Learning automata

Learning automata ...and generalisations!

NNs

NNs Automata

NNs

simple data, e.g. $\bar{\mathbf{x}} \in \mathbb{R}^k$

Automata

complex data, e.g. $w \in \Sigma^*$

NNs

simple data, e.g. $\bar{\mathbf{x}} \in \mathbb{R}^k$ complex functions, e.g. $f: \mathbb{R}^k \to \{0,1\}$ representing pictures of dogs

Automata

complex data, e.g. $w \in \Sigma^*$ simple functions, e.g. $f: \Sigma^* \to \{0,1\}$ representing regular $L \subseteq \Sigma^*$

NNs

simple data, e.g. $\bar{\mathbf{X}} \in \mathbb{R}^k$ complex functions, e.g. $f: \mathbb{R}^k \to \{0,1\}$ representing pictures of dogs structure (architecture) is fixed

Automata

complex data, e.g. $w \in \Sigma^*$ simple functions, e.g. $f: \Sigma^* \to \{0,1\}$ representing regular $L \subseteq \Sigma^*$ structure (states+transitions) is learned

Passive

Passive

A bit of history on automata learning

- '56	Moore	Gedanken-experiments on sequential machines
- '67	Gold	passive learning in the limit
— '87	Angluin	active learning with queries
- '93	Pitt et al.	PAC-learning, cryptographic hardness
- '95 - '96	Maler et al. Vilar et al.	PAC-learning, cryptographic hardness learning regular ω -languages learning word transformations
- '00	Beimel et al.	learning weighted and multiplicity automata
		learning tree transformations
– '12	Howar et al.	learning languages over infinite alphabets
		learning timed languages
· '15	Balle et al.	spectral techniques for learning

A bit of history on automata learning

1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ

- 1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?"
 - b) or an equivalence query "Is $L_0 = L(A)$?" (or "Are A_0 , A equivalent?")

- 1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?"
 - b) or an equivalence query "Is $L_0 = L(A)$?" (or "Are A_0 , A equivalent?")
- 3) Teacher answers accordingly:
 - a) yes if $w \in L_0$, no otherwise
 - b) yes if $L_0 = L(A)$ (game ends and Learner wins), otherwise gives a shortest <u>counter-example</u> $w \in (L_0 L(A)) \cup (L(A) L_0)$ (game continues from 2)

- 1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?"
 - b) or an <u>equivalence query</u> "Is $L_0 = L(A)$?" (or "Are A_0 , A equivalent?")
- 3) Teacher answers accordingly:
 - a) yes if $w \in L_0$, no otherwise
 - b) yes if $L_0 = L(A)$ (game ends and Learner wins), otherwise gives a shortest <u>counter-example</u> $w \in (L_0 L(A)) \cup (L(A) L_0)$ (game continues from 2)

Observations

• membership queries alone are not sufficient for Learner to win

- 1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?"
 - b) or an equivalence query "Is $L_0 = L(A)$?" (or "Are A_0 , A equivalent?")
- 3) Teacher answers accordingly:
 - a) yes if $w \in L_0$, no otherwise
 - b) yes if $L_0 = L(A)$ (game ends and Learner wins), otherwise gives a shortest <u>counter-example</u> $w \in (L_0 L(A)) \cup (L(A) L_0)$ (game continues from 2)

Observations

- membership queries alone are not sufficient for Learner to win
- instead, equivalence queries alone are sufficient to win (why? how quick?)

- 1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?"
 - b) or an equivalence query "Is $L_0 = L(A)$?" (or "Are A_0 , A equivalent?")
- 3) Teacher answers accordingly:
 - a) yes if $w \in L_0$, no otherwise
 - b) yes if $L_0 = L(A)$ (game ends and Learner wins), otherwise gives a shortest <u>counter-example</u> $w \in (L_0 L(A)) \cup (L(A) L_0)$ (game continues from 2)

Theorem Learner has a strategy to win

[Angluin '87] in a number of rounds that is *polynomial* in $|A_0|$

- 1) Teacher has a secret regular language L_0 , e.g. represented by DFA A_0 Learner initially only knows the underlying alphabet Σ
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?"
 - b) or an equivalence query "Is $L_0 = L(A)$?" (or "Are A_0 , A equivalent?")
- 3) Teacher answers accordingly:
 - a) yes if $w \in L_0$, no otherwise
 - b) yes if $L_0 = L(A)$ (game ends and Learner wins), otherwise gives a shortest $\ \underline{counter-example} \ w \in (L_0 - L(A)) \cup (L(A) - L_0)$ (game continues from 2)

→ in the form of an algorithm (L* algorithm)

Theorem

Learner has a strategy to win in a number of rounds that is *polynomial* in A_0 [Angluin '87]

- 1) Teacher has a secret regular language L₀, e.g. rep MAT (Minimally Adequate Teacher) Learner initially only knows the underlying alph
- 2) Learner choses a query:
 - a) either a membership query "Does $w \in L_0$?
 - b) or an equivalence query "Is $L_0 = L(A)$?'
- 3) Teacher answers accordingly:
 - a) yes if $w \in L_0$, no otherwise
 - b) yes if $L_0 = L(A)$ (game ends and Learner membership in A_0 , Learner otherwise gives a shortest counter-example (game continues from 2)

Sometimes answering an equivalence query is not practical: if Teacher knew A₀, he could pass this information directly to Learner, so why bothering querying?

