Games in Logic

Goal:  check which properties / languages are definable in alogic (e.g. FO)
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Games in Logic

Goal:  check which properties / languages are definable in alogic (e.g. FO)

Examples

o [s the property “Universe has even cardinality” definable in FO(E) ?
o Is the class of “Strongly connected graphs” definable in FO(E) ?
o Is the language L=(AA)* definable in FO(<,A,B) ?

97



Warmup — The evaluation game

Goal: check whether M E ¢

Model-check(op, M)
if @ =R(x1,...,.Xx) then
if (x1M,...,.xxM) € RM then
return true
else
return false
elseif ¢ =1 v ¢pg then
return Model-check(®pi, M) OR
Model-check(epz, M)

else if ...

else if @ =dx @’ then
for ue UM do
if Model-check(®’, M[x:=u]) then
return true
return false
else if @ =Vx @’ then
for ue UM do
if NOT Model-check(op’, M[x:=u]) then
return false

return true o8



Warmup — The evaluation game

Goal: check whether M

Model-check(¢p, M)
if ¢ = R(x1,...,Xx) then

= ¢

if (x1M,...,xxM) e RM then

return true
else
return false
elseif ¢ =1 v ¢pg then

return Model-check(®i, M) OR
Model-check(epa, M)

else if ...

else if ¢ =3dx ¢’ then
for ue UM do

if Model-check(®’, M[x:=u]) then

return true
return false
else if ¢ =Vx ¢’ then
for ue UM do

Construct a two-player game G, M

whose winner determines whether

Mg
R ——————

if NOT Model-check(®’, M[x:=u]) then

return false
return true



Warmup — The evaluation game

Goal:  check whether M= ¢ Construct a two-player game G, M
@~ whose winner determines whether
=
Ny i

Players: Ve, Adam T IIIIm—_—“—_——



Warmup — The evaluation game

Goal:  check whether M ¢ Construct a two-player game G, M
whose winner determines whether
Players: Eve, Adam o

Arena: subformulas a of ¢

+ binding A : FreeVars(a) > UM
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Warmup — The evaluation game

Goal: check whether M

&
A

Players: Eve, Adam

Arena: subformulas a of ¢

+ binding A : FreeVars(a) > UM

¢ Construct a two-player game G, M
whose winner determines whether

MFE¢

L ————

(assume w.l.o.g. that ¢ is in Negation Normal Form)

Recall: negations pushed inside
Ve = 30 3¢ ~» Vo

ﬂ(d}/\\‘/) ~ ¢ V
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Warmup — The evaluation game

Goal:  check whether MF ¢ Construct a two-player game G, M
é whose winner determines whether
bl M
Players: Eve, Adam e
Arena: subformulas o of ¢ (assume w.l.o.g. that ¢ is in Negation Normal Form)

+ binding A : FreeVars(a) > UM

At each position (&, A) of the arena
o if & =R(x1,...xx)  then gameends, Eve winsif (A(x1),....A(xx)) € RM, otherwise Adam wins

o if a=-R(x1,....xx) then gameends, Adam winsif (A(x1),....A(xk)) € RM, otherwise Eve wins
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Warmup — The evaluation game

Goal:  check whether M = ¢ Construct a two-player game G, M

&~ 8 whose winner determines whether

Players: Eve, Adam A

Arena: subformulas a of ¢ (assume w.l.o.g. that ¢ is in Negation Normal Form)

+ binding A : FreeVars(a) > UM

At each position (&, A) of the arena
o if & =R(x1,...xx)  then gameends, Eve winsif (A(x1),....A(xx)) € RM, otherwise Adam wins
o if a=-R(x1,....xx) then gameends, Adam winsif (A(x1),....A(xk)) € RM, otherwise Eve wins

oif a=a1Va then Eve can choose & € {a1, a2}, game continues at position (o), A)
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Warmup — The evaluation game

Goal: ChCCk Whethel‘ M — ¢ Construct 1 tWO-

player game Ggm

&~ 8 whose winner determines whether

Players: Eve, Adam WA

e —— S

Arena: subformulas a of ¢ (assume w.l.o.g. that ¢ is in Negation Normal Form)

