Learning automata

Gabriele Puppis

Learning automata ...and generalisations!

Gabriele Puppis

Learning scenarios

NN

Learning scenarios

NN Automata

Learning scenarios

NN Automata

simple data, e.g. X € R® complex data, e.g. we X"

Learning scenarios

NN Automata

simple data, e.g. X € R® complex data, e.g. we X"

complex functions, e.g. f: R5 {0,1} simple functions, e.g. f: > >{0,1}

representing pictures of dogs representing regular L C >

Learning scenarios

NN Automata

simple data, e.g. X € R® complex data, e.g. we X"

complex functions, e.g. f: R5 {0,1} simple functions, e.g. f: > >{0,1}

representing pictures of dogs representing regular L C >

structure (architecture) is fixed structure (states+transitions) is learned
2

Learning scenarios

Passive

Learning scenarios

Passive Active

Learning scenarios

Passive Active

A bit of history on automata learning

— 56 Moore Gedanken-experiments on sequential machines
— ‘67 Gold passive learning in the limit
— ‘87 Angluin active learning with queries

— ’93... Pittetal PAC-learning, cryptographic hardness

— 95... Maleretal. learning regular w-languages
— 96... Vilaretal. learning word transformations

'00... Beimeletal. learning weighted and multiplicity automata

— ’10... Lemayetal. /learning tree transformations
— ’12... Howaretal. learning languages over infinite alphabets
— 14... Maieretal. learning timed languages

— ’15... Balleetal. spectral techniques for learning

A bit of history on automata learning

— 56

— "93...
— 95...

00...

— 10...
— 12...

— 15...

Moore

Gold

Angluin

Pitt et al.

Maler et ¢
Vilar et a

Beimel et

Lemay et
Howar et

Maier et ¢

Balle et al

Gedanken-experiments on sequential machines

Edward F. Moore

INTRODUCTION

This paper is concerned with finite automata] from the
experimental point of view. This does not mean that it reports the
results of any experimentation on actual physical models, but rather 1t
is concerned with what kinds of conclusions about the internal conditions
of a finite machine it 1s possible to draw from external experiments. To
emphasize the conceptual nature of these experiments, the word "gedanken-
experiments" has been borrowed from the physicists for the title.

The sequential machines conslidered have a finite number of states,
a finite number of possible input symbols, and a finite number of possible
output symbols. The behavior of these machines is strictly deterministic
(L.e., no random elements are permitted in the machines) in that the
present state of a machine depends only on its previous input and previous
state, and the present output depends only on the present state.

The point of view of this paper might also be extended to pro-
babilistic machines (such as the noisy discrete channel of communication
theory®), but this will not be attempted here.

EXPERIMENTS

There will be two kinds of experiments considered in this paper.
The first of these, called a simple experiment, is depicted in Figure 1.

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

2) Learner choses a query:
a) eithera membership query “Doesw € Lj ?”

b) oran equivalence query “Is Lo=L(A)?” (or “Are Ao, A equivalent?”)

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

2) Learner choses a query:
a) eithera membership query “Doesw € Lj ?”

b) oran equivalence query “Is Lo=L(A)?” (or “Are Ao, A equivalent?”)

3) Teacher answers accordingly:
a) yes if we Lo no otherwise
b) yes if Lo=L(A) (game endsand Learner wins),
otherwise gives a shortest counter-example w € (Lo- L(A)) u (L(A) - Lo)
(game continues from 2)

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

2) Learner choses a query:
a) eithera membership query “Doesw € Lj ?”
b) oran equivalence query “IsLo=L(A)?” (or “Are Ao, A equivalent?”)

3) Teacher answers accordingly:
a) yes if we Lo no otherwise
b) yes if Lo=L(A) (game endsand Learner wins),
otherwise gives a shortest counter-example w € (Lo- L(A)) u (L(A) - Lo)
(game continues from 2)

Observations
« membership queries alone are not sufhcient for Learner to win

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

2) Learner choses a query:
a) eithera membership query “Doesw € L ?”
b) oran equivalence query “IsLo=L(A)?” (or “Are Ao, A equivalent?”)

