
Extending and implementing RASP

Andrea Formisano and Davide Petturiti

Università di Perugia, Dipartimento di Matematica ed Informatica
formis@dipmat.unipg.it, davidepetturiti@gmail.com

Abstract. In previous work an extension of ASP, called RASP (stand-
ing for ASP with Resources), has been proposed. RASP supports declara-
tive reasoning on production and consumption of (amounts of) resources.
The approach combines stable model semantics with quantitative rea-
soning and relies on an algebraic structure to support computations and
comparisons of amounts. The resulting framework also offered some form
of preference reasoning on resources usage. In this paper we go further
in this direction by introducing more expressive constructs to support
complex preferences specification. The complexity of establishing the ex-
istence of an answer set, in such an enriched framework, is then shown
to be NP-complete. A prototypical implementation of RASP has been
realized. The tool, named raspberry, consists in a compiler that, given
a ground RASP program, produces a pure ASP encoding suitable to be
processed by commonly available ASP-solvers.

Key words: Answer set programming, quantitative reasoning, prefer-
ences, language extensions.

Introduction

Previous work [5, 4] proposed an extension of the Answer Set Programming
(ASP) framework by explicitly introducing the notion of resource. Such an ex-
tension, named RASP (standing for ASP with Resources), supports both formal-
ization and quantitative reasoning on consumption and production of amounts
of resources. These are modeled by amount-atoms of the form q#a, where q
represents a specific type of resource and a denotes the corresponding amount.
Resources can be produced or consumed (or declared available from the be-
ginning). The processes that transform some amounts of resources into other
resources are specified by r-rules, for instance, as in this simple example:

computer#1← cpu#1, harddisk#2,motherboard#1, ram module#2.

where we model the fact that an instance of the resource computer can be
obtained by “consuming” some other resources, in the indicated amounts.

In their most general form, r-rules might involve regular ASP literals together
with amount-atoms. Semantics for RASP programs is given by combining stable
model semantics with a notion of allocation. While stable models are used to
deal with usual ASP literals, allocations are exploited to take care of amounts

and resources. Intuitively, an allocation assigns to each amount-atom a (possi-
bly null) quantity. Quantities are interpreted in an auxiliary algebraic structure
that supports comparisons and operations on amounts. Admissible allocations
are those satisfying, for all resources, the requirement that one can consume
only what has been produced. Clearly, alternative allocations might be possible,
corresponding to different ways of using the same resources.

The RASP framework has been enriched in [5] so to support basic forms of
preference specification on resource usage. The reader is referred to [5, 4] for a
detailed comparison with previous approaches to preference reasoning, as well
as for a discussion on the related works involving the notion of resource in logic
programming frameworks.

The following simple example illustrates the way in which preferences are
exploitable in RASP to specify different uses of the same resources.

Example 1. Assembling different PCs requires different sets of components
(motherboard, processor(s), ram modules, etc.), depending on the kind of PC.
In case of servers one might prefer SCSI disks rather than EIDE disks and vice
versa for normal PCs:

cpu#5. scsihd#5. eidehd#9. motherboard#7. ram module#20.
pc(server)#1← cpu#2, (scsihd#2>eidehd#2), motherboard#1, ram module#4.
pc(desktop)#1← cpu#1, (eidehd#2>scsihd#2), motherboard#1, ram module#2.

Notice that some resources might be declared as available from the beginning.
This is done by means of r-facts. As in the first line of the above program.

Computational complexity of RASP (without preferences) has been assessed
in [4], by showing that the problem of establishing the existence of an answer
set for a RASP program is NP-complete.

In this paper we further enrich the RASP language by introducing more
expressive constructs to support complex preferences specification (Sect. 2). For
all the proposed extensions we provide an encoding into ASP. As a consequence,
we show that the enriched framework retains the same computational complexity.
We also briefly report (Sect. 3) on a prototypical implementation of RASP.
Sect. 1 recalls syntax and semantics of RASP (more details can be found in the
appendix or in [4]).

1 A glimpse of RASP

In this section we briefly present the basic notions on RASP. For lack of space,
here we have to summarize many aspects of RASP’s semantics. The reader may
refer to [4] (or to the appendix) for a much complete presentation.

The language of RASP. The underlying language of RASP is partitioned into
P rogram symbols and Resource symbols. Precisely, let 〈Π, C,V〉 be an alphabet
where Π = ΠP ∪ ΠR is a set of predicate symbols such that ΠP ∩ ΠR = ∅,

2

C = CP ∪CR is a set of symbols of constant such that CP ∩CR = ∅, and V is a set
of symbols of variable. The elements of CR are said amount-symbols (a-symbols,
for short), while the elements of ΠR are said resource-predicates (r-predicates).
A program-term (p-term) is either a variable or a constant symbol. An a-term
is either a variable or an a-symbol.

Let A(X,Y) denote the collection of all atoms p(t1, . . . , tn), with p ∈ X and
{t1, . . . , tn} ⊆ Y . Then, a p-atom is an element of A(ΠP , C ∪V). An r-term is an
element of ΠR∪A(ΠR, C ∪V). An a-atom is a writing of the form q#a where q is
an r-term and a is an a-term. We call resource-symbols (r-symbols) the ground
r-terms, i.e. the elements of τR = ΠR ∪ A(ΠR, C).

Some examples: in the two expressions p#3 and q(2)#b, p and q(2) are r-
symbols (with p, q ∈ ΠR and 2 ∈ C) aimed at defining two resources which are
available in quantity 3 and b, resp., (with 3, b ∈ CR a-symbols). Because the set
of variables is not partitioned, the same variable may occur both as a p-term
and as an a-term. Hence, we admit expressions such as p(X)#V where V,X are
variables. In such cases, quantities are derived through instantiation.

Ground a-atoms contain no variables. A program-literal (p-literal, for short)
L is a p-atom A or the negation not A of a p-atom (intended as negation-as-
failure).1 If L = A (resp., L = not A) then L denotes not A (resp., A).

We generalize the notion of a-atom so to permit the description of preferences.
A preference in resources usage is specified by means of a preference-list of a-
atoms (p-list, for short). It is a writing of the form q1#a1> · · ·>qk#ak, with k > 1.
We say that qi#ai has degree of preference i in the p-list. Plainly, a-atoms are
particular p-lists made of a single element (i.e., with k = 1).

An r-literal is either a p-literal or a p-list.
Notice that, we do not allow negation of a-atoms (cf., [4] for a discussion on

this point). Finally, we distinguish between p-rules (plain ASP program rules,
including the case of ASP constraints, i.e., rules with empty head) and r-rules
which differ from p-rules in that they may contain p-lists (and hence, a-atoms).

An r-rule γ has the form

Idx : H ← B1, . . . , Bm.

where B1, . . . , Bm (m > 0) are r-literals, H is either a p-atom or a p-list, and at
least one a-atom occurs in γ. Idx is of the form [N1,1-N1,2, . . . , Nh,1-Nh,2], with
h > 1, and each Nj,` is a variable or a positive integer number.