+ binding A : FreeVars(a) > UM

At each position (&, A) of the arena

o if & =R(x1,...xx)  then gameends, Eve winsif (A(x1),....A(xx)) € RM, otherwise Adam wins

o if a=-R(x1,....xx) then gameends, Adam winsif (A(x1),....A(xk)) € RM, otherwise Eve wins

oif a=a1Va then Eve can choose & € {a1, a2}, game continues at position (o), A)

oif a=a1 Aa> then Adam can choose &’ € {a1, 22}, game continues at position (a,A)
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Warmup — The evaluation game

Goal:  check whether M= ¢ Construct a two-player game G, M
&~ A whose winner determines whether

Players: Eve, Adam AR e T —

Arena: subformulas a of ¢ (assume w.l.o.g. that ¢ is in Negation Normal Form)

+ binding A : FreeVars(a) > UM

At each position (&, A) of the arena
o if & =R(x1,...xx)  then gameends, Eve winsif (A(x1),....A(xx)) € RM, otherwise Adam wins

o if a=-R(x1,....xx) then gameends, Adam winsif (A(x1),....A(xk)) € RM, otherwise Eve wins

oif a=a1Va then Eve can choose & € {a1, a2}, game continues at position (o), A)
oif a=a1 Aa> then Adam can choose &’ € {a1, 22}, game continues at position (o, A)
oif oo=13xca’(x) then Eve can choose any element u € UM to be bound to x,

game continues at position (o, 1’) where X’=A[x:=u]
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Warmup — The evaluation game

Goal:  check whether M = ¢ Construct a two-player game G, M
&~ A whose winner determines whether
o M
Players: Eve, Adam | —————— e ———
Arena: subformulas a of ¢ (assume w.l.o.g. that ¢ is in Negation Normal Form)

+ binding A : FreeVars(a) > UM

At each position (&, A) of the arena
o if & =R(x1,...xx)  then gameends, Eve winsif (A(x1),....A(xx)) € RM, otherwise Adam wins

o if a=-R(x1,....xx) then gameends, Adam winsif (A(x1),....A(xk)) € RM, otherwise Eve wins

oif a=a1Va then Eve can choose & € {a1, a2}, game continues at position (o), A)
oif a=a1 Aa> then Adam can choose &’ € {a1, 22}, game continues at position (o, A)
oif oo=13xca’(x) then Eve can choose any element u € UM to be bound to x,

game continues at position (o, 1’) where X’=A[x:=u]

oif o= Vxa'(x) then  Adam can choose any element u € UM to be bound to x,
game continues at position (o, 1’) where X’=A[x:=u]

99



Warmup — The evaluation game

Goal: check whether M E ¢ Lemma

a

Players: Eve, Adam

Arena: subformulas a of ¢

MEd it  Eve hasastrategy

to win G¢,M
- s —————————————

(assume w.l.o.g. that ¢ is in Negation Normal Form)

+ binding A : FreeVars(a) > UM

At each position (&, A) of the arena

o if o =R(x1,...,Xk) then

oif o= _IR(XI,...,Xk) then

oif a=a;Vaw then
oif a=a1 A then
oif o =3xc(x) then
oif o= Vxa'(x) then

game ends, Eve wins if (A(x1),....A(xk)) € RM, otherwise Adam wins

game ends, Adam wins if (A(x1),....A(xk)) € RM, otherwise Eve wins
Eve can choose &’ € {a1, a2}, game continues at position (o), A)
Adam can choose & € {a1, a2}, game continues at position (o), A)

Eve can choose any element u € UM to be bound to x,
y
game continues at position (o, 1’) where X’=A[x:=u]

Adam can choose any element u € UM to be bound to x,
game continues at position (o, 1’) where X’=A[x:=u]
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Definability vs elementary equivalence vs 7z-equivalence

Notation P : property (i.e. set of models), M : model, ¢ : FO formula

100



Definability vs elementary equivalence vs 7z-equivalence

1) P definedby ¢ if forevery M  MeP ift ME¢
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Definability vs elementary equivalence vs z-equivalence

intuitively,

no formula can distinguish M from M’

\ /

1) P definedby ¢ if forevery M MeP ifft ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o
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Definability vs elementary equivalence vs z-equivalence

intuitively,

no formula can distinguish M from M’

e — —

1) P definedby ¢ if forevery M MeP ifft ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o

Lemma If thereare M,M’ such that
MeP, M ¢P, and M,M’ elementary equivalent
then P is zot definable in FO
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Definability vs elementary equivalence vs z-equivalence

1) P definedby ¢ if forevery M  MeP iff ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o

