules of the form [H{ a | 1, a is added to the trace of
the execution

29/105

Transition Rules: Example

Current state P (X) —[A (X)]_) G (h (X)) Next state
fla) ' fla)
F(a) —[A(@)]- G(h(a))
>
fla) ‘ ¢(nlal

Trace: ..., [A(Q)])

30/105

The Model at 10,000 Feet (1)

Term algebra

e enc/2,dec/2,h/1,_, 71 ..
Equational Theory

o dec(enc(mk),k)=m,x-y=y-x,x" & X, ..
Facts

o 1?(t1,.",tn)

31/105

The Model at 10,000 Feet (2)

Transition system

e State: multiset of facts
o (Labelled)Rules: L { AP R

TAMARIN-specific

e Built-in Dolev-Yao attacker rules

» Out(x) > K(x), K(x) { K(x) P> In(x),...

e Special fresh rule:

> [b Fr(x)

32/105

Sorts and Signatures

We assume there are two countably infinite sets FN

Sorts: msg and PN of fresh and public names (i.e., constant
symbols), and a countably infinite set V; of variables
/ \ for each sort s

resh ub
Ji p Signature' X5y: enc/2,dec/2, h/1, (., .), fst/1,

snd/1, A, "1 % ,1

The set of cryptographic messages M is modelled as the set T of well-sorted
ground terms over Xppy

! User-defined signatures are supported, but for simplicity we stick to a fixed signature.

33/105

Term Algebra

Let X be a signature and X be a set of variables, with X N X = @
The set of Z-terms Jx (X)) is the least set such that

o X CTx(X)
o ifty, .., t, € Jx(X)and f € X isa function symbol of arity n then
f(t1; " tn) € :Til(x)

The set of ground terms T is T3 (0), i.e., it consists of terms built without
variables

The (Z)-term algebra has domain J5(X) and interprets each term as itself

34/105

Substitutions

e A substitution is a function g: X = J5(X)

e A substitution can be extended to a mapping’ g: J5(X) = T3(X) in
an straightforward way:

f(ty, ... tn)o = f(ti0,..t,0)

Example:

o Lets=f(e,x)andt = f(y,f(x,¥))
o leto={xwri(y),ywHe}

e Thenso = f(e i(y))andto = f(e, f(i(y),e))

’ With abuse of notation, we keep calling it &

35/105

Equational Theories

Equation (over X)
A pair of terms (¢, u), with t,u € J5(X), written t = u

(Z, E)-equational presentation
A set of equations E over a signature X

Equations can be oriented, written as t — u (rewriting), for use in simplifying
terms

36/105

Algebraic Properties

e A set of equation E induces a congruence relation =g on terms
(equational theory) and thus equivalence classes [t]g

o The quotient algebra J3(X)/__ interprets each term by its
equivalence class

e Termst and u are equal (modulo E), written t =g w, iff [t]; = [u]g

Example

o LetX=1{s/1,4+/2,0}
o LetE={X+0=X,X+s()=sX+Y)}
o Then, s(s(0)) + s(0) =5 s(s(s(0)) + 0) = s(s(s(0)))

37/105

o t,u€ Jx(X) are (I, E)-unifiable if there is 0 such that to = t'c

e For syntactic unification (i.e., when E = @) there is a most general
unifier, and unification is decidable

e Unification modulo theories (E # @) is undecidable in general

e = Restrictions on the form of the acceptable equational theories

38/105

The Equational Theory Epy

(1) dec(enc(m, k), k) =m (6) x*x1=~x
(2) fst((x,y)) = x (7) x*x1=1
(3) snd({x,y) =y 8) (xH'=x
(4) x*x(y*xz)=(x*xy)*z (9) (x¥)? = x¥*2
(5) x*xy=yxx (10) x! =~ x

The theory can be extended with any subterm-convergent rewriting theory,
which permits, for instance, to model asymmetric encryption, signatures, etc.

39/105

The Equational Theory Epy: Example

By equation (9), the term
Cl—-l
(99"
is equal (modulo Epy) to

*b)xa~1
g((a b)xa™")

and can be further simplified to

using Equations (4-7)

40/105

Subterm-Convergent Rewriting

e Termination: it is always the case that after finitely many rule
applications no more rules can be applied—i.e., each term has a
normal form (or, is reduced)

o Confluence: if a given term t can be rewritten (in an arbitrary
number of steps) to t; and t,, then there is t’ such that both t; and
t, can be rewritten to t’

e A confluent and terminating theory is convergent

e A subterm-convergent theory is convergent and, for each rule L —
R of the theory, R is a proper subterm of L, or R is ground and in
normal form

41/105

o 'The states of the transition system are finite multisets of facts

o A fixed set of fact symbols (In(), Out(), K(), Fr()) is used to encode
the adversary’s knowledge, freshness information, and the messages
on the network

e The remaining fact symbols are used to represent the protocol state
e Facts can be:

