UML Model Transformations
for Quality and Correctness

Andrea Baruzzo
e-mail: baruzzo@dimi.uniud.it

Dipartimento di Matematica e I;lformatica
Universita degli Studi di Udine

Agenda

Q Approaches for UML Quality Assurance
U Model Transformations

U Model Transformations for Quality

U Model Transformations for Correctness

Q Projects for Thesis

Methods for UML Model Quality Assurance

Need of effective
tools for quali

O Different aspects of a system
checks

covered by
different types of diagrams

U Constructive methods vs. Analytical methods:
Error Prevention or Detection?

U Both!
O Analytical with inconsistency detection
O Constructive with the application of good design
principles and the identification of “critical model
patterns” supporting them

U Quality is more than correctness!

Techniques and Tools for Model Quality Assurance

U Automated Model Analysis is useful for both
O Model Validation
1 Model Verification

O Validation checks the model against the
(explicit or latent!) needs of the user (customer,
stakeholder,...)

O Model execution simulations
O Visual debuggers (model-level debugging)

O Verification checks the conformness of the model with

respect to selected quality attributes
U Consistency

U Correctness

U Software design principles

Model reviews
oriented
O Walkthroughs ==
U Participants: model author and (usually) domain experts
or project leaders (stakeholders responsible for quality)
U The author inspect the model, describe the architecture
4 ... and mimics its behavior simulating the execution of

the dynamics
d ... eventually gathering feedback from the participants

Verification -

Q Inspections oriented
. . <>
O Manual: using checklist =
O Automated: tool support

My work is aimed
essentially to

provide this type of
tool support

Models and Model Transformations

U A model is a simplified representation of a part of
the world named “the system” [Seidewitz, 2003]

O A model is useful if it helps to:
O better understand the system (or the source code)
O decide the appropriate actions needed to reach and

maintain the system’s goals

Maintain
synchronized
two different
things!

Source code is a model too!

Problems:
U Model and code synchronization
O Abstraction vs. implementation details .o @

(NN

Different
levels of
reasoning

U Partial solution;: MDA and Model Transformations

MDA (Model-Driven Architecture)

MDA Concept

L MDA is a process architecture!

O MDA prescribes specific
output (models!) for each e \F

software development
(Z=0] =]
phase
b Forms, transforms,
O The transition from one phase L 2 y "
to the next is performed by Irmdementation Implermentation

automatic transformations

Reduced manual synchronization efforts
Automatic consistency management between the
hierarchy of models

(N

MDA, tools support, and definitions...

O MDA is more a vision than a reality
Q4 Lacking of proper tool support...

O Need of a clear definition for transformation-related concepts

O Transformation: automatic generation of a target model
from a source model, according to a t. definition

U Transformation definition: set of t. rules that together
describe how a model in the source language can be
transformed into a model in the target language

Q Transformation rule: a description of how one or more
constructs in the source language can be transformed in
one or more construct in the target language

(NN

A Taxonomy of Model Transformations

Q1. Which model transformation approaches exists?
Q2. Which approach is more appropriate for a particular
problem?

Transformation taxonomy is useful to answer to Q1 and Q2

The taxonomy proposed [Mens&VanGorp, 2005]

investigate crucial questions:

Q|What needs to be transformed into what? |

U What are the important characteristics of a model transformation?
U What are the success criteria for a transformation language or tool?
U What are the quality requirements for such languages or tools?

U Which mechanism can be used for model transformations?

Question: What needs to be transformed into what?

Program transformations vs. Model transformations

Number of source and target models
4 Transformation of multiple source models
O Transformation for multiple target models m?;;f;ﬁgfg‘?j_)

Different
=
@

Different aspects
(security,

PIM Py -
@
S - Model;
rs L 4 Y
[
psm, | | Psmy, PSM Model »| Merged
n 2 modsl

T — T

A vertical one-to-many model transformation M

A horizontal many-to-ona model transformation

10

Technological Spaces

U A Technological space is determined by the metamodel

to be Used: Metamodel Languages

Q XML TS (XML schemd;|HTML, XML, XSLT..))
QO MDA TS (MOF; UML)

XML

Document
XML Doc conforming XMI syntax
and MOF UML semantics

UML M
Model

Transformation in XML TS

Similar transformation in MDA
TS requires a MOF metamodel
for XML (See QVT...)