Intuitively, when all the Nj,` s are integers, Idx denotes the union of h (pos-
sibly void) intervals in N+ = N \ {0}. It is intended to restrain the number of
times the rule can be used, i.e., fired. Such a number must belong to Idx or the
rule cannot be fired at all. We admit that each Nj,` is a variable. Then, after
grounding (see below), each Nj,` has to be instantiated to a positive integer.

Without loss of generality, in what follows we often assume h = 1 in r-rules.
An r-fact has the form q#a← , where q#a is a ground a-atom. It models a

fixed amount of resource q that is available “from the beginning”.
1 We will only deal with negation-as-failure. Though, classical negation of program

literals could be used in RASP programs and treated as usually done in ASP.

3

A rule is either a p-rule or an r-rule. An r-program is a finite set of rules.
The grounding of an r-program P is the set of all ground instances of rules

(and facts) of P , obtained through ground substitutions over the constants oc-
curring in P .2

Notice that in any r-program only a finite number of a-symbols of CR occurs,
also because all r-facts must be ground. Hence, as far as a-atoms are concerned,
a finite number of ground instances can be generated by the grounding process.
This is because all instances of a-terms are among the instances of the terms
occurring in p-atoms. A “smart” grounder for RASP would avoid generating
instances of r-rule where variables occurring as a-terms are instantiated to con-
stants of CP instead of constants of CR. Such “wrong” instances are however
both semantically and practically irrelevant (apart from the waste of space).

Semantics of RASP. Semantics of a (ground) r-program is determined by in-
terpreting p-literals as usually done in ASP (namely, by exploiting stable model
semantics) and a-atoms in an auxiliary algebraic structure Q. In principle, such
a structure can be of full generality, provided that it supports operations and
comparisons among amounts. For simplicity, we fix Q = Z as collection of quan-
tities and consider given a mapping κ : CR → Z that associates integers to
a-symbols. Positive and negative integers will be used to model produced and
consumed amounts, respectively. Moreover, to further simplify the treatment,
we identify CR with Z (and κ being the identity).

In the semantics for RASP proposed in [5, 4], r-rules are translated into
fragments of a plain ASP program. As regards a-atoms, the notion of allocation
is introduced to model the amounts of resources that are consumed/produced
when an r-rule is fired. Intuitively, given a ground r-program P , an allocation for
P is a mapping that assigns elements of Q to the a-symbols in P in such a way
that for each r-symbol q, the overall sum of quantities allocated to (produced
and consumed) a-atoms of the form q#a is not negative. A last component of an
interpretation copes with the repeated firing of r-rules. (Clearly, multiple firings
must be taken into account by the allocation.)

We have the following definition (see also Def. 2 in App. A):

Definition 1. An r-interpretation for a (ground) r-program P is a triple I =
〈I, µ, ξ〉, where I ⊆ A(ΠP , C), µ is an allocation for P , and ξ is a mapping
ξ : P → N+.

In Def. 1, I plays the role of a usual answer set assigning truth values to p-literals
and ξ associates to each rule the number of times the r-rule is used.

An interpretation I for a ground r-program P determines which r-rules are
fired. In particular, I is an answer set of P if:
• it satisfies all the p-rules in P and all the fired r-rules (in the usual way) as

concerns their p-literals;
2 As it is well-known, at present, almost all ASP solvers perform a preliminary ground-

ing step as they are able to find the answer sets of ground programs only. Work is
under way to overcome at least partially this limitation (cf., [6], for instance).

4

• for each p-list (and hence, a-atom) occurring in a fired r-rule, one of its a-
atoms is selected;

• the correct amounts are allocated for all the selected a-atoms while null
amounts are allocated for all other a-atoms;

• the global balance of each r-symbol is not negative (i.e., all consumed amounts
have been also produced by rule firings or available from r-facts).

App. A provides a formal definition of answer set for RASP (Def. 3).
Finally, we say that I is an answer set of an r-program P if it is an answer

set for the grounding of P .
Clearly, different selections of a-atoms in p-lists originate different answer

sets. To impose a preference order on such answer sets, any preference criterion
can be used. Such a criterion should order the collection of answer sets by reflect-
ing the (preference degrees in the) p-lists. Any criterion has to take into account
that each rule determines a (partial) preference ordering on answer sets, and
it should aggregate/combine all such “local” partial orders to obtain a global
one. This yields the notion of most preferred answer set of an r-program. Simple
criteria to rank the collection of answer sets are described in [5].

Complexity. Computational complexity of (ground) RASP has been assessed
in [4] for the simplified case in which all p-lists are singletons (namely, a-atoms
might occur in a program but no preferences are specified). In that case, NP-
completeness of deciding whether an r-program has an answer set is shown by
providing a polynomial translation of ground programs from RASP into ASP. A
correspondence is then exhibited between the answer sets of the r-program and
the answer sets of its ASP encoding. We will see in the sequel that the same
result holds also when preferences are involved.

As regards the complexity of the problem of determining if a given literal
is true in a most preferred answer set, different results are obtained depending
on the specific preference criterion which is adopted. In [5] it is shown that
complexity of credulous reasoning for RASP with preferences are in line with that
of LPOD [3]. For instance, if a Pareto-like criterion is adopted, Σ2

P -completeness
of both RASP and LPOD is obtained.

2 Dealing with complex preferences

In this section we present a number of extensions of RASP that permit the
specification of more complex forms of preference on resources usage. A first
step in this direction has been made with the introduction of conditional p-
lists in [5]. In what follows, we provide a generalization of such a proposal and
establish a complexity result, thus settling an open problem raised in [5].

As a preliminarily step, we introduce two notions of “compound” resource.
Namely, given the a-atoms q1#a1, . . . , qk#ak, the occurrence of the writing
{q1#a1, . . . , qk#ak} in an r-rule, simply denotes the set of all these a-atoms. This
notation has to be intended conjunctively, i.e., all the a-atoms are simultaneously
consumed/produced when the r-rule is fired.

5

Similarly, {q1#a1; · · · ; qk#ak} denotes a collection of a-atoms whose produc-
tion/consumption has to be intended disjunctively, i.e., when the r-rule is fired,
exactly one of the listed a-atoms is non-deterministically chosen for consump-
tion/production. Notice that, while the first notation is syntactic sugar, the
second one introduces a novelty w.r.t. the language of [4, 5]. An ASP encoding
of r-rules involving disjunctive compound resources can be designed. We do not
describe here such an encoding, since it will be a particular cases of cp-lists (to
be seen in Sect. 2.2).

2.1 Preferences between sets of a-atoms.

Let us slightly generalize the notion of p-list introduced in Sect. 1. Namely,
we consider p-lists of the form s1> · · ·>sk, where each si is a compound re-
source, i.e., a set of a-atoms {qi,1#ai,1, . . . , qi,ki#ai,ki}. This form of p-list al-
lows one to express preferences on set of a-atoms, instead of a single a-atoms.
Hence, the intended meaning is that, for all j, `, j < `, it is preferred to pro-
duce/consume all the resources in {qj,1#aj,1, . . . , qj,kj

#aj,kj
} than all those in

{q`,1#a`,1, . . . , q`,k`
#a`,k`

}. (Note that, by imposing ki = 1, for all i ∈ {1, . . . , k},
we obtain p-lists as defined in Sect. 1.)