Lemma If thereare M,M’ such that
MeP, M ¢P, and M,M’ elementary equivalent
then P is zot definable in FO
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Definability vs elementary equivalence vs z-equivalence

1) P definedby ¢ if forevery M  MeP iff ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o

3) ¢ has quantifier rank » if it has at most 7z nested quantifiers
Example ¢ = vxVvy(mE(xy) V (IzE(x,z)) V (It E(ty)) )
has quantifier rank 3 (q.r. canbe « # quantifiers)

Lemma If thereare M,M’ such that
MeP, M ¢P, and M,M’ elementary equivalent
then P is zot definable in FO
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Definability vs elementary equivalence vs z-equivalence

1) P definedby ¢ if forevery M  MeP iff ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o

3) ¢ has quantifier rank » if it has at most 7z nested quantifiers

4) M,M’ are z-equivalent if forevery ¢ withgq..z M

Lemma If thereare M,M’ such that

= ¢ iff M'E ¢

MeP, M ¢P, and M,M’ elementary equivalent

then P is zot definable in FO
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Definability vs elementary equivalence vs z-equivalence

1) P definedby ¢ if forevery M  MeP iff ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o

3) ¢ has quantifier rank » if it has at most 7z nested quantifiers
4) M,M’ are z-equivalent if forevery ¢ withq..z ME¢ iff M E ¢
Lemma It forevery n thereare M,M’ such that

MeP, M'¢P, and M,M’ z-equivalent
then P is zot definable in FO
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Definability vs elementary equivalence vs z-equivalence

1) P definedby ¢ if forevery M  MeP iff ME¢

2) M,M’ eclementary equivalent if forevery ¢ ME¢ iff M=o

3) ¢ has quantifier rank » if it has at most 7z nested quantifiers
4) M,M’ are z-equivalent if forevery ¢ withq..z ME¢ iff M E ¢
Lemma It forevery n thereare M,M’ such that

MeP, M'¢P, and M,M’ z-equivalent
then P is zot definable in FO

Construct a new game Gy,m
New goal: check whether whose winner determines whether

M,M’ are z-equivalent M,M’ are z-equivalent
e e S
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Ehrenfeucht-Fraissé games

Duplicator Spoiler
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Ehrenfeucht-Fraissé games

M, M’ are
n-equivalent!

Duplicator Spoiler
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Ehrenfeucht-Fraissé games

M, M’ are
n-equivalent!

No they're
NOT!!!

Duplicator Spoiler
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Ehrenfeucht-Fraissé games

. ?I'C | No they're
n-cquivalent: NOT!!!!
—

Duplicator Spoiler

Play for 7 rounds on the arena whose positions are tuples
(ul,...,ui,vl,...,vi) c UMx ... x UM x UM x ... x UM
At each round ¢
Spoiler chooses an element u; from UM (or v; from UM)
Duplicator responds with an element vi from UM (resp. u; from UM)
Duplicator survives if M | {uy,...,ui} and M’

{V1,...,vi} are isomorphic
= 103



Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?
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Example How many rounds can Duplicator survive ?
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Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?
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Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?
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Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?
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Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?
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Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?
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Ehrenfeucht-Fraissé games

Example How many rounds can Duplicator survive ?

M= (Z,<) M = (R, <)
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

2" - 1 nodes 2" nodes
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO~ O()O-+-0--0 OO0 1)O-O-++-O-0

O | nodes 2" nodes
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO )OO0 OO~ 1)YO-O-+D+-O

O | nodes 2" nodes
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO 1)O-O-D+-O

O | nodes 2" nodes
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO~ DO-AD+0  O-O-OOD-0

O | nodes 2" nodes
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

2" - 1 nodes 2" nodes

But there are non-isomorphic #nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO0

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

=7 ) M’ = ({1,2} X2, <iex)
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO0

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

- O-0-0-0-0-O-O-00- ”“W:::: et

=7 ) M’ = ({1,2} X2, <iex)
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO0

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

D000 TIDOOOO0O-

=7 ) M’ = ({1,2} X2, <iex)
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO0

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

D000 OO0

=7 ) M’ = ({1,2} X2, <iex)
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO0

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

(D000 X000

=7 ) M’ = ({1,2} X2, <iex)
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On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

OO DO-AD-0 OO0

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where
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Ehrenfeucht-Fraissé games

On non-isomorphic fizite models, Spoiler always wins, eventually... Why?