11

Endogenous vs. Exogenous transformations

U Exogenous: t. between models expressed in different

languages (translation)

U Synthesis of high-level models (PIM) into implementation models
(i.e. Java Program). Also called Code generation

U Reverse Engineering (the inverse of synthesis)

U Migration from a program in one language to another,
but keeping the same level of abstraction

U Endogenous: t. between models expressed in the same

language (rephrasing)

U Optimization (improve certain operational qualities preserving the
semantics)

U Refactoring (change internal structure without changing observable
behavior)

U Simplification and Normalization (decrease syntactic complexity)

12

Horizontal vs. Vertical transformations

U Horizontal: source and target model reside at the same

abstraction level
U Refactoring (also endogenous)
U Migration (also exogenous)

U Vertical: source and target model reside at different levels

of abstraction
U Refinement (a specification is gradually refined into a full-fledged
implementation, by means of successive refinement steps that add

more concrete details)

U Exogenous/Endogenous and Horizontal-Vertical are
orthogonal dimensions!

13

A missed dimension?

U The proposed taxonomy seems to not consider an
important aspect: the purpose of the t.

O Purpose is more useful in order to categorize t. for a user-
oriented perspective
QO Natural mapping with functional specifications
U More relevant in order to choose tools
U Reflect classical software engineering perspective
(important activities in the software life cycle)

U We propose a new dimension called “Purpose”
Q It is orthogonal to all other levels in the taxonomy

14

Purpose Level of Abstraction

uc Transformation Purpose/

Model
Transformation

Design,
testing

Transformation for
Correctness

Transformation for
Quality

«realize»
|

Inconsistency
Discovery

Inv ariant Syntesis

Implementation

Transformation for
Construction

Code Generation

15

Transformations for Quality

uc Transformation Purpose (Rennemem)/

Model
Transformation for

«realize»

i
, |
«realize» 1
|

-’ h
4. «realize»
N

«realize»

Find Antipattern

Find Architectural
Pattern

\
il
i

|
/
i
L=
-

L~~~ Model{Reverse Bngineering ">~
! \

PIM Reverse
Engineering

is-a

Circular
Dependency

Dependency Goes Up

16

Circular Dependency (Antipattern)

class Player /
Player I

+MoveMode
+Player
+Team
class Game /
Game I
+Arena
+Ball
+Game
+GaneConponent Gane)

~ g

(romLogical View)

(fomLogical View)

Circular Dependency (full diagram)

uc Dependency Diagram /

Is this
approach
scalable?

Game::Game
[@) Game::
GameC

— /‘

Don’t Expect Miracles!

File dependency diagram of a 70,000-line program (138 classes, 470 relations)

O The tool should:
U keep hidden the full graph dependency
O extract only relevant dependencies from the dependency graph in

order to reveal the “pattern” we are looking for
19

Find Architectural Patterns

uc Transformation Purpose (Rennemem)/

Model
Transformation for
Quality

wealizes” 77 i N
—ao== Tveea.z[«realizer P .
7 I \
~< «realize» P “
ANy HE N
7 7 H «realize»
, J «realize» N
7 /! " ! «realize» N
¢ / 3 ‘ N e
i \ \ So et -~
! Find Antipattern \ ' >
h ! i
|] -
i i \ N
\ ! \ \
\ / ' \ / \
\ / |) \
\ / ' / \
\ X y / ! ! Dependency Goes Up]
N Find Architectural P \ \ \ y
~ Pattern - [S,) 4
p -] .
I +#" " "Model{Reverse Engineering "~ .
- y ' \ . el
77777777777 y o
/ PIM Reverse
! Engineering
|
\
™\

10

Layer [POSA1]

U Intent: helps to structure applications that can be decomposed
into groups of subtasks in which each group of subtasks is at a
particular level of abstraction

Q4 Structure:
U Layer N's services may depend on other services in Layer N or N-1

U Dependencies between Layer N and Layer N-2 are forbidden
class Qrcular Dependency .. /

U Services at Layer N should have -
the same level of abstraction O [iwen)

Atool is able to
automatically check
only dependencies,

not abstraction leyels!

LayerN-1

Client *4583 Layer M

——

highest level of abstraction

Dependencies between
classes become
dependencies between

packages! Eeyeet
Laver] lowest level of abstraction S
O
@
21

mare layers

Find good Model Properties (inspired by good principles)

uc Transformation Purpose (Rennemem)/

Model
Transformation for
Quality

ATV,

«realize» . v AN
i Tees,zl wealizes A N
Sael 7 Y v
. _«realize» Do AN
’ Y \ S
L A ! ' «realize»
% J «realize» | N
’ ’ N | «realize»

Find Antipattern : \

\

: i Dependency Goes Up

\

Find Architectural
Pattern

I
/
P
- [T SR
be- TR

L~~~ Model{Reverse Bngineering >~

PIM Reverse
Engineering

22

11

Stratification and Dependency Inversion Principle (DIP)

Simple Layers

Policy Layer fpr=-======n

Mechanism
Layer

4 It has the insidious characteristic that the
Policy Layer (more abstract) is sensitive
to changes all the way down in the
Utility Layer (more concrete)!