Equivalence queries can however be approximated by a series of membership queries: as long as membership in A matches assumes he made the correct guess.

This latter setting is often called **Black-box learning**

→ in the form of an algorithm (L* algorithm)

Theorem

[Angluin '87]

Learner has a strategy to win in a number of rounds that is *polynomial* in A_0

MAT (Minimally Adequate Teacher)

Sometimes answering an equivalence query is not practical: if Teacher knew A₀, he could pass this information directly to Learner, so why bothering querying?

Equivalence queries can however be *approximated* by a series of membership queries: as long as membership in A matches membership in A₀, Learner assumes he made the correct guess.

This latter setting is often called Black-box learning

MAT (Minimally Adequate Teacher)

Sometimes answering an equivalence query is not practical: if Teacher knew A₀, he could pass this information directly to Learner, so why bothering querying?

Equivalence queries can however be *approximated* by a series of membership queries: as long as membership in A matches membership in A₀, Learner assumes he made the correct guess.

This latter setting is often called Black-box learning

Verification: model-learning (in contrast to model-checking)

Control theory:
system identification,
diagram inference

Language theory: grammar inference, regular extrapolation

MAT (Minimally Adequate Teacher)

Sometimes answering an equivalence query is not practical: if Teacher knew A₀, he could pass this information directly to Learner, so why bothering querying?

Equivalence queries can however be *approximated* by a series of membership queries: as long as membership in A matches membership in A₀, Learner assumes he made the correct guess.

This latter setting is often called Black-box learning

Security:

protocol state fuzzing
y:

Myhill-Nerode equivalence: $u \sim_{L_0} v$ if?

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$$

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \ \mbox{$v t \in L_0$}$$

 L_0

Properties:

• \sim_{L_0} refines $=_{L_0}$

$$\Sigma^*$$
 - L_0

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \\ \leftrightarrow \, v \, t \in L_0 \\ \mbox{$t \in L_0$} \\ \mbox{$t \in L$$

- \sim_{L_0} refines $=_{L_0}$
- \sim_{L_0} is right-invariant (i.e. $u \sim_{L_0} v \rightarrow u a \sim_{L_0} v a$)

$$\mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \ \mbox{$v t \in L_0$}$$

- \sim_{L_0} refines $=_{L_0}$
- \sim_{L_0} is right-invariant (i.e. $u \sim_{L_0} v \rightarrow u a \sim_{L_0} v a$)
- \sim_{L_0} has finite index iff L_0 is regular

$$\label{eq:continuous_loss} \text{Myhill-Nerode equivalence:} \qquad \text{$u \sim_{L_0} v$} \quad \text{if} \quad \forall \, t \in \Sigma^* \quad \text{$u t \in L_0$} \\ \leftrightarrow \, v \, t \in L_0$$

- \sim_{L_0} refines $=_{L_0}$
- \sim_{L_0} is right-invariant (i.e. $u \sim_{L_0} v \rightarrow u a \sim_{L_0} v a$)
- \sim_{L_0} has finite index iff L_0 is regular

Myhill-Nerode equivalence: $u \sim_{L_0} v$ if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

- \sim_{L_0} refines $=_{L_0}$
- \sim_{L_0} is right-invariant (i.e. $u \sim_{L_0} v \rightarrow u a \sim_{L_0} v a$)
- \sim_{L_0} has finite index iff L_0 is regular

Myhill-Nerode equivalence:

 $u \sim_{L_0} v$ if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

 $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

- \sim_{L_0} refines $=_{L_0}$
- \sim_{L_0} is right-invariant (i.e. $u \sim_{L_0} v \rightarrow u a \sim_{L_0} v a$)
- \sim_{L_0} has finite index iff L_0 is regular
- $\approx_{L_0,T}$ is coarser than \sim_{L_0}

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \ \mbox{$v t \in L_0$}$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

 $\text{Myhill-Nerode equivalence:} \qquad u \sim_{L_0} v \qquad \text{if} \quad \forall \, t \in \Sigma^* \quad u \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

Myhill-Nerode equivalence:

 $u \sim_{L_0} v$ if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

 $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

 $S \subseteq \Sigma^*$ is <u>T-minimal</u> if $\forall s \neq s' \in S \quad s \not\approx_{L_0,T} s'$

Myhill-Nerode equivalence:

 $u \sim_{L_0} v$ if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

 $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

V Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

 $S \subseteq \Sigma^*$ is <u>T-minimal</u> if $\forall s \neq s' \in S \quad s \not\approx_{L_0,T} s'$

 $S \subseteq \Sigma^*$ is <u>T-complete</u> if $\forall s \in S \ \forall a \in \Sigma$ $\exists s_a \in S \quad s_a \approx_{L_0,T} s_a$

Myhill-Nerode equivalence:

$$u \sim_{L_0} v$$
 if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

$$u \approx_{L_0,T} v \quad \text{if} \quad \forall v$$

$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Learner-strategy

$$S = T = \{\epsilon\}$$
 // S is T-minimal, possibly not T-complete

Learner constructs
automata from pairs
(S,T) where
$$S \subseteq \Sigma^*$$
 is
T-minimal & T-complete

$$S \subseteq \Sigma^*$$
 is T-minimal if $\forall s \neq s' \in S$ $s \not\approx_{L_0,T} s'$

$$S \subseteq \Sigma^*$$
 is T -complete
if $\forall s \in S \ \forall a \in \Sigma$
 $\exists s_a \in S \ s_a \approx_{L_0,T} s_a$

