Model Checking Complex Systems against ITL Specifications with Regular Expressions

Alberto Molinari
joint work with Laura Bozzelli, Angelo Montanari, and Adriano Peron Jan 20, 2017

University of Udine, Department of Mathematics, Computer Science, and Physics (DIMA)

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, W, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho=p$ iff $p \in \bigcap_{w \in \operatorname{states}(\rho)} \mu(w)$, for any letter $p \in \mathscr{A} \mathscr{P}$ (homogeneity assumption) [4];

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, \boldsymbol{W}, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho \models p$ iff $p \in \bigcap_{w \in \operatorname{states}(\rho)} \mu(w)$, for any letter $p \in \mathscr{A} \mathscr{P}$ (homogeneity assumption) [4];
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models\langle\mathrm{A}\rangle \psi$ iff there is a track ρ^{\prime} s.t. $\operatorname{lst}(\rho)=\operatorname{fst}\left(\rho^{\prime}\right)$ and $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{B}\rangle \psi$ iff there is a prefix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{E}\rangle \psi$ iff there is a suffix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime}=\psi$;
- the semantic clauses for $\langle\overline{\mathrm{A}}\rangle,\langle\overline{\mathrm{B}}\rangle$, and $\langle\overline{\mathrm{E}}\rangle$ are similar

Model Checking

$\mathcal{K} \models \psi \Longleftrightarrow$ for all initial tracks ρ of \mathcal{K} it holds that $\mathcal{K}, \rho \models \psi$
Possibly infinitely many tracks!

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, \mathrm{W}, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho \models p$ iff $p \in \mu(\operatorname{fst}(\rho)$, $\operatorname{lst}(\rho))$, for any letter $p \in \mathcal{A P}$ (endpoint-based labeling) [1, 2];
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models\langle\mathrm{A}\rangle \psi$ iff there is a $\operatorname{track} \rho^{\prime}$ s.t. $\operatorname{lst}(\rho)=\mathrm{fst}\left(\rho^{\prime}\right)$ and $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{B}\rangle \psi$ iff there is a prefix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{E}\rangle \psi$ iff there is a suffix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime}=\psi$;
- the semantic clauses for $\langle\overline{\mathrm{A}}\rangle,\langle\overline{\mathrm{B}}\rangle$, and $\langle\overline{\mathrm{E}}\rangle$ are similar

Model Checking

$\mathcal{K} \models \psi \Longleftrightarrow$ for all initial tracks ρ of \mathcal{K}, it holds that $\mathcal{K}, \rho \models \psi$
Possibly infinitely many tracks!

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, W, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho \models p$ other definitions?
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models\langle\mathrm{A}\rangle \psi$ iff there is a track ρ^{\prime} s.t. $\operatorname{lst}(\rho)=\operatorname{fst}\left(\rho^{\prime}\right)$ and $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{B}\rangle \psi$ iff there is a prefix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{E}\rangle \psi$ iff there is a suffix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime}=\psi$;
- the semantic clauses for $\langle\overline{\mathrm{A}}\rangle,\langle\overline{\mathrm{B}}\rangle$, and $\langle\overline{\mathrm{E}}\rangle$ are similar

Model Checking

$\mathcal{K} \models \psi \Longleftrightarrow$ for all initial tracks ρ of \mathcal{K}, it holds that $\mathcal{K}, \rho \models \psi$
Possibly infinitely many tracks!

Example-Printer

Adapted from [3].

Imagine we want to label the process of printing a single sheet of paper with p.

- Under homogeneity, $v_{0} v_{1} v_{2}$ labeled by $p \Rightarrow v_{0} v_{1}$ and $v_{1} v_{2}$ labeled by p

Example-Printer

Adapted from [3].

Imagine we want to label the process of printing a single sheet of paper with p.

- Under endpoint-based labeling, assuming $p \in \mu\left(v_{0}, v_{2}\right)$, then $\left(v_{0} v_{1} v_{2}\right)^{n}$ are all labeled by p

(Usual) regular expressions

$$
r::=\varepsilon|a| r \cup r|r \cdot r| r^{*}
$$

for $a \in \mathcal{A}$.

