
Nondeterministic Planning via
Symbolic Model Checking

Angelo Montanari

Dipartimento di Scienze Matematiche, Informatiche e Fisiche
Università degli Studi di Udine

Table of Contents

Automated Planning: the main issues

Planning

Planning as model checking

Planning via symbolic model checking

The main issues

Action-based planning vs. timeline-based planning

The main issues (partial list)

I Expressiveness

I Decidability and complexity

I Planning as satisfiability checking

I Planning as model checking

I Synthesis of plan controllers

I Monitoring of plan execution

The Planning Problem

The planning problem: finding a sequence of actions that bring a
system from an initial state to a goal state, given a set of possible
actions (action-based planning).

Elements of the problem:
I Context/Domain:

I Fluents/variables that describe the considered domain (a.k.a.
environment/world)

I inertial fluents, whose value can be changed by the execution
of some plan action only

I non-inertial fluents, whose value can vary independently of
the execution of plan actions

I States (the set of possible configurations)
I Actions that cause the transition from a state to the next one

I Initial states

I Final/goal states

The Planning Problem: the simple case

The standard (restricted) setting

I Fluents/variables take value over finite/discrete domains

I Complete observability

I No external events that may affect plan execution

I Deterministic actions: no uncertainty about the effects of the
execution of an action

Nondeterminism and extended goals

Nondeterminism

I External events that may cause plan-independent changes in
the system

I Partial specification of the initial states

I Uncertainty about the effects of actions (nondeterminism)

Extended goals

I properties that the system must satisfy during the execution
of the plan, e.g., integrity constraints

Classification of plans: situated, universal, and conformant

I Situated plans
The evolution of the plan may be influenced by the
environment. Environmental parameters are repeatedly
measured, and the selection of the action to execute takes into
account such measurements (trial and error strategies).

I Universal plans (a special case of situated plans)
Universal plans associate at least one action with any possible
state of the domain. In any system configuration, it is thus
possible to find a planned action to execute.

I Conformant plans.
In conformant plans, there is no need to collect any piece of
information during the execution of the plan in order to
achieve the goal. They are useful when observations of the
environment are not possible (null observability).

Planning as model checking

Planning as model checking.

The domain of the planning problem and its goal can be
represented by a formal model and a formula of a (temporal)
logic, respectively.

The (nondeterministic) planning domain (P,S ,A,R):

I P: a finite set of proposition letters P of the form:
fluenti = valuej

I S ⊆ 2P : a finite set of states (a state is defined by the
collection of the proposition letters that hold at it)

I A: a finite set of actions

I R ⊆ S × A× S : the transition relation (transition function in
case of deterministic planning)

We say that an action a is enabled in a state s if there exists a
state s ′ such that R(s, a, s ′).

A running example

Consider a parcel that must transferred from the train station to
the airport. The position of the parcel defines both the initial
condition (“at the train station”) and the goal (“at the
airport”).

On the path there is a traffic light where the vehicle that
transports the parcel has to possibly stop waiting for the green
light.

The color (red or green) of the traffic light introduces some form
of nondeterminism of the domain (it will be modeled by means of
a non-inertial variable), while the position of the parcel (train
station, traffic light, or airport) may only change as the effect of
the transportation action (inertial variable).

The only possible actions to execute to achieve the goal are thus
moving the parcel from one position to the next one and waiting
for the green light.

The model of the example domain

station/green

station/red
traffic light/green

traffic light/red

airport/green

airport/red

trasp

trasp

trasp

trasp

wa.

wa.
trasp

trasp

wa.

wa.

Figure: An example of planning domain

Initial states: white states; goal states: black states. Two variables:
position (inertial) and color of the traffic light (non-inertial).

Plans as state-action tables

How do we represent a plan?

I A plan can be represented by means of a state-action table
SA, that is, a set of pairs (s, a), where s ∈ S , a ∈ A, and a is
enabled in s.

Special cases. Deterministic plans: for each s ∈ S , there is
at most one pair (s, a) ∈ SA. Universal plans: for each s ∈ S ,
there is at least one pair (s, a) ∈ SA.

I An alternative representation of plans can be given that
distinguishes between the states of the agent/system and the
possible contexts.

It makes use of the following constructs:
I a function act(q, c), that specifies the action to execute when

the agent/system is in state q in context c
I a function ctxt(q, c , q′), that associates a new context with

the state q′ which is reached by executing the action act(q, c)

Execution structures

The execution of a state-action table (a plan) in a planning
domain can be described in terms of the transitions induced by
the state-action table (execution structure). The resulting graph
specifies all the possible executions of the plan.