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \\ \leftrightarrow \, v \, t \in L_0 \\ \mbox{$t \in L_0$} \\ \mbox{$t \in L$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Learner-strategy

 $S = T = \{\epsilon\}$ // S is T-minimal, possibly not T-complete loop

while S NOT T-complete let $s \in S$ and $a \in \Sigma$ such that $\forall s' \in S \exists t \in T \text{ Membership}(s a t) \neq \text{ Membership}(s' t)$ $S = S \cup \{s a\}$

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

 $S \subseteq \Sigma^*$ is <u>T-minimal</u> if $\forall s \neq s' \in S$ $s \not\approx_{L_0,T} s'$

 $S \subseteq \Sigma^*$ is T-complete if $\forall s \in S \ \forall a \in \Sigma$ $\exists s_a \in S \ s_a \approx_{L_0,T} s a$

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \\ \leftrightarrow \, v \, t \in L_0 \\ \mbox{$t \in L_0$} \\ \mbox{$t \in L$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Learner-strategy

 $S = T = \{\epsilon\}$ // S is T-minimal, possibly not T-complete loop

while S NOT T-complete let $s \in S$ and $a \in \Sigma$ such that $\forall s' \in S \exists t \in T \underline{Membership}(s a t) \neq \underline{Membership}(s' t)$ $S = S \cup \{s a\}$

A = DFA with state set S, transitions $\delta(s,a) = s_a$ initial state ϵ , final states s' s.t. Membership(s')

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

 $S \subseteq \Sigma^*$ is <u>T-minimal</u> if $\forall s \neq s' \in S$ $s \not\approx_{L_0,T} s'$

 $S \subseteq \Sigma^*$ is T-complete if $\forall s \in S \ \forall a \in \Sigma$ $\exists s_a \in S \ s_a \approx_{L_0,T} s a$

s_a is the unique word in S

such that $s_a \approx_{L_0,T} s_a$

(S T-complete \rightarrow s_a exists

S T-minimal \rightarrow s_a unique)

Myhill-Nerode equivalence:

$$u \sim_{L_0} v$$
 if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Learner-strategy

 $S = T = \{\epsilon\}$ // S is T-minim loop

while S NOT T-complete let $s \in S$ and $a \in \Sigma$ such that

 $\forall s' \in S \exists t \in T Membership(sat) \neq Men \Rightarrow rship(s't)$ $S = S \cup \{sa\}$

A = DFA with state set S, transitions $\delta(s,a) = s_a$ initial state ϵ , final states s' s.t. Membership(s')

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

 $S \subseteq \Sigma^*$ is <u>T-minimal</u> if $\forall s \neq s' \in S$ $s \not\approx_{L_0,T} s'$

 $S \subseteq \Sigma^*$ is T-complete if $\forall s \in S \ \forall a \in \Sigma$ $\exists s_a \in S \ s_a \approx_{L_0,T} s a$

```
\begin{split} & \text{Myhill-Nerode equivalence:} & u \sim_{L_0} v \quad \text{if} \quad \forall \, t \in \Sigma^* \quad \text{u} \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0 \\ & \text{Relativization to a test set $T$:} \quad u \approx_{L_0,T} v \quad \text{if} \quad \forall \, t \in T \quad \text{u} \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0 \end{split}
```

(S T-complete \rightarrow s_a exists

while S NOT T-complete $S \text{ T-minimal } \rightarrow s_a \text{ unique})$ let $s \in S$ and $a \in \Sigma$ such that $\forall s' \in S \text{ } \exists t \in T \text{ } \text{Membership}(s \text{ a } t) \neq \text{Men. } \text{ } \text{rship}(s' t)$ $S = S \cup \{s \text{ a}\}$

A = DFA with state set S, transitions $\delta(s,a) = s_a$ initial state ϵ , final states s' s.t. Membership(s')

```
if Equivalence(A) // this surely happens return A // when |S| = index(\sim_{L_0}) else let w be the counter-example of equivalence T = T \cup \{suffixes of w\}
```

loop

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

$$S \subseteq \Sigma^*$$
 is T-minimal
if $\forall s \neq s' \in S$ $s \not\approx_{L_0,T} s'$

$$S \subseteq \Sigma^*$$
 is T-complete
if $\forall s \in S \ \forall a \in \Sigma$
 $\exists s_a \in S \ s_a \approx_{L_0,T} s a$

```
u \sim_{L_0} v if \forall t \in \Sigma^* ut \in L_0 \leftrightarrow vt \in L_0
  Myhill-Nerode equivalence:
                                             u \approx_{L_0,T} v if \forall t \in T ut \in L_0 \leftrightarrow vt \in L_0
  Relativization to a test set T:
Learner-strategy
 S = T = \{\epsilon\} // S is T-minimal, possibly not T-complete
               // this will loop at most index(\sim_{L_0}) times
 loop
   while S NOT T-complete
     let s \in S and a \in \Sigma such that
         \forall s' \in S \exists t \in T \text{ Membership}(sat) \neq \text{ Membership}(s't)
     S = S \cup \{sa\}
   A = DFA with state set S, transitions \delta(s,a) = s_a
        initial state \varepsilon, final states s' s.t. Membership(s')
   if Equivalence(A) // this surely happens
     return A // when |S| = index(\sim_{L_0})
   else
     let w be the counter-example of equivalence
     T = T \cup \{suffixes of w\} // S becomes T-incomplete
```