» linear: they model resources that can be only consumed once
» persistent: they model inexhaustible resources that can be
consumed arbitrarily often

42/105

Special Facts

o K(m) (persistent): m is known to the adversary

e Out(m) (linear): message m has been sent, and can be received by
the adversary

e In(m) (linear): the adversary has sent message m, and m can be
received by the protocol

e Fr(n) (linear): the new name n was freshly generated

43/105

Labelled Multiset Rewriting

Labeled multiset rewriting rule

e Atriple (L, A, R),denoted L { A > R, with

» L: multiset of facts called premises
» A: multiset of facts called actions
» R: multiset of facts called conclusions

e Three types of rules:

» A rule for fresh name generation
» Message deduction rules
» Protocol rules

44/105

Fresh Name Generation

All fresh names are created with the following built-in rule:

Fresn: [] P> Fr(x : fresh)

e 'This is the only rule that produces Fr() facts

e Ground instances of this rules are assumed to be unique, i.e., the
same fresh name is never generated twice

45/105

Message Deduction Rules (1)

Out(x) > K(x)

e Allows an adversary to receive the messages sent by the protocol

K(x) 4 KX) b In(x)

e Allows the protocol to receive a message from the adversary

e Messages sent by the adversary are observable in the trace

46/105

Message Deduction Rules (2)

[1 - K(x : pub)

e The adversary knows all public names

Fr(x) 4> K(x)

e 'The adversary can generate and use fresh names

For every k-ary function symbol f:

K(x1), o KOi) A K (x4, 0 X1))

e The adversary can apply any function to the known messages

47/105

Protocol Rules

A protocol rule is a multiset rewriting rule L - A }> R such that

e there is no occurrence of K() anywhere in the rule
e Out() can appear only in the conclusions
e In() and Fr() can appear only in the premises

e all non-public variables in the conclusions must occur in the
premises

A protocol is a finite set of protocol rules

48/105

Transition Relation

e Let S be the current state

e Letl 4 a P> rbeaground instance of a rule in P, a message
deduction rule, or a fresh name generating rule

o Letlin(l) be the multiset of linear facts in [
o Let pers(l) be the set of persistent facts in [

o Assume that lin(l) S* S and pers(l) S S (note that C* is multiset
inclusion, and equality is modulo the equational theory)

e Then, compute the new state S’ = S \¥ lin(l) U* r

e Append a to the end of the current trace

49/105

Traces

e Trace: asequence (44, ..., 4,) of sets of ground facts denoting the
sequence of actions that happened during a protocol's execution

o traces(P) denotes the set of all traces generated by all possible
executions of the protocol P

Ap Az Ap—1
traces(P) = {(A;..., A,) | 35,..35,,. 0¥ > §, > - — S, — S,

and no ground instance of FRESH is used twice }

Observable trace: trace (44, ..., A,) in which the empty A;'s are removed

50/105

Executions and Traces: Example

Rule 1: [] - Init()]» A(5)
Rule 2: A(x) - Step(x) J» B(x)

Example of execution:

Current state Ground rule Next state Trace
o* [1 - Init() > A(5) [A(5)] ([InitQ])
[A(5)] [1- Init() > A(5) [AGG),A(D)] ([InitQ], [InitO])

[AGG),A(S)] A(5) H Step(5) > B(5) [A(5),B(5)] ([InitO], [InitQ], [Step(5)])

51/105

Executions and Traces: Example (Persistent Facts)

Rule 1 (R1): []1 - 1() }» !C(a), D(1)
Rule 2 (R2): !1C(x), D(y) H S(x)y) }» D(h(»))

Example of execution:

Current state

Ground rule

Next state

Trace

@#
['C(a), D(1)]
['C(a), D(h(1))]

R1
R2[x/a,y/1]
R2[x/a,y/h(1)]

['C(a), D(D)]
[!C(a), D(r(1))]
[!C(a), D(h(R(1)))]

(10)
(10,5(a, 1))
(10,5(a, 1), 5(a, h(1)))

52/105

Modeling Public-Key Infrastructure

A pre-distributed PKI with asymmetric keys for each party can be modeled by
a single rule that generates a key for a party

Fr(y) -l 15k(X,y), IPk(X, pk(y)), Out(pk(y))
o ISk(X : pub,y : fresh): y isa private key of agent X
o !Pk(X : pub,y : fresh): y isa public key of agent X
e pk(x): denotes the public key corresponding to private key x

For Diffie-Hellman-style key pairs (g is a constant, i.e., a 0-ary function):

Fr(y) > 'Sk(X,y), IPk(X,g”), Out(g”)

53/105

The NAXOS Protocol

Initiator Responder

Knows skr, pkr, pkgr, g Knows skr, pkr, pkr, g
|

Generates ek
a := hy(eky, skr)

g
>
Generates ekr
b b:= hl(ekR,skR)
g
<
L b\skr a b\a L b a\skr a\b
k_h2((g) 7(ka) 7(9) 717R) k_hQ((ka) 7(9) 7(g) 717R)