3) Teacher answers accordingly:
a) yes if we Lo no otherwise
b) yes if Lo=L(A) (game endsand Learner wins),
otherwise gives a shortest counter-example w € (Lo- L(A)) u (L(A) - Lo)
(game continues from 2)

Observations
« membership queries alone are not sufhcient for Learner to win
o instead, equivalence queries alone are sufficient to win (why? how quick?)

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

2) Learner choses a query:
a) eithera membership query “Doesw € L ?”
b) oran equivalence query “IsLo=L(A)?” (or “Are Ao, A equivalent?”)

3) Teacher answers accordingly:
a) yes if we Lo no otherwise
b) yes if Lo=L(A) (game endsand Learner wins),
otherwise gives a shortest counter-example w € (Lo- L(A)) u (L(A) - Lo)
(game continues from 2)

Theorem Learner has a strategy to win
[Angluin’87] in a number of rounds that is polynomial in | Ao

Learning as a game

1) Teacher has a secret regular language Lo, e.g. represented by DFA Ay
Learner initially only knows the underlying alphabet =

2) Learner choses a query:
a) eithera membership query “Doesw € Lj ?”
b) oran equivalence query “IsLo=L(A)?” (or “Are Ao, A equivalent?”)

3) Teacher answers accordingly:
a) yes if we Lo no otherwise
b) yes if Lo=L(A) (game endsand Learner wins),
otherwise gives a shortest counter-example w € (Lo- L(A)) u (L(A) - Lo)
(game continues from 2)

(r in the form of an algorithm (L* algorithm)

Theorem Learner has a strategy to win
[Angluin’87] in a number of rounds that is polynomial in | Ao

Learning as a game

1) Teacher has a secret regular language Lo, e.g. rep
Learner initially only knows the underlying alpk

2) Learner choses a query:
a) eithera membership query “Doesw € L ?

b) oran equivalence query “IsLo=L(A) ¥’

3) Teacher answers accordingly:
a) yes if we Lo no otherwise

b) yes if Lo=L(A) (gameendsand Learner

otherwise gives a shortest counter-example

(game continues from 2)

MAT (Minimally Adequate Teacher)

Sometimes answering an
equivalence query is not practical:
if Teacher knew Ao, he could pass

this information directly to Learner,

- so why bothering querying?

Equivalence queries can however
be approximated by a series of
membership queries: as long as
membership in A matches
membership in Ao, Learner
assumes he made the correct guess.

'This latter setting is often called

Black-box learning

(r in the form of an algorithm (L* algorithm)

Theorem Learner has a strategy to win

[Angluin’87] in a number of rounds that is polynomial in | Ao

Learning as a game

MAT (Minimally Adequate Teacher)

Sometimes answering an
equivalence query is not practical:
if Teacher knew Ao, he could pass
this information directly to Learner,

so why bothering querying?

Equivalence queries can however
be approximated by a series of
membership queries: as long as
membership in A matches
membership in Ao, Learner
assumes he made the correct guess.

'This latter setting is often called
Black-box learning

Learning as a game

MAT (Minimally Adequate Teacher)

‘(3 SECOND CUP ',"'; “ 7."‘." : ??'f\";‘ . o
WP COFFEE COMPANY 7'y Sometimes answering an

equivalence query is not practical:

F
(

if Teacher knew Ao, he could pass

1CCIN0 %

this information directly to Learner,

eI

so why bothering querying?

O cappu
Q Owed

Equivalence queries can however

mj;{:.o.

be approximated by a series of
membership queries: as long as

MOCH

membership in A matches
membership in Ao, Learner

[TLK
oQO°

cappucano

R g
e

assumes he made the correct guess.

This latter setting is often called
Black-box learning

Learning as a game

MAT (Minimally Adequate Teacher)

Sometimes answering an
equivalence query is not practical:

if Teacher knew Ao, he could pass

F
(

1CCIN0 %

this information directly to Learner,

e LK

so why bothering querying?

