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FO = First-Order logic

Vocabulary

Relational symbols:

Variables:
Quantifiers:

2 ={R,S, T, ...}

X, Vs eees X1, X2, ...
3,V

(aka signature)
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FO = First-Order logic

Vocabulary

Syntax

Semantics

Relational symbols: >={R,S, T, ..} (aka signature)
Variables: Xy Vs eves X1, X2, vos
Quantifiers: 3,V
d: R(xipeennxk) | .o
Ixd | Vxo | ...
Now a model consists of a universe UM

+ some mappings R » RM C UMx . x UM

x » xM e UM
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FO = First-Order logic

Vocabulary Relational symbols: >={R,S, T, ..} (aka signature)
Variables: Xy Vs eves X1, X2, vos
Quantifiers: 3,V
Syntax d: R(xipeennxk) | .o
Ixd | Vxo | ...

Semantics Now a model consists of a universe UM

+ some mappings R RM C UMx ...

x » xM e UM

=& for sormeu € UM

M ER(xy,...xx)  iff  (xiM,...,.xkM) € RM
ME3Ixd it M]|x:=u]
ME Vx ¢ it M]|x:=u]

= ¢ for every u e UM

x UM
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Examples

Syntax ¢d: R(xiyenxk) | .o
Ixd | Vxo | ..

“All humans are mortal. Socrates is human. So Socrates is mortal.”

d(y) = ((vxA(x) > B(x)) & A(y) ) » B(y)
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Examples

Syntax ¢d: R(xiyenxk) | .o
Ixd | Vxo | ..

“All humans are mortal. Socrates is human. So Socrates is mortal.”

d(y) = ((vxA(x) > B(x)) & A(y) ) » B(y)

M : UM = {Socrates, Plato, Cyclop, Jupiter}
AM = {Socrates, Plato}
BM = {Socrates, Plato, Cyclop}

yM = Socrates

53



Examples

Syntax ¢d: R(xiyenxk) | .o
Ixd | Vxo | ..

“There is a node in the graph that is isolated from all other nodes.”

¢ = Ix Vy —|(X:y) > —IE(X,y)
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Examples

Syntax ¢d: R(xiyenxk) | .o
Ixd | Vxo | ..

“There is a node in the graph that is isolated from all other nodes.”

¢ = Ix Vy —|(X:y) > —IE(X,y)

M: UM = {nodes of a graph}
EM = {edges of a graph}
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Examples

Syntax

¢d: R(xiyenxk) | .o
Ixd | Vxo | ..
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Examples

Syntax ¢d: R(xiyenxk) | .o
Ixd | Vxo | ..

“There’s a man such that when he runs, everybody runs.”

¢ = 3x R(x) > VyR(y)
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Examples

Syntax ¢d: R(xiyenxk) | .o
Ixd | Vxo | ..

“There’s a man such that when he runs, everybody runs.”

¢ = 3x R(x) > VyR(y)

M : UM = {Ben, Han, Leia, Luke}
RM = {Ben, Han}
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Examples

Syntax ¢d: R(xiyenxk) | .o

Ixd | Vxo | ..

“There’s a man such that when he runs, everybody runs.”

M :

¢ = 3x R(x) > VyR(y)

UM = {Ben, Han, Leia, Luke}
RM = {Ben, Han}

M’

UM = {Ben, Han, Leia, Luke}
RM' = {Ben, Han, Leia, Luke}

55



Examples

“R is a function” ¢ =Vvx Iy R(x;y) A VzR(x,z) > y=2

in this case, one can use the shorthand

“R(x)=.."  for 3FyR(xy) A VzR(x,z) >z=...
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Examples

« “Risafunction” ¢ =Vvx Iy R(x;y) A VzR(x,z) > y=2

in this case, one can use the shorthand

“R(x)=.."  for 3FyR(xy) A VzR(x,z) >z=...

e “+ is commutative’ ¢ = VX Vy x+y = y+x

note: + is a ternary relational symbol, so “x+y=z" is shorthand for “+(x,y,z)”

56



Examples

« “Risafunction” ¢ =Vvx Iy R(x;y) A VzR(x,z) > y=2

in this case, one can use the shorthand

“R(x)=.."  for 3FyR(xy) A VzR(x,z) >z=...

e “+ is commutative’ ¢ = VX Vy x+y = y+x

note: + is a ternary relational symbol, so “x+y=z" is shorthand for “+(x,y,z)”

o “+ admits zero and inverses” ¢ =3xg Vy xo+y =y A Vy3Iz y+z =X

56



Exercices

¢C . . »
e “fiscontinuous

<< . . . »
o “tisuniformly continuous

¢ = Vx Ve 39

¢ = Ve 30 Vx

[yl < 8> ||f(x) - £(y)]| <

[yl < 8> ||f(x) - £(y)]| <
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Exercices

