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Introduction

• Automatic formal verification techniques: great progress in the
last decades;

• big chip or software companies have integrated them in their
development or quality assurance process;

• Intel: FDIV bug, error in the floating point division instruction
on some Intel®Pentium® processors.

• it costed ≈ US $475 million;
• big investment in formal verification.
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Model Checking

The most used formal verification technique is Model Checking
(MC, for short).

• the system to verify is modeled as a finite-state machine (i.e.,
Kripke structure) and the specification is expressed by means of
a temporal logic formula;

• distinctive features:
• fully automatic;
• exhaustive;
• it generates a counterexample trace if the specification does not

hold.
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Linear Temporal Logic

We consider LTL model checking.

• LTL syntax:

p | ¬ϕ | ϕ ∨ ϕ| X ϕ | ϕ U ϕ

with p ∈ Σ

• shortcuts:
• ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2),
• Fϕ1 ≡ ⊤ U ϕ1

• Gϕ1 ≡ ¬ F ¬ϕ1
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Linear Temporal Logic

• Semantics. LTL formulas are interpreted over infinite state
sequences σ = ⟨σ0, σ1, . . .⟩ ∈ (2Σ)ω of sets of propositions
σi ∈ 2Σ:

σ |=i p iff p ∈ σi

σ |=i X ϕ iff σ |=i+1 ϕ

σ |=i ϕ1 U ϕ2 iff there exists j ≥ i such that
σ |=j ϕ2 and σ |=k ϕ1 for all
i ≤ k < j

. . .

σ |=i Fϕ iff ∃j ≥ i . σ |=j ϕ

σ |=i Gϕ iff ∀j ≥ i . σ |=j ϕ

4



LTL model checking

• LTL model checking:
• decide if M, s |= ϕ, where M = (S, I,T , L) is a Kripke

structure, s ∈ I is an initial state and ϕ is an LTL formula; in
many contexts, you may find the notation: M, s |= Aϕ;

• PSPACE-complete.
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Classical Approach to LTL MC

In order to decide if M, s |= ϕ:

• build the Büchi automaton AM that accepts all and only the
words corresponding to computations of M;

• build the Büchi automaton A¬ϕ that accepts all and only the
words corresponding to models of ¬ϕ;

• check the (non-)emptiness of the product automaton
AM × A¬ϕ.

MC=universal problem, EMPTINESS= existential problem

• if L(AM × A¬ϕ) ̸= ∅, then M, s
?
|= ϕ.

M, s ̸|= ϕ
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State-space Explosion Problem

• the previous algorithm belongs to the class of explicit model
checking algorithms:

• the Kripke Structure M is represented as a set of memory
locations, pointers ecc...

• MC suffers from the state-space explosion problem: the
number of states of

M = M1 × M2 × · · · × Mn

is exponential in n;
• the size of system that could be verified by explicit model

checkers was restricted to ≈ 106 states.
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From the Turing Award citation of Ed. Clarke

https://amturing.acm.org/award_winners/clarke_1167964.cfm
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Tackling the explosion...

Three main techniques have been proposed:

• BDD-based symbolic model checking
• partial order reduction
• SAT-based symbolic model checking, aka Bounded Model

Checking.

They allowed for the verification of systems with > 10120 states.

• substantially larger than the number of atoms in the observable
universe (around 1080)
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Symbolic Transition Systems



The SAT problem

• given a Boolean formula f , establish if f is satisfiable;

• f is normally given in CNF:

f := (L1,1 ∨ · · · ∨ L1,k) ∧ · · · ∧ (Ln,1 ∨ · · · ∨ Ln,m)

where each literal Li ,j is either a variable or a negation of a
variable.

• why not in DNF?

f := (L1,1 ∧ · · · ∧ L1,k) ∨ · · · ∨ (Ln,1 ∧ · · · ∧ Ln,m)
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The SAT problem

• first NP-complete problem, but ...

• there are several efficient algorithms for solving SAT (e.g.,
DPLL, CDCL...) along with many heuristics (e.g., 2 watching
literals, glue clauses...)