...and he often wins very quickly!

2" - 1 nodes 2" nodes

But there are non-isomorphic nfinite models where

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

M = (Z, <) Givenz, M’ = ({1,2}xZ, <iex)

ateach roundi =1, ..., »,

pairs of marked nodes in M and M’

must be either at equal distance

or at distance > 2"’ 106



Ehrenfeucht-Fraissé games

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

M= (Z,<) M’ = ({1,2}xZ, <1ex)
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Ehrenfeucht-Fraissé games

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

M = ({I,Z}Xz, <lex)

Lemma It there are M,M’ such that
MeP, M &P, and MM’
then P is
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Ehrenfeucht-Fraissé games

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

M = ({I,Z}Xz, <lex)

Lemma It there are M,M’ such that
MeP, M &P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé 'S0, Ehrenfeucht '60]
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Ehrenfeucht-Fraissé games

Duplicator can survive for arbitrarily many rounds (but not necessarily forever!)

M = ({I,Z}XZ, <lex)

Lemma It there are M,M’ such that
MeP, M &P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé 'S0, Ehrenfeucht '60]

In particular, P = {discrete orders} is zoz definable in FO,
since Z€P and {1,2}xZ ¢P
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
[ Fraissé ’50, Ehrenfeucht ’60]
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Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
[ Fraissé ’50, Ehrenfeucht ’60]

Example P={connected graphs}. Given z, find MeP, M’¢P where Duplicator survives 7 rounds
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

2" 2"+1
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

2" 2"+1
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

O-0-0-0-0-0-0--0-0(1) 0000000000 (1)

2" 2"+1
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

0-0-0-02)0-0--0-0(1) 0O-0-0-0-O-0-00--0-0(1)

2" 2"+1
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

0-0-0-0(2)0-0--0-0(1) 0-0-0-02)0-0-0--0-0()

2" 2"+1
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

0-0-0-0(2)0-0--0-0(1) 0-0-0-2)(3)00--00()

2" 2"+1

109



Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

0-0-0-02)3)0--00(1) 0002300 -000)

2" 2"+1
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Ehrenfeucht-Fraissé games

Lemma If there are M,M’ such that
MeP, M¢P, and MM’
then P is

Theorem  M,M’ z-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Example P={even cardinality}. = Given z, find MeP, M’¢P where Duplicator survives 7 rounds

0-0-0-02)3)0--0-0(1) 0-0-0-02)(3)00--0-0()

2" 2"+1

Rule of thumb  If Spoiler plays “close” to previous pebbles,
then Duplicator responds isomorphically within the corresponding neighbourhoods

otherwise Duplicator plays “far” but has freedom of choice
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Ehrenfeucht-Fraissé games

Several properties can be proved to be 7ot definable in FO:

connectivity

parity (i.e. even / odd)

2-colorability

finiteness

acyclicity
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e parity (i.e. even / odd)

o 2-colorability
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Ehrenfeucht-Fraissé games — soundness

Theorem  M,M’ z-equivalent iff Duplicator survives 7z rounds in G
| Fraissé ’50, Ehrenfeucht ’60]
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Ehrenfeucht-Fraissé games — soundness

Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

Consider ¢ in NNF and with quantifier rank 7

Suppose M = & and Duplicator survives 7z rounds in Gam,wr
Need to prove that M' = ¢
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

Qve wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »

Suppose M ¢ and Duplicator survives z rounds in Gy
Need to prove that M' = ¢

@' wins the evaluation game GI\D
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

Qve wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »
Suppose M ¢ and Duplicator survives z rounds in Gy

Need to prove that M' = ¢
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr

| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

Qve wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »
Suppose M ¢ and Duplicator survives z rounds in Gy

Need to prove that M’ = ¢

@' wins the evaluation game GI\D

. conjunction
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

@e wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »

Suppose M ¢ and Duplicator survives z rounds in Gy
Need to prove that M' = ¢

@; wins the evaluation game G@
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]
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Consider ¢ / in NNF and with quantifier rank »
Suppose M ¢ and Duplicator survives z rounds in Gy
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o existential quantification
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Proof (if direction — from Duplicator’s strategy to z-equivalence)

@e wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »
Suppose M ¢ and Duplicator survives z rounds in Gy
Need to prove that M’ =

pd

True wins the evaluation game Gy ”~ W
( Spoiler places pebble u Duplicator responds with v

ra\ g‘/“" | ‘a\ gi/“"