. “fis continuous” ¢ =VxVeddVy ||xy|| <3 ||f(x)-f(y)|| <e

e “tis uniformly continuous” ¢ = Ve 30 Vx Vy |[[xy|| <8~ ||f(x) - fy)]| < e

What is an appropriate signature for the above formulas?
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Exercices

. “fis continuous” ¢ =VxVeddVy ||xy|| <0~ ||[f(x) - f(y)]| <

e “tis uniformly continuous” ¢ = Ve 30 Vx Vy |[[xy|| <8~ ||f(x) - fy)]| < e

What is an appropriate signature for the above formulas?

Are the formulas equivalent? Is one a consequence of another? Can you prove it?

(hint: 3x Vya-> Vy Ix o assuming universe is non-empty)
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Exercices

Choose appropriate universes and signatures, and define these properties in FO:

1. “There are infinitely many Prime numbers” b=...
2. “In the tree, z is the least common ancestor of x and y” d(x,32) = ...
3. “Polynomial p evaluates to y on x” (for fixed p) dp(x,y) = ...
4. “The graph is strongly connected” d=...

5. “In the infinite sequence of 4’s and &', every a is followed by 47 0
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Normal forms

NF (Negation Normal Form)

oF

X

Ixd | vxé | ¢V | dAd | @
R(x15..0xk) | = R(X1,0005XK)
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Normal forms

NF (Negation Normal Form) d: Ixd | Vxo | oV

Lemma

Proof

dng | a
o R(X1,...,Xk) ‘ ﬂR(Xl,...,Xk)

Given ¢ (¢>-free), one can compute in polynomial time

an equivalent formula ¢* in NNF

As for propositional logic, push negations inside:
Vb - T
3 - Vb
(b1 A d2) = =1V o
(b1 V ¢2) = ad1 A do
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Algorithms

Model-checking problem

input: formula ¢ + finite model M
output: yes it ME¢

Satisfiability problem

input: formula ¢

output: yes it MkE ¢ forsome M

(recall: ¢ valid iff —¢ is not satisfiable
¢ b
¢, & equivalent iff ¢ <> ¢ is valid)
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Algorithms

& PSPACE &

Model-checking problem

input: formula ¢ + finite model M
output: yes it ME¢

** UNDECIDABLE **

Satisfiability problem

input: formula ¢

“woutput: yes ifft ME¢ forsome M

(recall: ¢ valid iff =¢ is not satisfiable
P b
¢,d" equivalent iff ¢ <> ¢’ is valid)




Algorithms — model-checking

Model-check(op, M)
if ¢ =R(x1,...,Xx) then
if (x1M,...,xxM) e RM then
return true
else
return false

else if ¢ =dx ¢’ then
for ue UM do
if Model-check(®’, M[x:=u]) then
return true
return false
else if ¢ =Vx ¢’ then
for ue UM do
if NOT Model-check(®’, M[x:=u]) then
return false
return true
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Algorithms — satisfiability

Theorem [ Trakhtenbrot ’50]

Satisfiability of FO is undecidable
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Algorithms — satisfiability

Theorem | Trakhtenbrot ’50] Satisfiability of FO is undecidable

Proof by reduction from Domino (aka Tiling) problem...
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Algorithms — satisfiability

Theorem | Trakhtenbrot ’50] Satisfiability of FO is undecidable

Proof by reduction from Domino (aka Tiling) problem...

ped

Reduction from I° to P’: Algorithm A that solves P by using
an oracle that returns solutions to P’

(think of “P easier than P””)

e.g. many-one reduction: forallx P(x) iff P’(A(x))

62



The (undecidable) Domino problem

Input: 4-sided dominos:



The (undecidable) Domino problem

Input: 4-sided dominos: .

Output: Is it possible to form a white-bordered rectangle? (of any size)
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The (undecidable) Domino problem

Domino

Input: 4-sided dominos: .

Output: Is it possible to form a white-bordered rectangle? (of any size)

Rules: sides must match,
you can’t rotate the dominos, but you can ‘clone’ them.



The (undecidable) Domino problem

Domino - Why is it undecidable?

It can encode halting computations of Turing machines:
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The (undecidable) Domino problem

Domino - Why is it undecidable?