O cappu
Q Owed

Equivalence queries can however

mhj:o.

be approximated by a series of

on: model-learning
£ to model—checkmg>

Verificati
(in contras

membership queries: as long as
membership in A matches

b
———

N
[O—
—
—
e

membership in Ao, Learner

-
~
=
—-—
~/
~'
=
e
-
——
-
-
-—

assumes he made the correct guess.

CO{\J
Coﬂﬁo\ t\;&\caﬂoﬁ’ This latter setting is often called
exn "deﬁf ge(eﬂce Black-box learning
S\ISQ. (aﬂ\ W
AY&% DPro S, ccyy s
tOCO / 'y Ity

Lan h % .
guage theory: 2in o

grammar inference,

regular extrapolation
= SN

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if .2

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if veeX® utely & veely

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if vteX® utely & vtely

Ns) O [&) 8) l:)

ﬁcbb Cp c:‘)u(joc Qc -
®. .S L 5 ‘_YL

MY EOEB”P

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if vteX® utely & vtely

Properties:

e ~;, refines =,

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if vteX® utely & vtely

Properties:
e ~p, refines =,
/ ,C e ~i, isright-invariant
‘ " <1€ U~V =2 ua~Lova)
SN
C

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if vteX® utely & vtely

Properties:
e ~p, refines =,

U]

e ~i, isright-invariant
(i.e. U~V > ua~,va)

0

e ~1, has finite index
C O iff Lo is regular

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if vteX® utely & vtely

Properties:

e ~;, refines =,

e ~i, isright-invariant
(i.e. U~V > ua~,va)

e ~1, has finite index

ift Lo is regular

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if vteX® utely & vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Properties:

e ~;, refines =,

e ~i, isright-invariant
(i.e. U~V > ua~,va)

e ~1, has finite index

ift Lo is regular

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

T

5
E

s

Properties:

e ~;, refines =,

M

e ~i, isright-invariant
(i.e. U~V > ua~,va)

e ~1, has finite index

iff Lo is regular

~t

_c

~,r is coarser than ~,

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1

u~,rv if VvteT utely e vte Ly

N
) Learner constructs
automata from pairs

(S,T) where S € 2" is
T-minimal & T-complete

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

T

5
E

s

N
) Learner constructs
automata from pairs

(S,T) where S € 2" is
T-minimal & T-complete

M

S C>* is T-minimal
if Vs#s €8S s#.r158

~t

_c

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

N
) Learner constructs
automata from pairs

(S,T) where S € 2" is
T-minimal & T-complete

S C>* is T-minimal
if Vs#s €8S s#.r158

SC> is T-complete
if Vse§ VaeX
3 Sae S Sa zL(),Tsa

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy N
S=T-= (e Q [Learner constructs
automata from pairs
(S,T) where S € 2" is
T-minimal & T-complete

S C>* is T-minimal
if Vs#s €8S s#.r158

SC> is T-complete
if Vse§ VaeX
3 Sae S Sa zL(),Tsa

10

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy

S=T- (e)) Learner constructs
| automata from pairs
o0P X .
while S NOT T-complete (S,T) where § € X7 is
let s € S and a € 2 such that T-minimal & T-complete
Vs’'eS €T Membership(sat) # Membership(s’t)
S=5U {sa}

S C>* is T-minimal
if Vs#s €8S s#.r158

SC> is T-complete
if Vse§ VaeX
3 Sae S Sa zL(),Tsa

10

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy

S=T- (e) '’ Learner constructs
100D automata from pairs
C X .
while S NOT T-complete (S’T? ‘f"here SC 2 s
let s € S and a € 2 such that T-minimal & T—cornplete
Vs’'eS €T Membership(sat) # Membership(s’t)
S=5U {sa} - - 1
C : P
A = DFA with state set S, transitions 6(s,a) = Sa S - IS, A ,
initial state g, final states s’ s.t. Membership(s’) it Vs#s €S s#irs

SC> is T-complete
if Vse§ VaeX
3 Sae S Sa zL(),Tsa

10

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy

sa is the unique word in S M
S=T-= (e O TR &, LT 98 Q [Learner constructs
loop (S T-complete - s, exists automata from pairs
S T-minimal > s, uni C>*
while § NOT T-complete minimal > s, unique) (S’T? ‘f"here SC 2 s
let s€ S and a € 2 such that T-minimal & T—cornplete
Ve’'eS JteT Membership(sat) # Men. ‘rship(s’t)
S=5U {sa} - - 1
c : L
A = DFA with state set S, transitions 6(s,a) = Sa S - IS, A ,
initial state g, final states s’ s.t. Membership(s’) it Vs#s €S s#irs

