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What we want and why

Consider the temporal logic of until and since over the real numbers
model of time. This logic is an important basis for reasoning about
concurrency, metric constraints and planning.

Despite its usefulness and long history, there are no existing
implementable reasoning techniques for it.

We look at algorithms for deciding satisfiability, model checking and
synthesis.
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The Logics: structures and syntax

Fix a countable set L of propositional atoms.

Definition
Frames (T , <), or flows of time, will be irreflexive linear orders.
Structures R = (T , <,h) will have a frame (T , <) and a valuation h for
the atoms i.e. for each atom p ∈ L, h(p) ⊆ T .

The language L(U,S) is generated by the 2-place connectives U
(Until) and S (Since) along with classical ¬ and ∧.
Set of formulas contains the atoms and for formulas α and β we
include ¬α, α ∧ β, U(α, β) and S(α, β).
i.e. prefix versions of U and S: U(p,q) says that “until p is true, q
holds".
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Semantics
Formulas evaluated at points in structures R = (T , <,h). Usually here
(T , <) = (R, <).

R, x |= α means α is true at the point x ∈ T :

R, x |= p iff x ∈ h(P), for p atomic;
∧,¬ as usual
R, x |= U(α, β) iff there is y > x in T such that R, y |= α and

for all z ∈ T such that x < z < y
we have R, z |= β; and

R, x |= S(α, β) iff there is y < x in T such that R, y |= α and
for all z ∈ T such that y < z < x
we have R, z |= β.

U(p,q)
� -q

p
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Abbreviations include the usual classical and temporal ones such as
Fα ≡ U(α,>), Gα ≡ ¬F¬α, C+α ≡ U(>, α), K+α ≡ ¬C+(¬α), P, H,
C−, K−.

Satisfiability of a formula means that there is a model and a time point
when that formula is true. Validity defined as usual.

When T = R we call the logic RTL.

So we have the RTL-SAT problem.
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Decidability

Eg, decide if

U(>,p) ∧ F¬p ∧ ¬U(¬p ∨ K+(¬p),p)

is satisfiable.

Decidability of RTL proved by [BG85].

Rabin’s decision procedure for the second-order monadic logic of two
successors [Rab69] is used in [BG85] to show that that RTL is
decidable. One of the two decision procedures in that paper just gives
us a non-elementary upper bound on the complexity of RTL-SAT.
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Axioms

all classical tautologies,
the six Burgess-Xu axioms as follows:

G(p → q)→ (U(p, r)→ U(q, r))
G(p → q)→ (U(r ,p)→ U(r ,q))
p ∧ U(q, r)→ U(q ∧ S(p, r), r)
U(p,q)→ U(p,q ∧ U(p,q))
U(q ∧ U(p,q),q)→ U(p,q)
U(p,q) ∧ U(r , s)→
U(p ∧ r ,q ∧ s) ∨ U(p ∧ s,q ∧ s) ∨ U(q ∧ r ,q ∧ s)

along with each of their duals,
plus axioms for density and no end points:
K+>,K−>,F> and P>

and more ...
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Axioms Continued

Two for Dedekind completeness:
Prior-U: U(>,p) ∧ F¬p → U(¬p ∨ K+(¬p),p)
Prior-S: S(>,p) ∧ P¬p → S(¬p ∨ K−(¬p),p)

and Sep:
Sep: K+p ∧ ¬K+(p ∧ U(p,¬p))→ K+(K+p ∧ K−p)
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Mosaics

The PSPACE RTL satisfiability decision procedure in [Rey10a] uses
linear time mosaic techniques.

Mosaics [N9́5, MMR00, Rey03, HHM+99] are small pieces of a model,
in our case, a small piece of a linear-flowed structure.

A mosaic = (subfmlas true at first point, subfmlas true all times in
between, subfmlas true at 2nd point)

Syntactically defined with some simple closure properties.

A� -B
C
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Mosaic Closure Set

Our mosaics will only be concerned with a finite set of formulas:

Definition
For each formula φ, define the closure of φ to be
Clφ = {ψ,¬ψ | ψ ≤ φ} where χ ≤ ψ means that χ is a subformula of ψ.

We can sometimes think of Clφ as being closed under negation: we
could treat ¬¬α as if it was α.
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Mosaic

Definition
Suppose φ is from L(U,S). A φ-mosaic is a triple (A,B,C) of subsets
of Clφ such that:
C0.1 A and C are maximally propositionally consistent, and
C0.2 for all β ∈ Clφ with ¬β ∈ Clφ we have ¬β ∈ B iff ∼β ∈ B

and the following four coherency conditions hold:
C1. if ¬U(α, β) ∈ A and β ∈ B then we have both:

C1.1. ¬α ∈ C and either ¬β ∈ C or ¬U(α, β) ∈ C; and
C1.2. ¬α ∈ B and ¬U(α, β) ∈ B.