Learner constructs automata from pairs (S,T) where $S \subseteq \Sigma^*$ is T-minimal & T-complete

 $S \subseteq \Sigma^*$ is <u>T-minimal</u> if $\forall s \neq s' \in S \quad s \not\approx_{L_0,T} s'$

 $S \subseteq \Sigma^*$ is <u>T-complete</u> if $\forall s \in S \ \forall a \in \Sigma$ $\exists s_a \in S \quad s_a \approx_{L_0,T} s_a$ // and will grow at next iteration...

```
u \sim_{L_0} v if \forall t \in \Sigma^* ut \in L_0 \leftrightarrow vt \in L_0
  Myhill-Nerode equivalence:
                                                  u \approx_{L_0,T} v if \forall t \in T ut \in L_0 \leftrightarrow vt \in L_0
  Relativization to a test set T:
Learner-strategy
                                                                                    Proof by contradiction:
  S = T = \{\epsilon\} // S is T-minimal, possibly not T-complete
                                                                                Assume:
                 // this will loop at most index(\sim_{L_0}) times
  loop
                                                                                • w = a_1 ... a_n counter-example
    while S NOT T-complete
                                                                                • t_i = a_{i+1} \dots a_n suffixes of w
      let s \in S and a \in \Sigma such that
                                                                                • s<sub>i</sub> state reached by A after
          \forall s' \in S \exists t \in T \text{ Membership}(sat) \neq \text{ Membership}(s't)
                                                                                   reading prefix a<sub>1</sub> ... a<sub>i</sub> of w
      S = S \cup \{sa\}
                                                                                • S is (T \cup \{t_0,...,t_n\})-complete
    A = DFA with state set S, transitions \delta(s,a) = s_a
         initial state \varepsilon, final states s' s.t. Membership(s')
                                                                                Verify by induction on i that
    if Equivalence(A) // this surely happens
```

 $w \in L_0$ iff $s_i t_i \in L_0$

Conclude $w \in L_0$ iff $w \in L(A)$

else let w be the counter-example of equivalence

return A // when $|S| = index(\sim_{L_0})$

 $T = T \cup \{suffixes of w\} // S becomes T-incomplete$ // and will grow at next iteration...

10

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \ \mbox{$v t \in L_0$}$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

 $\text{Myhill-Nerode equivalence:} \qquad u \sim_{L_0} v \qquad \text{if} \quad \forall \, t \in \Sigma^* \quad u \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

Hankel matrix of L₀:

$$H \in \{0,1\}^{\Sigma^* \times \Sigma^*}$$

 $H(s,t) = Membership(s t)$

Myhill-Nerode equivalence:

$$u \sim_{L_0} v$$
 if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	•••	0	• • •
Ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	• • •

Hankel matrix of L₀:

$$H \in \{0,1\}^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = Membership(s t)$$

(infinite, highly redundant, but nicely structured)

Myhill-Nerode equivalence:

$$u \sim_{L_0} v$$
 if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	• • •
Ъ	0	1	0	0	0	•••	0	•••
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	•••
aba	0	0	0	0	0	•••	0	•••
•••				• • •	• • •			0 0 0

Hankel matrix of L₀:

$$H \in \{0,1\}^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = \text{Membership}(s t)$$

(infinite, highly redundant, but nicely structured)

a row =
$$a \sim_{L_0}$$
-class

$$\text{Myhill-Nerode equivalence:} \qquad u \sim_{L_0} v \quad \text{if} \quad \forall \, t \in \Sigma^* \quad u \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0$$

Relativization to a test set T:

$$u \approx_{L_0,T} v \quad \text{if} \quad \forall \ t \in T \quad u \ t \in L_0 \ \leftrightarrow \ v \ t \in L_0$$

	3	a	b .	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	•••	0	• • •
Ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	• • •	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	•••
•••	• • •	• • •	• • •	• • •	•••	• • •		• • •

Hankel matrix of L₀:

$$H \in \{0,1\}^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = \text{Membership}(s t)$$

(infinite, highly redundant, but nicely structured)

$$a row = a \sim_{L_0}\text{-class}$$
 $a column = a test word t$

Myhill-Nerode equivalence:

$$u \sim_{L_0} v$$
 if $\forall t \in \Sigma^*$ $ut \in L_0 \leftrightarrow vt \in L_0$

Relativization to a test set T:

$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	b	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	• • •
b	0	1	0	0	0	•••	0	•••
aa	1	0	0	1	0	• • •	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	• • •	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••	• • •	• • •	• • •	• • •	• • •		• • •	• • •

Hankel matrix of L₀:

$$H \in \{0,1\}^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = \text{Membership}(s t)$$

(infinite, highly redundant, but nicely structured)

a row =
$$a \sim_{L_0}$$
-class
a column = a test word t
a submatrix = a pair (S,T)

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	•••	0	• • •
ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••								

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	ε	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	• • •	0	• • •
a	0	1	0	0	0	•••	0	• • •
b	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••				0 0 0	0 0 0			• • •

 $S = \{\epsilon\}$ $\{3\} = T$

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \ \mbox{$v t \in L_0$}$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	• • •	0	• • •
a	0	1	0	0	0	•••	0	• • •
Ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	• • •	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••							0 0 0	

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

$$u \approx_{L_0,T} v$$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	•••
a	0	1	0	0	0	• • •	0	• • •
ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	• • •	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••	• • •				0 0 0		0 0 0	• • •

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon\}$

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

$$u \approx_{L_0,T} v$$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	• • •
ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	• • •	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••					0 0 0			• • • •

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\epsilon, a\}$$
 $T = \{\epsilon\}$

build candidate automaton...