SC> is T-complete
if Vse§ VaeX
3 Sae S Sa zL(),Tsa

10

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy

sa is the unique word in S M [
S=T-={e) such that s, ~L,T sa Q earneE constrgcts
loop (S T-complete - s, exists automata rrom p alf S
S Tominimal > s. uni c :
while § NOT T-complete minimal > s, unique) (S’T? ‘f"here SC 2 s
let s €S and a € 2 such that T-minimal & T—complete
Ve’'eS JteT Membership(sat) # Men. ‘rship(s’t)
S=5U {sa}
C b S ; .« .
A = DFA with state set S, transitions 6(s,a) = Sa S C2 IS, I-minimal ,
initial state g, final states s’ s.t. Membership(s’) it Vs#s €S s#irs
if Equivalence(A)
return A .
alse SC X" is T-complete
let w be the counter-example of equivalence if Vse€§ VaeX

T =T U {suffixes of w} Is,€S s.=,rsa

10

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy

S=T= (e /" Learner constrgcts
automata from pairs
loop) -
C :
while S NOT T-complete (S’T? where 5 € 2.7is
let s&€ S and a € 2 such that T-minimal & T—cornplete
Vs’'eS €T Membership(sat) # Membership(s’t)
S=8SU {sa} . 1
C : Py
A = DFA with state set S, transitions d(s,a) =S, S C2 IS, I-minima ,
initial state g, final states s’ s.t. Membership(s’) it Vs#s €S s#irs
if Equivalence(A)
return A ,
else SC X" is T-complete
let w be the counter-example of equivalence if Vse€§ VaeX

T =T U {suffixes of w} Is,€S s.=,rsa

10

Learning as a killer app of Myhill-Nerode theorem

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 u~,rv if veeT utelg e vtely

Learner-strategy
S=T={e}
loop

while S NOT T-complete
let s &€ S and a € ¥ such that

Vs'ES IET Membership(sat) # Membership(s’t) ¢ Sistate reached by A after

Proof by contradiction:
Assume:
e W =aj...a, counter-example

e ti=ai+]...a, suffixes of w

S=8U {sa]} reading prefix a; ... a; of w
A = DFA with state set S, transitions 3(s,a) = S, e Sis (T U{to,....ta})-complete
initial state g, final states s’ s.t. Membership(s’)
if Equivalence(A) Verify by induction on i that
return A we Ly iff sitie Lo
else

let w be the counter-example of equivalence Conclude w € L iff we L(A)
T =T U {suffixes of w}

10

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 ~ v if YeeT utely) e vetely

11

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely
Relativization to a test set 1 u~,rv if veeT utelg e vtely
Hankel matrix of Lo:

H e {0,1}>™>*
H(s,t) = Membership(st)

11

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
e a b aa ab .. aba .. Hankel matrix of Lo:
€ 1 0 0 1 0 0 S
H €{0,1}>™>
a 0 1 0 0 0 0 :
H(s,t) = Membership(st)
b 0 1 0 0 0 0
aa, 1 0 0 1 0 0
ap 0 0 0 0 0 0
aba, 0 0 0 0 0 0

11

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
e a b aa ab .. aba .. Hankel matrix of Lo:

H e {0,1}>™>*
H(s,t) = Membership(st)

a rOw = a ~.-class
aba 0 0 0 0 0 0

11

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely

Relativization to a test set 1 ~ v if YeeT utely) e vetely

€ & aba .. Hankel matrix of Lo:
€ 1 0 0 .
H €{0,1}>™>
& 0 1 0 .
H(s,t) = Membership(st)
b 0 1 0
aa | 1 0 0
ab 0 0 0
a TOW = a ~.-class
aba, 0 0 0
acolumn = atest wordt