54/105

Formalizing the NAXQOS Protocol (1)

Generate long-term keypair:

Fr(lky)
ILtk(X : pub, Iky), 'Pk(X, glkx), Out(glkx)

Initiator step 1:

Fr(ek,), ILtk(7, Ik,)
Start(ek;, 7, R : pub, lk;, 2%), 'Ephk(ek;, ek;), Out(g®)

where a = hl (ekl, lkl)

55/105

Formalizing the NAXQOS Protocol (2)

Initiator step 2:

R, k),
Start(eks, 1, R, Ik, £, IPk(R,pky), In(n)| - AReePHEm A)
I »)))
'Sessk(ek;, ;) Match(ek;, (Resp, R, 7, 2% Y))

where k; = h, (Ylkl, pk, %, Y% 7, R)

56/105

Formalizing the NAXQOS Protocol (3)

Responder step:

Fr(ekg), 'Ltk(R, k), 'Pk(7, pk,), In(X) Accept(ekg, R, 7, kg),

Sid(ekg, (Resp, R, 7, X, g?)),
ISessk(ekg, kr), 'Ephk(ekg, ekg), Out(g?) Matc(h(gké,(Init,?,R,X, g>12>)

where

() b = hl(ekR, lkR)
o kg =hy(pk, Xkr xP 7 R)

57/105

Formalizing Additional Attacker's Capabilities

The session key and the ephemeral key of a principal can be exfiltrated:

ISessk(s, k)
Out(k)
|Ephk(s, eky)
()Ut(ekx)

[SesskRev(s)]

| EphkRev(s) |

The long term secret of a principal can be exfiltrated:

ILtk(X, Tky)
Out(lky)

| LtkRev(X) |

58/105

Protocol Goals

A security goal defines what the protocol is intended to achieve

e Authenticate messages, binding them to their originator
e Ensure timeliness of messages (recent, fresh, ...)
e Guarantee secrecy of certain items (e.g., generated keys)

Most common goals:

e secrecy (many forms)
e authentication (many forms)

Other goals: anonymity, non-repudiation (of receipt, submission, delivery),
key confirmation, fairness, availability,...

59/105

Protocol Properties and Correctness

Properties

e Semantics of protocol P is traces(P)

e A security goal/property ¢ also denotes a set of traces traces(p)

Correctness has an exact meaning:
PEq@ iff traces(P) C traces(¢)
(OPR,
Attack traces are those in
Ok, no attacks Attacks
traces(P) \ traces(¢)

60/105

Security Properties

e Many-sorted first-order logic is used to specify security properties

e The logic supports quantification over both messages and time points
e Formulas are interpreted over traces (the temporal domain is Q)

e Trace atoms:

» 1 (false)

» Term equality: t; = t,

» Time point ordering and equality: { <jandi =

» Actions at time points: F @i, for a fact F and a time point i

e Trace formula: a first-order formula over trace atoms

61/105

Semantics of Trace Formulas

Foratrace T = (44, .., A,) and sort-respecting valuation 6:

(T,0) F FOI iff 1 < 6(i) < nand 6(F) € T[0(1)]
(T,0) ki< it 6(0) < 6())

(T,0) ki =] it 630) = 6())

(T,0) Fty = t; ifft 6(ty) = 0(t2)

(T,0) E =@ iff itis not the case that (T, 0) E ¢

(T,0) E AY iff (T,0)E@and (T,0)EY
(T,0) EJx:s.¢@ ift thereisv € Dy such that (T,0[x » v]) E @

62/105

The NAXOS Protocol

Initiator Responder

Knows skr, pkr, pkgr, g Knows skr, pkr, pkr, g
|

Generates ek
a := hy(eky, skr)

g
>
Generates ekr
b b:::hl(ekR,SkR)
g
<
L b\skr a b\a L b a\skr a\b
k= h2((g) 7(pkn?) 7(9) 71;}%) k= hQ((pkU) 7(9) 7(g) 717]%)

63/105

The NAXOS Protocol: Formalizing Secrecy (1)

“If A accepts key k in a test session s with B, and the adversary learns k,
then... something bad has happened”

Vs ABkiqiy. (Accept(s, 4, B, k)@i; A K(k)@i,) — (Bad things...)