It can encode halting computations of Turing machines:

(head is here, symbol is

v (head is elsewhere,
YOV symbol is not modified)
v ) (head is here, symbol is

. rewritten, head moves right)
ped
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The (undecidable) Domino problem

Domino - Why is it undecidable?

It can encode halting computations of Turing machines:

. (head is elsewhere,
YAOANBRVAAN symbol is not modified)
) (head is here, symbol is

. rewritten, head moves right)

W (head is here, symbol is

7N rewritten, head moves left)

% X (initial configuration)




The (undecidable) Domino problem

Domino - Why is it undecidable?




Domino reduces to Sat-FO  (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...
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1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...
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Domino reduces to Sat-FO  (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

H
. _’O 2. Assign one domino to each node:

a unary relation

D(x

X

for each domino ;g

L
<

v

¢I

O=O=Cr

3. Match the sides Vx Vy
if H(x,y), then D,(x) A Dy(y)

for some dominos a,b that ‘match’
horizontally ~ (Idem vertically)



Domino reduces to Sat-FO  (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

H
. _’O 2. Assign one domino to each node:

a unary relation

D(x

X

for each domino ;g

L
<

v

¢I

O=O=Cr

3. Match the sides Vx Vy
if H(x,y), then D,(x) A Dy(y)

for some dominos a,b that ‘match’
horizontally ~ (Idem vertically)

4. Borders are white.



Recap + quiz

o Model-checking for FO (does M = ¢?) is PSPACE-complete

o Satisfiability for FO (does M

= ¢ for some M?) is undecidable
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Recap + quiz

o Model-checking for FO (does M = ¢?) is PSPACE-complete

o Satisfiability for FO (does M = ¢ for some M?) is undecidable

What about

o Validity for FO? (Problem def.: does M = ¢ for every M ?)
o Equivalence for FO? (Problem def.: is it true that, for every M,
MEGiIfME ?)
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Recap + quiz

o Model-checking for FO (does M = ¢?) is PSPACE-complete

o Satisfiability for FO (does M = ¢ for some M?) is undecidable

What about

o Validity for FO? (Problem def.: does M = ¢ for every M ?)
o Equivalence for FO? (Problem def.: is it true that, for every M,
MEGiIfME ?)

Can you recall the complexity of analogous problems for

e Propositional logic?

« QBE?
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FO theories

Logical theory of a model M

set of all formulas ¢ that hold on M
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FO theories

Logical theoryofamodel M =

FO[UM RM SM_ |  denotes

set of all formulas ¢ that hold on M

the FO theory of M = (UM, RM, SM )
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FO theories

Logical theory of amodel M = set of all formulas ¢ that hold on M

FO[UM RM,SM, ]  denotes the FO theoryof M = (UM, RM, SM )

Example

FO[N,<] = {3x (X=X), Vx3Iy x<y, Iy Vx —n(X<y), VxVy x=y V x<y V y<Xx, ...

j
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FO theories

Logical theory of amodel M = set of all formulas ¢ that hold on M

FO[UMRM,SM, .|  denotes the FO theoryof M = (UM, RM, SM_ )

Example

FO[N,<] = { 3x (x=x), Vx3y x<y, Iy Vx 11(x<y), VXVyx=y V X<y V y<X, ... |

(notation abuse:  relation = is often present, but not explicitly listed

any symbol R is often identified with its relation RM)
67



Some fancy FO theories

FOI[N, +, -]
FOI[R, +, -]
FO[Z, +]

FO[N?, <1, <5
FO[{0,1}, =]
FO[ Vg, ERr]

FO[Cwm, Tm]

U

Peano arithmetic

Arithmetic theory of real numbers
Presburger arithmetic

First-order theory of the unlabelled grid
{ Valid QBFs}

First-order theory of “random” graph

First-order theory of the transition

graph of a Turing machine M

68



Some fancy FO theories

FOIN, +, -] = Peano arithmetic
FOIR, +, -] = Arithmetic theory of real numbers
FO[Z,+] = Presburger arithmetic
FO[N? <y, <3] = First-order theory of the unlabelled grid How do |
Com(aa(‘e
FO[{0,1},=] = {Valid QBFs} ho m?
FO[Vg,Er] = First-order theory of “random” graph

FO[Cy, TMm] First-order theory of the transition f
graph of a Turing machine M ‘g
68



Logical reductions

Reduction from P to P’: Algorithm A that solves I’ by using

an oracle that returns solutions to P’

e.g. forallx P(x) iff P’(A(x))



Logical reductions

Reduction from P to P’: Algorithm A that solves I’ by using

an oracle that returns solutions to P’

e.g. forallx P(x) iff P’(A(x))