A second form of p-list involves compound resources of the kind si =
{qi,1#ai,1; · · · ; qi,ki

#ai,ki
}. In such cases, for all j, `, j < `, it is preferred to

produce/consume one of the resources in sj , than one of those in s`. Situations
in which both forms occur in the same p-list are handled coherently.

Let us now describe how an r-program P involving such kind of p-lists can be
polynomially encoded into ASP. This encoding will show that adding preferences
on resource usage in RASP does not affect its complexity. Let us focus on the
case of a single p-list occurring in the body of a ground r-rule γ of P :

Idx : H ← B1, . . . , Bm, s1> · · ·>sk
where, each for each i ∈ {1, . . . , k}, si = {qi,1#ai,1, . . . , qi,ki

#ai,ki
} and Idx is

[N1,1-N1,2, . . . , Nh,1-Nh,2], denoting a collection of disjoint integer intervals—
i.e., h > 1, each Nj,b ∈ N+, and N1,1 6 N1,2 < N2,1 6 N2,2 < · · · < Nh,1 6 Nh,2.
(The cases of p-lists occurring in the head and/or involving disjunctive compound
resources can be treated similarly.)

For each i ∈ {1, . . . , k} let auxi be a fresh r-symbol not occurring elsewhere
in the program. Then, we introduce the following r-rules:

(γ′) Idx : H ← B1, . . . , Bm, pl#1 , z#-1.
(γ′′) pl#Nh,2.

(γi) [1-Nh,2] : auxi#1← qi,1#ai,1, . . . , qi,ki
#ai,ki

, z#1. for each i ∈ {1, . . . , k}
where pl and z are fresh r-symbols (note that an a-atom with negative amount
in the body of an r-rule, actually denotes resource production, cf., [4, Sect. 6.2]).
The rationale is as follows. The auxiliary resource z acts as a counter of the
number of firings of γ′: each time γ′ is fired, an instance of z is produced and
one instance of pl is consumed. Conversely, each resource auxi is produced only
if γi is fired and this can happen only by consuming one instance of z. Hence,

6

each firing of γ′ corresponds to one firing of one of the γis. The r-fact γ′′ ensures
that γ′ cannot be fired more than Nh,2 times.

Notice that γ′′, γ′′, and all of the γi do not involve preferences. Hence, their
ASP encoding can be obtained through the translation introduced in [4]. We
list here the relevant fragment of such encoding (the lack of space prevents us
to provide the complete translation, the reader is referred to [4, Sect. 8.1], or to
App. B, for a brief description):

(1) r rule(nγ′).
(2) firings(nγ′ , Ni,1..Ni,2). for i ∈ {1, . . . , h}
(3) a atom(nγ′ , 0, pl,−1).
(4) a atom(nγ′ , 1, z, 1).

(5) ← Bi,fired(nγ′). for i ∈ {1, . . . ,m}
(6) H ← B1, . . . , Bm,fired(nγ′).

(7) r rule(nγ′′).
(8) a atom(nγ′′ , 0, pl,Nh,2).
(9) firings(nγ′′ , 1). fired(nγ′′).

(10) r rule(nγi). for i ∈ {1, . . . , k}
(11) firings(nγi , 1..Nh,2). for i ∈ {1, . . . , k}
(12) a atom(nγi , 0, auxi, 1). for i ∈ {1, . . . , k}
(13) a atom(nγi , j, qj , aj). for i ∈ {1, . . . , k} and j ∈ {1, . . . , ki}
(14) a atom(nγi , ki + 1, z,−1). for i ∈ {1, . . . , k}

By means of facts (1), (7), and (10), unique identifiers for r-rules are introduced.
Facts a atom lists all the resources involved in r-rules. The predicate firings is
used to declare the admissible number of firings for each r-rule. Lines (5) and
(6) relate the firing of a rule γ′ to the satisfiability of its p-literals.

To complete the translation we impose a direct dependency between the uses
of the resource pl and the resources aux1, . . . , auxk. This is done by means of
this fragment of ASP program (where val and iter act as domain predicates):

auxres(nγ′ , pl).
res pl(nγ′ , pl, auxi, i). for i ∈ {1, . . . , k}
1{use pl(nγ′ , aux1, I, 1, pl), . . . , use pl(nγ′ , auxk, I, 1, pl)}1←

use(nγ′ , 0, pl,−1 ∗NumFirings), iter(I),
I <= NumFirings, count(nγ , NumFirings).

res symb(Pl)← auxres(G,P l), r rule(G).
use(G,Pos,R,N)← sum use pl(G,R,N), res pl(G,P l,R,Grade),

r rule(G), val(N), a atom(G,Pos, P l, 1), N ! = 0.
sum use pl(G,R,N)← N = sum{A : use pl(G,R, Iter,Q), val(Q), iter(Iter)}

res pl(G,P l,R,Grade), r rule(G), val(N).

Briefly, the facts in the first two lines associate each auxi with the resource pl.
The rule in the third line implements a correspondence between firings of γ′ (i.e.,
uses of pl) and firings of γi (i.e., uses of auxi). Being NumFirings the number
of times γ′ is fired, this rule imposes that each time one instance of pl is used,
(namely, once for each I, 1 6 I 6 NumFirings), exactly one instance of one
resource among the auxis is used (i.e., one of the facts use pl(nγ′ , auxi, I, 1, pl)

7

is true). In turn, this forces one firing for the r-rule γi. (Notice the use of a
cardinality constraint to force the truth of exactly one atom use pl . The use of
such a constraint could be avoided, but it allows a more succinct encoding. See,
for instance, [2] for details on cardinality constraints and on how to surrogate
them through usual ASP rules.) The r-rules in the last three lines extend the
inference engine introduced in [4]. They are used to evaluate the balance of each
resource occurring in the initial p-list. This is achieved by means of an aggregate
literal (cf., [7, 9, 10]) that sums up the amounts of real resources (i.e., the qis)
corresponding to instances of the auxiliary resources (i.e., the auxis).

Observe that the above sketched translation can be applied to treat each
p-list in a program, independently from the treatment of the other p-lists. The
resulting encoding involves the introduction of a number of ASP rules and literals
which is polynomially bounded w.r.t. the length of the given r-program.

Consequently, by exploiting the completeness and soundness results of [4],
we can establish a one-to-one correspondence between the answer set of an r-
program and those of its ASP encoding. Hence, the complexity results mentioned
in Sect. 1 are not affected by the presence of compound resources in p-lists.

2.2 Conditional p-lists

Conditional p-lists, called cp-lists, have been introduced in [5], where prefer-
ences between single a-atoms were considered. By proceeding in analogy to what
done in Sect. 2.1, we introduce a generalization of cp-lists that admits prefer-
ences on compound resources. In this context, a cp-list is a writing of the form
(r pref when L1, . . . , Ln), where r is a p-list, and L1, . . . , Ln are p-literals.

