
Model Checking Complex Systems against
ITL Specifications with Regular Expressions

Alberto Molinari
joint work with Laura Bozzelli, Angelo Montanari, and Adriano Peron
Jan 20, 2017

University of Udine, Department of Mathematics, Computer Science, and Physics (DIMA)

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p iff p ∈
∩
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption) [4];

• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

1

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p iff p ∈
∩
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption) [4];
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

1

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p iff p ∈ µ(fst(ρ), lst(ρ)), for any letter p ∈ AP

(endpoint-based labeling) [1, 2];
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

1

HS (state-based) semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= p other definitions?

• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

1

Example—Printer

Adapted from [3].

v0
{p,pst}

v1
{p}

v2
{p,pend}

Imagine we want to label the process of printing a single sheet of
paper with p.

• Under homogeneity,
v0v1v2 labeled by p⇒ v0v1 and v1v2 labeled by p

2

Example—Printer

Adapted from [3].

v0
{p,pst}

v1
{p}

v2
{p,pend}

Imagine we want to label the process of printing a single sheet of
paper with p.
• Under endpoint-based labeling, assuming p ∈ µ(v0, v2), then
(v0v1v2)n are all labeled by p

2

(Usual) regular expressions

r ::= ε | a | r ∪ r | r · r | r∗

for a ∈ A.

Examples:

• r1 = a · (b ∪ c)∗ · b
• abb, acb, abccbb, … ∈ L(r1)

• r2 =
(
(a · b) ∪ (a · c)

)∗

• ε, ab, ac, acabac, … ∈ L(r2)

• r3 = ε · (a ∪ c)∗

• ε, a, ca, aac, … ∈ L(r3)

3

(Usual) regular expressions

r ::= ε | a | r ∪ r | r · r | r∗

for a ∈ A.

Examples:

• r1 = a · (b ∪ c)∗ · b
• abb, acb, abccbb, … ∈ L(r1)

• r2 =
(
(a · b) ∪ (a · c)

)∗

• ε, ab, ac, acabac, … ∈ L(r2)

• r3 = ε · (a ∪ c)∗

• ε, a, ca, aac, … ∈ L(r3)

3

(Usual) regular expressions

r ::= ε | a | r ∪ r | r · r | r∗

for a ∈ A.

Examples:

• r1 = a · (b ∪ c)∗ · b
• abb, acb, abccbb, … ∈ L(r1)

• r2 =
(
(a · b) ∪ (a · c)

)∗

• ε, ab, ac, acabac, … ∈ L(r2)

• r3 = ε · (a ∪ c)∗

• ε, a, ca, aac, … ∈ L(r3)

3

Our regular expressions

r ::= ε | ϕ | r ∪ r | r · r | r∗

where ϕ is a Boolean (propositional) formula over AP .

v0
{p, s}

v1
{q, s}

• ρ = v0v1v0v1v1
• µ(ρ) = {p, s}{q, s}{p, s}{q, s}{q, s}

• ρ′ = v0v1v1v1v0
• µ(ρ′) = {p, s}{q, s}{q, s}{q, s}{p, s}

Examples:

• r1 = (p ∧ s) · s∗ · (p ∧ s)
• µ(ρ) ̸∈ L(r1), but µ(ρ′) ∈ L(r1)

• r2 = (¬p)∗

• µ(ρ) ̸∈ L(r2), and µ(ρ) ̸∈ L(r2)

4

Nondeterministic finite automata (NFA)

r1 = a · (b ∪ c)∗ · b

q0start q1 q2

Ar1

a

b, c

b

• abb, acb, abccbb, … ∈ L(r1) = L(Ar1)

5

Nondeterministic finite automata (NFA)

r1 = (p ∧ s) · s∗ · (p ∧ s)

q0start q1 q2

Ar1

(p ∧ s)

s∗

(p ∧ s)

• µ(ρ′) = {p, s}{q, s}{q, s}{q, s}{p, s} ∈ L(r1) = L(Ar1)

6

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= r iff µ(ρ) ∈ L(r);
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

7

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= r iff µ(ρ) ∈ L(r);
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

• To force homo
geneity, all regu

lar expressions
in the formula:

p · (p)∗

• for endpoint-
based labeling,

regular express
ions in the form

ula:

∪
(i,j)∈I

(qi · ⊤
∗ · qj)

for some I ⊆ {1, . . . , |W|}2 , where qi ∈ AP labels only wi ∈
W.

Possibly infinitely many tracks!

7

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= r iff µ(ρ) ∈ L(r);
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

7

HS semantics with regular expressions

Truth of a formula ψ over a track ρ of a Kripke structure
K = (AP ,W, δ, µ,w0):

• K , ρ |= r iff µ(ρ) ∈ L(r);
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!

7

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

Idea: for a regular expression r

v0
{p, s}

v1
{q, s}

×

q 0
q 1

q 2

A
r 1

(p
∧
s)

s∗

(p
∧
s)

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

Aψ′ :

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

Aψ :

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

Aψ′ :

8

Decidability of MC for HS + regular expressions

Given K and an HS formula φ over AP , we build an NFA over K

accepting the set of tracks ρ such that K , ρ |= φ.