Take

]
Py
O
]

¢ | MEd]
| ME¢} for all ¢ =¢ iff M= A(d)

described by a logical J

interpretation of M into M’
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Logical reductions

Reduction from P to P’: Algorithm A that solves I’ by using

an oracle that returns solutions to P’

e.g. forallx P(x) iff P’(A(x))

Take P = FO[M] ={¢ | M ¢}
P’= FO[M’|=1{¢ | M =4’} for all ¢ =¢ iff M= A(d)
described by a logical J
interpretation of M into M’
FO interpretation of M into M a mapping o : R » ar such that

[G]ERX) if M[X:= U] = ar(X)

69



Logical reductions

FO interpretation of M into M

amapping «: R » oar such that

[G]ER(X) if M'[X:=0]F ar(X)
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Logical reductions

FO interpretation of M into M amapping «: R » oar such that

[G]ER(X) if M'[X:=0]F ar(X)

Examples

® interpretation of into M” = (N, +)

on<(x,y) = Iz y=x+z
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Logical reductions

FO interpretation of M into M amapping «: R » oar such that

[G]ER(X) if M'[X:=0]F ar(X)

Examples
® interpretation of into M” = (N, +)
on<(x,y) = Iz y=x+z
e interpretation of into M’ = ({0,1}*,0, 1,-)

Ui (X, y) = I, Voz (x=2-0'X A y=z-1'y) Vv
(x=y-0-x) v (y=x'1-X)

70



Logical reductions

In fact, an FO interpretation of

into M’ is more complex (and powerful)

o definitions of relations: «r(X) such that ={U | M'[X:=U] F ar(X) }

(e.g. to interpret (N,<) into (N,+))
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Logical reductions

In fact, an FO interpretation of M into M’ is more complex (and powerful)

o definitions of relations: «r(X) such that ={U | M'[X:=U] F ar(X) }

(e.g. to interpret (N,<) into (N,+))

o definition of universe: au(x) such that ={u | M’[x:=u] F au(x) }

(e.g. to interpret (N,<) into (Z,<,0))
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Logical reductions

In fact, an FO interpretation of M into M’ is more complex (and powerful)

o definitions of relations: «r(X) such that ={U | M'[X:=U] F ar(X) }

(e.g. to interpret (N,<) into (N,+))

o definition of universe: au(x) such that ={u | M’[x:=u] F au(x) }

(e.g. to interpret (N,<) into (Z,<,0))

o k-dimensionality: elements of can be k-ruples of elements of UM

(e.g. to interpret (C,+,-) into (R,+,-))
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Logical reductions

In fact, an FO interpretation of M into M’ is more complex (and powerful)

o definitions of relations: «r(X) such that ={U | M'[X:=U] F ar(X) }

(e.g. to interpret (N,<) into (N,+))

o definition of universe: au(x) such that ={u | M’[x:=u] F au(x) }

(e.g. to interpret (N,<) into (Z,<,0))

o k-dimensionality: elements of can be k-ruples of elements of UM

(e.g. to interpret (C,+,-) into (R,+,-))

® quotient: 06:()_(,)_’) such that M|[...] E ()_( 3_’) ift M'[...] = oc:()_(,)_/)

(e.g. to interpret (Q,+,-) into (Z,+,")) 71



Logical reductions

Given M’ and an FO interpretation o = (au, o=, ar, os, ...)
the interpreted model is o(M’) = where

(needs to be well-defined, namely, = needs to be a congruence w.r.t. every relation R)
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Logical reductions

Given M’ and an FO interpretation o = (au, o=, ar, os, ...)
the interpreted model is o(M’) = where

(needs to be well-defined, namely, = needs to be a congruence w.r.t. every relation R)

Theorem If o= (au, o=, ar, s, ...) isan FO interpretation of M into M’
then FO[M] reduces to FO[M’], namely, there is an algorithm A,

for all ¢ =¢ iff M= Au(d)



Some fancy FO theories

FOI[N, +, -]
FO[R, +, -]
FO[Z, +]

FO[N? <4, <5]
FO[{0,1}, =]
FO[VR, ER]

FO[Cwm, Tm]

0

Peano arithmetic

Arithmetic theory of real numbers
Presburger arithmetic

First-order theory of the unlabelled grid
{ Valid QBFs}

First-order theory of “random” graph

First-order theory of the transition

graph of a Turing machine M
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FO[N, +, -] — Peano arithmetic

Theorem Peano arithmetic is undecidable

(one cannot check whether (N,+,)