» »

. . , , Eve bindsxtoue UM Fve bindsxtove UM
o existential quantification
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

@e wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »

Suppose M ¢ and Duplicator survives z rounds in Gy
Need to prove that M' = ¢

@; wins the evaluation game G@
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

@e wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »
Suppose M ¢ and Duplicator survives z rounds in Gy

Need to prove that M’ = ¢

@; wins the evaluation game G@

Adam binds x tove UM

o universal quantification 1 £ L £
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@e wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (if direction — from Duplicator’s strategy to z-equivalence)

@e wins the evaluation game @

Consider ¢ / in NNF and with quantifier rank »
Suppose M ¢ and Duplicator survives z rounds in Gy

Need to prove that M’ = ¢

pd

True wins the evaluation game Gurg E_ & | “.,
Duplicator responds with u

A

v e
&

Adam binds x tou € UM Adam bindsx tov e UM

o universal quantification 1 15
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Ehrenfeucht-Fraissé games — completeness

Theorem  M,M’ z-equivalent iff Duplicator survives 7z rounds in G
| Fraissé ’50, Ehrenfeucht ’60]
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr
| Fraissé ’50, Ehrenfeucht ’60]

Proof (only if direction — from z-equivalence to Duplicator’s strategy)
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Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr

| Fraissé ’50, Ehrenfeucht ’60]

Proof (only if direction — from z-equivalence to Duplicator’s strategy)

Suppose M,M’ are z-equivalent (i.e. for every ¢ of q.r.n, M
Need to construct a strategy for Duplicator ...

= & iff M’
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Ehrenfeucht-Fraissé games — completeness

Theorem  M,M’ z-equivalent iff Duplicator survives 7z rounds in G

| Fraissé ’50, Ehrenfeucht ’60]

Proof (only if direction — from z-equivalence to Duplicator’s strategy)

Suppose M,M’ are z-equivalent (i.e. for every ¢ of qr.n, ME ¢ it M’ 9)

Need to construct a strategy for Duplicator ...

... To exploit the hypothesis, we'd better have a formula ¢

¢ needs to be strong enough to cover all cases for Duplicator

We need a
HUGE
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Hintikka formulas

Level-» Hintikka formula of M = strongest formula (up to logical equivalence)

n of quantifier rank 7 that holds on M

M
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Hintikka formulas

Level-» Hintikka formula of M = strongest formula (up to logical equivalence)

n of quantifier rank 7 that holds on M

M

Constructed inductively on 7:

¢1(i4=/\oc /\/\—loc

oL atomic oL atomic

MEa« ME o

116



Hintikka formulas

Level-» Hintikka formula of M = strongest formula (up to logical equivalence)

n of quantifier rank 7 that holds on M

M

Constructed inductively on 7:

¢O /\oc/\/\—mc

M = | |
oL atomic oL atomic
MEa M o

oy = A\ Ix by, A vx Vo
ue UM ue UM

M, = M[x:=u] M, = M|[x:=u]
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Ehrenfeucht-Fraissé games — completeness

CP /\3X¢M A\ VXV¢

u e UM ue UM
M, = M[x:=u] M, = M[x:=u]
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Ehrenfeucht-Fraissé games — completeness

We give a strategy Cb /\ Jx ¢M A VX \/ CP

for Duplicator ue UM ue UM
M, = M[x:=u] M, = M[x:=u]
under the hypothesis

M,M’ 7-equivalent
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Ehrenfeucht-Fraissé games — completeness

We give a strategy CP /\ Jx ¢M A VX \/ CP

for Duplicator ue UM ue UM
M, = M[x:=u] M, = M[x:=u]
under the hypothesis

M,M’ 7z-equivalent

@

AP Adam picks left conjunct A\ 3x
then picks conjunct 3x ¢§4111

R,
\
\
i
\
L &
3
\
\
|

Spoiler places pebble ue UM

117



Ehrenfeucht-Fraissé games — completeness

CP /\3X¢M A\ VX\/CP

ue UM

We give a strategy

for Duplicator

under the hypothesis
M,M’ 7z-equivalent

Facts:

M = by,

and Eve has a

standard winning }

strategy in GM,¢

ue UM

M, = M[x:=u]