Formally, let SA be a state-action table of a planning domain
(P, S ,A,R). The execution structure induced by SA from the set
of initial states I is a Kripke structure K = (Q,T), where Q ⊆ S
and T ⊆ S × S are the minimal sets satisfying the following
conditions:

I if s ∈ I , then s ∈ Q

I if s ∈ Q and there exists (s, a) ∈ SA such that R(s, a, s ′),
then s ′ ∈ Q and T (s, s ′)

A state s ∈ Q is a terminal state of K if there exists no s ′ ∈ Q
such that T (s, s ′).

Execution paths

An execution structure is a directed graph, whose nodes are all
the states that can be reached by executing the actions in the
state-action table and whose edges represent possible action
executions. It is not required to be total, that is, it may include
nodes (states) with no outgoing edges (terminal states). Terminal
states are states where the execution stops.

Let K = (Q,T) be the execution structure induced by a
state-action table SA from I . An execution path of K from s0 ∈ I
is a (possibly infinite) sequence of states of Q such that, for all
states si in the sequence, (i) either si is the last state of the
sequence (a terminal state of K) or (ii) T (si , si+1).

We say that a state s ′ is reachable from a state s if there is path
from s to s ′. We say that K is an acyclic execution structure if all
its execution paths are finite.

An example of execution structure

station/green

station/red
traffic light/green

traffic light/red

airport/green

airport/red

trasp

trasp

trasp

trasp

Figure: An example of execution structure

Notice that such a plan does not guarantee to always reach the
goal. Basically, it executes the action of transportation whenever
the color of the traffic light is green.

The planning problem: a definition

Let D = (P,S ,A,R) be a planning domain. A planning problem
for D is a triple (D, I ,G), where I ⊆ Q is the set of initial states
and G ⊆ S is the set of goal states.

Notice that there are two forms of nondeterminism:

I set of initial states (uncertainty about initial conditions);

I transition relation (nondeterministic action executions).

The solutions of a planning problem satisfy a reachability
requirement: a solution plan is a state-action table that, starting
at any state in I , allows one to reach a state in G .

In fact, the reachability requirement can be met in different ways.

Solving the planning problem: the deterministic case

Let D = (P, S ,A,R) be a planning domain, (D, I ,G) be a planning
problem for D, SA be a deterministic state-action table for D,
and K = (Q,T) be the execution structure induced by SA from I .

We distinguish among weak, strong, and strong cyclic deterministic
solutions to the planning problem.

I Weak solutions: SA is a weak solution if, for any state in I ,
some terminal state of K belonging to G can be reached.

I Strong solutions: SA is a strong solution if K is acyclic and
all terminal states of K are in G .

I Strong cyclic solutions: SA is a strong cyclic solution to the
planning problem if from any state in Q some terminal state
of K is reachable and all the terminal states of K are in G
(they guarantee the achievement of the goal “under fairness”).

About strong cyclic solutions

Strong cyclic solutions capture the idea of “acceptable”
trial-and-error strategies: all their partial executions can be
extended to obtain a finite execution path whose terminal state is
a goal state.

However, they can produce executions that loop forever.

This happens when an infinite sequence of “bad choices” is done,
that is, all the infinite execution paths are “unfair” because they
eventually enter loops where some actions are executed infinitely
often in some states where alternative actions leading to the goal
were also enabled (and never executed).

Solving the planning problem: the nondeterministic case

Let SA be a nondeterministic state-action table SA. A
determinization of SA is any deterministic state-action table
SA′ ⊆ SA such that {s : (s, a) ∈ SA′} = {s : (s, a) ∈ SA}.

A nondeterministic state-action table SA is a weak (resp.,
strong, strong cyclic) solution to a planning problem if all the
determinizations of SA are.

Strong solutions to a planning problem are a subset of strong
cyclic solutions which are in turn a subset of weak solutions.

Direct algorithms for weak, strong, and strong cyclic planning
have been proposed in the literature (Weak, strong, and strong
cyclic planning via symbolic model checking, by A. Cimatti, M.
Pistore, M. Roveri, and P. Traverso, Artificial Intelligence, Volume
147(1–2), July 2003, pages 35-84).

The main technical ingredient: weak and strong preimages

Pre3

Initial states

Pre2

Pre1

Goal states

Figure: Backward breadth-first search

Figure: Strong preimage computation

A symbolic representation of a planning domain: states

The symbolic representation of a planning domain
D = (P,S ,A,R) is as follows.

