
University of Udine

Learning from Failures
Machine Learning-based Monitoring
for Runtime System Verification

Andrea Brunello - andrea.brunello@uniud.it
Andrea Urgolo - urgolo.andrea@spes.uniud.it

In several domains, systems generate continuous streams of
data which may contain useful telemetry information

• They can be used for tasks such as predictive maintenance
and preemptive failure detection
• System behaviours can be convoluted, being the result of

the interaction among several components and the
environment (Industry 4.0)
• Given the complexity of this setting, deep learning

approaches have also been considered. Problems:
• resulting models are hardly interpretable
• difficulty in providing guarantees on the obtained results

Introduction

2/28 Learning from Failures

In critical contexts, formal methods have been recognized as an
effective approach to ensure the correct behaviour of a system.

However, classical techniques, such as model checking, require
a complete specification of the system and of the properties to
be checked against it, in an offline fashion.

-> In some cases this may be very difficult!

Formal Methods

3/28 Learning from Failures

Framework that combines machine learning and monitoring to
detect critical system behaviours in an on-line setting:

• system behaviour’s complexity is dealt with by means of
machine learning

• extracted formal properties are interpretable, so a domain
expert can easily read and validate the generated model

A Novel Approach

4/28 Learning from Failures

Monitoring is a run-time verification technique:

• establishes satisfaction/violation of a property analyzing a
finite prefix of a single behaviour (run) of the system

• lightweight technique compared to model checking

• naturally applicable to data streaming contexts

Monitoring

5/28 Learning from Failures

When the monitor reaches a verdict, the latter is definitive.

Positively monitorable properties:
• every system satisfying it features a finite trace witnessing

the satisfaction
• it is possible to reach a success state

Negatively monitorable properties:
• every system violating it features a finite trace witnessing

the violation
• it is not possible to reach a success state in less than 2 steps

Not all properties are monitorable:
• it is possible to reach a success state, but it is not possible to

reach it in less than 2 steps

Monitoring: Monitorable Properties

6/28 Learning from Failures

Linear Temporal Logic (LTL) is an extension of propositional
Boolean logic with modalities that allow one to express
temporal properties over linear structures (e.g., individual
computation paths).

Linear Temporal Logic [Pnueli 1977]

7/28 Learning from Failures

Positively monitorable properties:
• every system satisfying it features a finite trace witnessing

the satisfaction
• it is possible to reach a success state: F success

Negatively monitorable properties:
• every system violating it features a finite trace witnessing

the violation
• it is not possible to reach a success state: G ¬ success

Not all properties are monitorable:
• it is possible to reach a success state and there is also a step from

which is not possible to reach a success state anymore:
F success ∧ F(G ¬ success)

LTL: Monitorable Properties

8/28 Learning from Failures

Signal Temporal Logic (STL) is an extension of LTL with
real-time and real-valued constraints

where ∼∈ {≤,≥,=} and I := (a, b)|(a, b]|[a, b)|[a, b] with
a, b ∈ R≥0 and a ≤ b

Signal Temporal Logic [Maler et al. 2004]

9/28 Learning from Failures

In addition to the Boolean semantics, quantitative semantics of
STL quantifies the robustness degree of satisfaction by a
particular trace

STL: Quantitative Semantics

10/28 Learning from Failures

In addition to the Boolean semantics, quantitative semantics of
STL quantify the robustness degree of satisfaction by a particular
trace

STL: Example 1

11/28 Learning from Failures

In addition to the Boolean semantics, quantitative semantics of
STL quantify the robustness degree of satisfaction by a particular
trace

STL: Example 2

12/28 Learning from Failures

For our purposes, we are interested in extracting constrasting
STL specifications
• Framework for inference of timed temporal logic

properties from data
• Produces a binary decision tree which can be translated in

a STL formula and used for classification
• Each node of the tree is associated with a simple formula

chosen from a set of primitives
• Optimality is assessed using impurity measures leveraging

the robustness degree which capture how well a primitive
splits the signals in the training data

DTL4STL [Bombara et al. 2016]

13/28 Learning from Failures

For each node a formula that minimize the impurity measure is
chosen from a set of primitives.

DTL4STL - Decision Tree Classifier

14/28 Learning from Failures

The optimization of the parameters in order to minimize the
impurity measure is carried out through the Simulated
Annealing algorithm. The overall complexity is O(N(logN)).