The intended meaning of a cp-list occurring in the body of an r-rule ρ (the
case of the head is analogous) is that, whenever ρ is fired, one of the (compound)
resources si in r = s1> · · ·>sk has to be consumed. If the firing occurs in cor-
respondence of an answer set that satisfies L1, . . . , Ln, then the choice is ruled
by the preference expressed through r. Otherwise, if any of the Li is not satis-
fied, a non-deterministic choice among the sis is made. (Hence the conjunction
L1, . . . , Ln does not need to be satisfied in order to fire ρ.) More precisely, if
L1, . . . , Ln does not hold, the r-rule containing the cp-list becomes equivalent to
k r-rules, each containing exactly one of the sis, in place of the cp-list.

As before, let us focus on the case of a single cp-list occurring in the body of
a ground r-rule ρ of P of the form:

Idx : H ← B1, . . . , Bm, (s1> · · ·>sk pref when L1, . . . , Ln)
where each si and Idx are as before. As done in Sect. 2.1, ρ can be replaced by
these r-rules (where p and np are fresh p-atoms, and pl is a fresh r-symbol):

(ρ′) Idx : H ← B1, . . . , Bm, pl#1 , z#-1.
(ρ′′) Idx : pl#1← p, s1> · · ·>sk, z#1
(ρi) [1-Nh,2] : pl#1← np, si, z#1. for each i ∈ {1, . . . , k}

p← not np. np← not p.
← np, L1, . . . , Ln.
← p, Lj . for each j ∈ {1, . . . , n}

8

Atoms p and np characterize the situations in which L1, . . . , Ln are all satisfied
or not, respectively. As before, z acts as a counter of the number of times ρ′

is fired. Depending on the truth of p (resp., np), each firing of ρ′ is forced to
correspond to one firing of ρ′′ (resp., of one among the ρis).

All the above rules, except ρ′′, do not involve p-lists. Hence, we are left with
the translation of ρ′′, which can be completed as outlined in Sect. 2.1. As before,
the ASP encoding can be generalized to treat r-rules involving more than one
cp-list (even with different kinds of compound resources), always introducing a
polynomially bounded number of (occurrences of) atoms.

Notice that, the effect of using a compound resource {q1#a1; · · · ; qk#ak} can
be rendered by using the cp-list (q1#a1> · · ·>qk#ak pref when p,not p),
where p is any p-atom. Hence, its ASP encoding could be drawn from the one
described so far. (A similar, approach is also viable when such a compound
resource occurs within the scope of a cp-list.)

A second form of cp-list introduced in [5] is (r only when L1, . . . , Ln). In
this case, the p-list is effective only when the condition holds. More specifically,
if the r-rule is fired in correspondence of an answer set that satisfies all of the
literals L1, . . . , Lm, the firing of the rule has to consume one of the resources in r.
Which one is determined by the expressed preference. In case some Li does not
hold, the firing can still be performed but this does not require any consumption
of resources in r.

Also in this case a generalization can be proposed to admit a p-list r involv-
ing compound resources. The ASP encoding of these enriched cp-lists largely
coincides with the one described above. It is made of the r-rules ρ, ρ′, together
with the following one (in place of all ρis):

(ρ′′′) [1-Nh,2] : pl#1← np, z#1.

We conclude by observing that also in this case it is immediate to verify that
the introduction of cp-lists does not affect the complexity of RASP. Completeness
and soundness of the encoding also follow from the analogous results in [4].

2.3 Expressing arbitrary preferences.

In general, there might be cases in which useful (conditional) preferences are not
expressible as a linear order on a set of alternatives. Moreover, preferences might
depend on specific contextual conditions that are not foreseeable in advance.

A simple example: next summer Jake would like to visit a foreign country.
It might be that his sister Jill joins, but only if she does not get a job for the
summer. Jack would like to go either to Brazil, France, Spain, Norway, or Iceland.
He prefers Brazil the most. In case going to Brazil is not possible, he considers
equally interesting visiting either France or Spain. The least preferred options
are Norway and Iceland, but no preference is expressed between them, except in
August, when Norway is preferred. This simple case of preference order, being
not linear, cannot be modeled by p-lists.

P-sets are a generalization of p-lists that allows one to use any binary relation
(not necessarily a partial order) in expressing (collections of alternative) p-lists.

9

A p-set may occur in any place where a p-list does and is a writing of the form:
{q1#a1, . . . , qk#ak | pred}

where pred is a binary program predicate (defined elsewhere in the program).

Considering a specific answer set M , a particular extension is defined for the
predicate pred (namely, the set of pairs 〈a, b〉 such that pred(a, b) is true in M).
Let X be the set of r-symbols {q1, . . . , qk}. We consider the binary relation R ⊆
X2 obtained by restricting to X the extension of pred in M . R is interpreted as
a preference relation over X: namely, for any qi, qj ∈ X the fact that 〈qi, qj〉 ∈ R
models a preference of qi on qj . The case of p-lists is a particular case of p-sets,
obtained when R describes a total order.3

As mentioned, R does not need to be a partial order, e.g., for instance, it may
involve cycles. In such cases, those resources that belong to the same cycle in R
are considered equally preferable (e.g., France and Spain, in the above example).
On the other hand, R might be a partial relation. So, there might exist elements
on X that are incomparable (e.g., Norway and Iceland in July).

Because of the presence of incomparable resources and equivalent resources,
R can be seen as a representation of a collection of p-lists, one for each possible
total order on X compatible with R. In particular, in case of equally preferable
options, a non-deterministic choice is made. Whereas, in case of incomparable
options, one among the possible total ordering of these options is arbitrarily
selected. In the above example, the extension of pred should include the pairs
〈Brazil, France〉, 〈France, Spain〉, 〈France, Iceland〉, 〈France,Norway〉, and
〈Spain, France〉 (plus 〈Norway, Iceland〉, if is it August). Consequently, the
admissible linear orders, if it is not August, are:

Brazil>Spain>Norway>Iceland. Brazil>France>Norway>Iceland,
Brazil>Spain>Iceland>Norway, Brazil>France>Iceland>Norway,

while only the first two should be considered in August.

Let us consider the following r-rule η (where Idx is as before):
Idx : H ← B1, . . . , Bm, {q1#a1, . . . , qk#ak | pred}.

By introducing a fresh symbol ps (that is univocally associated with the p-set
at hand), the r-rule η can be replaced by these r-rules:

(η′) Idx : H ← B1, . . . , Bm, ps#1.
(η′′) ps#Nh,2.

These r-rules do not involve p-lists, hence they are treated as described in
Sect. 2.1. To complete the translation we have to take into account each possible
total order implicitly represented the extension of pred (i.e., its interpretation in
the answer set at hand). To this aim the following ASP fragment is introduced
to handle the specific p-set:

3 Notice that, here, we are introducing a change in the syntax of RASP. Namely we
are admitting r-symbols as arguments of p-literals.