First, we associate a Boolean variable with each element of P.

The set of states S is represented by means of a vector of
variables ~x .

A state s ∈ S is specified by a formula ξ(s) consisting of the
conjunction of the variables which are true in s and of the negation
of those which are false in s.

A set of states Q ⊆ S is thus represented by the formula:

ξ(Q) =
∨
s∈Q

ξ(s)

A symbolic representation of a planning domain: actions

Actions are represented by means of another set of Boolean
variables (action variables).

We can use a distinct action variable for each action in A. This
allows for the representation of concurrent actions. In case no
concurrent actions are allowed, a mutual exclusion constraint must
be imposed.

In case concurrent actions are excluded, it is possible to use only
dlog |A|e action variables ~α, where each assignment to the action
variables denotes a specific action to be executed (the mutual
exclusion constraint is not necessary).

A symbolic representation of a planning domain:
transitions

Transitions are triples (state, action, state). A third vector ~x ′ of
propositional variables, called next state variables, is introduced.
We require ~x and ~x ′ to have the same number of variables, and the
variables in the same positions to correspond.

We make use of ξ′(.) (the obvious adaptation of ξ(.)) to specify
the next state.

A transition is represented by an assignment to ~x , ~α, and ~x ′.

Formulas that represent the states of the domain, the transition
relation, the initial states, and the goal states by S(~x), R(~x , ~α, ~x ′),
I (~x), and G (~x), respectively.

A symbolic representation of a plan

The machinery for the symbolic representation of planning
domains can be used to represent and manipulate symbolically the
other elements of the planning algorithms, in particular the
state-action tables (plans).

Let us denote by SA(~x , ~α) the formula corresponding to the
state-action table SA.

I States of the state/action table:
StatesOf(SA) = ∃~α(SA(~x , ~α))

I Actions of the state/action table associated with a state s:
ActionsOf(SA) = ∃~x(SA(~x , ~α))

A symbolic representation of planning algorithms

The planning algorithms can be expressed in terms of
transformations over propositional formulas.

The basic steps of the algorithms are the following preimage
operations that, rather than returning set of states, construct
state-action tables.

I Weak Preimage:
∃~x ′(R(~x , ~α, ~x ′) ∧ Q(~x ′))

I Strong Preimage:
∀~x ′(R(~x , α, ~x ′)→ Q(~x ′)) ∧ appl(~x , ~α)

where the actions enabled at a given state are expressed as follows:
appl(~x , ~α) = ∃~x ′(R(~x , ~α, ~x ′))

The language AR

One of the first action description languages proposed in the
literature to model planning problems in nondeterministic domains
is AR.

I A causes P if Q: in any state where Q holds, once A has
been executed, P holds

I A possibly changes F if Q: if A is executed in a state
where Q holds, the value of F may change

I always P: P holds in all states

I initially P: P holds in all initial states

I goal G : G holds in all final states

Formalization of the running example in AR

Algorithm 1 A formalization of the running example

1: transportation causes traffic light if station
2: transportation causes airport if traffic light ∧ light color = green
3: transportation causes ⊥ if ¬(station ∨ (traffic light ∧ light color = green))
4: wait causes ⊥ if ¬ traffic light
5: always station ↔ ¬(traffic light ∨ airport)
6: always traffic light ↔ ¬(station ∨ airport)
7: always airport ↔ ¬(traffic light ∨ station)
8: initially station
9: goal airport

A symbolic representation of states in AR

States in AR.

States in AR are represented by those valuations that satisfy
always P.

State =
∧

always P

P

Initial and goal states must satisfy, in addition, initially P and
goal G , respectively.

Init = State ∧
∧

initially P

P

Goal = State ∧
∧

goal G

G

A symbolic representation of actions in AR

Actions in AR. Actions are associated with a set of variables,
called action variables, that are true if and only if the
corresponding action is executed.

To model the effects of the execution of an action (the countepart
of the AR statement A causes P if Q), we need to force the
updated values of fluents to define valid states where P holds if Q
holds in the current state.

Res0 =State ∧ State[F1/F
′
1, . . . ,Fn/F

′
n]∧∧

A causes P if Q

P[F1/F
′
1, . . . ,Fn/F

′
n] ⊆ (A ∧ Q) (1)

In addition, we must constrain inertial fluents F1, . . . ,Fm, with
m ≤ n, to be possibly affected only by the execution of the action
or by a condition of the form A possibly changes F if Q.

	Automated Planning: the main issues
	Planning
	Planning as model checking
	Planning via symbolic model checking