C2. if U(α, β) ∈ A and ¬α ∈ B then we have both:
C2.1 either α ∈ C or both β ∈ C and U(α, β) ∈ C; and
C2.2. β ∈ B and U(α, β) ∈ B.

C3-4 mirror images of C1-C2.
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An example mosaic

An example mosaic for φ = Gp ∧ C+(K+q ∧ K+(¬q)) is

({p,q,Gp, ..., φ},
{p,Gp,K+q,K+(¬q), ...},
{p,q,Gp, ...,¬φ}).

Coherency conditions apply. Eg, Gp in the start implies p,Gp in the
cover and p,Gp in the end.
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Mosaics can be decomposed
The example mosaic for φ = Gp ∧ C+(K+q ∧ K+(¬q)) decomposes

({p, q,Gp, ..., φ},
{p,K+q,K+(¬q), ...},
{p, q,Gp, ...,¬φ}).

~~ ��   

({p, q,Gp, ..., φ},
{p,K+q,K+(¬q), ...},
{p, q,Gp,K+q, ..., }).

({p, q,Gp, ..., φ},
{p,K+q,K+(¬q), ...},
{p, q,Gp, ...,¬φ}).

({p, q,Gp, ..., φ},
{p,K+q,K+(¬q), ...},
{p, q,Gp, ...,¬φ}).

1

Full decomposition means defects witnessed. Eg ¬q not in cover.
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Tableaux or tree like structure

We keep going to make a tree-shaped tableau of mosaics.

(A,B,C)

(A,B,B)

(A,B,B) (B,B,B)

(B,B,B) (B,B,B)

(B,B,C)

(B,B,B)

(B,B,B) (B,B,B)

(B,B,C)

1
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Patterns appear

Definition
We say that m is fully decomposed by the tactic lead σ, for some
sequence σ of mosaics iff 〈m〉 ∧σ is a full decomposition of m.

HH
HHH

HHH

A
A
A
A

�
�
�
�

��
���

���

m

m σ1 σ2 ... σn

...

The trail σ tactic is mirror.

Also a repetitive pattern called a shuffle.

Look at tree of patterns instead ...
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Sketch RTLSAT Proof From [Rey10a]

Guess (A,B,C) for φ and then check that (A,B,C) is satisfiable.

In [Rey10a] satisfiability is checked via a tree of decompositions via
tactics (covers getting fuller as you go down branches).

Immediately gives an EXPTIME decision procedure a la [Pra79].

By being clever in choosing decompositions, bounding the depth of a
tree, can get a PSPACE result.

Theorem
RTLSAT is in PSPACE.

But the resulting tree (in case of a positive answer) looks like a sort of
description of a model ...
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Lead

The lead operation, I =
←−I1 corresponds to ω submodels, each

corresponding to I, and each preceding the last, ...

The trail operator is the mirror image of the lead operation, whereby
I =
−→I1 corresponds to ω structures, each corresponding to I1 and

each proceeding the earlier structures.
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Shuffle
The shuffle operator is harder to represent with a diagram. The model
expression I = 〈I1, . . . In〉 corresponds to a dense, thorough mixture
of intervals corresponding to I1, . . . , In, without endpoints.

The shuffle operation, where I = 〈I1, . . . , In〉
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Shuffles
Definition
Suppose that (T1, <1,g1), ..., (Tn, <n,gn) are linear structures.
Further, suppose there is a non-empty, non-singleton linear order
(B, <B) and a map π : B → {1, ...,n} such that for all b < c from B, for
all j ∈ {1, ...,n}, there is d ∈ B with b < d < c and π(d) = j .
Then T = Σb∈(B,<)π(b) is a shuffle of {(Ti , <i ,gi)|i = 1, ...,n}.

?? DD

...

]] __

T1 T2 Tn

1
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Complexity

[Rey10a] proved that RTL is PSPACE-complete (so no more complex
than L(U,S) over N [SC85]).

Also [Rey10b] proved US over all linear orders is PSPACE-complete.
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Tableau

The tableau-like structure we saw as part of the complexity proof is the
basis for a tableau for RTL but we need further work.

Define weight of a φ-mosaic m as |Cl(φ) \ cover(m)|. So, if |Cl(φ)| = L
then for every φ-mosaic m, 0 ≤ weight(m) ≤ L, although, as the cover
of a mosaic over the reals can not be inconsistent, the weight must be
at least about half of L. Note also that L is bounded by the twice the
length of φ.

Note that weight does not increase as you travel along a branch from
the root: the cover of child labels is a superset of the cover of their
parent.