10

(20) dom(ps, qi). number(ps, i). for i ∈ {1, . . . , k}
(21) pset name(ps)← fired(nη).
(22) trcl(ps,X, Y)← pred(X,Y), X 6= Y,fired(nη).
(23) 1{use pl(nη, q1, I, a1, ps), . . . , use pl(nη, qk, I, ak, ps)}1←

use(nη, 0, ps,−1 ∗NumFirings), iter(I),
I <= NumFirings, count(nη, NumFirings).

(24) res pl(nη, ps, T,N)← order(ps, T,N).

In the above code, line (20) defines two domain predicates that enumerate the
(relevant) arguments of pred (the elements in X) and a collection of possible
indices (as we will see, different indices represent different preference degrees),
respectively. The following rules extend the inference engine and are independent
from the specific p-sets:

(30) trcl(PS,X, Y)← dom(PS,X), dom(PS, Y), dom(PS,Z),
trcl(PS,X,Z), trcl(PS,Z, Y), X 6= Y, pset name(PS).

(31) equiv(PS, T1, T2)← trcl(PS, T1, T2), trcl(PS, T2, T1),
dom(PS, T1), dom(PS, T2), pset name(PS).

(32) 1{ord idx (PS, T,N) : number(PS,N)}1← dom(PS, T), pset name(PS).
(33) used idx (PS,N)← dom(PS, T), ord idx (PS, T,N),

number(Ps,N), pset name(PS).
(34) ← dom(Ps, T), ord idx (PS, T,N),number(PS,N),

N > 1, N1 = N − 1,not used idx (PS,N1), pset name(PS).
(35) ← dom(PS, T1), dom(PS, T2), ord idx (PS, T1, N1), ord idx (PS, T2, N2),

number(PS,N1),number(PS,N2), N2 6 N1, T1 6= T2,
trcl(PS, T1, T2),not trcl(PS, T2, T1), pset name(PS).

(36) ← not equiv(PS, T1, T2), dom(PS, T1), dom(PS, T2), ord idx (PS, T1, N),
ord idx (PS, T2, N),number(PS,N), T1 6= T2, pset name(PS).

(37) ord idx (PS, T2, N)← equiv(PS, T1, T2), dom(PS, T1), dom(PS, T2),
ord idx (PS, T1, N),number(PS,N), pset name(PS).

(38) order(PS, T,N)← ord idx (PS, T,N),not other(PS, T,N), dom(PS, T),
number(PS,N), pset name(PS).

(39) other(PS, T,N)← order(PS, T2, N), T 6= T2, dom(PS, T), dom(PS, T2),
number(PS,N), pset name(PS).

The rule at line (30), together with the one in line (22) (which appears in one
instance for each specific p-set), evaluates the transitive closure of the relation
R defined by pred . Line (31) determines the equivalences between r-symbols.
Rules at lines (32)–(34) index the elements of X with consecutive (possibly re-
peated) integers. Lines (35)–(37) restrict the possible indexing to those that do
not violate the (closure of) the relation R: elements are assigned equal indices if
and only if they are equally preferred (i.e., equivalent in R). Higher indices are
assigned to less preferred r-symbols. Finally, rules (38)–(39) generate (compati-
bly with the extension of pred) all admissible orders for X. Each of these orders
admits a corresponding p-list. Such indexing of r-symbols is used (in the context
of a specific answer set) through the rules (23)–(24), seen before, analogously to
what done for the translation of plain p-lists (cf., Sect. 2.1).

11

Example 2. Let us consider the example mentioned above. This is a fragment of
r-program describing Jack’s preferences on buying plane tickets:

jack happy ← {ticket(b)#N, ticket(f)#N, ticket(s)#N, ticket(i)#N, ticket(n)#N
| jack pref }, is summer ,num of tickets(N).

jack pref (ticket(b), ticket(f)). jack pref (ticket(f), ticket(i)).
jack pref (ticket(f), ticket(s)). jack pref (ticket(s), ticket(f)).
jack pref (ticket(f), ticket(n)). jack pref (ticket(n), ticket(i)) ← is august .
ticket(P)#N ← money#C, cost(P,C1), C = C1 ∗N,num of tickets(N).
cost(b, 9). cost(f, 6). cost(s, 5). cost(i, 5). cost(n, 6).
num of tickets(1) ← jill works. num of tickets(2) ← not jill works.

Here is another example involving different forms of preference specification:

Example 3. Assume that, in making a cake or some cookies, you might choose
among different ingredients, and you have to consider some constraints due to
possible allergy or diet. Note that the preference among chocolate, nuts and
coconut , i.e., a particular p-list, is determined depending on the extension of the
predicate less caloric, which might be different for different answer sets and has
to be established dynamically (through the predicate calory , defined elsewhere
in the program).

cake#1>cookie#15 ← egg#2,flour#2, raisin#4,
({aspartame#1, skim milk#6}>{sugar#4,whole milk#6} pref when diet),
({vanilla#1; lemon#2}>cinnamon#1 only when not allergy),
{chocolate#1,nuts#1, coconut#1 | less caloric}.

less caloric(X,Y) ← calory(X,A), calory(Y,B), A < B.
calory(X,Y) ← ...

3 Raspberry: a concrete implementation

The above-outlined translation from (ground) RASP programs into ASP has be-
ing implemented in a stand alone tool, named raspberry.4 Raspberry, essentially
consists in a compiler that, given an r-program, produces its pure ASP encoding.
In turn, this encoding is joined to an ASP specification of an inference engine
which performs the real reasoning on resources allocation (and that remains in-
dependent from the particular program at hand). The resulting ASP program is
suitable to be processed by commonly available ASP-solvers (in particular, the
input syntax for gringo and lparse are supported [1]).

The answer sets found by the ASP solver encode the solutions of the RASP
problem.

As regards preference criteria (see [5]), the search for most preferred solutions
is implemented by exploiting the optimization features offered, for example, by
smodels and clasp.

4 Actually, non-ground programs are also correctly translated, provided that all a-
atoms are ground (i.e., variables occur only in p-literals). The treatment of generic
non-ground r-rules is subject for future work.

12

The prototypical release of raspberry has been implemented in C++ and is
available in http://www.dipmat.unipg.it/~formis/raspberry. Such a proto-
type is still under development, but covers all of the features described in this
paper. As done in this paper, also in the implementation, we fix the algebraic
structure Q (modeling amounts) to be the set Z of integer numbers. This is
because commonly available ASP solvers offer operations on integers as built-in
features. Refinements of the tool able to deal with other groups are a theme for
future work. In the mentioned web page, together with the tool, some examples
and a minimal documentation can be retrieved.

Since this concrete implementation strictly follows the translation described
in this paper (which, in turn, is a refinement of the one described in [4]), both
its correctness and its completeness derive from the results obtained in [4].

Concluding remarks

In this work, we started from RASP, an extension of ASP that supports rea-
soning about resources and their amounts as well as the specification, in form
of rules, of those processes that produce and consume resources. We proposed
several extensions of the RASP language in order to allow the specification of
complex forms of preferences on resource allocation. We also shown that such
new language constructs, far from being, in many cases, trivial syntactic sugar,
do not imply increase in the computational complexity of the framework. In par-
ticular, the problem establishing the existence of an answer set for an r-program
is still NP-complete. Consequently, the complexity of credulous reasoning for
RASP, when such form of complex preferences are involved, is in line with that
of LPOD [3].