11

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
a4, ab o ba o Hankel matrix of Lo:
0 0 N,
0 2 0 3 K
0 0 :
n -nn o R — H(S,t) — Memberghlp<s t)
8 I I 8
g 1 0 ¥
0 0
; | | | A rOw = a ~,-class
abat 0 § 0 § O ¢t O 0 0
P 1 acolumn = atestwordt

a submatrix = a pair (S,T)

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
e a b aa ab ... aba
€ 1 0 0 1 0 0
a 0 1 0 0 0 0
b 0 1 0 0 0 0
aa, 1 0 0 1 0 0
ab 0 0 0 0 0 0)
aba 0 0 0 0 0 0

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (e} T = {e)
e a b aa ab ... aba
e 0o 0 1 0 0
a 0 ! 1 0 0 0 0
blof1 o o0 0 0
aa, | 1 1 0 0 1 0 0
0 0 0 0

ab £ 0 § O

sba LOL o0 0 0 0 .. 0

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if VvteX' utely e vtely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (g} T = {e)

€ a b aa ab .. aba . expand S to make it T-complete...
g 0o 0 1 0 0
a 0 § 1 0 0 0 0
blof1 o o0 0 0
aa | 11 0 0 1 0 0
0 0 0 0

ab £ 0 § O

aba f 040 0 0 0 .. O

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (g} T = {e)
€ a b aa ab .. aba . expand S to make it T-complete...
£ o 0 1 0 0 5 {&al - el
a n 1 [o 0] o 0
blof1 o 0 o0 0
aa, | 1 0 0 1 0 0
ab | 0 0 0 0 0 0

sba LOL O 0 0 0 .. 0

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (e} T = (e}
8 a b a a' e aba, - expand S to make it T-complete...
: o 0 1 0 . o0 . Srisel TRl
g i build candidate automaton...
bfof1 0o 0 0 0
aa | 1 0 0 1 0 0
ab | 0 0 0 0 0 0

sba LOL O 0 0 0 .. 0

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence:

Relativization to a test set 1

a

b

aa |

ab

aba ‘

E
0 |
1|
0

b

o o ofof ol

aa ab
O H
0 0
1 0
0 0
0 0

u~p,V

~1,TV

aba

o o oclfoclfol

if veeX® utely e vee Ly

if veeT utelyg e vetely

S = {e} T ={e}

expand S to make it T-complete...
S = {e, a) T = {e}

build candidate automaton...

expand T by counter-example w = aba

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = {¢e} T={e}
€ a .. aba . expand S to make it T-complete...
= o
samn S s e | build candidate automaton...
T T
bfof 1 | Lo
aa | 1 0 - § 0 F . expand T by counter-example w = aba,
ab ‘ 0 0 . o1 . S ={e, a}l T = {e, a, ba, aba}
aba { 0 0 &+ 0 0 0 . ¢ 0

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (&} T = {e}
.. aba . expand S to make it T-complete...
: T e e
e build candidate automaton...
; 15T
b ~1ol.
aa | - § 0 F . expand T by counter-example w = aba,
ab ~tol. S ={e, a}l T = {e, a, ba, aba}

expand S to make it T-complete...

aba lO0dofo o o .1o

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (e} T = {e)

expand S to make it T-complete...
S = {e, a) T = {e}

build candidate automaton...

expand T by counter-example w = aba
S ={e,a} T = {e, a, ba, aba}

expand S to make it T-complete...
S ={eg, a, ab} T = {e, a, ba, aba}

aba L 0OL0odfo o o ..}1o.

12

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (e} T = {e)

expand S to make it T-complete...
S = {e, a) T = {e}

build candidate automaton...

expand T by counter-example w = aba
S ={e,a} T = {e, a, ba, aba}

expand S to make it T-complete...
S ={eg, a, ab} T = {e, a, ba, aba}

aba - O § 0 § O 0 0 ~ 1ol . build candidate automaton...