• some numbers:
• > 100·000 variables;
• > 1·000·000 clauses;
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Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state

variables;
with n variables we represent 2n states

• m |= fI(s) is true iff m ∈ I
• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T
• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;

• S = {0, 1}n, i.e., a state is an assignment to all the state
variables;

with n variables we represent 2n states
• m |= fI(s) is true iff m ∈ I
• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T
• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state

variables;
with n variables we represent 2n states

• m |= fI(s) is true iff m ∈ I
• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T
• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state

variables;
with n variables we represent 2n states

• m |= fI(s) is true iff m ∈ I

• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T
• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state

variables;
with n variables we represent 2n states

• m |= fI(s) is true iff m ∈ I
• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T

• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state

variables;
with n variables we represent 2n states

• m |= fI(s) is true iff m ∈ I
• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T
• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

Consider a (explicit) Kripke structure M = (S, I,T , L). We can
give a Boolean encoding of it:

• let s := {x0, . . . , xn} be a set of state (Boolean) variables;
• S = {0, 1}n, i.e., a state is an assignment to all the state

variables;
with n variables we represent 2n states

• m |= fI(s) is true iff m ∈ I
• m,m′ |= fT (s, s ′) is true iff (m,m′) ∈ T
• m |= fp(s) is true iff p ∈ L(m), for all labels p ∈ RANGE (L)

The corresponding symbolic Kripke structure is the tuple
(s, fI , fT , {fp1 , . . . , fpk }).

12



Symbolic Transition Systems

• we will write simply M = (S, I,T , L), meaning a symbolic
transition system

Real HW/SW systems are much easier to model with symbolic
Kripke structures rather than with explicit-state ones:

• symbolic Kripke structures resemble the code of a program (or
the logic of a circuit) in a much more natural fashion.
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Example 1

simple-example.smv

14



Example 1 - SMV

¬x0 x0

MODULE main
VAR

x0 : boo l ean ;
INIT

¬x0 ;
TRANS

x0 ↔ ¬x ′
0 ;
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Example - 2

modulo-4-counter.smv
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Example 2 - SMV

¬x1
¬x0

¬x1
x0

x1
¬x0

x1
x0

MODULE main
VAR

x0 : boo l ean ;
x1 : boo l ean ;

INIT
¬x0 ∧ ¬x1 ;

TRANS
(x ′

0 ↔ ¬x0)
∧

(x ′
1 ↔ ((x0 ∧ ¬x1) ∨ (¬x0 ∧ x1))) ; 17
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Bounded Model Checking

• recall that we can reduce M, s |= ψ to checking the emptiness
of M × A¬ψ;

• the universal problem M, s |= Aψ is reduced to the existential
problem M, s |= Eϕ, where ϕ := ¬ψ;

• Bounded Model Checking (BMC) solves the problem
M, s |= Eϕ by proceeding incrementally:

• we start with k = 0;
• check if there exists and execution π of M of length k that

satisfies ϕ; encode this problem into a SAT instance and call a
SAT-solver;

• if so, we have found a counterexample to ψ; if not, k++.

18
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Loop-backs

• BMC checks only bounded/finite traces of the system;
• ...but LTL formulas are defined over infinite state sequences;

Crucial observation:

• a finite trace can still represent an infinite state sequence, if it
contains a loop-back.

kl
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k-loop, aka Lasso-Shaped Models

kl

Definition (k-loop)
A path π is a (k, l)-loop, with l ≤ k, if T (π(k), π(l)) holds and
π = u · vω, where:

• u = π(1) . . . π(l − 1);
• v = π(l) . . . π(k).

We call π a k-loop if there exists l ≤ k for which π is a (k, l)-loop.
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BMC

Given a finite trace π of the system M, BMC distinguishes between
two cases:

• either π contains a loop-back (π is lasso-shaped):
⇒ apply standard LTL semantics to check if π |= ϕ;

• or π is loop-free:
⇒ apply bounded semantics
⇒ if a path is a model of ϕ under bounded semantics then

any extension of the path is a model of ϕ under standard
semantics (conservative semantics)

21



Bounded Semantics for LTL

ki

If π is not a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)
Let k ≥ 0 and π a path that is not a k-loop. An LTL formula ϕ is
valid along π with bound k, written π |=0

k ϕ, iff:

• π |=i
k p iff p ∈ L(π(i))

• π |=i
k ¬p iff p ̸∈ L(π(i))
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Bounded Semantics for LTL

ki

If π is not a k-loop, we introduce bounded semantics for LTL.