 $\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

$$u \approx_{L_0,T} v$$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	•••
Ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••								

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\epsilon, a\}$$
 $T = \{\epsilon\}$

build candidate automaton...

expand T by counter-example w = aba

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

$$u \approx_{L_0,T} v$$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	• • •
ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••		• • •		0 0 0				• • •

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\epsilon, a\}$$
 $T = \{\epsilon\}$

build candidate automaton...

expand T by counter-example w = aba $S = \{\varepsilon, a\}$ $T = \{\varepsilon, a, ba, aba\}$

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \\ \leftrightarrow \, v \, t \in L_0 \\ \mbox{$t \in L_0$} \\ \mbox{$t \in L$$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

$$u \approx_{L_0,T} v$$

	3	a	ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	• • •
ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	•••	0	• • •
•••	•••	•••		•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••		• • •						

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\epsilon, a\}$$
 $T = \{\epsilon\}$

build candidate automaton...

expand T by counter-example w = aba

$$S = \{\epsilon, a\}$$

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, a, ba, aba\}$

expand S to make it T-complete...

$$\label{eq:continuous_loss} \mbox{Myhill-Nerode equivalence:} \qquad \mbox{$u \sim_{L_0} v$} \quad \mbox{if} \quad \forall \, t \in \Sigma^* \quad \mbox{$u t \in L_0$} \ \leftrightarrow \, v \, t \in L_0$$

Relativization to a test set T: $u \approx_{L_0,T} v$ if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

$$u \approx_{L_0,T} v$$

$$\forall t \in T$$

$$ut \in L_0 \leftrightarrow vt \in L_0$$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	• • •
a	0	1	0	0	0	• • •	0	• • •
Ъ	0	1	0	0	0	•••	0	• • •
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	• • •	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••	• • •							• • • •

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon\}$

build candidate automaton...

expand T by counter-example w = aba

$$S = \{\varepsilon, a\}$$

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, a, ba, aba\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a, ab\}$$
 $T = \{\varepsilon, a, ba, aba\}$

$$\text{Myhill-Nerode equivalence:} \qquad u \sim_{L_0} v \quad \text{if} \quad \forall \, t \in \Sigma^* \quad u \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0$$

Relativization to a test set T:
$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	•••
a	0	1	0	0	0	•••	0	• • •
ъ	0	1	0	0	0	•••	0	•••
aa	1	0	0	1	0	•••	0	• • •
ab	0	0	0	0	0	• • •	0	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••		• • •					• • •	• • •

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon\}$

build candidate automaton...

expand T by counter-example w = aba

$$S = \{\varepsilon, a\}$$

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, a, ba, aba\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a, ab\}$$
 $T = \{\varepsilon, a, ba, aba\}$

build candidate automaton...

$$\text{Myhill-Nerode equivalence:} \qquad u \sim_{L_0} v \quad \text{if} \quad \forall \, t \in \Sigma^* \quad u \, t \in L_0 \, \leftrightarrow \, v \, t \in L_0$$

Relativization to a test set T:
$$u \approx_{L_0,T} v$$
 if $\forall t \in T$ $ut \in L_0 \leftrightarrow vt \in L_0$

	3	a	Ъ	aa	ab	•••	aba	• • •
3	1	0	0	1	0	•••	0	•••
a	0	1	0	0	0	• • •	0	•••
ъ	0	1	0	0	0	•••	0	•••
aa	1	0	0	1	0	•••	0	•••
ab	0	0	0	0	0	• • •	0	•••
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aba	0	0	0	0	0	•••	0	• • •
•••								

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

expand S to make it T-complete...

$$S = \{\epsilon, a\}$$
 $T = \{\epsilon\}$

build candidate automaton...

expand T by counter-example w = aba

$$S = \{\epsilon, a\}$$

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, a, ba, aba\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a, ba, aba\}$$

a didate automaton...

Automata can be used to represent not only languages, but also functions on words

$$f: \Sigma^* \to \Gamma^*$$

e.g.
$$f(abaab) = abcaacb$$

Automata can be used to represent not only languages, but also functions on words

$$f: \Sigma^* \to \Gamma^*$$

e.g.
$$f(abaab) = abcaacb$$

Many variants of automata with outputs. Simplest one is <u>sequential transducer</u> i.e. $A = (\Sigma, \Gamma, Q, q_0, \delta)$ with $\delta: Q \times \Sigma \rightarrow Q \times \Gamma^*$ (e.g. $\delta(q, a) = (q, ac)$)