Examples:

- $r_{1}=a \cdot(b \cup c)^{*} \cdot b$
- abb, acb, abccbb, ... $\in \mathcal{L}\left(r_{1}\right)$

(Usual) regular expressions

$$
r::=\varepsilon|a| r \cup r|r \cdot r| r^{*}
$$

for $a \in \mathcal{A}$.

Examples:

- $r_{1}=a \cdot(b \cup c)^{*} \cdot b$
- abb, acb, abccbb, ... $\in \mathcal{L}\left(r_{1}\right)$
- $r_{2}=((a \cdot b) \cup(a \cdot c))^{*}$
- ε, ab, ac, acabac, ... $\in \mathcal{L}\left(r_{2}\right)$

(Usual) regular expressions

$$
r::=\varepsilon|a| r \cup r|r \cdot r| r^{*}
$$

for $a \in \mathcal{A}$.

Examples:

- $r_{1}=a \cdot(b \cup c)^{*} \cdot b$
- abb, acb, abccbb, ... $\in \mathcal{L}\left(r_{1}\right)$
- $r_{2}=((a \cdot b) \cup(a \cdot c))^{*}$
- ε, $a b, a c, a c a b a c, \ldots \in \mathcal{L}\left(r_{2}\right)$
- $r_{3}=\varepsilon \cdot(a \cup c)^{*}$
- $\varepsilon, a, c a, a a c, \ldots \in \mathcal{L}\left(r_{3}\right)$

Our regular expressions

$$
r::=\varepsilon|\phi| r \cup r|r \cdot r| r^{*}
$$

where ϕ is a Boolean (propositional) formula over $\mathfrak{A} P$.

- $\rho=V_{0} V_{1} V_{0} V_{1} V_{1}$
- $\mu(\rho)=\{p, s\}\{q, s\}\{p, s\}\{q, s\}\{q, s\}$
- $\rho^{\prime}=V_{0} v_{1} v_{1} v_{1} v_{0}$
- $\mu\left(\rho^{\prime}\right)=\{p, s\}\{q, s\}\{q, s\}\{q, s\}\{p, s\}$

Examples:

- $r_{1}=(p \wedge s) \cdot s^{*} \cdot(p \wedge s)$
- $\mu(\rho) \notin \mathcal{L}\left(r_{1}\right)$, but $\mu\left(\rho^{\prime}\right) \in \mathcal{L}\left(r_{1}\right)$
- $r_{2}=(\neg \mathrm{p})^{*}$
- $\mu(\rho) \notin \mathcal{L}\left(r_{2}\right)$, and $\mu(\rho) \notin \mathcal{L}\left(r_{2}\right)$

$$
r_{1}=a \cdot(b \cup c)^{*} \cdot b
$$

- abb, acb, abccbb, $\ldots \in \mathcal{L}\left(r_{1}\right)=\mathcal{L}\left(\mathcal{A}_{r_{1}}\right)$

$$
r_{1}=(\mathrm{p} \wedge \mathrm{~s}) \cdot \mathrm{s}^{*} \cdot(\mathrm{p} \wedge \mathrm{~s})
$$

- $\mu\left(\rho^{\prime}\right)=\{p, s\}\{q, s\}\{q, s\}\{q, s\}\{p, s\} \in \mathcal{L}\left(r_{1}\right)=\mathcal{L}\left(\mathcal{A}_{r_{1}}\right)$

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, \mathrm{W}, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho \models$ iff $\mu(\rho) \in \mathcal{L}(r)$;
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models\langle\mathrm{A}\rangle \psi$ iff there is a $\operatorname{track} \rho^{\prime}$ s.t. $\operatorname{Ist}(\rho)=\mathrm{fst}\left(\rho^{\prime}\right)$ and $\mathcal{X}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{B}\rangle \psi$ iff there is a prefix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{E}\rangle \psi$ iff there is a suffix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- the semantic clauses for $\langle\bar{A}\rangle,\langle\overline{\mathrm{B}}\rangle$, and $\langle\overline{\mathrm{E}}\rangle$ are similar

Model Checking

$\mathcal{K} \models \psi \Longleftrightarrow$ for all initial tracks ρ of \mathcal{K}, it holds that $\mathcal{K}, \rho \models \psi$
Possibly infinitely many tracks!