Definition (Bounded semantics for LTL)
Let k ≥ 0 and π a path that is not a k-loop. An LTL formula ϕ is
valid along π with bound k, written π |=0

k ϕ, iff:
• π |=i

k Gϕ1 is always false
• π |=i

k Fϕ1 iff ∃i ≤ j ≤ k such that π |=j
k ϕ1
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SAT-based encoding of BMC

Now we see how to reduce BMC to SAT.

• the first thing to do is to define a Boolean formula that
encodes all the paths of M of length k.

Definition (Unfolding of the Transition Relation)
For a Kripke structure M and k ≥ 0, we define:

JMKk := I(s0) ∧
k−1∧
i=0

T (si , si+1)

What does a model of JMKk represent?

23
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Encoding of the LTL formula

So far, we have seen how to encode paths of length k of the model
M.

• intuitively, this corresponds to the left-hand side of the
automaton AM × A¬ψ

• now we see how to encode the right-hand side.

We have seen that BMC distinguishes between lasso-shaped
(k-loop) and loop-free paths:

• we start with the encoding in case of k-loops.

24
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Encoding of a loop

kli i

Definition (Loop Encoding)
Let l ≤ k. We define:

• lLk := T (sk , sl)

• Lk :=
k∨

l=0
lLk

Definition (Successor in a Loop)
Let l , i ≤ k and π be a (k, l)-loop. We define the successor
succ(i) of i in π as:

• succ(i) := i + 1 if i < k;
• succ(i) := l if i = k.

25
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Encoding in case of Loop

kli i

Definition (Encoding of an LTL formula for a (k, l)-loop)
Let ϕ be an LTL formula and l , i , k ≥ 0 such that l , i ≤ k. We
define lJϕKi

k recursively as follows:

• lJpKi
k := p(si)

• lJ¬pKi
k := ¬p(si)
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Encoding in case of NO Loops

ki

Definition (Encoding of an LTL formula for a loop-free path)
Let ϕ be an LTL formula and i , k ≥ 0. We define JϕKi

k recursively
as follows:

• JϕKk+1
k := ⊥

with i ≤ k
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Overall encoding

Definition (Overall encoding)
Let ϕ be an LTL formula, M be a Kripke structure and k ≥ 0:

JM, ϕKk := JMKk︸ ︷︷ ︸
encoding of

the Kripke structure

∧
(

(¬Lk ∧ JϕK0
k︸ ︷︷ ︸

loop-free
models

) ∨
k∨

l=0
(lLk ∧ lJϕK0

k)︸ ︷︷ ︸
lasso-shaped

models

)

Theorem (Soundness)
JM, ϕKk is satisfiable iff M |=k Eϕ.
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Completeness

Algorithm:

• start with k = 0
• call a SAT-solver on JM, ϕKk

• if it is SAT, stop; otherwise, k++.

What happens if M ̸|= ϕ?

• the procedure does not terminate
• in order to be complete, BMC needs to compute the recurrence

diameter: very costly
• BMC is mainly used as a bug finder, rather than as a prover.
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Conclusions

Questions?

30



Appendix



Example

modulo-4-counter.smv
¬s(1)

¬s(0)

¬s(1)

s(0)

s(1)

¬s(0)

s(1)

s(0)

• ϕ1 := G F(s(0) ∧ s(1)) ✓

• ϕ2 := F G(¬s(0) ∧ ¬s(1)) ✗



Solving LTL-SAT with BMC

LTL-SAT is the problem of establishing if, given an LTL formula ϕ,
there exists an infinite state sequence σ such that σ |= ϕ.

• how can one solve LTL-SAT with BMC?
• model checking:

JMKk ∧
(

(¬Lk ∧ JϕK0
k) ∨

k∨
l=0

(lLk ∧ lJϕK0
k)

)

• satisfiability checking

⊤ ∧
(

(¬Lk ∧ JϕK0
k) ∨

k∨
l=0

(lLk ∧ lJϕK0
k)

)
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BLACK

• we developed this tool based on the idea of bounded
satisfiability checking

• BLACK = Bounded Ltl sAtisfiability ChecKer 1

1 https://github.com/black-sat/black

https://github.com/black-sat/black
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