We need to check properties of the set of nodes labelled with mosaics
of a particular weight. Suppose we are looking at weight k > 0.
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Look for a part of the tableau with these properties

Definition
Mosaic tableau T is a R-tableau iff it satisfies the following conditions:

1 T has no units, i.e. every mosaic has a decomposition into at least
two mosaics;

2 T has no central sticks;
3 T has no shuffles without a singleton; and
4 T only has shuffles with concise edges.

These are essentially simple graph-theoretic properties of the labels
on the decomposition tree but we will not define them in this talk.
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Tableau Results

Theorem
L(U,S) formula φ is R-satisfiable iff φ has a successful R-tableau.

By guessing a tableau of double exponential size we have a decision
procedure that runs in 2-NEXPTIME.
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Synthesis: What we want

We want an algorithm which does the following ...

Given a satisfiable formula such as
φ = U(q ∧ K+p ∧GS(p,¬p),¬U(q,¬q) ∧ ¬U(q,q)).

Output a finite description of a model (any model) of φ.

Eg picture ...
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Model Expressions

First, though, any synthesis algorithm will need to output the
description of a particular temporal structure over the reals (although
we don’t care up to order-preserving isomorphism). Model
Expressions are an abstract syntax for defining (general linear) models
that are constructed using the following set of primitive operators:

I ::= a | I + J | −→I | ←−I | 〈I0, ...., In〉
where a ∈ Σ = ℘(L)
so letter indicates the atoms true at a point.
We refer to these operators, respectively, as a letter, concatenation,
lead, trail, and shuffle.
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Correspondence
Definition

A model expression I corresponds to a structure as follows:
λ is the empty expression and corresponds to the empty structure
(∅, <,h) where < is the empty relation and h(p) = ∅ for all p ∈ L.
a corresp. to a single point structure ({x}, <,h) where x is any
object, < is the empty relation and h(p) = {x} if and only if p ∈ a.
I + J corresponds to any structure isomorphic to T⊕ S, for some
structure T which corresponds to I and S which corresponds to J .
←−I corresp. to any structure iso. to Σ(N,>)Xt where, for all t ∈ N,
Xt = X is some structure corresponding to I. (Trail is mirror).
For the case of shuffle, say I = 〈I1, ..., In〉, and suppose that for
each i = 1, ...,n, Xi corresponds to I. Now define
s : Q→ 〈I1, ..., In〉 by: if t ∈ Qi ⊆ Q then s(t) = Xi ; otherwise—if
t ∈ Q \⋃i≤n Qi—define s(t) = X1. Then I corresponds to any
structure isomorphic to Σ(Q,<)s(t).
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Lead

The lead operation, I =
←−I1 corresponds to ω submodels, each

corresponding to I, and each preceding the last, ...

The trail operator is the mirror image of the lead operation, whereby
I =
−→I1 corresponds to ω structures, each corresponding to I1 and

each proceeding the earlier structures.
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Shuffle
The shuffle operator is harder to represent with a diagram. The model
expression I = 〈I1, . . . In〉 corresponds to a dense, thorough mixture
of intervals corresponding to I1, . . . , In, without endpoints.

The shuffle operation, where I = 〈I1, . . . , In〉
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RMEs

Only want to build separable, dense struct. w/out endpoints...

Definition (Real Model Expression)

K ::= 〈a0, ...,am, x1+K1+y1, ..., xn+Kn+yn〉 | K0+a+K1 |
−−−→
a +K | ←−−−K + a

where a,ai , xi , yi ∈ ℘L, and m,n ≥ 0

The letter a0 can be later used as a sort of background filler to ensure
that the shuffle is Dedekind complete.

RMEs always define open intervals. Base element of recursion is
shuffle with only points. Will define a dense, separable linear order
with all letters homogeneously distributed.
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Non correspondence

Lemma
Every real model expression corresponds to some structure whose
frame is dense, separable and without end-points.

However, ...
These structures do not have a real frame: they’re countable. Luckily,
there is an iterative way of constructing a particular real-flowed
structure for each RME...
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R(I)
Definition (R(I))
Suppose I is a model expression. We define a particular structure
R(I) inductively and depending on the form of I as follows.

R(λ) = (∅, ∅,h), where h(p) = ∅ for every p ∈ L.
For a letter a, R(a) = ({0}, ∅,h), where for each p ∈ L, h(p) = {0}
if p ∈ a and h(p) = ∅ otherwise.
If I1 and I2 are model expressions, then
R(I1 + I2) = R(I1)⊕R(I2).

If I is a model expression then R(
←−I ) = Σ(N,>)Xt where

Xt = R(I) for each t ∈ N.

R(
−→I ) is analogously based on (N, <).