Automata can be used to represent not only languages, but also functions on words

$$f: \Sigma^* \to \Gamma^*$$

e.g.
$$f(abaab) = abcaacb$$

Many variants of automata with outputs. Simplest one is <u>sequential transducer</u> i.e. $A = (\Sigma, \Gamma, Q, q_0, \delta)$ with $\delta: Q \times \Sigma \rightarrow Q \times \Gamma^*$ (e.g. $\delta(q, a) = (q', ac)$)

Automata can be used to represent not only languages, but also functions on words

$$f: \Sigma^* \to \Gamma^*$$

e.g.
$$f(abaab) = abcaacb$$

Many variants of automata with outputs. Simplest one is <u>sequential transducer</u> i.e. $A = (\Sigma, \Gamma, Q, q_0, \delta)$ with $\delta: Q \times \Sigma \rightarrow Q \times \Gamma^*$ (e.g. $\delta(q, a) = (q, ac)$)

Note: sequential transducers can only compute *total, monotone* functions (f is monotone if whenever w is prefix of w' then f(w) is prefix of f(w'))

1) Teacher has a secret function $f_0: \Sigma^* \to \Gamma^*$, computed by a seq. transducer A_0 Learner initially only knows the input alphabet Σ

1) Teacher has a secret function $f_0: \Sigma^* \to \Gamma^*$, computed by a seq. transducer A_0 Learner initially only knows the input alphabet Σ

- 2) Learner choses a query:
 - a) either an evaluation query
 - b) or an <u>equivalence query</u>
- "What is the value of $f_0(\mathbf{w})$?"
- "Is fo computed by seq. transducer A?"

1) Teacher has a secret function $f_0: \Sigma^* \to \Gamma^*$, computed by a seq. transducer A_0 Learner initially only knows the input alphabet Σ

- 2) Learner choses a query:
 - a) either an evaluation query "What is the value of $f_0(w)$?"
 - b) or an <u>equivalence query</u> "Is fo computed by seq. transducer A?"

- 3) Teacher answers accordingly:
 - a) gives value of $f_0(\mathbf{w})$
 - b) yes if f_0 is computed by A (requires an algorithm for testing equivalence), otherwise gives a shortest counter-example w such that $f_0(w) \neq A(w)$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Example

f₀ inserts c between every two positions

$$f_0(\epsilon) = \epsilon, \ f_0(a) = a,$$

 $f_0(aa) = aac, \ f_0(aaa) = aaca, ...$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Example

fo inserts c between every two positions

$$f_0(\varepsilon) = \varepsilon$$
, $f_0(a) = a$,
 $f_0(aa) = aac$, $f_0(aaa) = aaca$, ...

 \sim_{f_0} has only two equivalence classes: $[\epsilon]_{\sim_{f_0}}$ $[a]_{\sim_{f_0}}$

E.g.
$$a \sim_{f_0} bba$$
 because $f(a ???...) - f(a) = a ?c??c... - a$
 $f(bba ???...) - f(bba) = bbca ?c??c... - bbca$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Example

fo inserts c between every two positions

$$f_0(\epsilon) = \epsilon$$
, $f_0(a) = a$,
 $f_0(aa) = aac$, $f_0(aaa) = aaca$, ...

\sim_{f_0} has only two equivalence classes: $[ε]_{\sim_{f_0}}$ $[a]_{\sim_{f_0}}$

E.g. $a \sim_{f_0} bba$ because f(a ???...) - f(a) = a ?c??c... - af(bba ???...) - f(bba) = bbca ?c??c... - bbca

Properties:

• \sim_{f_0} is right-invariant (i.e. $u \sim_{f_0} v \rightarrow u a \sim_{f_0} v a$)

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Example

fo inserts c between every two positions

$$f_0(\epsilon) = \epsilon, f_0(a) = a,$$

 $f_0(aa) = aac, f_0(aaa) = aaca, ...$

 \sim_{f_0} has only two equivalence classes: $[\epsilon]_{\sim_{f_0}}$ $[a]_{\sim_{f_0}}$

Properties:

- \sim_{f_0} is right-invariant (i.e. $u \sim_{f_0} v \rightarrow u a \sim_{f_0} v a$)
- \sim_{f_0} has finite index iff f is computed by a seq. transducer...

E.g. $a \sim_{f_0} bba$ because f(a ???...) - f(a) = a ?c??c... - af(bba ???...) - f(bba) = bbca ?c??c... - bbca

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

$$H \in (\Gamma^*)^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = f_0(st) - f_0(s)$$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	D	aa	ab	•••	aaa	• • •
3	3	a	b	aac	abc	•••	aaca	• • •
a	3	ac	pc	aca	acb	•••	acaac	• • •
Ъ	3	ac	pc	aca	acb	•••	acaac	• • •
aa	3	a	Ъ	aac	abc	•••	aaca	• • •
ab	3	a	Ъ	aac	abc	•••	aaca	• • •
•••	•••	•••	•••	•••	•••	•••		• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
• • •	0 0 0	0 0 0	• • •		•••	• • •	• • •	• • •

$$H \in (\Gamma^*)^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = f_0(st) - f_0(s)$$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	b	aa	ab	•••	aaa	• • •
3	3	a	b	aac	abc	•••	aaca	• • •
a	3	ac	pc	aca	acb	•••	acaac	• • •
b	3	ac	pc	aca	acb	•••	acaac	• • •
aa	3	a	Ъ	aac	abc	•••	aaca	• • •
ab	3	a	Ъ	aac	abc	•••	aaca	• • •
•••	•••				•••	•••		• • •
aaa	3	ac	bc	aca	acb	•••	acaac	•••
•••						• • •	• • •	• • •