64/105

The NAXOS Protocol: Formalizing Secrecy (2)

Which bad things?

o The session key of test session s was revealed
Ji3. SesskRev(s) @i,

e Or, a session key for a matching session was revealed
35" sid i3 iy (Sid(s', sid)@i5 A Match(s, sid) @i, A Jis. SesskRev(s') @i

e Or... long term secrets and ephemeral keys were revealed (can be
formalized similarly—see (Schmidst, et al., 2012a))

65/105

Issues with Multiset Rewriting

e Incrementally constructing attacks is difficult with (action-)traces

» No history of past states
» No causal dependencies between steps

e Symbolic reasoning modulo an equational theory is difficult, because
of cancellation equations

» If the adversary knows t = n * x for some nonce n, we cannot
conclude that n has been used to construct t, as x could be n™?

o Message deduction rules may be applied redundantly

» Encrypt some plaintext m then decrypt m and send it, instead of

just sending m
66/105

Dependency Graphs

A dependency graph consists of

e nodes labelled with rule instances

e edges represent the dependencies between nodes

Dependency graphs are used to represent protocol executions together with
their causal dependencies

67/105

Dependency Graph: Example

Fr(x)’ Fr(k) [] 1: m 2: %
St(x, k), Out(enc(x, k)), Key(k) O
3:
St(x, k), In({x, x St(a, k) Out(enc(a, k))) Key(k)
CIILICE) R -
kg —()[Rev(k)]]
N
Key(k) _ Out(enc(a, k)) _ Out(k)
Out(k) [Rev(k)] o K(enc(a, k)) 0 K(k)
K(enc(a, k)) K(k)
e Node indexes denote rule application order * K(dec(enc(a, k), k)
e The trace of the graph is the trace of the execution 8 Kéz(’za ZS)
e Anedge (i,F) — (j,G) denotes that F =g G and F is o, Kia l a)) K((a,2)]
generated by i and G is consumed by j In((a, a})

e Other technical conditions... (Schmidt, et al., 2012a) 10, St@®K (@)

68/105

The Equational Theory AC

The equational theory AC is the theory generated by the following equations:
xx*x(y*xz)=(x*y)*z (Associativity)

x*y=yx*x (Commutativity)

69/105

The Rewriting system DH

(1) dec(enc(m, k), k) > m (9) (x¥)? - xV*?

(2) fst({x,y)) = x (10) x! - x

(3) snd({x,y)) =¥

(@ (" tey)toxwy! () 171 -1

(b) xLxy™t > (xx)7t (9) x*1-x
(€) x*(xxy) Loy (D) ™ >«

d) x7Px(y x> (xxy)TTxz (D) xx (T xy) >y
(6) (xxy) ' x(yxz) >x " xz () xxx™t -1

70/105

Dependency Graph Modulo AC

o It can be proved that any term t has a (unique) normal form ¢,
with respect to AC,DH-rewriting

o Inparticular, t = sifft, . =Ac Si,,

e A dependency graph is | -normal if all its rule instances are
1y -NOrmal

e Informally speaking, by reducing the rules to their AC,DH-normal
form, we obtain a graph that is “equivalent” modulo AC to the
original graph

e By switching to the simpler theory AC we get rid of cancellation
equations

71/105

Dependency Graph Normalization: Example

To normalize the graph on the right, replace rule 7 SBEE CER
Fr(a) Fr(k)
3:
St(a, k) Out(enc(a, e
K(enc(a, k)) K(k) t(a,k) Out(enc(a, k) KK};(IE\I?()
Y
K(dec(enc(a, k), k)) 4: W{Rev(k)n
Out(enc(a, k)) Out(k)
with > Klenc@) O KK
- K(enc(a, k)) K(k)
K(enc(a, k)) K(k) ’ K(dec(jnc(a,i(),k))
K K@) K@)
(@) IO)
TR S
" In((a,a)) ’

/.
1) SE0lY '"(<a’a>){Fin(a,k)]

72/105

Star-Restricted Protocols

A protocol P is *-restricted if no rule performs multiplication of the
exponents, or introduces products by other means

ForeveryruleL { A b R:

e L does not contain *, A, ~1, fst, snd, and dec

e R does not contain *

Protocols that use multiplication in the group of exponents can usually be
specified by using repeated exponentiation

73/105

Preventing Loops and Redundant Derivation

K{@,b) K@ K@ _Klac) K@ K@
K@ ~ K(ae) K@ | K(ad)

o Idea: split adversary knowledge into K" and K*

e Distinguish between construction rules and deconstruction rules

e Tagl means “deconstruction allowed”

o Tag T means “deconstruction forbidden”

e Using a deconstruction rule to deconstruct the result of a construction

rule is forbidden

74/105

Construction and Deconstruction Rules: Example

Deconstruction rules:

K'((xy) K'({xy)

Construction rule:

K'v) K'(y)

K'(x) K'»)
Now:

K@@y | K@
K'(a) K'(a)

K'((x, y))

K'(@ K'©

K'((a, c))

Coerce rule:

K'(x)
K'(x)

K'(a, c))
K'(a)

75/105

Preventing Repeated Exponentiation

K(g®) K(a*=b) K(g®) K@ '*o)
_)
K(g9") K(g°)
o Tags (exp/noexp) are also used to prevent repeated exponentiation,

which can always be replaced by a single exponentiation with the
product of all exponents

e A conclusion with a noexp-tag cannot be used with a premise that
requires an exp-tag