The extension of (R)ASP we described is, to the best of our knowledge, an
original proposal. This is so for, at least, two aspects. First, the kind of preference
admitted in RASP have a local scope: each p-list (cp-list, or p-set) is seen in the
context of a particular rule (which models a specific process in manipulating some
resources). Consider, for instance, the r-program of Example 1, where completely
antithetic orders are expressed in the two r-rules. Notice that both r-rules might
be fired at the same time, since enough resources are available. Clearly, such a
local aspect is strictly related to the constraints on global resource balance and
resource availability. Consequently, preferences locally stated for different rules
might/should be expected to interact “over distance” with those expressed in
other rules.

A second novelty is represented by the possibility of dealing with non-linear
preference orders in resource usage (cf., Sect. 2.3). In this sense, DLPOD [8] is a
similar proposal, recently appeared in literature. In this case, pure ASP is con-
sidered and preferences are imposed on the truth of program literals occurring
in heads of rules (in analogy to what done in LPOD [3]). (So, also in this pro-
posal preferences have a global flavor.) These preferences, in turn, determine an
ordering of the answer sets of a DLPOD program. In [8] non-linear preferences

13

are introduced by combining ordered and unordered disjunction in the same
framework.

Clearly, RASP and DLPOD have different purposes and tend to solve dif-
ferent problems and consequently have different expressive power. In particular,
notice that DLPOD has LPOD as special case. Hence, it is reasonable that RASP
and DLPOD also differs as regards the computational complexity, for instance,
of credulous reasoning. We shown that RASP is in line with LPOD while [8]
conjectures Σ3

P -completeness for DLPOD.

Acknowledgements The authors would like to thank Torsten Schaub and Sven
Thiele for the support and the advices about the grounder gringo. The parser of rasp-
berry plainly extends the one included in the distribution of gringo. This research has
been partially supported by GNCS.

References

[1] Web references for some ASP solvers. ASSAT: assat.cs.ust.hk; Ccalc: www.

cs.utexas.edu/users/tag/ccalc; Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels; DeReS and aspps: www.cs.uky.

edu/ai; DLV: www.dbai.tuwien.ac.at/proj/dlv; Smodels: www.tcs.hut.fi/

Software/smodels.
[2] C. Baral. Knowledge representation, reasoning and declarative problem solving.

Cambridge University Press, 2003.
[3] G. Brewka, I. Niemelä, and T. Syrjänen. Logic programs with ordered disjunction.

Computational Intelligence, 20(2):335–357, 2004.
[4] S. Costantini and A. Formisano. Answer set programming with resources. Journal

of Logic and Computation, 2009. To appear. Draft available as Report-16/2008
of Dip. di Matematica e Informatica, Univ. di Perugia: www.dipmat.unipg.it/

~formis/papers/report2008_16.ps.gz.
[5] S. Costantini and A. Formisano. Modeling preferences and conditional preferences

on resource consumption and production in ASP. Journal of of Algorithms in
Cognition, Informatics and Logic, 64(1), 2009.

[6] A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. GASP: ASP with lazy grounding.
In Proc. of LaSh08, 2008.

[7] W. Faber, G. Pfeifer, N. Leone, T. Dell’Armi, and G. Ielpa. Design and implemen-
tation of aggregate functions in the DLV system. Theory and Practice of Logic
Programming, To appear.

[8] P. Kärger, N. Lopes, A. Polleres, and D. Olmedilla. Towards logic programs with
ordered and unordered disjunction. In Proc. of ASPOCP’08 Workshop of ICLP08,
2008.

[9] D. B. Kemp and P. J. Stuckey. Semantics of logic programs with aggregates. In
Prog. of the 1991 International Logic Programming Symposium, pages 387–401,
1991.

[10] T. C. Son and E. Pontelli. A constructive semantic characterization of aggregates
in answer set programming. Theory and Practice of Logic Programming, 7(3),
2007.

14

The material of the following sections is essentially drawn from [4, 5]. It has been
recalled here for ease of the reader.

A A quick rush through the semantics of RASP

Semantics of a (ground) r-program is determined by interpreting p-literals as in ASP
and a-atoms in an auxiliary algebraic structure that supports operations and compar-
isons. The rationale behind the proposed semantic definition is the following. On the
one hand, we translate r-rules into a fragment of a plain ASP program, so that we do
not have to modify the definition of stability which remains the same: this is of some
importance in order to make the several theoretical and practical advances in ASP
still available for RASP. On the other hand, an interpretation involves the allocation
of actual quantities to a-atoms. In fact, this allocation is one of the components of an
interpretation: an answer set of an r-program will model an r-rule only if it is satisfied
(in the usual way, relying on stable model semantics) as concerns its p-literals, and the
correct amounts are allocated for the a-atoms. A last component of an interpretation
copes with the repeated firing of a rule: in case of several firings, the resource allocation
must be iterated accordingly.

In order to define semantics of r-programs, we have to fix an interpretation for
a-symbols. This is done by choosing a collection Q of quantities, and the operations to
combine and compare quantities. A natural choice is Q = Z: thus, we consider given a
mapping κ : CR → Z that associates integers to a-symbols. Positive (resp. negative)
integers will be used to model produced (resp. consumed) amounts of resources.

For the sake of simplicity, in what follows we will identify CR with Z (and κ being
the identity). This will not cause loss in the generality of the treatment.

Notation. Before going on, we introduce some useful notation. Given two sets X,Y ,
let FM(X) denote the collection of all finite multisets of elements of X, and let Y X

denote the collection of all (total) functions having X and Y as domain and codomain,
respectively. For any (multi)set Z of integers,

P
(Z) denotes their sum.

Given a collection S of (non-empty) sets, a choice function c(·) for S is a function
having S as domain and such that for each s in S, c(s) is an element of s. In other
words, c(·) chooses exactly one element from each set in S.

To deal with the disjunctive aspect of p-lists and to model the degrees of preference,
we mark each a-atom with an integer index. For each p-list its composing a-atoms are
associated, from left to right, with successive indices starting from 1. For single a-atoms,
the index will always be 0. So, any a-atom will be represented as a pair in N×Q that we
call an amount couple. For example: an interpretation for skim milk#2>whole milk#2,
occurring in the head of an r-rule, will involve one of the couples 〈1, 2〉 and 〈2, 2〉,
where the first components of the couples reflect the degree of preference and the
second elements are the quantities. For single a-atoms (in a head of an r-rule), such as
egg#2, no preference is involved and a potential interpretation is 〈0, 2〉.

Given an amount couple r = 〈n, x〉, let degree(r) = n and amount(r) = x. Notice
that the amount can in principle be negative (e.g., if Q = Z). We extend such a
notation to sets and multisets, as one expects: namely, if X is a multiset then degree(X)
is defined as the multiset {[n | 〈n, x〉 is in X]}, and similarly for amount(X). E.g., if
X = {[〈1, 2〉, 〈3, 1〉, 〈1, 2〉]} then degree(X) is {[1, 3, 1]} and amount(X) is {[2, 1, 2]}.