$$H \in (\Gamma^*)^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = f_0(st) - f_0(s)$$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	b	aa	ab	•••	aaa	• • •
3	3	a	b	aac	abc		aaca	• • •
a	3	ac	bc	aca	acb	•••	acaac	• • •
b	3	ac	pc	aca	acb	•••	acaac	• • •
aa	3	a	Ъ	aac	abc	•••	aaca	• • •
ab	3	a	Ъ	aac	abc	•••	aaca	• • •
•••	•••							• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••	• • •	• • •	• • •	• • •	• • •			• • •

$$H \in (\Gamma^*)^{\Sigma^* \times \Sigma^*}$$

$$H(s,t) = f_0(st) - f_0(s)$$

Learner maintains
$$(S,T)$$

S T-minimal if
$$\forall s \neq s' \in S$$

 $s \not\approx_{f_0,T} s'$

S T-complete if
$$\forall s \in S \ \forall a \in \Sigma$$

 $\exists s_a \in S \ s_a \approx_{f_0,T} s a$

 $\begin{aligned} &\text{Myhill-Nerode } \underline{equivalence} \colon \ u \sim_{f_0} v \quad \text{if} \quad \forall \ t \in \Sigma^* \quad f_0(u \ t) - f_0(u) = f_0(v \ t) - f_0(v) \\ &\text{Relativization to test set } T \colon \quad u \approx_{f_0, T} v \quad \text{if} \quad \forall \ t \in T \quad f_0(u \ t) - f_0(u) = f_0(v \ t) - f_0(v) \end{aligned}$

	3	a	b	aa	ab	•••	aaa	•••
3	3	a	b	aac	abc		aaca	•••
a	3	ac	pc	aca	acb	•••	acaac	• • •
Ъ	3	ac	pc	aca	acb	•••	acaac	• • •
aa	3	a	Ъ	aac	abc	•••	aaca	• • •
ab	3	a	Ъ	aac	abc	•••	aaca	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••	0 0 0	0 0 0						• • •

S T-minimal if
$$\forall s \neq s' \in S$$

 $s \not\approx_{f_0,T} s'$

S T-complete if
$$\forall s \in S \ \forall a \in \Sigma$$

 $\exists s_a \in S \ s_a \approx_{f_0,T} s a$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	b	aa	ab	• • •	aaa	• • •
3	8	a	b	aac	abc	• • •	aaca	• • •
a	3	ac	рс	aca	acb	•••	acaac	•••
Ъ	3	ac	pc	aca	acb	•••	acaac	•••
aa	3	a	Ъ	aac	abc		aaca	• • •
ab	3	a	b	aac	abc		aaca	• • •
•••	• • •	•••	•••	•••	•••	•••	•••	• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••			0 0 0					• • •

S T-minimal if
$$\forall s \neq s' \in S$$

 $s \not\approx_{f_0,T} s'$

S T-complete if
$$\forall s \in S \ \forall a \in \Sigma$$

 $\exists s_a \in S \ s_a \approx_{f_0,T} s_a$

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$

	3	a	b	aa	ab	• • •	aaa	• • •
3	8	a	b	aac	abc	•••	aaca	• • •
a	3	ac	bc	aca	acb		acaac	•••
ъ	3	ac	bc	aca	acb	•••	acaac	• • •
aa	3	a	b	aac	abc		aaca	• • •
ab	3	a	b	aac	abc		aaca	• • •
•••	•••	•••	•••	•••	•••	•••	•••	• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••	• • •							• • •

S T-minimal if
$$\forall s \neq s' \in S$$

 $s \not\approx_{f_0,T} s'$

S T-complete if
$$\forall s \in S \ \forall a \in \Sigma$$

 $\exists s_a \in S \ s_a \approx_{f_0,T} s a$

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

$$a / f(a) - f(\epsilon) = a$$

$$b / f(b) - f(\epsilon) = b$$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$

	3	a	b	aa	ab	•••	aaa	• • •
3	ε	a	b	aac	abc	• • •	aaca	•••
a	3	ac	bc	aca	acb	•••	acaac	•••
ъ	3	ac	bc	aca	acb	•••	acaac	•••
aa	8	a	b	aac	abc		aaca	•••
ab	3	a	b	aac	abc	•••	aaca	•••
•••	•••	•••	•••		•••			• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••	• • •	• • •	0 0 0	0 0 0	0 0 0	0 0 0		• • •

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

$$a / f(a) - f(\epsilon) = a$$

$$b / f(b) - f(\epsilon) = b$$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(u t) - f_0(u) = f_0(v t) - f_0(v)$ Relativization to test set T: $u \approx_{f_0, T} v$ if $\forall t \in T$ $f_0(u t) - f_0(u) = f_0(v t) - f_0(v)$

	3	a	Ъ	aa	ab	•••	aaa	• • •
3	ε	a	b	aac	abc	• • •	aaca	• • •
a	3	ac	bc	aca	acb		acaac	•••
ъ	3	ac	bc	aca	acb	•••	acaac	• • •
aa	3	a	Ъ	aac	abc	•••	aaca	• • •
ab	3	a	Ъ	aac	abc	•••	aaca	• • •
•••	•••	•••			•••	•••		• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••			0 0 0	0 0 0	0 0 0			