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, \boldsymbol{W}, \delta, \mu, W_{0}\right):$

- K, $\rho \models$ iff $\mu(\rho) \in \mathcal{L}(r)$.
- To force homogeneity, all regular expressions in

$$
p \cdot(p)^{*}
$$

- for endpoint-based labeling, regular expressions in the formula:

$$
\bigcup_{(i, j) \in I}\left(q_{i} \cdot T^{*} \cdot q_{j}\right)
$$

for some $I \subseteq\{1, \ldots,|W|\}^{2}$, where $q_{i} \in \mathcal{A P}$ labels only $w_{i} \in W$.

Possibly infinitely many tracks!

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, \mathrm{W}, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho \models$ iff $\mu(\rho) \in \mathcal{L}(r)$;
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models\langle\mathrm{A}\rangle \psi$ iff there is a $\operatorname{track} \rho^{\prime}$ s.t. $\operatorname{Ist}(\rho)=\mathrm{fst}\left(\rho^{\prime}\right)$ and $\mathcal{X}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{B}\rangle \psi$ iff there is a prefix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{E}\rangle \psi$ iff there is a suffix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- the semantic clauses for $\langle\bar{A}\rangle,\langle\overline{\mathrm{B}}\rangle$, and $\langle\overline{\mathrm{E}}\rangle$ are similar

Model Checking

$\mathcal{K} \models \psi \Longleftrightarrow$ for all initial tracks ρ of \mathcal{K}, it holds that $\mathcal{K}, \rho \models \psi$
Possibly infinitely many tracks!

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure $\mathcal{K}=\left(\mathfrak{A P}, \mathrm{W}, \delta, \mu, W_{0}\right):$

- $\mathcal{K}, \rho \models$ iff $\mu(\rho) \in \mathcal{L}(r)$;
- negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models\langle\mathrm{A}\rangle \psi$ iff there is a $\operatorname{track} \rho^{\prime}$ s.t. $\operatorname{Ist}(\rho)=\mathrm{fst}\left(\rho^{\prime}\right)$ and $\mathcal{X}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{B}\rangle \psi$ iff there is a prefix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- $\mathcal{K}, \rho \models\langle\mathrm{E}\rangle \psi$ iff there is a suffix ρ^{\prime} of ρ s.t. $\mathcal{K}, \rho^{\prime} \models \psi$;
- the semantic clauses for $\langle\bar{A}\rangle,\langle\overline{\mathrm{B}}\rangle$, and $\langle\overline{\mathrm{E}}\rangle$ are similar

Model Checking

$\mathcal{K} \models \psi \Longleftrightarrow$ for all initial tracks ρ of \mathcal{K}, it holds that $\mathcal{K}, \rho \models \psi$
Possibly infinitely many tracks!

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathcal{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

Idea: for a regular expression r

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathfrak{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathfrak{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);
- for $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$: we add a sink final state reachable from the "old" final states;

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathfrak{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);
- for $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$: we add a sink final state reachable from the "old" final states;

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathcal{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);
- for $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$: we add a sink final state reachable from the "old" final states;

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathcal{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);
- for $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$: we add a sink final state reachable from the "old" final states;
- for $\psi=\langle\overline{\mathrm{B}}\rangle \psi^{\prime}$: we mark as final all states backward reachable from the "old" final states.

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathcal{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);
- for $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$: we add a sink final state reachable from the "old" final states;
- for $\psi=\langle\overline{\mathrm{B}}\rangle \psi^{\prime}$: we mark as final all states backward reachable from the "old" final states.

Decidability of MC for HS + regular expressions

Given \mathcal{K} and an HS formula φ over $\mathcal{A P}$, we build an NFA over \mathcal{K} accepting the set of tracks ρ such that $\mathcal{K}, \rho \models \varphi$.

- for $\psi=\psi_{1} \wedge \psi_{2}, \psi=\psi_{1} \vee \psi_{2}$: we do the usual constructions;
- for $\psi=\neg \psi^{\prime}$: we complement the automaton (only the part for regular expressions);
- for $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$: we add a sink final state reachable from the "old" final states;
- for $\psi=\langle\overline{\mathrm{B}}\rangle \psi^{\prime}$: we mark as final all states backward reachable from the "old" final states.