An alternative view - Hankel matrices

Myhill-Nerode equivalence: u~,v if veeX® utely & veely
Relativization to a test set 1 ~ v if YeeT utely) e vetely
S = (e} T = {e)

expand S to make it T-complete...
S = {e, a) T = {e}

build candidate automaton...

expand T by counter-example w = aba
S ={e,a} T = {e, a, ba, aba}

expand S to madze it T-complete...

aba l0tolo o o ..1o

From word languages to word functions

13

From word languages to word functions

Automata can be used to represent not only languages, but also functions on words
£, 351
e.g. f(abaab) = abcaacb

13

From word languages to word functions

Automata can be used to represent not only languages, but also functions on words
£, 351
e.g. f(abaab) = abcaacb

Many variants of automata with outputs. Simplest one is sequential transducer

ie. A=(2,1Q,qnd) with &: QxZ>QxI" (eg (q,a)=(q}ac))

13

From word languages to word functions

Automata can be used to represent not only languages, but also functions on words
£, 351
e.g. f(abaab) = abcaacb

Many variants of automata with outputs. Simplest one is sequential transducer

ie. A=(2,1Q,qnd) with &: QxZ>QxI" (eg (q,a)=(q}ac))

a/ ac

b/be

b/b

13

From word languages to word functions

Automata can be used to represent not only languages, but also functions on words
£, 351
e.g. f(abaab) = abcaacb

Many variants of automata with outputs. Simplest one is sequential transducer

ie. A=(2,1Q,qnd) with &: QxZ>QxI" (eg (q,a)=(q}ac))

a/ ac

b/be

b/b

Note: sequential transducers can only compute tozal, monotone tunctions
(f is monotone if whenever wis prefix of w' then f(w) is prefix of f{w’))

13

Learning monotone word functions

14

Learning monotone word functions

1) Teacher has a secret function fo: 2" > T", computed by a seq. transducer Ay
Learner initially only knows the input alphabet =

14

Learning monotone word functions

1) Teacher has a secret function fo: 2" > T", computed by a seq. transducer Ay
Learner initially only knows the input alphabet =

2) Learner choses a query:
a) either an evaluation query = “What is the value of fo(w) 27

b) oran equivalence query “Is fo computed by seq. transducer A ?”

14

Learning monotone word functions

1) Teacher has a secret function fo: 2" > T", computed by a seq. transducer Ay
Learner initially only knows the input alphabet =

2) Learner choses a query:
a) either an evaluation query = “What is the value of fo(w) 27

b) oran equivalence query “Is fo computed by seq. transducer A ?”

3) Teacher answers accordingly:
a) gives value of fo(w)
b) yes if foiscomputed by A (requires an algorithm for testing equivalence),
otherwise gives a shortest counter-example w such that fo(w) = A(w)

14

Learning monotone word functions

15

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut)-fo(u) =fo(ve) - fo(v)

15

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut)-fo(u) =fo(ve) - fo(v)

Example

fo inserts ¢ between every two positions

f()(s) = §&, fo(a) = a,

fo(aa) = aac, fo(aaa) = aaca, ...

15

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

Example

fo inserts ¢ between every two positions

f()(s) = §&, f()(a> = a,

fo(aa) = aac, fo(aaa) = aaca, ...

~;,has only two equivalence classes:

el [al~

E.g. a~;bba because f(a???..)-fla) = acc?ic..-a
f(bba?2?...) - f(bba) = bbca ?>c??c... - bbca

15

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

Example Properties:

fo inserts ¢ between every two positions e ~ isright-invariant

f()(s) = §&, f()(a> = a,

fo(aa) = aac, fo(aaa) = aaca, ...

(i.e. u~,v > ua~;va)

~;,has only two equivalence classes:

el [al~

E.g. a~;bba because f(a???..)-fla) = acc?ic..-a
f(bba?2?...) - f(bba) = bbca ?>c??c... - bbca

15

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

Example Properties:

fo inserts ¢ between every two positions e ~ isright-invariant
(i.e. U~V > ua~¢va)

f()(s) =&, f()(a> — 4,

fo(aa) = aac, fo(aaa) = aaca, ... e ~; has finite index

iff f is computed by

a seq. transducer...