76/105

Preventing Repeated Exponentiation: Example (1)

An exponentiation rule:

Kexp(®) Ki(y™'+2)

l
Khoexp (*%)

Now:

Kexp(@®) Ki (@™ #b) Kexp(@?) K (7% 0)

s

l \
Khoexp(9”) Khoexp(99)

77/105

Preventing Repeated Exponentiation: Example (2)

What you can do instead (using suitable exponentiation rules):

Ke@txb) Ky(b7txo) Kexp(@®) Kexp(@™ % 0)
Kéxp(a‘l *C) noexp(gc)

78/105

Normal Deduction Rules

{ Out(z t
Coerce rule: COERCE KTE (z) Communication rules: IRECV Ké (()) ISEND }I(neT(x))[K(z)]
Ke(z) e ‘

Construction rules:

Kip(®) Ki(y) Fr(zifresh) Kl(z) Kl (@) KL,(») K, (=) K,
K;oexp (z"y) Kgxp (z:pub) K(Texp(w:fres}l) Kgxp (m_l) K;xp(l) K;xp(enc(a:’) K;xp (dec(z,y))

Kl(z) Kl(z) Kl(z) Kl (z) KL(w) Kl (z) ... Kl () Kl (2na1) ... Kl (=)
Kio(h(z)) Klp(fst(z)) Klo(nd(z)) Klo((e,y)) Ko (@1 % .. % @) % (Tpe1 +..ox2y) ™)
Kéxp(z “y) Kl(y_l) Kéxp(m Ay_l) Kl (v) Kéxp(zA (y* Z_l)) Kg(y_l *2)
i 1 1
Deconstruction rules: K"°e"p(m) K""e"p () K"°e"p (z)
Ki((z,y) Ki((my) K@) K (enc(z,y)) Kl (v)
Kclaxp (z) Kéxp(y) Kéxp (=) Kelaxp (=)

Exponentiation rules: Kéxp(m Ay) K(TE(Z) Kéxp(wA y) Kl(y_l o Z) . Kéxp(x " (y & Z_l)) KL(G’ * b_l)

Krimexp(w “(y*2)) K#oexp(x "z) Krimexp(wA (y*rax*(z* b)_l))

79/105

Normal Dependency Graph

(a) 5. Out) | | (b) . Out(k) a. Dependency graph modulo AC
Out (enc(a, k)) k Out(enc(a, k)) Kixp(k)
K(enc(a, k ® K (enc(a, k) <t b. Normal dependency graph
" KoK
K(enc(a k) KK ||, Khplencari) le;/k) Lemma. For a large class of

K(2) ' Kol protocols P (“*-restricted”), the set

)
.. m of normalized traces of executions
)

K/va(a of P and the set of traces of the
L K@) K@ o, KZX,,(aT Kl (@) normal dependency graph of P are
K(<7a>) Kon((3,2)) equal modulo AC
K(2/2) e qaapt | | 11 M[K«a a))]
In((a,a)) In({a,))

80/105

Verification Strategy at 10,000 Feet

Backward reachability analysis —searching for insecure states
e Negate security property, search for solutions
Constraint solving

e Constraint systems are used to represent the intermediate states of
the search
e Dependency graphs denote the solutions of the constraint systems

e Uses normal dependency graphs for state-space reduction

o Efficient in practice, despite undecidability

81/105

Tamarin's Constraint Solving Procedure

function Solve(P kg, @)
@ < =@ rewritten into negation normal form

O < {oh
while Q # @ and solved(Q) =0 do
choose I wp {I}, .., I} such that I'e Q
Q< Q\{THu{ly,.. Ik}
if solved(Q) # 0
then return "attack(s) found: ", solved(Q)
else return "verification successful"

82/105

Guarded Trace Formulas

e In negation normal form

» Negation is only applied to trace atoms
» all logical connectives are A, V, V, 3

e All quantifiers are of the form:
IX. (F@i)AY or VX.-(F@i)Vy

where 1 is guarded and all X appear in F @i

e Terms can only be built out of the quantified variables and public
names

e A guarded trace property is a closed guarded trace formula

83/105

Guarded Trace Properties

e 'The set of guarded trace properties is closed under negation
e They support quantifier alternation and comparison of time points

e Guarded trace properties are invariant under |, -normalization of
traces

e = Verification if multiset rewriting semantics modulo Epy =
verification in a dependency graph semantics modulo AC

Theorem. For every (x-restricted) protocol P and every guarded trace
property :
P kg, @ iff {traces(G) | Gisanormald.g. for P} k4c ¢

84/105

Guarded Trace Properties: Example

“Fresh values (nonces) are all distinct®
vn: fresh, i, j. Act(n)@i A Act(n)@j - i =