The $A \bar{A} B \bar{B}$ fragment + regular expressions

We want to show that formulas of $A \bar{A} B \bar{B}+$ regular expressions can be checked by using polynomial working space.

To start with, we prove the following theorem, which is a building block of the PSPACE-model checking algorithm for A $\bar{A} B \bar{B}$.

Theorem

Let ρ be a track of \mathcal{K} and φ be an $A \bar{A} B \bar{B}$ formula with RE's r_{1}, \ldots, r_{u} such that

$$
\mathcal{K}, \rho \models \varphi .
$$

Then, there exists a track π of \mathcal{K} such that

$$
\mathcal{K}, \pi \models \varphi \quad \text { and } \quad|\pi| \leq|W| \cdot(|\varphi|+1) \cdot 2^{2 \sum_{\ell=1}^{u}\left|r_{e}\right|} .
$$

Small model for $A \bar{A} B \bar{B}$

We want to guarantee that: for all π-positions j, with corresponding ρ-positions i_{j}, and for all $s=1, \ldots, u, \mathcal{A}^{s}\left(\mu\left(\pi^{j}\right)\right)=\mathcal{A}^{s}\left(\mu\left(\rho^{i}\right)\right)$

Small model for $A \bar{A} B \bar{B}$

We want to guarantee that: for all π-positions j, with corresponding ρ-positions i_{j}, and for all $s=1, \ldots, u, \mathcal{A}^{s}\left(\mu\left(\pi^{j}\right)\right)=\mathcal{A}^{s}\left(\mu\left(\rho^{i}\right)\right)$

Theorem (Exponential small-model for $A \bar{A} B \bar{B}$)

Let ρ be a track of \mathcal{K} and φ be an $\bar{A} \bar{B} B \bar{B}$ formula with RE's r_{1}, \ldots, r_{u} such that $\mathcal{K}, \rho \models \varphi$.
Then, there exists a track π of \mathcal{K}, induced by ρ, such that

$$
\mathcal{K}, \pi \models \varphi \quad \text { and } \quad|\pi| \leq|W| \cdot(|\varphi|+1) \cdot 2^{2 \sum_{\ell=1}^{u}\left|r_{e}\right|} .
$$

Small model for $A \bar{A} B \bar{B}$

The small model is "strict":

- Let $p r_{i}$ be the i-th smallest prime. It is well-known that $p r_{i} \in O(i \log i)$.
- Let $\mathcal{K}=$

Small model for $A \bar{A} B \bar{B}$

The small model is "strict":

- Let $p r_{i}$ be the i-th smallest prime. It is well-known that $p r_{i} \in O(i \log i)$.

- Let us fix some $n \in \mathbb{N}$. The shortest track satisfying

$$
\psi=\bigwedge_{i=1}^{n}\left(p^{p r_{i}}\right)^{*}
$$

is $\rho=v_{0}^{p r_{1} \ldots p r_{n}}$.

Small model for $\mathrm{A} \bar{A} B \bar{B}$

The small model is "strict":

- Let $p r_{i}$ be the i-th smallest prime. It is well-known that $p r_{i} \in O(i \log i)$.

- Let us fix some $n \in \mathbb{N}$. The shortest track satisfying

$$
\psi=\bigwedge_{i=1}^{n}\left(p^{p r_{i}}\right)^{*}
$$

is $\rho=v_{0}^{p r_{1} \ldots p r_{n}}$.

- The length of ψ is $O\left(n \cdot p r_{n}\right)=O\left(n^{2} \log n\right)$, but the length of ρ is $p r_{1} \cdots p r_{n} \geq 2^{n}$.

A PSPACE MC algorithm for $\bar{A} \bar{B} B \bar{B}-$ Trials

- The algorithm can consider only tracks having length bounded by the exponential small model
- However,

A PSPACE MC algorithm for $A \bar{A} B \bar{B}-$ Trials

- The algorithm can consider only tracks having length bounded by the exponential small model
- However, they are still too long! \Rightarrow triples $(G, D(\psi), w)$ summarizing tracks, where
- $G \subseteq \operatorname{Subf}_{\langle\mathrm{B}\rangle}(\psi)$ contains the subformulas that hold on some prefix
- $D(\psi)$ is the configuration of the DFAs after reading the track,
- and w is the last state of the track