DTL4STL - Primitives

15/28 Learning from Failures

Framework Operation

16/28 Learning from Failures

Execution Modes:

• warmup: mimic the continual arrival of the available traces
from data pertaining to past system failures or generated
by means of simulations
• online: incoming traces of the currently monitored system

are considered

Execution Strategies:
• semi-supervised: domain experts specify an initial set of

properties to be monitored against the execution of the
system
• unsupervised: monitor initialized with just a single “the

machinery is in operation” property

Framework Operation Settings

17/28 Learning from Failures

• Information regarding the health status of ST4000DM000
hard drive model in the Backblaze data center
• Data recorded daily from 2015 to 2017
• 21 SMART parameters including both discrete and real

values
• Label which indicates a drive failure

Application: Backblaze Hard Drive Dataset

18/28 Learning from Failures

• Initial phase in unsupervised learning warmup mode on a
sample of training set execution traces which exhibited a
failure

• Two evaluation modes:
• online, in which the framework continues to learn

properties from the execution traces of the test set
• offline, for SOTA comparison purposes

• Counter-overfitting measures (trees):
• maximum height of 3
• minimum cross-validation accuracy score of 0.9
• maximum false alarm rate of 0.1 wrt pool of good training

traces

Application: Experiment Setup

19/28 Learning from Failures

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

FAR =
FP

FP + TN
, F1 =

2 ∗ Precision ∗ Recall
Precision + Recall

.

Application: Offline Results

20/28 Learning from Failures

Application: RUL and Online Results

21/28 Learning from Failures

F[12,16] SMART1 > 2.29 x 108

G[2,9] SMART1 < 1.6x108

True

No detection

Failure detection

True

No detection

False

False

• Failure in which the hardware read errors value stays below
1.6× 108 for a certain amount of time, and then, at a later
time, it exceeds 2.29× 108)

• The pattern represents a situation in which the errors
encountered in reading data grow over time, till they
exceed a warning threshold

Application: Interpretability

22/28 Learning from Failures

Pattern witnessed during the warmup phase:

1 formula f1 = F[25,45]SMART198 > 2.59 is extracted
• critical sensor regarding sector read/write errors

2 formula f1 triggers a failure prediction

3 as a consequence, f2 = F[11,36]SMART189 > 8.28 is extracted
• non-critical sensor regarding unsafe fly height conditions

The disk head is operating at an unsafe height, ultimately
damaging a disk sector and consequently causing read and
write errors (link between a non-critical and a critical sensor).

Application: Interpretability (2)

23/28 Learning from Failures

• Monotonicity of the monitoring pool property score?

• Warmup learning on good traces

• Redundancy in the monitoring pool

• RUL estimation

Future Work

24/28 Learning from Failures

Giuseppe Bombara et al. (2016). “A decision tree approach to
data classification using signal temporal logic”. In:
Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, pp. 1–10.

Andrea Brunello, Dario Della Monica, and Angelo Montanari
(2019). “Pairing Monitoring with Machine Learning for
Smart System Verification and Predictive Maintenance”. In:
Proceedings of the 1st Workshop on Artificial Intelligence and
Formal Verification, Logic, Automata, and Synthesis. Vol. 2509.
CEUR Workshop Proceedings, pp. 71–76.

Andrea Brunello, Dario Della Monica, et al. (2020). “Learning
How to Monitor: Pairing Monitoring and Learning for
Online System Verification”. In:

Bibliography I

25/28 Learning from Failures

Ian Cassar et al. (2017). “A Survey of Runtime Monitoring
Instrumentation Techniques”. In: Proceedings of the 2nd
International Workshop on Pre- Post-Deployment Verification
Techniques, pp. 15–28.

Alexandre Donzé (2013). “On signal temporal logic”. In:
International Conference on Runtime Verification. Springer,
pp. 382–383.

Marcus Gerhold, Arnd Hartmanns, and Mariëlle Stoelinga
(2019). “Model-Based Testing of Stochastically Timed
Systems”. In: Innovations in Systems and Software Engineering
15.3-4, pp. 207–233. DOI: 10.1007/s11334-019-00349-z. URL:
https://doi.org/10.1007/s11334-019-00349-z.

N. Jansen et al. (2018). “Machine Learning and Model Checking
Join Forces”. In: Dagstuhl Reports 8.3, pp. 74–93.

Bibliography II

26/28 Learning from Failures

https://doi.org/10.1007/s11334-019-00349-z
https://doi.org/10.1007/s11334-019-00349-z

Martin Leucker and Christian Schallhart (2009). “A brief
account of Runtime Verification”. In: Journal of Logical and
Algebraic Methods in Programming 78.5, pp. 293–303. ISSN:
1567-8326. DOI:
http://dx.doi.org/10.1016/j.jlap.2008.08.004. URL:
http://www.sciencedirect.com/science/article/pii/
S1567832608000775.

Oded Maler and Dejan Nickovic (2004). “Monitoring temporal
properties of continuous signals”. In: Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems.
Springer, pp. 152–166.

Amir Pnueli (1977). “The temporal logic of programs”. In:
Proceedins of the 18th Annual Symposium on Foundations of
Computer Science. IEEE, pp. 46–57.

Bibliography III

27/28 Learning from Failures

https://doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://www.sciencedirect.com/science/article/pii/S1567832608000775

Property Pattern Mappings for LTL (n.d.).
https://matthewbdwyer.github.io/psp/. Kansas State
University CIS Department, Laboratory for Specification,
Analysis, and Transformation of Software (SAnToS
Laboratory) – accessed online on 17 July 2020.

Bibliography IV

28/28 Learning from Failures

https://matthewbdwyer.github.io/psp/

	References

