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Introduction

= Automatic formal verification techniques: great progress in the
last decades;

= big chip or software companies have integrated them in their
development or quality assurance process;

. : FDIV bug, error in the floating point division instruction
on some Intel®Pentium® processors.

= it costed ~ US $475 million;
= big investment in formal verification.
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Model Checking

The most used formal verification technique is
(MC, for short).

= the system to verify is modeled as a finite-state machine (i.e.,
Kripke structure) and the specification is expressed by means of
a temporal logic formula;

= distinctive features:

= fully automatic;
= exhaustive;

= it generates a counterexample trace if the specification does not
hold.
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Linear Temporal Logic

We consider model checking.

= LTL syntax:

pl=glovel Xo|ole

with p € &
= shortcuts:
» 01 R P = (—h1 U —),
s Fopr=TUP
= G¢p=-F-¢



Linear Temporal Logic

= Semantics. LTL formulas are interpreted over state
sequences o = (09,01, ...) € (2F)¥ of sets of propositions
oj € 2%
oFEip iff pe€o;

o k=i X iff o i ¢

o i p1U ¢p iff  there exists j > i such that
o =j ¢2 and o =« ¢ for all
i<k<j



LTL model checking

= LTL model checking:
= decide if M, s |= ¢, where M = (5,1, T, L) is a Kripke
structure, s € [ is an initial state and ¢ is an LTL formula; in

many contexts, you may find the notation: M,s = Ag;
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Classical Approach to LTL MC

In order to decide if M, s = ¢:

= build the Biichi automaton A that accepts all and only the
words corresponding to computations of M;
= build the Biichi automaton A4 that accepts all and only the
words corresponding to models of —¢;
= check the (non-) of the product automaton
AM X ./4_@.
MC=universal problem, EMPTINESS= existential problem

?
w if L(Ap X Ag) # 0, then M, s |= ¢.

M, s = ¢
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State-space Explosion Problem

= the previous algorithm belongs to the class of model
checking algorithms:

= the Kripke Structure M is represented as a set of memory
locations, pointers ecc...

= MC suffers from the . the
number of states of

is exponential in n;

= the size of system that could be verified by explicit model
checkers was restricted to ~ 10° states.



From the Turing Award citation of Ed. Clarke

EDMUND MELSON CLARKE {J¥

United States — 2007

CITATION

Together with E. Allen Emerson and Joseph Sifakis, for their role in
developing Model-Checking into a highly effective verification technology
that is widely adopted in the hardware and software industries.

,(.
w‘w
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https://amturing.acm.org/award_winners/clarke_1167964.cfm

Averting the state space explosion

Although the 1981 paper [2] demonstrated that the model checking was possible in principle, its application to
practical systems was severely limited. The most pressing limitation was the number of states to search. Early
model checkers required explicitly computing every possible configuration of values the program might
assume. For example, if a program counts the millimeters of rain at a weather station each day of the week, it
will need 7 storage locations. Each location will have to be big enough to hold the largest rain level expected in
a single day. If the highest rain level in a day is 1 meter, this simple program will have 1021 possible states,
slightly less than the number of stars in the observable universe. Early model checkers would have to verify
that the required property was true for every one of those states.


https://amturing.acm.org/award_winners/clarke_1167964.cfm
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Tackling the explosion...

Three main techniques have been proposed:

= BDD-based symbolic model checking
= partial order reduction

= SAT-based symbolic model checking, aka

They allowed for the verification of systems with

= substantially larger than the number of atoms in the observable
universe (around 108°)
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The SAT problem

= given a Boolean formula f, establish if f is satisfiable;

= fis normally given in
Fo— (Ll,l\/"‘\/Ll,k)/\"'/\(Ln,l\/"’\/thm)

where each literal L;; is either a variable or a negation of a
variable.

= why not in DNF?

fr=(LiaA- ALy ) V-V (Lpa Ao Alnm)

)

10



The SAT problem

= first problem, but ...
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The SAT problem

= first problem, but ...

= there are several efficient algorithms for solving SAT (e.g.,

DPLL, CDCL...) along with many heuristics (e.g., 2 watching
literals, glue clauses...)

= some numbers:

= > 100000 variables;
= > 1°000°000 clauses;

11
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give a encoding of it:
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Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S,/, T, L). We can

give a encoding of it:
= let s:= {xp,...,xn} be a set of state (Boolean) variables;
= $=1{0,1}", i.e, a state is an to all the state
variables;

with n variables we represent 2”7 states
= m=fi(s) is true iff me [
= m,m' = fr(s,s') is true iff (m,m’) € T

= m = fy(s) is true iff p € L(m), for all labels p € RANGE(L)

The corresponding Kripke structure is the tuple
(5, fi, fr, {fPN 000 fpk})-

12



Symbolic Transition Systems

= we will write simply M = (S,/, T, L), meaning a
transition system

Real HW/SW systems are much easier to model with
Kripke structures rather than with explicit-state ones:

= symbolic Kripke structures resemble the code of a program (or
the logic of a circuit) in a much more natural fashion.