Lemma

For all formulas ψ of $\mathrm{B} \overline{\mathrm{B}}$, and for all tracks ρ, ρ^{\prime} of \mathcal{K} if ρ and ρ^{\prime} are summarized by the same triple ($G, D(\psi), w$), then

$$
\mathcal{K}, \rho \models \psi \Longleftrightarrow \mathcal{K}, \rho^{\prime} \models \psi
$$

A PSPACE MC algorithm for $\bar{A} \bar{B} \bar{B}-$ Trials

- The algorithm cannot explicitly store the DFAs for the regular expressions occurring in $\psi \Rightarrow$ just store the current states of the computations of the DFAs and calculates on-the-fly the successor states

A PSPACE MC algorithm for $A \bar{A} B \bar{B}$

Algorithm 1 Check(\mathcal{K}, ψ, w, G, D(ψ))
1: if $\psi=r$ then
$\triangleleft r$ is a regular expression
2: if the current state of the DFA for r in advance $(D(\psi), \mu(w))$ is final then
3: return T
4: else
5: \quad return \perp
6: else if $\psi=\neg \psi^{\prime}$ or $\psi=\psi_{1} \wedge \psi_{2}$ then
7: Recursively
8: else if $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$ then
9: return $\psi^{\prime} \in G$
10: else if $\psi=\langle\overline{\mathrm{B}}\rangle \psi^{\prime}$ then
11: for all $b \in\left\{1, \ldots,|W| \cdot\left(2\left|\psi^{\prime}\right|+1\right) \cdot 2^{2 \sum_{\ell=1}^{u}\left|r_{e}\right|}-1\right\}$, all $\left(G^{\prime}, D(\psi)^{\prime}, W^{\prime}\right)$ do
12: if $\operatorname{Reach}\left(\mathcal{K}, \psi^{\prime},(G, D(\psi), w),\left(G^{\prime}, D(\psi)^{\prime}, w^{\prime}\right), b\right)$ and $\operatorname{Check}\left(\mathcal{K}, \psi^{\prime}, w^{\prime}, G^{\prime}, D\left(\psi^{\prime}\right)\right.$ then
13: return \top
14: \quad return \perp

A PSPACE MC algorithm for $A \bar{A} B \bar{B}$

Algorithm $2 \operatorname{Check}(\mathcal{K}, \psi, w$, G, D(ψ))
1: if $\psi=r$ then
$\triangleleft r$ is a regular expression
2: if the current state of the DFA for r in advance $(D(\psi), \mu(w))$ is final then
3: return T
4: else
5: \quad return \perp
6: else if $\psi=\neg \psi^{\prime}$ or $\psi=\psi_{1} \wedge \psi_{2}$ then
7: Recursively
8: else if $\psi=\langle\mathrm{B}\rangle \psi^{\prime}$ then
9: return $\psi^{\prime} \in G$
10: else if $\psi=\langle\overline{\mathrm{B}}\rangle \psi^{\prime}$ then
11: for all $b \in\left\{1, \ldots,|W| \cdot\left(2\left|\psi^{\prime}\right|+1\right) \cdot 2^{\sum_{\ell=1}^{u}\left|r_{e}\right|}-1\right\}$, all $\left(G^{\prime}, D(\psi)^{\prime}, W^{\prime}\right)$ do
12: if $\operatorname{Reach}\left(\mathcal{X}, \psi^{\prime},(G, D(\psi), w),\left(G^{\prime}, D(\psi)^{\prime}, w^{\prime}\right), b\right)$ and $\operatorname{Check}\left(\mathcal{K}, \psi^{\prime}, w^{\prime}, G^{\prime}, D\left(\psi^{\prime}\right)\right.$ then
13: return T
14: \quad return \perp

$A \bar{A} B \bar{B}$ is PSPACE-complete

- We replace the sub-formulas $\langle\mathrm{A}\rangle \psi$ and $\langle\overline{\mathrm{A}}\rangle \psi$ with the regular expressions $r_{\langle A\rangle \psi}$ and $r_{\langle\bar{A}\rangle \psi}$:

$$
r_{\langle A\rangle \psi}:=T^{*} \cdot\left(\bigcup_{w \in W_{\langle A\rangle \psi}} q_{w}\right) ; \quad r_{\langle\bar{A}\rangle \psi}:=\left(\bigcup_{w \in W_{\langle\bar{A}\rangle}} q_{w}\right) \cdot T^{*} .
$$

- To determine $W_{\langle A\rangle \psi}$ and $W_{\langle\bar{A}\rangle \psi}$, we iterate the previous algorithm

Theorem

The MC problem for formulas of $A \bar{A} B \bar{B}$ over finite Kripke structures is PSPACE-complete.