AP Adam picks left conjunct A\ 3x
then picks conjunct 3x ¢§4111

Spoiler places pebble ue UM

M, = M[x:=u]
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CP /\3X¢M A\ VX\/CP

ue UM

We give a strategy

for Duplicator

under the hypothesis
M,M’ 7z-equivalent

Facts:

M+ by

and Eve has a

standard winning }

strategy in GM,¢

“Eve can safely bind x to u

ue UM

M, = M[x:=u]

and continue the game

Spoiler places pebble ue UM

M, = M[x:=u]
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We give a strategy CP /\ Jx ¢M A\ VX \/ CP

for Duplicator ue UM ue UM
M, = M[x:=u] M, = M[x:=u]
under the hypothesis

M,M’ 7z-equivalent

Facts: : . i
A Adam picks left conjunct A 3x..  Adampicks same conjunct Ix ¢y,
& ’ u
M = Cl)n then picks conjunct 3x ¢
) - TM

and Eve has a

@/ﬁp

standard winning 3 Eve can safely bind x to u Eve binds x to some element v
strategy In GM,<1> and continue the game ' and continue the game
n
. M E Q)
so Eve has

also a winning \ - X - |
G Spoiler places pebble ueUM = Duplicator responds with ve UM
strategy in G
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Ehrenfeucht-Fraissé games — a few more things

Theorem  M,M’ n-equivalent ift Duplicator survives 7z rounds in Gawmr

ift CPIK/I and Cl)rﬁ/f are logically equivalent

So,

n .
1. ¢M can be used as a representant of the #-equivalence class of M

2. Foreveryd ofqr.n, ¢’ € FO[M] iff ¢ isalogical consequence of CPK,I
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Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. 69, Fagin "76] cither almost surely true (Poo[d] =1)
or almost surely false (Po[¢] =0)
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Proof

Let #» = quantifier rank of ¢

On = VX1, ceus X VY1, es ¥ 32 Nijxi £y A E(xi, 2) A 2E(y), 2)
( extension formula )

OO

Fact1l: If M=o, A M’ =0, then Fact2: Po[d,] =1

Duplicator survives z rounds on Gm,mr (3, is almost surely true )

a) ThereisM MEJ, A ¢ = (byFactl) foreveryM’ if M"E 3, then M E ¢

. Thus, Poo[0s] < Pes[d)]
2 cases = (by Fact2) Pw[d,] =1, hence Po[¢] =1
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Another use of Ehrenfeucht-Fraissé games — 0/1 Law

Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. 69, Fagin "76] cither almost surely true (Poo[d] =1)
or almost surely false (Po[¢] =0)
Proof
Let #» = quantifier rank of ¢ O
On = VX1, ceus X VY1, es ¥ 32 Nijxi £y A E(xi, 2) A 2E(y), 2) O
( extension formula ) O

Fact1l: If M=o, A M’ =0, then Fact2: Po[d,] =1

Duplicator survives z rounds on Gm,mr (3, is almost surely true )

a) ThereisM MEJ, A ¢ = (byFactl) foreveryM’ if M"E 3, then M E ¢
. Thus, Poo[0s] < Pes[d)]
2 cases :. = (by Fact2) Pw[d,] =1, hence Po[¢] =1

“ b) Thereisno MEJ, A ¢ = (byFact2) thereis MEJ,

= MEO, A = (bycase a) Poo[—lcl)] =1
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Yes another use of games: synthesis (evaluation games in disguise!)

< » P

A Church
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Yes another use of games: synthesis (evaluation games in disguise!)

“ Given a requirement which a circuit is to satisty,
we may suppose the requirement expressed in
some suitable logistic system which is an
extension of restricted recursive arithmetic.
The synthesis problem is then to find

recursion equivalences representing

a circuit that satisfies the given requirement
(or alternatively, to determine that there is no such circuit)

»
[ ]
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Yes another use of games: synthesis (evaluation games in disguise!)

Recall again the plain reachability problem encoded in QBF

S 0] 0] 0] 0] 0] 0] 0] 0] 1 1 1 1 1 1 1 1
o vt
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
~x
0] 0] 1 1 1 1 0] 0] 0] 0] 1 1 1 1 0] 0]
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
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Yes another use of games: synthesis (evaluation games in disguise!)

Recall again the plain reachability problem encoded in QBF

k bits

3[51 HF_)H ¢path(r_)1,...,r_)n)

Now, suppose first 2 bits (i) are controlled by Environment

last 2 bits (Pi) are controlled by Circuit
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Yes another use of games: synthesis (evaluation games in disguise!)