• for ψ = ψ1 ∧ ψ2, ψ = ψ1 ∨ ψ2: we do the usual constructions;
• for ψ = ¬ψ′: we complement the automaton (only the part for
regular expressions);

• for ψ = ⟨B⟩ψ′: we add a sink final state reachable from the “old”
final states;

• for ψ = ⟨B⟩ψ′: we mark as final all states backward reachable
from the “old” final states.

Aψ :

8

The AABB fragment + regular expressions

We want to show that formulas of AABB + regular expressions can be
checked by using polynomial working space.

To start with, we prove the following theorem, which is a building
block of the PSPACE-model checking algorithm for AABB.

Theorem
Let ρ be a track of K and φ be an AABB formula with RE’s r1, . . . , ru
such that

K , ρ |= φ.

Then, there exists a track π of K such that

K , π |= φ and |π| ≤ |W| · (|φ|+ 1) · 22
∑u
ℓ=1 |rℓ|.

9

Small model for AABB

ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

We want to guarantee that: for all π-positions j, with corresponding
ρ-positions ij, and for all s = 1, . . . ,u, As(µ(πj)) = As(µ(ρij))

Theorem (Exponential small-model for AABB)
Let ρ be a track of K and φ be an AABB formula with RE’s r1, . . . , ru
such that K , ρ |= φ.
Then, there exists a track π of K , induced by ρ, such that

K , π |= φ and |π| ≤ |W| · (|φ|+ 1) · 22
∑u
ℓ=1 |rℓ|.

10

Small model for AABB

ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

We want to guarantee that: for all π-positions j, with corresponding
ρ-positions ij, and for all s = 1, . . . ,u, As(µ(πj)) = As(µ(ρij))

Theorem (Exponential small-model for AABB)
Let ρ be a track of K and φ be an AABB formula with RE’s r1, . . . , ru
such that K , ρ |= φ.
Then, there exists a track π of K , induced by ρ, such that

K , π |= φ and |π| ≤ |W| · (|φ|+ 1) · 22
∑u
ℓ=1 |rℓ|.

10

Small model for AABB

The small model is “strict”:

• Let pri be the i-th smallest prime.
It is well-known that pri ∈ O(i log i).

• Let K = v0
{p}

• Let us fix some n ∈ N. The shortest track satisfying

ψ =
n∧
i=1

(ppri)∗

is ρ = vpr1···prn0 .

• The length of ψ is O(n · prn) = O(n2 logn),
but the length of ρ is pr1 · · ·prn ≥ 2n.

11

Small model for AABB

The small model is “strict”:

• Let pri be the i-th smallest prime.
It is well-known that pri ∈ O(i log i).

• Let K = v0
{p}

• Let us fix some n ∈ N. The shortest track satisfying

ψ =
n∧
i=1

(ppri)∗

is ρ = vpr1···prn0 .

• The length of ψ is O(n · prn) = O(n2 logn),
but the length of ρ is pr1 · · ·prn ≥ 2n.

11

Small model for AABB

The small model is “strict”:

• Let pri be the i-th smallest prime.
It is well-known that pri ∈ O(i log i).

• Let K = v0
{p}

• Let us fix some n ∈ N. The shortest track satisfying

ψ =
n∧
i=1

(ppri)∗

is ρ = vpr1···prn0 .

• The length of ψ is O(n · prn) = O(n2 logn),
but the length of ρ is pr1 · · ·prn ≥ 2n.

11

A PSPACE MC algorithm for AABB—Trials

• The algorithm can consider only tracks having length bounded
by the exponential small model

• However,

they are still too long! ⇒ triples (G,D(ψ),w)
summarizing tracks, where

• G ⊆ Subf⟨B⟩(ψ) contains the subformulas that hold on some prefix
• D(ψ) is the configuration of the DFAs after reading the track,
• and w is the last state of the track

Lemma
For all formulas ψ of BB, and for all tracks ρ, ρ′ of K , if ρ and ρ′ are
summarized by the same triple (G,D(ψ),w), then

K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ.

12

A PSPACE MC algorithm for AABB—Trials

• The algorithm can consider only tracks having length bounded
by the exponential small model

• However, they are still too long! ⇒ triples (G,D(ψ),w)
summarizing tracks, where

• G ⊆ Subf⟨B⟩(ψ) contains the subformulas that hold on some prefix
• D(ψ) is the configuration of the DFAs after reading the track,
• and w is the last state of the track

Lemma
For all formulas ψ of BB, and for all tracks ρ, ρ′ of K , if ρ and ρ′ are
summarized by the same triple (G,D(ψ),w), then

K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ.

