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HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p iff p ∈
∩
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption) [4];

• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!
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HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p iff p ∈ µ(fst(ρ), lst(ρ)), for any letter p ∈ AP
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HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p other definitions?

• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

1



Example—Printer

Adapted from [3].

v0
{p,pst}

v1
{p}

v2
{p,pend}

Imagine we want to label the process of printing a single sheet of
paper with p.

• Under homogeneity,
v0v1v2 labeled by p⇒ v0v1 and v1v2 labeled by p
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Example—Printer

Adapted from [3].

v0
{p,pst}

v1
{p}

v2
{p,pend}

Imagine we want to label the process of printing a single sheet of
paper with p.
• Under endpoint-based labeling, assuming p ∈ µ(v0, v2), then
(v0v1v2)n are all labeled by p
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(Usual) regular expressions

r ::= ε | a | r ∪ r | r · r | r∗

for a ∈ A.

Examples:

• r1 = a · (b ∪ c)∗ · b
• abb, acb, abccbb, … ∈ L(r1)

• r2 =
(
(a · b) ∪ (a · c)

)∗

• ε, ab, ac, acabac, … ∈ L(r2)

• r3 = ε · (a ∪ c)∗

• ε, a, ca, aac, … ∈ L(r3)
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Our regular expressions

r ::= ε | ϕ | r ∪ r | r · r | r∗

where ϕ is a Boolean (propositional) formula over AP .

v0
{p, s}

v1
{q, s}

• ρ = v0v1v0v1v1
• µ(ρ) = {p, s}{q, s}{p, s}{q, s}{q, s}

• ρ′ = v0v1v1v1v0
• µ(ρ′) = {p, s}{q, s}{q, s}{q, s}{p, s}

Examples:

• r1 = (p ∧ s) · s∗ · (p ∧ s)
• µ(ρ) ̸∈ L(r1), but µ(ρ′) ∈ L(r1)

• r2 = (¬p)∗

• µ(ρ) ̸∈ L(r2), and µ(ρ) ̸∈ L(r2)
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Nondeterministic finite automata (NFA)

r1 = a · (b ∪ c)∗ · b

q0start q1 q2

Ar1

a

b, c

b

• abb, acb, abccbb, … ∈ L(r1) = L(Ar1)
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Nondeterministic finite automata (NFA)

r1 = (p ∧ s) · s∗ · (p ∧ s)

q0start q1 q2

Ar1

(p ∧ s)

s∗

(p ∧ s)

• µ(ρ′) = {p, s}{q, s}{q, s}{q, s}{p, s} ∈ L(r1) = L(Ar1)
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HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= r iff µ(ρ) ∈ L(r);
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!
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• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

• To force homo
geneity, all regu

lar expressions
in the formula:

p · (p)∗

• for endpoint-
based labeling,

regular express
ions in the form

ula:

∪
(i,j)∈I

(qi · ⊤
∗ · qj)

for some I ⊆ {1, . . . , |W|}2 , where qi ∈ AP labels only wi ∈
W.

Possibly infinitely many tracks!
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Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

Idea: for a regular expression r

v0
{p, s}

v1
{q, s}

×

q 0
q 1

q 2

A
r 1

(p
∧
s)

s∗

(p
∧
s)
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Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.
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The AABB fragment + regular expressions

We want to show that formulas of AABB + regular expressions can be
checked by using polynomial working space.

To start with, we prove the following theorem, which is a building
block of the PSPACE-model checking algorithm for AABB.

Theorem
Let ρ be a track of K and φ be an AABB formula with RE’s r1, . . . , ru
such that

K , ρ |= φ.

Then, there exists a track π of K such that

K , π |= φ and |π| ≤ |W| · (|φ|+ 1) · 22
∑u
ℓ=1 |rℓ|.
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Small model for AABB

ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

We want to guarantee that: for all π-positions j, with corresponding
ρ-positions ij, and for all s = 1, . . . ,u, As(µ(πj)) = As(µ(ρij))

Theorem (Exponential small-model for AABB)
Let ρ be a track of K and φ be an AABB formula with RE’s r1, . . . , ru
such that K , ρ |= φ.
Then, there exists a track π of K , induced by ρ, such that

K , π |= φ and |π| ≤ |W| · (|φ|+ 1) · 22
∑u
ℓ=1 |rℓ|.
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Small model for AABB

The small model is “strict”:

• Let pri be the i-th smallest prime.
It is well-known that pri ∈ O(i log i).