The above is equivalent to a guarded formula, which can be obtained by
pushing quantifiers and negation inwards as far as possible:

vn,i,j. 2Act(n)@i V -Act(n)@j Vi =j
vn, L =Act(m)@i V (Vj(=Act () @] V i = j))
This property is trivially valid, given the definition of traces

85/105

How to Ensure Guardedness in Tamarin

For universally quantified variables:

e they must occur in an action atom right after the quantifier

o the outermost logical operator inside the quantifier is an implication
For existentially quantified variables:

e theyall occur in an action atom right after the quantifier

e the outermost logical operator inside the quantifier is a conjunction

86/105

Graph constraints

e Anodei: r (wherer isa rule instance with index i)
e Anedge(i,F)— (J,G)
e A “deconstruction chain”

e An “implicit construction”
A constraint is either a graph constraint or a guarded trace formula

o Constraints are evaluated with respect to a d.g. (and a valuation)

e Constraint system: set of constraints

87/105

The Constraint Reduction Relation wp

e A normal dependency graph for a protocol P with a valuation that
satisfies each constraint of a constraint system is called a P-solution

e So, to find a counterexample for a guarded trace property ¢, one tries
to find a P-solution to {¢} (i.e., =¢ in negated normal form)

e Intuitively, wp is used to refine the initial constraint system {¢} until
it either encounters a solved system or all systems contain (trivially)
contradictory constraints

o There are 27 reduction rules for w p

e A solved constraint system is one that is irreducible w.r.t. wp

88/105

Trace Formula Reduction Rules

S_,’g, :
S.a:
S_ <
Sy:
S\
S3:
Sy :

r
r
r
r
r
r
r
r
r
r
r
r

P | oeunify s (t1,82) (L) if (t1~t2) el and ¢ #4c to

~p I{i/j} if (¢2zj)elandi+j

P | ierp1omugisenny | freacs(riy (878, f o f',T) if (f@i) €T and (f@i) ¢ac as(T')

~p L if Lel’

~p L if +(t~t)eacT

o L if ~(i=i) el

~p 1 if =(f@7) eI and (fQ¢) € as(T")

~p (1<3,T) | (T{i/5}) if -=(j <) €T and neither 7 < j nor i = j
~p (¢1,1) || (g2, T) if (¢1V ¢2) €ac I and {¢1,¢2} NacT =2
~p (¢1, 2, T) if (¢1 Ap2) €ac T and not {¢1,¢2} Sac T
~p (¢{y/z}, T) if (Jz:s.¢) €T, p{w/x} ¢ac T for every term w of sort s, and y:s fresh
~p (Yo, T) if (VZ.-(f@i)v) el dom(o) =set(z), (fQi)o eac as(T), and Yo ¢4c T

89/105

Graph Constraint Reduction Rules

Up T ~p (rismi',T) if {i:ri,i:ri’}cTand ri +a¢c 1’

DGl;: I ~p 1 if i <p i

DGly: [~p (fef,T) ifc»pel, (¢, f) ecs(T), (p,f') eps(T), and f #4¢0 f'
DG2;: I ~p (if u=v then T'{i/5} else 1) if {(4,v)»p, (j,u)»p}cTandi+j

DG22,p: I' ~p ”m‘e[P]DHu{ISEND,FRESH} ”ueidx(concs(r’i))(i i, (Z’u) »p,T)
if p is an open f-premise in T, f is not a K'- or K'-fact, and 4 fresh

DG3: I' ~p (if u=v then I'{¢/j} else 1) if {¢> (4,v),c¢> (j,u)} cT, clinear in I, and ¢ # j,
DG4 : T ~p I'{i/j} if {i: {]pFr(m), j: {PFr(m)} cacT andi+j
N1: I' ~p 1 if (i:71) el and ri not | pg-normal

N56: T ~p (i} if {((5,1),KE(2)), ((5,:1),KE ()} Cac es(T), i # j, and
d=d" or {i,j}n{k|3ri €insts({PAIR?,INV1,COERCE}). (k:1i) e} =@

N6 : T ~p (i<j,T) if ((§,v),KL(t)) e ps(T), m eac inp(t), ((3,u),K:(m)) € cs(T'), and not i <r j
N7: [~p ol if (i Kéxp(sl)a K(Te(tl)—[]_’K#oexp(@ “t3)) €T, sg is of sort pub, and inp(tz) < inp(t1)

90/105

Message Deduction Constraint Reduction Rules

DG2j 4; :

DG23 pe :

DG2; | :

DG2 , :

T ~p ok yevpeen (i (H{KL(E)), t »m, (5,1) » p, T)
if p is an open implicit m-construction in I', m non-trivial, and % fresh

I' ~p ”m‘eNDC-exPl (i:ri, (4,1)»p, T)
if p is an open K!(m)-premise in T', {m} = inp(m), m non-trivial, and 4 fresh

T ~p (i: Out(y)—[]»KéXp(y), (¢,1) -» p, T') if p is an open K!(m)-premise in I" and y, 4 fresh