12

A PSPACE MC algorithm for AABB—Trials

• The algorithm cannot explicitly store the DFAs for the regular
expressions occurring in ψ ⇒ just store the current states of the
computations of the DFAs and calculates on-the-fly the
successor states

13

A PSPACE MC algorithm for AABB

Algorithm 1 Check(K , ψ,w,G,D(ψ))

1: if ψ = r then ◁ r is a regular expression
2: if the current state of the DFA for r in advance(D(ψ), µ(w)) is final then
3: return ⊤
4: else
5: return ⊥
6: else if ψ = ¬ψ′ or ψ = ψ1 ∧ ψ2 then
7: Recursively
8: else if ψ = ⟨B⟩ψ′ then
9: return ψ′ ∈ G
10: else if ψ = ⟨B⟩ψ′ then
11: for all b ∈ {1, . . . , |W| · (2|ψ′|+ 1) · 22

∑u
ℓ=1 |rℓ| − 1}, all (G′,D(ψ)′,w′) do

12: if Reach(K , ψ′, (G,D(ψ),w), (G′,D(ψ)′,w′), b) and Check(K , ψ′,w′,G′,D(ψ)′) then
13: return ⊤
14: return ⊥

14

A PSPACE MC algorithm for AABB

Algorithm 2 Check(K , ψ,w,G,D(ψ))

1: if ψ = r then ◁ r is a regular expression
2: if the current state of the DFA for r in advance(D(ψ), µ(w)) is final then
3: return ⊤
4: else
5: return ⊥
6: else if ψ = ¬ψ′ or ψ = ψ1 ∧ ψ2 then
7: Recursively
8: else if ψ = ⟨B⟩ψ′ then
9: return ψ′ ∈ G
10: else if ψ = ⟨B⟩ψ′ then
11: for all b ∈ {1, . . . , |W| · (2|ψ′|+ 1) · 22

∑u
ℓ=1 |rℓ| − 1}, all (G′,D(ψ)′,w′) do

12: if Reach(K , ψ′, (G,D(ψ),w), (G′,D(ψ)′,w′), b) and Check(K , ψ′,w′,G′,D(ψ)′) then
13: return ⊤
14: return ⊥

14

AABB is PSPACE-complete

• We replace the sub-formulas ⟨A⟩ψ and ⟨A⟩ψ with the regular
expressions r⟨A⟩ψ and r⟨A⟩ψ :

r⟨A⟩ψ := ⊤∗ ·
(∪
w∈W⟨A⟩ψ

qw
)
; r⟨A⟩ψ :=

(∪
w∈W⟨A⟩ψ

qw
)
· ⊤∗.

• To determine W⟨A⟩ψ and W⟨A⟩ψ , we iterate the previous algorithm

Theorem

The MC problem for formulas of AABB over finite Kripke structures is
PSPACE-complete.

Proof.
The purely propositional fragment of HS is hard for PSPACE: we
prove this fact by a reduction from the PSPACE-complete
universality problem for regular expressions.

15

AABB is PSPACE-complete

• We replace the sub-formulas ⟨A⟩ψ and ⟨A⟩ψ with the regular
expressions r⟨A⟩ψ and r⟨A⟩ψ :

r⟨A⟩ψ := ⊤∗ ·
(∪
w∈W⟨A⟩ψ

qw
)
; r⟨A⟩ψ :=

(∪
w∈W⟨A⟩ψ

qw
)
· ⊤∗.

• To determine W⟨A⟩ψ and W⟨A⟩ψ , we iterate the previous algorithm

Theorem

The MC problem for formulas of AABB over finite Kripke structures is
PSPACE-complete.

Proof.
The purely propositional fragment of HS is hard for PSPACE: we
prove this fact by a reduction from the PSPACE-complete
universality problem for regular expressions.

15

Complexity results

Homogeneity Regular expressions

Full HS, BE
non-elementary non-elementary

EXPSPACE-hard EXPSPACE-hard

AABBE,AAEBE
EXPSPACE non-elementary

PSPACE-hard PSPACE-hard

AABE PSPACE-complete
non-elementary

PSPACE-hard

AABB,BB,B,
PSPACE-complete PSPACE-complete

AAEE, EE, E

AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A
PNP[O(log

2 n)]

PSPACE-complete
PNP[O(log n)]-hard

Prop,B, E co-NP-complete PSPACE-complete
16

Complexity results

Homogeneity Regular expressions

Full HS, BE
non-elementary non-elementary

EXPSPACE-hard EXPSPACE-hard

AABBE,AAEBE
EXPSPACE non-elementary

PSPACE-hard PSPACE-hard

AABE PSPACE-complete
non-elementary

PSPACE-hard

AABB,BB,B,
PSPACE-complete PSPACE-complete

AAEE, EE, E

AAB,AAE,AB,AE PNP-complete PSPACE-complete

AA,AB,AE,A,A
PNP[O(log

2 n)]

PSPACE-complete
PNP[O(log n)]-hard

Prop,B, E co-NP-complete PSPACE-complete
16

References

A. Lomuscio and J. Michaliszyn.
An epistemic Halpern-Shoham logic.
In IJCAI, pages 1010–1016, 2013.

A. Lomuscio and J. Michaliszyn.
Decidability of model checking multi-agent systems against a
class of EHS specifications.
In ECAI, pages 543–548, 2014.

A. Lomuscio and J. Michaliszyn.
Model checking multi-agent systems against epistemic HS
specifications with regular expressions.
In KR, pages 298–308, 2016.

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron.
Checking interval properties of computations.
Acta Informatica, 2016.

17