= ¢ for a given ¢)
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FO[N, +, -] — Peano arithmetic

Theorem Peano arithmetic is undecidable

(one cannot check whether (N,+,-) = ¢ for a given ¢)

Proof by reduction from undecidable Hilbert’s 10th problem... [Matiyasevic *70]

Hilbert’s 10th

Given a polynomial p(x.y,z,...)
tell whether p(xy,z,...) =0 for some integers x,y, z
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FO[N, +, -] — Peano arithmetic

Theorem Peano arithmetic is undecidable

(one cannot check whether (N,+,)

= ¢ for a given ¢)

Proof by reduction from undecidable Hilbert’s 10th problem... [Matiyasevic *70]

Hilbert’s 10th

Given a polynomial p(x.y,z,...)

tell whether p(xy,z,...) =0 for some integers x,y, z

1. Given polynomial p(x,y,z,...), inductively construct ¢p(x.y,z,...,t) such that
(Z,+,", x,y,Z,....,t) Edp i p(x,y,z)=t

2. Interpret into (N,+,-)

74



Some fancy FO theories

FOIN, +, -] = Peano arithmetic
FOIR, +, -] = Arithmetic theory of real numbers
FO[Z,+] = Presburger arithmetic

FO [Nz, <1, Sz]

First-order theory of the unlabelled grid

FO[{0,1},=] ~ {Valid QBFs}
FO[VRg,Er] = First-order theory of “random” graph
FO[Cwm, Tm] = First-order theory of the transition

graph of a Turing machine M

®* UNDECIDABLE %
(reduction from H’s 10th)
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FOI[R, +, -] — Arithmetic theory of real numbers

Theorem Every FO formula ¢ over (R,+,) can be effectively

| Tarski ’51] transformed into an equivalent quantifier-free formula ¢*

76



FOI[R, +, -] — Arithmetic theory of real numbers

Theorem Every FO formula ¢ over (R,+,) can be effectively

| Tarski ’51] transformed into an equivalent quantifier-free formula ¢*

Corollary Given ¢, one can decide whether (R,+,") = ¢
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FOI[R, +, -] — Arithmetic theory of real numbers

Theorem Every FO formula ¢ over (R,+,) can be effectively
| Tarski ’51] transformed into an equivalent quantifier-free formula ¢*
Corollary Given ¢, one can decide whether (R,+,-) &= ¢

O
; X 2
— P o
Algebraic geometry 4 %
Programs verification
Continuous & discrete
Jynamical systems |
. er graphms

CW Geometry
Rob OtiCS

Coding theory & Cryptography

Grammars & Transducers
O ——— ~~———




Some fancy FO theories

FOI[N, +, -]
FOI[R, +, -]
FO[Z, +]

FO[NZ, <1, Sz]
FO[{0,1}, =]
FO[VR, Er]

FO[Cwm, Tm]

0

Peano arithmetic ** UNDECIDABLE %
(reduction from H’s 10th)

N ¢
-
.
e o

Arithmetic theory of real numbers & DECIDABLE ;

(quantifier elimination)
Presburger arithmetic

First-order theory of the unlabelled grid

{ Valid QBFs}

First-order theory of “random” graph

First-order theory of the transition

graph of a Turing machine M

77



FO[Z, +] — Presburger arithmetic

Theorem

| Presburger 29|

Corollary

Every FO formula ¢ over (Z,+,0,1,<,

transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Given ¢ over (Z,+), one can decide whether (Z,+) E ¢

78



FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Corollary Given ¢ over (Z,+), one can decide whether (Z,+) E ¢

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Corollary Given ¢ over (Z,+), one can decide whether (Z,+) E ¢
Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,|) can be effectively

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

Corollary Given ¢ over (Z,+), one can decide whether (Z,+) E ¢
Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z 2x+4y-32<7) A (3x-y+ 2z < -4)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
7z 2x+4y-32<7) A Bx-y+ 2z < -4)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
Jz 2x+4y-7<3z) A (22<-3x+y-4)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,|) can be effectively

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
Jz 2x+4y-7<3z) A (22<-3x+y-4)
7 2-(2x+4y-7<3z) A (2z<-3x+y-4)3
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transtormed into an equivalent quantifier-free formula ¢