(c->p,T) ~p (c»p,T) | "'rieNDde-‘” (i:ri, c>(4,1), (4,1)->p, T)
if (¢,K:(m)) € cs(T), M ¢ Vygg, and i fresh

91/105

Properties of wp

Theorem. The constraint-reduction relation »p is sound and complete; i.e.,
for every I' wp {I}, ..., I},}, the set of P-solutions of I is equal to the union of
the sets of P-solutions of all [}

Theorem. A P-solution can be constructed from every solved system in the
state ()

92/105

Intuition for Backward Reachability (1)

Fr(x), Fr(k) St(x, k), In({x, x))

Key(k)
St(x, k), Out(enc(x, k)), Key(k) L] o#

Out(k)

| Fin(x, k) | | Rev(k) |

e We want to prove the unreachability of a Rev-action

e Formally: ¢ = VkVi.=Rev(k)@i

e We do so by solving a constraint system [\ = {3k3i. Rev(k)@i}
e To solve the constraint system, we apply some transformations

e First, note that [j has the same solutions as {Rev(k) @i}, because the
free variables of a constraint system are existentially quantified

93/105

Intuition for Backward Reachability (2)

Fr(x), Fr(k) St(x, k), In({x, x)) Key(k)

St(x, k), Out(enc(x, k), Key (k) | 1 o (M) g P

As there is only one rule in whose instances have a Rev-action, the
solutions of {Rev(k) @i} are therefore equal to the solutions of

. Key(k)
I = {l ; Out(k)[Rev(k)]}

Le., the dependency graph must contain the above node

In all solutions of I';, the Key-premise must have an incoming edge
from a Key-conclusion

94/105

Intuition for Backward Reachability (3)

Fr(x), Fr(k) St(x, k), In((x, x)) Key(k)

St(x, k), Out(enc(x, k)), Key(k) o#

| Fin(x, k) | = (k)[Rev(k)]

As there is only one rule in whose instances have a Key-conclusion,
the solutions of I'; are therefore equal to the solutions of

(. Key(®) . Fr(x), Fr(k) o
Iz = {‘ ' Out(k)[ReV(k)]' J1* Sttx 1), Out(enc(x, b)), Key ey’ Jv3) = (@ 1)}

L.e., the dependency graph must contain the two nodes above,
connected by the specified edge

95/105

Intuition for Backward Reachability (4)

System I's: System I's:
i Fr(ax:fresh) 9 ¢ Fr(k:fresh)
o Fr(z) Fr(k) o Fr(z) Fr(k)
M St(z,k) Out(enc(z, k)) Key(k) 7 St(z, k) Out(enc(z, k)) Key(k)
. Ke£(k) Ke£(k)
e e)] Sug e ()]

I3 is the solved constraint system, and a counterexample to ¢

96/105

Constraint Solving: Example (1) (Meier, 2013)

Same protocol as before:

Fr(x), Fr(k) St(x, k), In((x, x))

Key(k)
St(x, k), Out(enc(x, k)), Key(k) L] o#

Out(k)

| Fin(x, k) | [Rev(k) |

We want to prove:

(p = Vx1 xZ k il izFin(xl, k)@ll N\ Fin(xZ, k)@lz —d (1'1 = lz) N\ (x1 = XZ)

97/105

Constraint Solving: Example (2)

@ holds iff {(} has no solutions, where:
¢ = 3, k iy, Fin(xy, k) @iy A (3%, iy Fin(xy, k) @iy A (=(iy = iy) V =(x1 = %,)))
We start by applying S5, S), S, S, to {@}, in this order, which results in a new
constraint system:
I':={ 3z1 k1. Fin(x1,k)Qi1 A (Fz2dg. Fin(xg, k)Qig A (=(i1 = 42) V =(x1 ~ 22)))
, Fin(z1,k)Qiq A (3x242. Fin(xg, k)Qig A (=(i1 =i2) vV =(z1 » 22)))
, Fin(z1,k)Qiq , (Jz2is. Fin(ze, k)Qig A (=(i1 =42) V ~(x1 ~ x2)))
, Fin(z9,k)Qig A (=(i1 2 42) V ~(21 » x2))
, Fin(ze,k)Qiy , =(i1 =42) V-(x1 ~x2) }.