U Abstractions should be more stable than
concretizations!

Utility Layer

Figure 4: Abstract Layers

U Each of the lower level layers
are represented by an abstract
class. The actual layers are
then derived from these
abstract classes

U Each of the higher level
classes uses the next lowest
layer through the abstract
interface

soliov Laver Lo Mechanism
Policy Layer > Interface
Absitraci
'\Iefl.:i:;:ml ---3m| Utility Interface
Abstract
Utility Layer

23

A generalized form of DIP

U DIP decomposes systems by means of

abstractions

O What if we apply DIP to every dependency
(rather than only to generalization)?

U Abstract things should not depend from concrete

things

U General (more reusable) things should not
depend from specific things

U Observation: a composite class is less general
(reusable) than its components!

24

12

Dependency Goes Up (Carlo Pescio)

25

Dependency Goes Up (after transformation)

"

13

Relation between Patterns and Good Principles

uc Transformation Purpose (Rennemem)/

Model
Transformation for
Quality

Y
«realize» s i N
B e A Vo ~
e -2l wealizes P .
L’ el ' \ N
o Pattern Recov ery AL «realize» ' N
e 7 AN E «realize»
5 L SN «realize») N

! «realize» N
! '

Find Antipattern

o\,
‘ : \
4 i ! | Dependency Goes Up |
Find Architectural 4 ' \ /
Pattern 2 J et A
Y T]
4 +7,.~""ModeliReversg
- 4 | \
PIM Reversg 3 b
Engipe g !
is-a Tombstone Packages
Circular
Dependency 27

Transformations for Correctness

O Verify the dynamic view of the system against the static view
and its constraints (“software contracts”)

U Identify and refine specifications too strong
QO Identify new constraints (specifications too weak?)
O Build precise UML models

4 Class diagrams

U Sequence diagrams

O Statechart diagrams

O (OCL) specifications (the software contract)

U Independence from the specification language (OCL, Promela,
Alloy,...)

28

14

The notion of class correctness

{Pre, [Z/é] A Invc} m {Posta [T/€] A Inuc}

e For any set of valid arguments ey, ..., e, 0 a creation procedure p:

{ Default o A Prey (Z/€]} p { Posty [#/€] A Invuc}

e For every public method m aend any set of valid arguments ey,...,e,:

Definition 1 (Meyer). A class C is correct with respect to its specification if

where Default, denotes the assertion expressing that the attributes of C have
the default values of their type.

@ But what happens when this does not hold? Abl
U Faulty Program or Inconsistent Specification?
U Due to the size of most systems, bugs in assertions are not so unlikely!
29
The Starting point: an Object Model and its specifications
Flight Airplane
& flightNumber:int g\‘éhts |tsPIane1 &l numberOfSeats:int
BawailableSeats():int
flights | 0..* \{D)
conext P oo/
passengers | 0..* p :Person :Alight
Person &}
context Flig
& name:string body: itsPle
bookp)
availableSeats)
[, ,,,,,
S r:Reservation
[seatsAvailable]: new
"y
| 5
30

15

Diapositiva 29

Abl

This notion clearly states what has to happen when we call a method in a state
which satisfies Prem [x/e] ~ InvC, but what happens when this does not hold?

As already said, failure to meet any of the responsibilities stated in the contract
results in a break of the contract, and indicates the existence of a bug somewhere
in the design or implementation of the software or in the assertions themselves.

Due to the size of most systems, the latter chance is not so unlikely.
Andrea Baruzzo; 08/03/2007

Our method for Static Verification of UML model consistency —
The process (BEDAV) [MoDeV?2a06]

O Build the UML model of the system
O Build the structure view
O Build the dynamic (behavioral) view

Q Enrich the model with the (OCL) specifications

O Decompose sequence diagrams in blocks

O Annotate each block with formulas to be imposed and to be

checked

Q Verify sequence diagrams against the formulas of each block

31

The method at work —the model

=

salary

age

[age > 30]: raiseSalary(700)

ey

salary

AN
{salary > 1000}

Employee Company
- age rte-ger _employee _employer | - location: String
- name: String - name: String
- salary: Double WorksFor 0.1
= + fire(Employee)
+ getAge() + hire(Employee)
+ {Double)
sd Employee dynamics /
% ACME :Company andrea :Employee
Client
hire(andrea) AN
{salary= 800}
{age > 40}
getAge()