) can be effectively

*

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
Jz 2x+4y-7<3z) A (22<-3x+y-4)
3z (4x + 8y - 14 < 62) A (62 <-9x + 3y- 12)
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
temporarily assume formulas 3z (ZX + 4}’ -7 < 32) A (ZZ <-3x+ Y- 4)
are over the reals or the rationals... 2, (4X + 8y 14 < 62) A (62 < 9x + ?)y ) 12)
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O[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)

temporarily assume formulas =V (ZX + 4}’ - 7 < 3 Z) A ( _3 X+ y- 4)

are over the reals or the rationals... , (4X + 8y 14 < 62) A (62 0x + ?)y 12)
z (4x+ 8y-14 < 6z) A (6z < -9x + 3y - 12)

81



FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)

temporarily assume formulas 3z (ZX + 4}’ -7 < 32) A (ZZ <-3x+ Y- 4)

are over the reals or the rationals... 2, (4X + 8y 14 < 62) A (62 < 9x + ?)y ) 12)
4x+ 8y-14 < -9x+3y-12
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)

temporarily assume formulas Jz 2x+4y-7<3z) A (22<-3x+y-4)

e overthe reals or the rationals.. dz (4X + 8y - 14 < 62) A (62 <-9x + 3}7 - 12)
4x+ 8y-14 < -9x+3y-12
4x+8y-14 < -9x+ 3y- 12

82



FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
temporarily assume formulas Jz 2x+4y-7<3z) A (22<-3x+y-4)
e overthe reals or the rationals.. dz (4X + 8y - 14 < 62) A (62 <-9x + ?)y - 12)
4x+ 8y-14 < -9x+3y-12
(49 )x+(83)y-(14-12) < 0

33



FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transtormed into an equivalent quantifier-free formula ¢

) can be effectively

*

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
temporarily assume formulas Jz 2x+4y-7<3z) A (22<-3x+y-4)
e overthe reals or the rationals.. dz (4X + 8y - 14 < 62) A (62 <-9x + ?)y - 12)
4x+ 8y-14 < -9x+3y-12
(-5 )x+(5)y-( 2 )<0
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FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)
Assume:

eQz=13z (if not, treat Vz as = 3z)

o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)

temporarily assume formulas Jz 2x+4y-7<3z) A (22<-3x+y-4)

e overthe reals or the rationals.. dz (4X + 8y - 14 < 62) A (62 <-9x + ?)y - 12)
4x+ 8y-14 < -9x+3y-12
S5x+5y-2 <0

35



FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)

Jz 2x+4y-7<3z) A (22<-3x+y-4)

3z (4x + 8y - 14 < 62) A (62 <-9x + 3y- 12)
4x+ 8y-14 < -9x+3y-12
S5x+5y-2 <0

35



FO[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

) can be effectively

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)

Jz 2x+4y-7<3z) A (22<-3x+y-4)

3z (4x + 8y - 14 < 62) A (62 <-9x + 3y- 12)
4x + 8y- 14+ m < -9x + 3y - 12

S5Sx+5y-2+m< 0

86



O[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

) can be effectively

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
Jz 2x+4y-7<3z) A (22<-3x+y-4)
3z (4x + 8y- 14 < 6z) A (62 < -9x + 3y - 12)
6 4x+8y 14+m A 4x+8y-14+m< -9x+ 3y-12

6[4x+8y-144+m A -5Sx+5y-2+m< 0

86



O[Z, +] — Presburger arithmetic

Theorem Every FO formula ¢ over (Z,+,0,1,<,

) can be effectively

[Presburger 29|  transformed into an equivalent quantifier-free formula ¢*

Proofidea

Show how to remove an innermost quantifier Qz from ¢ = ... Qz a(..., z)

Assume:
eQz=13z (if not, treat Vz as = 3z)
o o is V-free (if not, commute 3 and V)

Example za(xyz) = 3z (2x+4y-32<7) A (3x-y+ 2z < -4)
Jz 2x+4y-7<3z) A (22<-3x+y-4)
3z (4x + 8y- 14 < 6z) A (62 < -9x + 3y - 12)
s 6 4x+8y 14+m A 4x+8y-14+m< -9x+ 3y-12

,,,,,

Vm=0,.5 6|4x+8y-14+m A -Sx+Sy-24+m< 0
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Some fancy FO theories

FO[N, +, -]
FO[R, +, -]
FO[Z, +]

FO[N? <4, <5]

Peano arithmetic e* UNDECIDABLE *®

(reduction from H’s 10th)

N
Q

Arithmetic theory of real numbers & DECIDABLE &

(quantifier elimination)

Presburger arithmetic & DECIDABLE £

(quantifier elimination)

First-order theory of the unlabelled grid

87



Some fancy FO theories

FOI[N, +, -]
FOI[R, +, -]
FO[Z, +]
FON?, <4, <5]
FO[{0,1}, =]
FO[VR, Er]