13



Example 1

simple-example.smv

14



Example 1 - SMV

MODULE main
VAR

Xo : boolean;
INIT

X0,
TRANS

Xo & X3 ;



Example - 2

modulo-4-counter.smv

16



Example 2 - SMV

MODULE main
VAR

Xo : boolean;

x1 : boolean;
INIT

—X0 A\ X1 ;
TRANS

(XCIM—)ﬁXo)

A

(x{ ¢ ((x0 A =x1) V (=x0 A x1))) 17
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Bounded Model Checking

= recall that we can reduce M, s |= 1 to checking the emptiness
of M x A_y;
= the universal problem M, s = Ay is reduced to the existential
problem M, s = E¢, where
. (BMC) solves the problem
M, s = E¢ by proceeding incrementally:

= we start with kK = 0;

= check if and execution 7 of M of length k that
satisfies ¢; encode this problem into a SAT instance and call a
SAT-solver;

= if so, we have found a counterexample to %; if not, k-++.

18
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= BMC checks only bounded /finite traces of the system;

= _..but LTL formulas are defined over state sequences;
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Loop-backs

= BMC checks only bounded /finite traces of the system;

= _..but LTL formulas are defined over state sequences;
Crucial observation:

= a finite trace can still represent an infinite state sequence, if it
contains a

—0—6—e-- - Se— e

19



k-loop, aka Lasso-Shaped Models

Definition (k-loop)
A path 7 is a (k, I)-loop, with | < k, if T(mw(k),w(I)) holds and

T = u-v¥, where:

w(1)...w(l—1);

[
c
Il

We call 7 a if there exists | < k for which 7 is a (k, |)-loop.

20



Given a finite trace 7 of the system M, BMC distinguishes between

two cases:

= either 7 contains a loop-back (7 is ):
= apply standard LTL semantics to check if 7 = ¢;
= Oor Tis

= apply bounded semantics
= if a path is a model of ¢ under bounded semantics
any extension of the path is a model of ¢ under standard

semantics ( )

21



Bounded Semantics for LTL

———0——0——0- - - So——e
I

If 7 is a k-loop, we introduce bounded semantics for LTL.
Definition (Bounded semantics for LTL)
Let k > 0 and 7 a path that is not a k-loop. An LTL formula ¢ is
valid along m with bound k, written 7 =9 ¢, ifF:

= TELp iff p € L(m(i))

s xbop i pdL(r()

22



Bounded Semantics for LTL
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If 7 is a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)
Let k > 0 and 7w a path that is not a k-loop. An LTL formula ¢ is
valid along ™ with bound k, written 7 |:2 o, iff:

n w):i(gbl\/gbg iff ﬂ}:};qﬁlorw):f(qbz
. 71'}:’,( o1 A P2 iff 71":;( ¢1 and 7 ':Ik P2

22



Bounded Semantics for LTL
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If 7 is a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)
Let k > 0 and 7w a path that is not a k-loop. An LTL formula ¢ is
valid along 7 with bound k, written © =9 ¢, iff:

= 7=k X iff i< kandr T ¢
s Tl o1UGB  iff 30 <)< ksuch that w5, ¢ and
Vi < n < j it holds that m =] ¢1

22



Bounded Semantics for LTL
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If 7 is a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)
Let k > 0 and 7w a path that is not a k-loop. An LTL formula ¢ is
valid along ™ with bound k, written 7 |:2 o, iff:

s Tl Gy ff 777
s L For  iff 777

22



Bounded Semantics for LTL
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If 7 is a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)
Let k > 0 and 7w a path that is not a k-loop. An LTL formula ¢ is
valid along m with bound k, written 7 =9 ¢, ifF:

= 7l Gy
« Tl Fgy  iff 3i<j < ksuch that T = ¢,

22



SAT-based encoding of BMC

Now we see how to reduce BMC to SAT.

= the first thing to do is to define a Boolean formula that
encodes all the paths of M of length k.
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SAT-based encoding of BMC

Now we see how to reduce BMC to SAT.

= the first thing to do is to define a Boolean formula that
encodes all the paths of M of length k.

Definition (Unfolding of the Transition Relation)
For a Kripke structure M and k > 0, we define:

k—1

Ml = I(s0) A N\ T(si,si41)
i=0

What does a model of [M]y represent?

23



Encoding of the LTL formula

So far, we have seen how to encode paths of length k of the model

M.
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Encoding of the LTL formula

So far, we have seen how to encode paths of length k of the model

M.

= intuitively, this corresponds to the left-hand side of the
automaton A x Ay

= now we see how to encode the right-hand side.

We have seen that BMC distinguishes between lasso-shaped
(k-loop) and loop-free paths:

= we start with the encoding in case of k-loops.