• Let K = v0
{p}

• Let us fix some n ∈ N. The shortest track satisfying

ψ =
n∧
i=1

(ppri)∗

is ρ = vpr1···prn0 .

• The length of ψ is O(n · prn) = O(n2 logn),
but the length of ρ is pr1 · · ·prn ≥ 2n.
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A PSPACE MC algorithm for AABB—Trials

• The algorithm can consider only tracks having length bounded
by the exponential small model

• However,

they are still too long! ⇒ triples (G,D(ψ),w)
summarizing tracks, where

• G ⊆ Subf⟨B⟩(ψ) contains the subformulas that hold on some prefix
• D(ψ) is the configuration of the DFAs after reading the track,
• and w is the last state of the track

Lemma
For all formulas ψ of BB, and for all tracks ρ, ρ′ of K , if ρ and ρ′ are
summarized by the same triple (G,D(ψ),w), then

K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ.
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A PSPACE MC algorithm for AABB—Trials

• The algorithm cannot explicitly store the DFAs for the regular
expressions occurring in ψ ⇒ just store the current states of the
computations of the DFAs and calculates on-the-fly the
successor states
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A PSPACE MC algorithm for AABB

Algorithm 1 Check(K , ψ,w,G,D(ψ))

1: if ψ = r then ◁ r is a regular expression
2: if the current state of the DFA for r in advance(D(ψ), µ(w)) is final then
3: return ⊤
4: else
5: return ⊥
6: else if ψ = ¬ψ′ or ψ = ψ1 ∧ ψ2 then
7: Recursively
8: else if ψ = ⟨B⟩ψ′ then
9: return ψ′ ∈ G
10: else if ψ = ⟨B⟩ψ′ then
11: for all b ∈ {1, . . . , |W| · (2|ψ′|+ 1) · 22

∑u
ℓ=1 |rℓ| − 1}, all (G′,D(ψ)′,w′) do

12: if Reach(K , ψ′, (G,D(ψ),w), (G′,D(ψ)′,w′), b) and Check(K , ψ′,w′,G′,D(ψ)′) then
13: return ⊤
14: return ⊥
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A PSPACE MC algorithm for AABB

Algorithm 2 Check(K , ψ,w,G,D(ψ))

1: if ψ = r then ◁ r is a regular expression
2: if the current state of the DFA for r in advance(D(ψ), µ(w)) is final then
3: return ⊤
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5: return ⊥
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AABB is PSPACE-complete

• We replace the sub-formulas ⟨A⟩ψ and ⟨A⟩ψ with the regular
expressions r⟨A⟩ψ and r⟨A⟩ψ :

r⟨A⟩ψ := ⊤∗ ·
( ∪
w∈W⟨A⟩ψ

qw
)
; r⟨A⟩ψ :=

( ∪
w∈W⟨A⟩ψ

qw
)
· ⊤∗.

• To determine W⟨A⟩ψ and W⟨A⟩ψ , we iterate the previous algorithm

Theorem

The MC problem for formulas of AABB over finite Kripke structures is
PSPACE-complete.

Proof.
The purely propositional fragment of HS is hard for PSPACE: we
prove this fact by a reduction from the PSPACE-complete
universality problem for regular expressions.
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Complexity results

Homogeneity Regular expressions

Full HS, BE
non-elementary non-elementary

EXPSPACE-hard EXPSPACE-hard

AABBE,AAEBE
EXPSPACE non-elementary

PSPACE-hard PSPACE-hard

AABE PSPACE-complete
non-elementary

PSPACE-hard

AABB,BB,B,
PSPACE-complete PSPACE-complete

AAEE, EE, E

AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A
PNP[O(log

2 n)]

PSPACE-complete
PNP[O(log n)]-hard

Prop,B, E co-NP-complete PSPACE-complete
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AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A
PNP[O(log

2 n)]

PSPACE-complete
PNP[O(log n)]-hard

Prop,B, E co-NP-complete PSPACE-complete
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