98/105

Constraint Solving: Example (3)

All constraints in I' except for the greyed ones are solved (no other rule
applies to them)

We continue by solving Fin(x4, k) @i, using rule Sg, which produces:

St(x', k"), In({x', x"))
@#

I, =Tu {il : [Fin(x', k') |, Fin(xy, k) = Fin(x/, k’)}

and

r,=TU {il : gzﬁ’;)) [Rev(k")], Fin(xy, k) = Rev(k’)}

I, reduces to L because the terms in the equality cannot be unified

99/105

Constraint Solving: Example (4)

We proceed by solving Fin(x, k) = Fin(x’, k") with rule S, which results in:

. St(xl; k), In((xl, xl))

F12 - Fl U{ll 5

@#

| Fin(xy, k) |, Fin(xy, k) = Fin(xy, k)}

Below, the gray element is the one chosen for the next reduction, and only the
new formulas at each step are shown

System I'y2:

: St(z1, k) In(<x1’$1))[Fin(x1,k)] Fin(zq, k)@Qiqy

+

System T'ya:

11

. Fr(zy1) Fr(k)
' St(z1,k) Out(enc(zy,k)) Key(k)

Fin(zs, k)Qiqy
] :St(asl,k) In({z1,21))

[Fin(z1,k)]

100/105

Constraint Solving: Example (5)

System I';s: . Fr(zy) Fr(k)
e St(x1,k) Out(enc(z1,k)) Key(k)

Fin(wg,k)@ig
_ :St(xl,k) In({x1,21))

11

[Fin(z1,k)]

4

System I'ja:
- Fr(z1) Fr(k) - Fr(z2) Fr(k)
e St(z1,k) Out(enc(z1,k)) Key(k) 2 St(zo,k) Out(enc(zz,k)) Key(k)
. St(x1,k) In((xl’xl))[Fin(:rl,k)] i St(zo, k) In(<m2’w2>)[Fin(x2,k)]

101/105

Constraint Solving: Example (6)

System ['qa: v
o Fr(z1) Fr(k) - Fr(zz) Fr(k)
M St(z1, k) Out(enc(zr, k)) Key(k) 7 St(za,k) Out(enc(za, k)) Key(k)
. St(ik) In(($1’x1))[Fin(m1,k)] . St(22, k) In(($2,x2))[Fin(.}32,k)]
System L Sl Fr(k) o Fr(k) = J4 =73
o Fr(zy) Fr(k) - Fr(zs2) Fr(k)
M St(z1, k) Out(enc(zr, k)) Key(k) 7 St(za, k) Out(enc(za, k)) Key(k)
e St(xlvk) In((xhxl))[Fin(.’El,k)] T St((l?g,ki) In(<x2,x2))[Fin(ZIZ2,k)]
|

102/105

Constraint Solving: Example (7)

v
system L R "OFR) =datis
o Fr(z1) Fr(k) o Fr(z2) Fr(k)
M St(z1,k) Out(enc(zr, k) Key(k) 7 St(za,k) Out(enc(za,k)) Key(k)
i St(ﬂfl,k) |n(<x1,$1))[Fin(m1’k)] iy - St(l‘g,k) In(<m2,x2))[Fin($zyk)]
System I'je: s : = = jy 2 i1
/// \%hiil,mmm
Fr(z1) Fr(k) Fr(zs) Fr(k)

i 8

St(z1,k) Out(enc(z1,k)) Key(k) j2: St(za,k) Out(enc(ze,k)) Key(k)

. St(z1,k) |n(<1'1,$1))[Fin(xl7k)] W St(z2,k) In({z2,72))

[Fin(iL‘z, k)]

103/105

Constraint Solving: Example (8)

System I'ys: j3 : Fr(k) = J"Q =
=i =11, T2 ¥ T1
i Fr(z1) Fr(k) , Fr(z2) Fr(k)
1 - 3
St(z1,k) Out(enc(z1,k)) Key(k) 7 St(z2,k) Out(enc(ze,k)) Key(k)
~ St(z1, k) In({z1,21)) St(zo,k) | ,
P CatL L LD TR e L L I TR
System I'y7: .
" Frk)
=(i1 2 42) v (21 ~ 32), 2 =01, T2 ¥ T1
ji: Friz,) Frik) = =(i1 =i1) v =(z1 % 21)
St(z1,k) Out(enc(z1,k)) Key(k) = contradiction
St k) |
o SHenk) Inlena)) oo

104/105

References

Abadi, M. & Needham, R. (1996). Prudent Engineering Practice for Cryptographic Protocols. IEEE Transactions
on Software Engineering, 22(1), 6-15.

Dolev, D. & Yao, A. (1983). On the Security of Public Key Protocols. IEEE Transactions on Information Theory,
29(2), 198-208.

Even, S. & Goldreich, O. (1983). On the Security of Multi-Party Ping-Pong Protocols. In On the Security of
Multi-Party Ping-Pong Protocols., 24th Annual Symposium on Foundations of Computer Science (SFCS
1983). IEEE, Author.

Meier, S. (2013). Advancing automated security protocol verification. (PhD thesis). ETH Zurich.

Schmidt, B., ... (2012a). Automated Analysis of Diffie-Hellman Protocols and Advanced Security Properties.
In Automated Analysis of Diffie-Hellman Protocols and Advanced Security Properties., 2012 IEEE 25th
Computer Security Foundations Symposium. Author.

Schmidt, B. (2012b). Formal analysis of key exchange protocols and physical protocols. (PhD thesis). ETH Zurich.

105/105