15

Interpretation of RASP Programs. In what follows, we will apply a syntactical
restriction on the form of the r-rules. Namely, we impose that each a-atom cannot occur
in more than one p-list within the same rule. (Clearly, a q#a can occur in several p-
lists of different rules.) Though this restriction is not strictly needed, for the sake of
simplicity we focus on this case.

An interpretation for an r-program P must determine an allocation of amounts for
all occurrences of such amount symbols in P . We represent produced quantities (i.e.,
a-atoms in heads) by positive values, while negative values model consumed amounts
(i.e., a-atoms in bodies). For each r-symbol q, the overall sum of quantities allocated to
(produced and consumed) a-atoms of the form q#a must not be negative. The collection
SP of all potential allocations (i.e., those having a non-negative global balance)—for
any single r-symbol occurring in P (considered as a set of rules)—is the following
collection of mappings:

SP =
n
F ∈ (FM(N×Q))P | 0 6

P“S
γ∈P amount

`
F (γ)

´”o
The rationale behind the definition of SP is as follows. Let q be a fixed r-symbol. Each
element F ∈ SP is a function that associates to every rule γ ∈ P a (possibly empty)
multiset F (γ) of amount couples, assigning certain quantities to each occurrence of
a-atoms of the form q#a in γ. All such F s satisfy (by definition of SP) the requirement
that, considering the entire P , the global sum of all the quantities F assigns must
be non-negative. As we will see later, only some of these allocations will actually be
acceptable as a basis for a model.

An r-interpretation of the amount symbols in a ground r-program P is defined by
providing a mapping µ : τR → SP . Such a function determines, for each r-symbol
q ∈ τR, a mapping µ(q) ∈ SP . In turn, this mapping µ(q) assigns to each rule γ ∈ P
a multiset µ(q)(γ) of quantities, as explained above. The use of multisets allows us to
handle multiple copies of the same a-atom: each of them corresponds to a different
amount of resource to be taken into account.

The following is a more precise definition of r-interpretation (cf.,Def. 1).

Definition 2. An r-interpretation for a (ground) r-program P is a triple I = 〈I, µ, ξ〉,
with I ⊆ A(ΠP , C), µ : τR → SP , and ξ a mapping ξ : P → N+.

Intuitively: I plays the role of a usual answer set assigning truth values to p-literals;
µ describes an allocation of resources; ξ associates to each rule an integer representing
the number of times the (iterable) rule is used. By little abuse of notation, we consider
ξ to be defined also for p-rules and r-facts. For this kind of rules we assume the interval
[N1-N2] = [1-1] as implicitly specified in the rule definition, as a constraint on the
number of firings.

The firing of an r-rule (which may involve consumption/production of resources)
can happen only if the truth values of the p-literals satisfy the rule. We reflect the fact
that the satisfaction of an r-rule γ depends on the truth of its p-literals by introducing
a suitable fragment of ASP program bγ. Let the r-rule γ have L1, . . . , Lk as p-literals
and R1, . . . , Rh as a-atoms (or p-lists). The ASP-program bγ is so defined:

bγ =

8>>>><>>>>:
{← L1, . . . ,← Lk } if the head of γ is an a-atom or a p-list

{← L1, . . . ,← Lk, if γ has the p-atom H as head
H ← L1, . . . , Lk } and h > 0

{ γ } otherwise (e.g., γ is a p-rule).

Def. 3, to be seen, states that in order to be a model, an r-interpretation that
allocates non-void amounts to the r-symbols of γ, has to model the ASP-rules in bγ.
Some preliminary notion is in order.

16

So far we have developed a semantic structure in which r-rules are interpretable by
singling-out suitable collections of amount couples. Different ways of allocating amount
of resources to an r-program are possible. To be acceptable, an allocation has to reflect,
for each p-list r in P , one of the admissible choices that r represents. In order to denote
such admissible choices we need some further notation. Let ` be either a p-list (or, an
a-atom) in r-rule γ. Let

setify(`) =

{〈0, q, a〉} if ` is q#a

{〈1, q1, a1〉, . . . , 〈h, qh, ah〉} if ` is q1#a1> · · ·>qh#ah for h > 1
We will use setify to represent the a-atoms of rules as triples denoting: the position
in each preference list where they occur; the r-symbol they contain; the amount that
is required for this r-symbol in that preference list. We generalize the notion to any
multiset X: setify(X) = {[setify(`) | ` in X]}.

Let r-head(γ) and r-body(γ) denote the multiset of p-lists occurring in the head and
in the body of γ, respectively. To distinguish, in the representation, between a-atoms
occurring in heads and in bodies, we define setifyb(γ) and setifyh(γ) as the multisets
{[setify(x) | x ∈ r-body(γ)]} and {[setify(x) | x ∈ r-head(γ)]}, respectively.

We associate to each r-rule γ, the following set R(γ) of multisets. Each element
of R(γ) represents a possible admissible selection of one a-atom from each of the p-
lists in γ and an actual allocation of an amount (taken in Q via the function κ) to
the amount symbol occurring in it. Notice that the quantities associated to a-atoms
occurring in the body of γ are negative, as these resources are consumed. Vice versa,
the quantities associated to a-atoms of the head are positive, as these resources are
produced.

R(γ) =
n
{[〈i, q, κ(a)〉 | 〈i, q, a〉 = c1(S1) and S1 in setifyh(γ)]}
∪ {[〈i, q,−κ(a)〉 | 〈i, q, a〉 = c2(S2) and S2 in setifyb(γ)]}
| for c1 and c2 choice functions for setifyh(γ) and setifyb(γ), resp.

o
where c1 (resp. c2) ranges on all possible choice functions for setifyh(γ) (resp.
for setifyb(γ)).

To account for multiple firings, we need to be able to “iterate” the allocation of
quantities for a number n of times: to this aim, for any n ∈ N+ and q ∈ τR, let

Rn(γ) =
nS
{[X1, . . . , Xn]} | {[X1, . . . , Xn]} ∈ FM

`
R(γ)

´o
and

Rn(q, γ) =
n
{[〈i, v〉 | 〈i, q, v〉 is in X]} | X ∈ Rn(γ)

o
.

While R(γ) represents all the different ways of choosing one a-atom from each p-list
of γ, the collection Rn(γ) represents all the possible ways of making n times this choice
(possibly, in different manners). Fixed an r-symbol q, the set Rn(q, γ) extracts from
each alternative in Rn(γ) the multiset of amount couples relative to q. Def. 3 exploits
the set Rn(q, γ) to impose restrictions on the global resource balance, for each q.