~;,has only two equivalence classes:

el [al~

E.g. a~;bba

because

fla???2...)-fla) = a?c’ic..-a

f(bba?2?...) - f(bba) = bbca ?>c??c... - bbca

15

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut)-fo(u) =fo(ve) - fo(v)

16

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut)-fo(u) =fo(ve) - fo(v)

Hankel matrix of fo:

H e (r*)Z*xZ*
H(s,t) = fo(st) - fo(s)

16

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

e a b aa ab .. aaa .. Hankel matrix of fo:
€ € a b aac abc ... | aaca .. H e (r*)z*xz*
a e ac bc aca, acb acaac . H (_ f f
s,t) = fo(st) - fo(s)
b e ac bc aca acb acaac
aa e a b aac abc aaca
ab g a b aac abc ... | aaca
aaa e ac be aca acb ... acaac

16

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

ad

ab

aad

fo(V t) - fo(V)
f()(V t) - fo(V)

Hankel matrix of fo:

a b aa ab a.a.a,
a b aac abc aaca
ac bc aca acb acaac
ac bc aca acb acaac
a b aac abc aaca
a b aac abc aaca
ac bec aca achb acaac

H e (r*)E*xZ*
H(s,t) = fo(st) - fo(s)

17

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

f()(V t) - fo(V)

Relativization to test set T: u=¢rv if Vee T fo(ut)-fo(u)

e a b aa ab .. aaa .. Hankel matrix of fo:
E e a b aac abc aaca . * o S
H e (r*)E X2
a b b g
e ac C aca ac acaac H(S,t) — f()(S t) _ f()(S)
b e ac bc aca acb acaac
a.a e a b aac abc aaca . oy
/" Learner maintains (S,T)
ab g a b aac abc ... | aaca
S T-minimal if Vs#s €8S
S #fTS
aaa e ac be aca acb ... acaac

S T-complete if VseSVaeX
I, €S sa=~crsa

17

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut) - fo(u)

Relativization to test set T: u=¢rv if Vee T fo(ut)-fo(u)

ad

ab

aad

a b aa ab a.a.a,
a b aac abc aaca
ac bc aca acb acaac
ac bc aca acb acaac
a b aac abc aaca
a b aac abc aaca
ac bec aca achb acaac

fo(V t) - fo(V)
f()(V t) - fo(V)

N

'’ Learner maintains (S,T)

S T-minimal if Vs#s €8S
S Z¢ T S,

S T-complete if VseSVaeX
45, €S s.=¢rsa

18

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

a e
b g
aa § e

ab § e

aaa | ¢

i acC

y acC

bec

bec

be

ad,
asc
aca
aca
aac

aac

aca

ab

abc

acb

acb

abc

abc

acb

aa.a
aca
acaac
acaac
aaca

aaca

acaac

fo(V t) - fo(V)
f()(V t) - fo(V)

N

'’ Learner maintains (S,T)

S T-minimal if Vs#s €8S
S Z¢ T S,

S T-complete if VseSVaeX
45, €S s.=¢rsa

start with
S = {e} T = {¢e}

18

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

a e
b g
aa § e

ab § e

aaa | ¢

i acC

y acC

bec

bec

be

ad,
asc
aca
aca
aac

aac

aca

ab

abc

acb

acb

abc

abc

acb

aa.a
aca
acaac
acaac
aaca

aaca

acaac

fo(V t) - f()(V)
f()(V t) - fo(V)

N

'’ Learner maintains (S,T)

S T-minimal if Vs#s €8S
S Z¢ T S,

S T-complete if VseSVaeX
45, €S s.=¢rsa

start with
S = {e} T = {¢e}

build candidate transducer...

18

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

a e
b g
aa § e

ab g

aaa | ¢

¢ acC

y acC

bec

bec

be

ad,
asc
aca
aca
aac

aac

aca

ab

abc

acb

acb

abc

abc

acb

aa.a
aca
acaac
acaac
aaca

aaca

acaacC

fo(V t) - f()(V)
f()(V t) - fo(V)

start with
S ={¢e} T ={¢e}

build candidate transducer...