Recall again the plain reachability problem encoded in QBF

k bits

3[31 HF_)H ¢path(pl,...,r_)n)

Now, suppose first 2 bits (i) are controlled by Environment

last 2 bits (Pi) are controlled by Circuit

Question: can Circuit always reach goal, no matter how Environment behaves?
If so, can we synthesise a strategy for Circuit?
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Yes another use of games: synthesis (evaluation games in disguise!)

Recall again the plain reachability problem encoded in QBF

k bits

V(13P1 ... VOuIPn Spach(T1,P15--+,0nPn)

Now, suppose first 2 bits (i) are controlled by Environment

last 2 bits (Pi) are controlled by Circuit

Question: can Circuit always reach goal, no matter how Environment behaves?
If so, can we synthesise a strategy for Circuit?
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Things to remember




Things to remember

o EF games are a powerful tool (sound & complete) to study definability in FO

technique: 1) given property P and » e N
2) find two models M e P, M’ ¢ P (which may depend on 7 !)
3) show that Duplicator has strategy to survive z rounds in Ga,we

o EF games can also be easily adapted to other logics and problems

<

/?EME,(/g
o
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What next?

More models: infinite words, infinite trees

More power: MSO = Monadic Second-order logic

More tools: qutomata
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An appetiser — FO logic over words

Fix X=1{A,B,C,...} setofunary relational symbols
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An appetiser — FO logic over words
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Fix X=1{A,B,C,...} setofunary relational symbols
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An appetiser — FO logic over words

—
e

———7RUN FOR YOUR LTIVES!] 7N

—

¥ e, 4B,

Fix X=1{A,B,C,...} setofunary relational symbols

Consider models of the form M = ({0,1,...,n}, <, AM, BM, CM_ )
g

Sets partitioning {0,1,...,n}
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Fix X=1{A,B,C,...} setofunary relational symbols

Consider models of the form M = ({0,1,...,n}, <, AM, BM, CM_ )
g

Sets partitioning {0,1,...,n}

Every such M can be identified with a word wy € *
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An appetiser — FO logic over words

Fix 2=1A,B,C,...} setofunary relational symbols

Consider models of the form M = ({0,1,...,n}, <, AM, BM, CM_ )
g

Sets partitioning {0,1,...,n}

Every such M can be identified with a word wy € Z*
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An appetiser — FO logic over words

Fix 2=1A,B,C,...} setofunary relational symbols

Consider models of the form M = ({0,1,...,n}, <, AM, BM, CM_ )
g

Sets partitioning {0,1,...,n}

Every such M can be identified with a word wy € Z*

So,

1. FO formulas of signature {<, A, B, C, ...} can be evaluated on words over =

2. Every such formula ¢ definesalanguage Ly={wme2Z* | ME¢}
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An appetiser — FO logic over words

So,

1. FO formulas of signature {<, A, B, C, ...} can be evaluated on words over =

2. Every such formula ¢ definesalanguage Ly={wme2XZ* | ME¢}
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An appetiser — FO logic over words

So,

1. FO formulas of signature {<, A, B, C, ...} can be evaluated on words over =

2. Every such formula ¢ definesalanguage Ly={wme2XZ* | ME¢}

Examples

ed=3xVy (y<x>A(y)) A (y>x>B(y)) defines L;=A*B*
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An appetiser — FO logic over words

So,

1. FO formulas of signature {<, A, B, C, ...} can be evaluated on words over =

2. Every such formula ¢ definesalanguage Ly={wme2XZ* | ME¢}

Examples

ed=3xVy (y<x>A(y)) A (y>x>B(y)) defines L;=A*B*

od=Vx (A(x) > B(x+1)) A (B(x)>B(x1)) defines Ly=(AB)*
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An appetiser — FO logic over words

So,

1. FO formulas of signature {<, A, B, C, ...} can be evaluated on words over =

2. Every such formula ¢ definesalanguage Ly={wme2XZ* | ME¢}

Examples

ed=3xVy (y<x>A(y)) A (y>x>B(y)) defines L;=A*B*
od=Vx (A(x) > B(x+1)) A (B(x)>B(x1)) defines Ly=(AB)*

e Can you define in FO the language L=A*BA*? And L=(AA)*?
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