For the case of shuffle, say I = 〈I1, ..., In〉, define
f : R→ 〈I1, ..., In〉 by: if t ∈ Qi ⊆ Q then f (t) = Ii ; otherwise—if
t ∈ R \⋃i≤n Qi—define f (t) = I1. Define R(I) = Σ(R,<)R(f (t)).
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Actually a real model

Lemma
For every real model expression K, R(K) is a structure with a frame
that is isomorphic to the reals.
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Synthesis for RTL

Results from French, McCabe-Dansted and Reynolds [FMDR13].

Theorem
There is an FPSPACE procedure which given a formula φ from L(U,S)
will decide whether φ is R-satisfiable or not and, if so, will provide a
real model expression for a model of φ.

Theorem
The complexity of the problem of providing a real model expression for
a model of formulas of L(U,S) is FPSPACE-complete.
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Example

We now have an algorithm which does the following ...

Given a satisfiable formula such as
φ = U(q ∧ K+p ∧GS(p,¬p),¬U(q,¬q) ∧ ¬U(q,q)).

It outputs finite description of some model of φ.

〈{p,q}〉+ {p,q}+ 〈{p,q}, {p}〉+ {p,q}+
←−−−−−−−−−−{p,q}+ 〈{q}〉
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Regular Model Expressions

Regular Model Expressions (RegMEs) are similar to model
expressions but also allow the Kleene star “*” and or “|” operators,
resulting in the following syntax:

I ::= ν | λ | (I + I) | (I|I) | I ∗ | ←−I | −→I | 〈I1, . . . , In〉
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RegME Accepting a structure

MEs correspond to a particular structures that are all elementary
equivalent. However, RegMEs are more like automata in that the
structures accepted by a single RegMEs need not be elementary
equivalent. For this reason we use the term “accept” rather than
“correspond”, unlike previous papers that only deal with MEs.
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RegME Accepting a structure (continued)
Definition
A model expression I accepts structures as follows:

λ is the empty expression and accepts the empty structure
(∅, <,h) where < is the empty relation and h(p) = ∅ for all p ∈ L.
ν accepts any single point structure ({x}, <,h) where x is any
object, < is the empty relation and h(p) = {x} if and only if p ∈ ν.
I + J accepts any structure isomorphic to T⊕ S, for some
structure T which is accepted by I and S which is accepted by J .
←−I accepts any structure isomorphic to Σ(N,>)Xt where, for all
t ∈ N, Xt = X is some structure accepted by I. (trail mirror)
〈I1, . . . , In〉 accepts a structure if it is isomorphic to some Σ(T ,<)Xt
where: (T , <) is a dense non-empty linear order without
end-points; there is a function f from T to {1, . . . ,n} such that for
every x , y ∈ T , for every i ∈ {1, . . . ,n}, if x < y then there is
z ∈ T such that x < z < y and f (z) = i ; additionally for all t ∈ T
we have Xt accepted by If (t).

(continued over ...)
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RegME Accepting a structure (continued)

Definition
Now we define the regular operators:
I|J accepts any structure that is accepted by either I or J .
I∗ accepts any structure that accepted by λ, I, I + I, or I + I + I
and so on.
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Model Checking

(Regular) Model expressions also allow us to do model checking with
RTL.

Definition
We define the RegME-checking problem as follows: given a RegME I
and formula φ, determine whether I accepts a structure T = (T, <,h)
containing an x ∈ T such that T,x � φ.

Note that when I accepts all structures, this becomes equivalent to
testing satisfiability of φ. For example if I = 〈λ, ∅, {p}, {q}, {p,q}〉
then model checking a formula φ over the atoms {p,q} against I is
equivalent to checking the satisfiability of φ. Since satisfiability
checking RTL is PSPACE-complete, this may suggest another way of
showing that our model checking problem is PSPACE-hard; however,
note that the length of the RegME that accepts all structures is
exponential in the number of atoms.
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Model checking algorithm

From McCabe-Dansted, Reynolds and French, TIME 2016, algorithm
reduces the model checking problem into an RTL satisfiability problem.

The basic idea is that satisfiability checking linear time temporal logics
is in PSPACE. Thus, we can model check M against φ by converting
the model M into a formula ΨM , and then testing the satisfiability of the
conjunction of φ and ΨM . We will introduce some dummy points, so we
will have to modify ψ slightly to skip over those points.
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Theorem
Our model checking procedure is sound and complete.

Lemma

Model Checking RegMEs is in PSPACE.
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Conclusion and Future Work

We considered synthesizing, or constructing, a monadic structure over
the reals, from a given first-order specification.

Presented notation for giving a manageable description of the
compositional construction of such a model.

Used mosaics and separation techniques to give an algorithm for
synthesis.

Future Work:
Implementation via tableaux (at least the temporal synthesis part).
How many “different" models? Using regular expressions to describe
all models.
Adding metric restrictions.
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Thank you for listening

Questions? Comments.
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