19

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

e
e e |
a "
b e
aa § e

ab g

aaa | ¢

i acC

y acC

bec

bec

be

ad,
asc
aca
aca
aac

aac

aca

ab

abc

acb

acb

abc

abc

acb

aa.a
aca
acaac
acaac
aaca

aaca

acaac

fo(V t) - f()(V)
f()(V t) - fo(V)

start with
S ={¢e} T ={¢e}

build candidate transducer...

expand T by counter-example w = ab

19

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

aa |

ab

aaa |

ac

bec

bec |

aa a,b

aca |

aac |

aac

aca f§

acb
abc |

abc |

achb |

aa.a

aca

acaac

acaac
aaca

aaca

acaacC

fo(V t) - f()(V)
f()(V t) - fo(V)

start with

S ={¢e} T ={¢e}

build candidate transducer...

expand T by counter-example w = ab
S={¢e} T = {e, b, ab}

19

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=¢rv if Vee T fo(ut)-fo(u)

aa |

ab

aaa |

ac

bec

bec |

aa a,b

aca |

aac |

aac

aca f§

acb
abc |

abc |

achb |

aa.a

aca

acaac

acaac
aaca

aaca

acaacC

fo(V t) - f()(V)
f()(V t) - fo(V)

start with

S ={¢e} T ={¢e}

build candidate transducer...

expand T by counter-example w = ab
S={¢e} T = {e, b, ab}

expand S to make it T-complete...

19

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

fo(V t) - f()(V)
f()(V t) - fo(V)

start with
aa ab .. aaa .. S = {g) T = {e)

-n n - m e 2a6a build candidate transducer...
--n-m B acaac [|

b : | ! .. acaac
aa | & | a { Db | aac { abc | .. aaca . expand T by counter-example w = ab
' S = {e} T = {e, b, ab}

ab § & { a b aac § abc ... | aaca
| ' | | | expand S to make it T-complete...
S ={e,a} T ={g, b, ab}

aag { € 1 a § Dbc § aca § acb § .. acaac

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)
u=crv if VeeT fo(ut) - fo(u)

Relativization to test set 1:

aa |

ab

aaa |

- n m b
e ac be aca acb

aac |

5 a b
e a b
e ac be

aa a,b

aac

aca f§

abc i

abc |

achb |

aa.a

aca
acaac
acaac
aaca

aaca

acaacC

fo(V t) - f()(V)
f()(V t) - fo(V)

start with

S ={¢e} T ={¢e}

build candidate transducer...

expand T by counter-example w = ab
S={¢e} T = {e, b, ab}

expand S to make it T-complete...
S ={e,a} T ={g, b, ab}

build candidate transducer...
a/a b/b

”a>‘E a/ac b /bc "t

19

Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

fo(V t) - f()(V)
f()(V t) - fo(V)

start with
aa ab .. aaa .. S = {g) T = {e)

-- n - m e 2a6a build candidate transducer...
-“m B acaac L |

b & } ac bc aca § acb § .. acaac
aa | & | a { b § aac § abc | .. aaca . expand T by counter-example w = ab
| | ' S = {e} T = {e, b, ab}
ab § & { a b aac § abc § .. aaca
| i | | | expand S to make it T-complete...
2aa { € § a § bc § aca § acb § .. acaac

/ ‘
/ > E‘ a/ac b/bc &

19

From word languages to word functions... and beyond
This learning technique with Hankel matrices has been successtully applied to:

o Weighted automata (i.e. outputs given by products of weights along transitions)

and, partially, to probabilistic automata

o Buchi automata

e Tree transducers (e.g. for learning XSLT transformations of XML documents)

o Timed & register automata (e.g. for processing strings with timestamps/data)

20

A simple yet useful real application (surprisingly, not yet done :/)

Implementing a learning algorithm for automata/transducers

would allow to automatically derive RegEx expressions like

/M(O?[1-9]|[12][0-9]|3[01 ([\/\-D(O?[1-9]|1[012])
\&([0-9][0-9][0-91[0-9D(([-D([0-1]?[0-9]|R[0-3]):
[0-5]?[0-9]:[0-5]?[0-9])?$/

from positive and negative examples examples like

01/01/2000 ab/01/2000
18/10/1985 1/01/2000
18/10/200x