24



Encoding of a loop

i / i k

Definition (Loop Encoding)
Let | < k. We define:

= Ly = T(sk,s1)

k
» Le=V Lk
1=0
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Encoding of a loop

VAN

i / i k

Definition (Loop Encoding)
Let | < k. We define:

= Ly = T(sk,s1)

k

» Le=V Lk
1=0

Definition (Successor in a Loop)

Let I,i < k and 7 be a (k,)-loop. We define the successor
succ(i) of i in  as:
= succ(i) =i+1 ifi <k;

» succ(i) =1 ifi = k. 25



Encoding in case of Loop

i / i

Definition (Encoding of an LTL formula for a (k, /)-loop)
Let ¢ be an LTL formula and I,i, k > 0 such that I,i < k. We
define |[¢]} recursively as follows:

= ([Pl = p(si)

= /[Pl = —p(si)

26



Encoding in case of Loop

——0——6—e- - - Je—8
i / i

Definition (Encoding of an LTL formula for a (k,/)-loop)
Let ¢ be an LTL formula and I, i, k > 0 such that I,i < k. We
define |[¢]} recursively as follows:

o o1V gl = il V ile2]l
= 161 A dalli = ilpal A illd2Dk
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Encoding in case of Loop

— o6 e - - Se— e
] / ]

Definition (Encoding of an LTL formula for a (k, /)-loop)
Let ¢ be an LTL formula and I, i, k > 0 such that I,i < k. We
define |[¢]} recursively as follows:

o Xl = ilenl eV
o (1 U bl = [l V (Ioali A ildn U Gl )

26



Encoding in case of Loop

— o6 e - - Se— e
] / ]

Definition (Encoding of an LTL formula for a (k, /)-loop)
Let ¢ be an LTL formula and I, i, k > 0 such that I,i < k. We
define |[¢]} recursively as follows:

=[G o1l = ilallf A G ¢1]]iucc(i)
o J[F éalli = iléal v [F pa] 3

26



Encoding in case of NO Loops

——0——r0——0- - - Yo——e
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Definition (Encoding of an LTL formula for a loop-free path)

Let ¢ be an LTL formula and i, k > 0. We define [¢]] recursively
as follows:

H¢ﬂk+l —

27
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Definition (Encoding of an LTL formula for a loop-free path)

Let ¢ be an LTL formula and i, k > 0. We define [¢]} recursively
as follows:

= [pli = p(s)
= [-plk = —p(si)

with i < k
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Encoding in case of NO Loops
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Definition (Encoding of an LTL formula for a loop-free path)

Let ¢ be an LTL formula and i, k > 0. We define [¢]} recursively
as follows:

= 61V ol = [l V [02]
= [¢1 A @2lli = [nli A 921

with i < k
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Encoding in case of NO Loops
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Definition (Encoding of an LTL formula for a loop-free path)

Let ¢ be an LTL formula and i, k > 0. We define [¢]} recursively
as follows:

= Xl = [l
o (o1 U $alf = [l v ([oallf A [1 U d2] )

with i < k

27



Encoding in case of NO Loops

———0——0——0- - - S0——e
I

Definition (Encoding of an LTL formula for a loop-free path)

Let ¢ be an LTL formula and i, k > 0. We define [¢]} recursively
as follows:

=[Gl = [oa]f A [G ]
= [Fouli = [oal Vv [F ]

with i < k

27



Overall encoding

Definition (Overall encoding)
Let ¢ be an LTL formula, M be a Kripke structure and k > 0:

k
M6l = M A(CLeA TSI vV Len el )
ey e =0
the f(rr]ic;fkel ,ﬁrfl,cture ?;)S;Ierlie

lasso-shaped
models
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Overall encoding

Definition (Overall encoding)
Let ¢ be an LTL formula, M be a Kripke structure and k > 0:

k
M, oLk =  [Ml« A((ﬁmmk v/ (i A 1612) )
Y v 1=0

encoding of loop-free

the Kripke structure models
lasso-shaped

models

Theorem (Soundness)
[M, ¢]« is satisfiable iff M =y Eg.

28



Completeness

Algorithm:

= start with k=0
» call a SAT-solver on [M, @]«
= if it is SAT, . otherwise, k+-+.
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Completeness

Algorithm:

= start with k=0
» call a SAT-solver on [M, @]«
= if it is SAT, . otherwise, k+-+.

What happens if M £ ¢?

= the procedure does terminate
= in order to be , BMC needs to compute the
. very costly

= BMC is mainly used as a bug finder, rather than as a prover.

29



Conclusions

Questions?

30
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modulo-4-counter.smv



Solving LTL-SAT with BMC
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Solving LTL-SAT with BMC

LTL-SAT is the problem of establishing if, given an LTL formula ¢,
there exists an infinite state sequence o such that o |= ¢.

= how can one solve LTL-SAT with BMC?
= model checking:

k

IMIA (LA TID Y V (L n d61D))

=0

= satisfiability checking

k

TA ((ﬂLk ATBI2) vV V (L A d[qb]]‘i))

1=0



BLACK

= we developed this tool based on the idea of bounded
satisfiability checking

» BLACK = Bounded |tl sAtisfiability ChecKer *

! https://github.com/black-sat/black


https://github.com/black-sat/black
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