FO[Cwm, Tm]

0

Peano arithmetic ** UNDECIDABLE %
(reduction from H’s 10th)

Arithmetic theory of real numbers & DECIDABLE £

(quantifier elimination)

Presburger arithmetic & DECIDABLE £

(quantifier elimination)

First-order theory of the unlabelled grid & DECIDABLE £

(interpreted in the former)

{ Valid QBFs}
First-order theory of “random” graph

First-order theory of the transition

graph of a Turing machine M

87



Some fancy FO theories

FOI[N, +, - |
FO[R, +, -]
FO[Z, +]
FO[N?, <1, <5]

FO[{0,1}, =]

U

Peano arithmetic e UNDECIDABLE '°®

(reduction from H’s 10th)

Arithmetic theory of real numbers & DECIDABLE &

(quantifier elimination)

Presburger arithmetic & DECIDABLE &

(quantifier elimination)

First-order theory of the unlabelled grid # DECIDABLE £

(interpreted in the former)

{ Valid QBFs}

87



FO[{0,1}, =] — The FO theory of Boolean algebra

Lemma Given any without free variables,
one can construct an FO formula ¢* such that

=¢ it (10,1}, =)= ¢’

38



FO[{0,1}, =] — 'The FO theory of Boolean algebra

Lemma Given any without free variables,
one can construct an FO formula ¢* such that

=¢ iff ({0,1},=)=¢
Proof

define CID* = dt ¢[X / (X:t)] (for all bound variables x)

38



FO[{0,1}, =] — 'The FO theory of Boolean algebra

Lemma Given any without free variables,
one can construct an FO formula ¢* such that

b i (010 e
Proof

define CID* = dt q)[X / (X:t)] (for all bound variables x)

Corollary FO[{0,1}, =] encodes the set of valid QBF formulas

38



Some fancy FO theories

FOI[N, +, -]
FOI[R, +, -]
FO[Z, +]
FON?, <4, <5]
FO[{0,1}, =]
FO[VR, Er]

FO[Cwm, Tm]

0

Peano arithmetic
Arithmetic theory of real numbers

Presburger arithmetic

First-order theory of the unlabelled grid # DECIDABLE

{ Valid QBFs}

First-order theory of “random” graph

First-order theory of the transition

graph of a Turing machine M

*® UNDECIDABLE %
(reduction from H’s 10th)

& DECIDABLE &

(quantifier elimination)

& DECIDABLE &

(quantifier elimination)

N ¢
.

.

e o

(interpreted in the former)

EASY

89



Some fancy FO theories

FO[N, +, -]
FO[R, +, -]
FO[Z, +]

FO[NZ, <i, Sz]

FO[ VR, Er]

Peano arithmetic e UNDECIDABLE *®

(reduction from H’s 10th)

Arithmetic theory of real numbers & DECIDABLE &

(quantifier elimination)

Presburger arithmetic & DECIDABLE £

(quantifier elimination)

First-order theory of the unlabelled grid # DECIDABLE £

(interpreted in the former)

First-order theory of “random” graph

39



FO[VR, Er] — The FO theory of the “random” graph

A different perspective and a coarser view on expressiveness...

What percentage of finite graphs verify a given FO sentence?

Dy

920



Probability of a formula

P.[¢] = probability that ¢ holds on a random finite graph with » nodes




Probability of a formula
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Probability of a formula

P.[¢] = probability that ¢ holds on a random finite graph with » nodes

~

L

©
I

lim P,[d]

n-> oo

Example  For ¢ = “the graph is complete”,

1

we have P,[¢] = =

and hence Po[d] =0



Probability of a formula

Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. ’69, Fagin "76] cither almost surely true (Po[¢] =1)
or almostsurely false (Po[d] =0)
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Probability of a formula

Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. ’69, Fagin "76] cither almost surely true (Po[¢] =1)
or almostsurely false (Po[d] =0)

Examples

o ¢ = “thereisa triangle” Po[d] =1

o ¢ = “there no 5-clique” Pold] =0



Probability of a formula

Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. ’69, Fagin "76] cither almost surely true (Po[¢] =1)
or almostsurely false (Po[d] =0)

Examples
o ¢ = “thereisa triangle” Po[d] =1
o ¢ = “there no 5-clique” Pold] =0

e ¢ = “even number of edges”

Your turn!
e ¢ = “even number of nodes”



Probability of a formula

Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. ’69, Fagin "76] cither almost surely true (Po[¢] =1)
or almostsurely false (Po[d] =0)