A $\overline{A B B}$ is PSPACE-complete

- We replace the sub-formulas $\langle\mathrm{A}\rangle \psi$ and $\langle\overline{\mathrm{A}}\rangle \psi$ with the regular expressions $r_{\langle A\rangle \psi}$ and $r_{\langle\bar{A}\rangle \psi}$:

$$
r_{\langle A\rangle \psi}:=T^{*} \cdot\left(\bigcup_{w \in W_{\langle A\rangle \psi}} q_{w}\right) ; \quad r_{\langle\bar{A}\rangle \psi}:=\left(\bigcup_{w \in W_{\langle\bar{A}\rangle \psi}} q_{w}\right) \cdot T^{*} .
$$

- To determine $W_{\langle A\rangle \psi}$ and $W_{\langle\bar{A}\rangle \psi}$, we iterate the previous algorithm

Theorem

The MC problem for formulas of $A \bar{A} B \bar{B}$ over finite Kripke structures is PSPACE-complete.

Proof.

The purely propositional fragment of HS is hard for PSPACE: we prove this fact by a reduction from the PSPACE-complete universality problem for regular expressions.

Complexity results

	Homogeneity	Regular expressions
Full HS, BE	non-elementary EXPSPACE-hard	non-elementary EXPSPACE-hard
$A \bar{A} B \overline{B E}, A \bar{A} E \overline{B E}$	EXPSPACE PSPACE-hard	non-elementary PSPACE-hard
$A \overline{A B E}$	PSPACE-complete	non-elementary PSPACE-hard
$A \bar{A} B \bar{B}, B \bar{B}, \bar{B}$,	PSPACE-complete	PSPACE-complete
$A \bar{A} E \bar{E}, E \bar{E}, \bar{E}$	$P^{\text {NP-complete }}$	PSPACE-complete
$A \bar{A} B, A \bar{A} E, A B, \bar{A} E$	$P^{\text {NP[O(log²n)] }}$	PSPACE-complete
$A \bar{A}, \bar{A} B, A E, A, \bar{A}$	$P^{N P[O(l o g n)]}$-hard	
P Prop, B, E	co-NP-complete	PSPACE-complete

Complexity results

	Homogeneity	Regular expressions
Full HS, BE	non-elementary EXPSPACE-hard	non-elementary EXPSPACE-hard
$A \bar{A} B \overline{B E}, A \bar{A} E \overline{B E}$	EXPSPACE PSPACE-hard	non-elementary PSPACE-hard
$A \overline{A B E}$	PSPACE-complete	non-elementary PSPACE-hard
$A \bar{A} B \bar{B}, B \bar{B}, \bar{B}$,	PSPACE-complete	PSPACE-complete
$A \bar{A} E \bar{E}, E \bar{E}, \bar{E}$	$P^{\text {NP-complete }}$	PSPACE-complete
$A \bar{A} B, A \bar{A} E, A B, \bar{A} E$	$P^{\text {NP[O(log²n)] }}$	PSPACE-complete
$A \bar{A}, \bar{A} B, A E, A, \bar{A}$	$P^{N P[O(l o g n)]}$-hard	
P Prop, B, E	co-NP-complete	PSPACE-complete

References

圊
A．Lomuscio and J．Michaliszyn．
An epistemic Halpern－Shoham logic．
In IJCAI，pages 1010－1016， 2013.
闰 A．Lomuscio and J．Michaliszyn．
Decidability of model checking multi－agent systems against a class of EHS specifications．
In ECAI，pages 543－548， 2014.
囯 A．Lomuscio and J．Michaliszyn．
Model checking multi－agent systems against epistemic HS specifications with regular expressions．
In KR，pages 298－308， 2016.
（in A．Molinari，A．Montanari，A．Murano，G．Perelli，and A．Peron．
Checking interval properties of computations．
Acta Informatica， 2016.

