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A bit of history on automata learning

— 56 Moore Gedanken-experiments on sequential machines
— ‘67 Gold passive learning in the limit
— ‘87 Angluin active learning with queries

— ’93... Pittetal PAC-learning, cryptographic hardness

— 95... Maleretal. learning regular w-languages
— 96... Vilaretal.  learning word transformations

'00... Beimeletal. learning weighted and multiplicity automata

— ’10... Lemayetal. /learning tree transformations
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Gedanken-experiments on sequential machines

Edward F. Moore

INTRODUCTION

This paper is concerned with finite automata] from the
experimental point of view. This does not mean that it reports the
results of any experimentation on actual physical models, but rather 1t
is concerned with what kinds of conclusions about the internal conditions
of a finite machine it 1s possible to draw from external experiments. To
emphasize the conceptual nature of these experiments, the word "gedanken-
experiments" has been borrowed from the physicists for the title.

The sequential machines conslidered have a finite number of states,
a finite number of possible input symbols, and a finite number of possible
output symbols. The behavior of these machines is strictly deterministic
(L.e., no random elements are permitted in the machines) in that the
present state of a machine depends only on its previous input and previous
state, and the present output depends only on the present state.

The point of view of this paper might also be extended to pro-
babilistic machines (such as the noisy discrete channel of communication
theory®), but this will not be attempted here.

EXPERIMENTS

There will be two kinds of experiments considered in this paper.
The first of these, called a simple experiment, is depicted in Figure 1.
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From word languages to word functions

Automata can be used to represent not only languages, but also functions on words
£, 351
e.g. f(abaab) = abcaacb

Many variants of automata with outputs. Simplest one is sequential transducer

ie. A=(2,1Q,qnd) with &: QxZ>QxI" (eg (q,a)=(q}ac))

a/ ac

b/be

b/b

Note: sequential transducers can only compute tozal, monotone tunctions
(f is monotone if whenever wis prefix of w' then f(w) is prefix of f{w’) )
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Learning monotone word functions

1) Teacher has a secret function fo: 2" > T", computed by a seq. transducer Ay
Learner initially only knows the input alphabet =

2) Learner choses a query:
a) either an evaluation query = “What is the value of fo(w) 27

b) oran  equivalence query “Is fo computed by seq. transducer A ?”

3) Teacher answers accordingly:
a) gives value of fo(w)
b) yes if foiscomputed by A (requires an algorithm for testing equivalence),
otherwise gives a shortest counter-example w such that fo(w) = A(w)

14
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Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

Example Properties:

fo inserts ¢ between every two positions e ~ isright-invariant
(i.e. U~V > ua~¢va)

f()(s) =&, f()(a> — 4,

fo(aa) = aac, fo(aaa) = aaca, ... e ~; has finite index

iff f is computed by

a seq. transducer...

~;,has only two equivalence classes:

el [al~

E.g. a~;bba

because

fla???2...)-fla) = a?c’ic..-a

f(bba?2?...) - f(bba) = bbca ?>c??c... - bbca
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Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut)-fo(u) = fo(ve) - fo(v)

e a b aa ab .. aaa .. Hankel matrix of fo:
€ € a b aac  abc ... | aaca .. H e (r*)z*xz*
a e ac bc aca, acb acaac . H ( _ f f
s,t) = fo(st) - fo(s)
b e ac bc aca acb acaac
aa e a b aac abc aaca
ab g a b aac abc ... | aaca
aaa e ac be aca  acb ... acaac
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Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VteX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

ad

ab

aad

fo(V t) - fo(V)
f()(V t) - fo(V)

Hankel matrix of fo:

a b aa ab a.a.a,
a b aac abc aaca
ac bc aca  acb acaac
ac bc aca  acb acaac
a b aac abc aaca
a b aac abc aaca
ac bec aca achb acaac

H e (r*)E*xZ*
H(s,t) = fo(st) - fo(s)
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S T-complete if VseSVaeX
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start with
S = {e} T = {¢e}
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expand T by counter-example w = ab
S={¢e} T = {e, b, ab}
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Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=¢rv if Vee T fo(ut)-fo(u)

aa |

ab

aaa |

ac

bec

bec |

aa a,b

aca |

aac |

aac

aca f§

acb
abc |

abc |

achb |

aa.a

aca

acaac

acaac
aaca

aaca

acaacC

fo(V t) - f()(V)
f()(V t) - fo(V)

start with

S ={¢e} T ={¢e}

build candidate transducer...

expand T by counter-example w = ab
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Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

fo(V t) - f()(V)
f()(V t) - fo(V)

start with
aa ab .. aaa .. S = {g) T = {e)

-n n - m e 2a6a build candidate transducer...
--n-m B acaac [ |

b : | ! .. acaac
aa | & | a { Db | aac { abc | .. aaca . expand T by counter-example w = ab
' S = {e} T = {e, b, ab}

ab § & { a b aac § abc ... | aaca
| ' | | | expand S to make it T-complete...
S ={e,a} T ={g, b, ab}

aag { € 1 a § Dbc § aca § acb § .. acaac



Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)
u=crv if VeeT fo(ut) - fo(u)

Relativization to test set 1:

aa |

ab

aaa |

- n m b
e ac be aca acb

aac |

5 a b
e a b
e ac be

aa a,b

aac

aca f§

abc i

abc |

achb |

aa.a

aca
acaac
acaac
aaca

aaca

acaacC

fo(V t) - f()(V)
f()(V t) - fo(V)

start with

S ={¢e} T ={¢e}

build candidate transducer...

expand T by counter-example w = ab
S={¢e} T = {e, b, ab}

expand S to make it T-complete...
S ={e,a} T ={g, b, ab}

build candidate transducer...
a/a b/b

”a>‘E  a/ac b /bc "t
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Learning monotone word functions

Myhill-Nerode equivalence: u~;v if VeeX" fy(ut) - fo(u)

Relativization to test set T: u=;rv if Ve T fo(ut)-fo(u)

fo(V t) - f()(V)
f()(V t) - fo(V)

start with
aa ab .. aaa .. S = {g) T = {e)

-- n - m e 2a6a build candidate transducer...
-“m B acaac L |

b & } ac bc aca § acb § .. acaac
aa | & | a { b § aac § abc | .. aaca . expand T by counter-example w = ab
| | ' S = {e} T = {e, b, ab}
ab § & { a b aac § abc § .. aaca
| i | | | expand S to make it T-complete...
2aa { € § a § bc § aca § acb § .. acaac

/ ‘
/ > E‘ a/ac  b/bc &
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From word languages to word functions... and beyond
This learning technique with Hankel matrices has been successtully applied to:

o Weighted automata (i.e. outputs given by products of weights along transitions)

and, partially, to probabilistic automata

o Buchi automata

e Tree transducers (e.g. for learning XSLT transformations of XML documents)

o Timed & register automata (e.g. for processing strings with timestamps/data)

20



A simple yet useful real application (surprisingly, not yet done :/)

Implementing a learning algorithm for automata/transducers

would allow to automatically derive RegEx expressions like

/M(O?[1-9]|[12][0-9]|3[01 ([ \/\-D(O?[1-9]|1[012])
\&([0-9][0-9][0-91[0-9D(([ -D([0-1]?[0-9]|R[0-3]):
[0-5]?[0-9]:[0-5]?[0-9])?$/

from positive and negative examples examples like

01/01/2000 ab/01/2000
18/10/1985 1/01/2000
18/10/200x