Examples

o ¢ = “thereisa triangle” Po[d] =1

o ¢ = “there no 5-clique” Pold] =0

e ¢ = “even number of edges” Po[d] = 1/2

Your turn! _
e ¢ = “even number of nodes” Pw[®] noteven defined




Probability of a formula

Theorem (0/1 Law) Every FO formula ¢ is
| Glebskii et al. 69, Fagin "76] cither almost surely true (Po[¢] =1)
or almostsurely false (Po[d] =0)
Examples
o ¢ = “thereisa triangle” Po[d] =1
o ¢ = “there no 5-clique” Pold] =0
e ¢ = “even number of edges” P[] =1/5
Your turn! b
e ¢ = “even number of nodes” Pw[®] noteven defined
e ¢ = “more edges than nodes” Pold] =1

( yet not FO-definable... )



The “random” infinite graph

Every FO formula ¢ is either almost surely true or almost surely false,

and this depends on whether (Vr, Er) =




The “random” infinite graph

Every FO formula ¢ is either almost surely true or almost surely false,

and this depends on whether (Vr, Er) = ¢
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The “random” infinite graph

Every FO formula ¢ is either almost surely true or almost surely false,

and this depends on whether (Vr, Er) =

y ? €
) i :,\\“’:x\.,* .
. s 3 ,,f" q{z o
&Y X
The “random” graph %3 IJ“ ;»»1 : P <
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aven 8. i-th bit of j is 1
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“each pair of nodes 7, j



The “random” infinite graph

Every FO formula ¢ is either almost surely true or almost surely false,

and this depends on whether (Vr, Er) =

4 S g 7 :

X . I '1:& ,
\ o o 2 o0 . o e

i :.:' s \ .:o each pair of nodes Z,] X
! ° o o o - .
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Probability of a formula - application

Theorem [Grandjean "83] One can decide in PSPACE whether

¢ is almost surely true on finite graphs
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Probability of a formula - application

Theorem [Grandjean "83] One can decide in PSPACE whether

¢ is almost surely true on finite graphs
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Probability of a formula - application

Theorem [Grandjean "83] One can decide in PSPACE whether

¢ is almost surely true on finite graphs

almost surely / almost surely
false true

> A
S

Model-checking on large graphs/databases

Don’t bother checking the formula,
cither it’s almost surely true or almost surely false!




Probability of a formula - application

Theorem [Grandjean "83] One can decide in PSPACE whether

¢ is almost surely true on finite graphs

almost surely / almost surely

false true
@
S
>/
Disclaimer:
0/1 Law only Model-checking on large graphs/databases
applies applies to Don’t bother checking the formula,

unconstrained graphs cither it’s almost surely true or almost surely false!



Some fancy FO theories

FO[N, +, ]
FO[R, +, ]
FO[Z, +]
FO[N?, <y, <5]
FO[{0,1}, =]
FO[Vk, Ex]

FO[Cwm, Tm]

0

Peano arithmetic ** UNDECIDABLE *®
(reduction from H’s 10th)

Arithmetic theory of real numbers & DECIDABLE £

(quantifier elimination)

Presburger arithmetic & DECIDABLE £

(quantifier elimination)

First-order theory of the unlabelled grid & DECIDABLE £

(interpreted in the former)

{ Valid QBFs} EASY

First-order theory of “random” graph & DECIDABLE £
(0/1 Law)

First-order theory of the transition

graph of a Turing machine M

95



Some fancy FO theories

FO[N, +, -]
FO[R, +, -]
FO[Z, +]

FO[NZ, <1 Sz]

FO[ Vg, Er]

FO[CM, TM]

Peano arithmetic s UNDECIDABLE '°®

(reduction from H’s 10th)

Arithmetic theory of real numbers & DECIDABLE &

(quantifier elimination)

Presburger arithmetic & DECIDABLE £

(quantifier elimination)

First-order theory of the unlabelled grid # DECIDABLE &

(interpreted in the former)

First-order theory of “random” graph & DECIDABLE &
(0/1 Law)

First-order theory of the transition & DECIDABLE &

(automatic structure)

graph of a Turing machine M

95



Things to remember




Things to remember

« FO is cool and quite expressive

o Model-checking is decidable (in PSPACE) when the universe is finite

Satisfiability, validity, equivalence are all undecidable (reduction from Domino)

o For infinite universes, one can fix a model and study its FO theory
Some FO theories are decidable, some are not

« Some FO theories can be reduced to others via FO interpretations

<

/?EME,(/g
B ER |
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