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

$$\Rightarrow e$$

$$b / f(b) - f(\epsilon) = b$$

expand T by counter-example w = ab

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$

	3	a	b	aa	ab	•••	aaa	• • •
3	ε	a	b	aac	abc	• • •	aaca	• • •
a	3	ac	bc	aca	acb		acaac	•••
Ъ	3	ac	bc	aca	acb		acaac	•••
aa	3	a	Ъ	aac	abc		aaca	• • •
ab	3	a	Ъ	aac	abc		aaca	•••
•••	•••	•••	•••		•••			• • •
aaa	3	ac	bc	aca	acb		acaac	• • •
•••				• • •		• • •	0 0 0	

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

expand T by counter-example w = abS = $\{\epsilon\}$ T = $\{\epsilon, b, ab\}$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(u\,t) - f_0(u) = f_0(v\,t) - f_0(v)$

	3	a	Ъ	aa	ab	• • •	aaa	• • •
3	8	a	ъ	aac	abc	•••	aaca	• • •
a	3	ac	bc	aca	acb		acaac	•••
b	3	ac	bc	aca	acb		acaac	• • •
aa	3	a	Ъ	aac	abc		aaca	• • •
ab	3	a	Ъ	aac	abc		aaca	• • •
•••	•••	•••	•••		•••	•••	•••	•••
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••				• • •			0 0 0	• • •

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

expand T by counter-example w = abS = $\{\epsilon\}$ T = $\{\epsilon, b, ab\}$

expand S to make it T-complete...

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	Ъ	aa	ab	•••	aaa	• • •
3	ε	a	b	aac	abc	•••	aaca	• • •
a	8	ac	bc	aca	acb	•••	acaac	• • •
Ъ	3	ac	bc	aca	acb		acaac	•••
aa	3	a	Ъ	aac	abc		aaca	•••
ab	3	a	Ъ	aac	abc		aaca	• • •
•••	•••	•••	•••			•••	•••	•••
aaa	3	ac	bc	aca	acb		acaac	•••
•••	• • •			• • •		• • •		0 0 0

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

expand T by counter-example w = ab

$$S = \{\epsilon\}$$
 $T = \{\epsilon, b, ab\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, b, ab\}$

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$ Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	b	aa	ab	•••	aaa	• • •
3	ε	a	b	aac	abc		aaca	• • •
a	8	ac	bc	aca	acb	•••	acaac	• • •
Ъ	3	ac	bc	aca	acb		acaac	•••
aa	3	a	Ъ	aac	abc		aaca	• • •
ab	3	a	Ъ	aac	abc		aaca	• • •
•••	•••	•••	•••			•••	•••	• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
•••		• • •		•••		• • •	• • •	• • •

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

expand T by counter-example w = ab

$$S = \{\epsilon\}$$
 $T = \{\epsilon, b, ab\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, b, ab\}$

build candidate transducer...

$$a/a$$
 b/b

$$a/ac$$
 b/bc

Myhill-Nerode <u>equivalence</u>: $u \sim_{f_0} v$ if $\forall t \in \Sigma^*$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

Relativization to test set T: $u \approx_{f_0,T} v$ if $\forall t \in T$ $f_0(ut) - f_0(u) = f_0(vt) - f_0(v)$

	3	a	Ъ	aa	ab	•••	aaa	• • •
3	ε	a	b	aac	abc		aaca	• • •
a	8	ac	bc	aca	acb	•••	acaac	• • •
Ъ	3	ac	bc	aca	acb		acaac	•••
aa	3	a	Ъ	aac	abc		aaca	• • •
ab	3	a	Ъ	aac	abc		aaca	•••
•••	•••	•••	•••	•••	• • •	•••	•••	• • •
aaa	3	ac	bc	aca	acb	•••	acaac	• • •
• • •	• •	• • •	0 0	• • •	0 0	• • •	• • •	

start with

$$S = \{\epsilon\}$$
 $T = \{\epsilon\}$

build candidate transducer...

expand T by counter-example w = ab

$$S = \{\epsilon\}$$
 $T = \{\epsilon, b, ab\}$

expand S to make it T-complete...

$$S = \{\varepsilon, a\}$$
 $T = \{\varepsilon, b, ab\}$

ur condidate transducer...

a/a

b / b

From word languages to word functions... and beyond

This learning technique with Hankel matrices has been successfully applied to:

• Weighted automata (i.e. outputs given by products of weights along transitions) and, partially, to probabilistic automata

• Büchi automata

• Tree transducers (e.g. for learning XSLT transformations of XML documents)

• Timed & register automata (e.g. for processing strings with timestamps/data)

A simple yet useful real application (surprisingly, not yet done :/)

Implementing a learning algorithm for automata/transducers

would allow to automatically derive RegEx expressions like

```
/^(0?[1-9]|[12][0-9]|3[01])([\/\-])(0?[1-9]|1[012])
\2([0-9][0-9][0-9])(([-])([0-1]?[0-9]|2[0-3]):
[0-5]?[0-9]:[0-5]?[0-9])?$/
```

from positive and negative examples examples like

01/01/2000 18/10/1985 ab/01/2000 1/01/2000 18/10/200x

• • •