Definition 3. Let I = 〈I, µ, ξ〉 be an r-interpretation for a (ground) r-program P . I
is an answer set for P if the following conditions hold:

• for all rules γ ∈ P“
∀ q ∈ τR

`
µ(q)(γ) = ∅

´”
∨
“
∀ q ∈ τR

`
µ(q)(γ) ∈ Rξ(γ)(q, γ)

´
∧
`
N1,16ξ(γ)6N1,2

´”
• I is a stable model for the ASP-program bP , so defined

bP =
Sbγ ˛̨̨̨γ is a p-rule in P, or

γ is a r-rule in P and ∃ q ∈ τR
`
µ(q)(γ) 6= ∅

´ ff

17

The two disjuncts in Def. 3 correspond to the two cases: a) the rule γ is not fired,
so null amounts are allocated to all its a-symbols; b) the rule γ is actually fired ξ(γ)
times and all needed amounts are allocated (by definition this happens if and only
if ∃ q ∈ τR

`
µ(q)(γ) 6= ∅

´
holds). Note that case b) imposes that the amount couples

assigned by µ to a resource q in a rule γ reflect one of the possible choices in Rξ(γ)(q, γ).

B An ASP encoding of RASP

Let ΠT be a set of fresh p-symbols with {notfired ,fired , use, r rule, a atom} ⊆ ΠT .
Given a ground r-program S, let SR ⊆ S be the set of r-rules in S and let SP = S \SR
(i.e., the p-rules). For any set of ASP rules X, let atoms(X) denote the set of all atoms
occurring in X. For any ASP rule γ, let lits+(γ) (resp., lits−(γ)) be the set of atoms
occurring positively (resp., negatively) in the body of γ. Moreover, let head(γ) be the
set of atoms occurring in the head of γ.

A translation T from RASP into ASP is defined as follows. We start by univocally
naming each r-rule γ in SR. This is done by introducing a fresh constant symbol rγ
(i.e., a constant not appearing elsewhere) and the fact:

r rule(rγ). (1)

Let the r-rule γ be of the form
q0#a0, . . . , qh#ah ← qh+1#ah+1, . . . , qk#ak, L1, . . . , Ln.

for some 0 6 h 6 k, n > 0, and (k − h) + n > 0, with L1, . . . , Ln p-literals. For each
a-atom qi#ai in γ we introduce the fact:

a atom(rγ , i, qi, âi). (2)

where âi = ai if 0 6 i 6 h and âi = −ai if h < i 6 k. These facts represent in
the ASP translation the a-atoms occurring in SR. The second argument of a atom is
needed in the ASP translation to distinguish among different occurrences of identical
a-atoms of the r-rule. Recall, in fact, that multiple copies of the same a-atom must
not be identified, since they corresponds to a different amount of resource. Keeping
track of multiple copies of a-atoms reflects, in the translation into ASP code, the use
of multisets in defining the semantics of r-programs.

As mentioned, the two disjoints of the formula in Def. 3 discriminate the two
situations in which an r-rule γ is fired or not. These two situations are modeled in ASP
through the two rules

fired(rγ) ← not notfired(rγ). notfired(rγ) ← not fired(rγ). (3)

Whenever an r-rule γ is fired, all its resources are consumed/produced. We represent
the fact that a certain amount ai of a resource qi (due to the a-atom qi#ai in γ), is
actually used if and only if γ is fired, through the ASP rules (for each i ∈ {0, . . . , k}):

use(rγ , i, qi, âi) ← fired(rγ), a atom(rγ , i, qi, âi).
fired(rγ) ← use(rγ , i, qi, âi).
notfired(rγ) ← not use(rγ , i, qi, âi).

(4)

Finally, we impose that the firing of γ has to be enabled by the truth of the literals
L1, . . . , Ln, through the ASP rules (for each j ∈ {1, . . . , n}):

auxLi,γ ← not auxLi,γ , Li, fired(rγ). (5)

18

The translation T (γ) of γ is made of the rules (1) and (2)-(5):
r rule(rγ). a atom(rγ , i, qi, âi).
fired(rγ)← not notfired(rγ). notfired(rγ)← not fired(rγ).
use(rγ , i, qi, âi)← fired(rγ), a atom(rγ , i, qi, âi). fired(rγ)← use(rγ , i, qi, âi).

notfired(rγ)← not use(rγ , i, qi, âi). auxLi,γ ← not auxLi,γ , Li,fired(rγ).
where i and j range over {0, . . . , k} and {1, . . . , n}, respectively.

The above described translation can to be slightly modified to treat r-rules having
a p-atom as head (see [4] for the details). Facts are treated as r-rules that are supposed
to be always fired. Hence, if γ is the r-fact q#a. then T (γ) is as follows:

r rule(rγ). a atom(rγ , 0, q, a).
fired(rγ). use(rγ , 0, q, a).

(6)

By defining T (γ) = {γ} for all p-rules, the translation of an r-program S is defined
as the ASP program T (S) =

S
γ∈S T (γ).

Let M be a model of the program T (S). For some r-symbols q, some of the atoms
use(rγ , i, q, a), occurring in T (S), are true in M . These atoms are intended to represent
the amounts of resources involved in fired r-rules. To take into account the constraints
on global balance of the allocated amounts, we introduce the condition pos(M):

pos(M) = ∀q ∈ τR
`P
{[a | use(rγ , i, q, a) ∈M]} > 0

´
(7)

Such a condition can be imposed in the ASP encoding by means of a constraint involv-
ing an aggregate sum, as follows (cf., among others [9, 10, 7]):

← sum{A : use(Rule, I, Q,A)} < 0, res symb(Q).
Moreover, for each r-symbol q occurring in T (P) a fact res symb(q) is added to the en-
coding. Observe that we are introducing an aggregate literal in a constraint. Hence, no
literal in T (S) is defined depending on such aggregate. This ensures that the resulting
program is aggregate stratified. Stable model semantics can be smoothly extended to
such class of programs by generalizing the notion of reduct of a program (cf., [9, 10, 7]).

An inference engine for RASP. The above outlined translation can be amelio-
rated, since the rules (3) and (4) can be factorized by exploiting variables. This allows
us to design the core of an inference engine for reasoning on resource allocations and
imposeing correct usage of resources:

fired(Rule) ← not notfired(Rule), r rule(Rule).
notfired(Rule) ← not fired(Rule), r rule(Rule).
use(Rule, I,Res,Amount) ← fired(Rule), a atom(Rule, I,Res,Amount).
fired(Rule) ← use(Rule, I,Res,Amount).
notfired(Rule) ← not use(Rule, I,Res,Amount).

The balance for each resource is evaluated by the following fragment of code. Observe
the use of an ASP constraint involving an aggregate function to evaluate sums and to
impose the condition (7):

res symb(Res) ← a atom(Rule, I,Res,Amount).
← sum{A : use(Rule, I,Q,A)} < 0, res symb(Q).

An ASP-based solver for RASP would act as follows: first each r-rule of the RASP
program is translated as previously explained (recall that p-rules are left unchanged);
then, the rendering of all r-rules must be joined with the above ASP program that
acts as an inference engine and performs the concrete reasoning activity on resource
allocations; finally, the answer sets (if any) of the obtained ASP program are calculated
by means of a standard ASP solver [1]. From each answer setM so computed, an answer
set IM of the original r-program can be extracted.

19