32

16

The method at work —the (OCL) specifications

Employee

Company

- age: Integer
- name: String
- salary: Double

-employer | - location: String
- name: String

-employee

WorksFor 0.1

+ getAge()

context Company

+ {Double)

+ fire(Employee)
+ hire(Employee)

inv: self.employee—size)] —
self .employee—>asSet()—>size ()
cante|context Employee
Pre| inv: (self.age >= 18)
pre
POS| context Employee:: getAge() Integer
+ pre: true
conte . —
ore post: (result = self.age)
POS context Employee:: raiseSalary(amount : Double) : Double
post: (self.salary = (self.salary@pre + amount))
post: (result = self.salary)

33

The method at work - decomposition

We need to impose that

B =result(P4) A Posty [Z/€]
$p =®g A Posty [.‘f/é]

and check that

D4 A guard A Dg —> Prey [Z/é]

P4 = Pjink(a)

®p = Pjik(B)

bn — Inuy A

[guard]: m1() i

Qo = Inux

17

Diapositiva 34

Ab3 per ciascuno di questi blocchi costruiamo delle formule che ci garantiscano che
I'esecuzione del blocco preservi gli invarianti delle classi e sia consistente con le pre

e post condizioni di ciascun metodo
Andrea Baruzzo; 26/09/2006

The method at work — decomposition

R2

{salary= 800}
{age>40}

C [S.I ACME -Company andrea Employee
A
Client
Ay hire(andrea) L M
— . o -
sl N \ C
getAge() il
age U
83 oll ISl e T P
D. Lk
[age >|30]: raiseSalary(700) i
[- o —U
_ RS A | =
F 8 R
[
{salary > 1000}

R4

RS

35

The method at work — validation (equations checked)

I Company A Andrea.age > 40 A salary = 800 = True

Andrea.age > 40 A salary = 800 A Result = Andres.age —> Andrea.age > 18

Inv Gompany N Result = Andrea.age =—> I company
Inv Company A Andrea.age > 30 A Andrea.age > 40 A salary = 800 = True
Inv gompany A Result = 1500 = Inv company
Andrea.age > 40 A Andrea.salary = 1500 — Andrea.age > 18

Company.isDe fined A Andrea.isDefined A Inv company =
Andrea.isDe fined A Company.employee —> exclude(Andrea)

(i)

I Company A Company.employee —> includes(Andrea) = Inv company

36

A

18

Diapositiva 36

Ab4 If we add in the diagram an initial constraint specifying that
Company.employee —> excludes(Andrea) then we can prove the new (i) and

then the diagram becomes consistent.
Andrea Baruzzo; 26/09/2006

. now the diagram becomes consistent!

[

I {Company.employee —> excludes (Andrea) }

>40

B'] ACME :Company | andrea ‘Employee [sz

A ’ L Mo .

hire(andrea) ~g . fsalary= 800}
— ni® i {age>40}
getAge() Rl rs4

R3 e LS a
b Ml salry ’ H B 5

Q
---8
2

N
{salary > 1000}

37

Project for Thesis

U Tools for computer-aided validation of UML models
U Visual debuggers, simulators, model animations...

U Tools for computer-aided verification of UML models
U Proof engines, formal verification methods (static or dynamic), test
case generators, model testing tools
U Metrics tools for UML models
O UML profiles for quality

U Formal specifications of Design Patterns

O Tools for automate the layout of UML diagrams
U (i.e. according to Dependency Goes Up rule)

O Tools for model transformations
38

19

Bibliography

U [Mens&VanGorp, 2005]
Tom Mens, Pieter Van Gorp — “A Taxonomy of Model Transformation
and its Application to Graph Transformation”, Université de Mons-
Hainaut, Mons, Belgium, 2005

Q [Meyer92]

Bertrand Meyer, “Applying Design by Contract”, ACM Computer, Volume 25, Issue 10, 1992

0 [MoDeV2a06]
Andrea Baruzzo and Marco Comini, “Static Verification of UML Model Consistency”,
MoDeV2a Workshop, Satellite Event of the MODELS 2006 ACM/IEEE 9th International

Conference on Model Driven Engineering Languages and Systems, Genoa, Oct. 1-6, 2006

0 [POSAL1, 1996]
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal — “Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns”, Wiley&Sons, 1996

O [Seidewitz, 2003]
Ed Seidewitz — “What Models Means”, IEEE Computer, 2003

39

20

