
1

1

UML Model Transformations
for Quality and Correctness

Andrea Baruzzo
e-mail: baruzzo@dimi.uniud.it

Dipartimento di Matematica e Informatica
Università degli Studi di Udine

2

Approaches for UML Quality Assurance

Model Transformations

Model Transformations for Quality

Model Transformations for Correctness

Projects for Thesis

Agenda

2

3

Different aspects of a system
covered by

different types of diagrams

Constructive methods vs. Analytical methods:
Error PreventionPrevention or DetectionDetection?

Both!
Analytical with inconsistency detection
Constructive with the application of good design
principles and the identification of “critical model
patterns” supporting them

Quality is more than correctness!

Methods for UML Model Quality Assurance

Need of effective
tools for quality
checks

4

Techniques and Tools for Model Quality Assurance

Automated Model Analysis is useful for both
Model Validation
Model Verification

Validation checks the model against the
(explicit or latent!) needs of the user (customer,
stakeholder,…)

Model execution simulations
Visual debuggers (model-level debugging)

Verification checks the conformness of the model with
respect to selected quality attributes

Consistency
Correctness
Software design principles

3

5

Model reviews

Walkthroughs
Participants: model author and (usually) domain experts
or project leaders (stakeholders responsible for quality)
The author inspect the model, describe the architecture
… and mimics its behavior simulating the execution of
the dynamics
… eventually gathering feedback from the participants

Inspections
Manual: using checklist
Automated: tool support

My work is aimed
essentially to

provide this type of
tool support

Validation -
oriented

Verification -
oriented

6

Models and Model Transformations

A model is a simplified representationsimplified representation of a part of
the world named “the system” [Seidewitz, 2003]

A model is useful if it helps to:
better understand the system (or the source code)
decide the appropriate actions needed to reach and
maintain the system’s goals

Source code is a model too!
Problems:

Model and code synchronization
Abstraction vs. implementation details

Partial solution: MDA and Model Transformations

Maintain
synchronized
two different

things!

Different
levels of

reasoning

4

7

MDA (Model-Driven Architecture)

MDA is a process architecture!

MDA prescribes specific
output (models!) for each
software development
phase

The transition from one phase
to the next is performed by
automatic transformations

Reduced manual synchronization efforts
Automatic consistency management between the
hierarchy of models

8

MDA, tools support, and definitions…

MDA is more a vision than a reality
Lacking of proper tool support…

Need of a clear definition for transformation-related concepts

Transformation: automatic generation of a target model
from a source model, according to a t. definition

Transformation definition: set of t. rules that together
describe how a model in the source language can be
transformed into a model in the target language

Transformation rule: a description of how one or more
constructs in the source language can be transformed in
one or more construct in the target language

5

9

A Taxonomy of Model Transformations

Q1. Which model transformation approaches exists?
Q2. Which approach is more appropriate for a particular
problem?

Transformation taxonomytaxonomy is useful to answer to Q1 and Q2

The taxonomy proposed [Mens&VanGorp, 2005]
investigate crucial questions:

What needs to be transformed into whattransformed into what?
What are the important characteristicsimportant characteristics of a model transformation?
What are the success criteriasuccess criteria for a transformation language or tool?
What are the quality requirementsquality requirements for such languages or tools?
Which mechanismmechanism can be used for model transformations?

10

Question: What needs to be transformed into what?

ProgramProgram transformations vs. ModelModel transformations

Number of source and target models
Transformation of multiple sourcemultiple source models
Transformation for multiple targetmultiple target models

Different
platforms

Different aspects
(security,

persistence,
middleware,…)

6

11

Technological Spaces

A Technological spaceTechnological space is determined by the metamodelmetamodel
to be used:

XML TS (XML schema; HTML, XML, XSLT…)
MDA TS (MOF; UML)

XML
Document

UML
Model

Transformation in XML TS

XML Doc conforming XMI syntax
and MOF UML semantics

XSLT

XMI Parser

Similar transformation in MDA
TS requires a MOF metamodel
for XML (See QVT…)

Metamodel Languages

12

Endogenous vs. Exogenous transformations

Exogenous: t. between models expressed in different
languages (translationtranslation)

Synthesis of high-level models (PIM) into implementation models
(i.e. Java Program). Also called Code generation
Reverse Engineering (the inverse of synthesis)
Migration from a program in one language to another,
but keeping the same level of abstraction

Endogenous: t. between models expressed in the same
language (rephrasingrephrasing)

Optimization (improve certain operational qualities preserving the
semantics)
Refactoring (change internal structure without changing observable
behavior)
Simplification and Normalization (decrease syntactic complexity)

7

13

Horizontal vs. Vertical transformations

Horizontal: source and target model reside at the same
abstraction level

Refactoring (also endogenous)
Migration (also exogenous)

Vertical: source and target model reside at different levels
of abstraction

Refinement (a specification is gradually refined into a full-fledged
implementation, by means of successive refinement steps that add
more concrete details)

Exogenous/Endogenous and Horizontal-Vertical are
orthogonal dimensions!

14

A missed dimension?

The proposed taxonomy seems to not consider an
important aspect: the purpose of the t.

PurposePurpose is more useful in order to categorize t. for a user-
oriented perspective

Natural mapping with functional specifications
More relevant in order to choose tools
Reflect classical software engineering perspective
(important activities in the software life cycle)

We propose a new dimensiondimension called “Purpose”
It is orthogonal to all other levels in the taxonomy

8

15

Purpose Level of Abstraction

uc Tra ns form a tion P urpos e

M ode l
Tra ns form a tion

Tra ns form a tion for
Q ua lity

Tra ns form a tion for
Corre c tne s s

Tra ns form a tion for
Cons truc tion

Code G e ne ra tion

Inv a ria nt S ynte s is

Inc ons is te nc y
Dis c ov e ry

? ? ?

« re a l i ze »

« re a l i ze »

« re a l i ze »

Design,
testing

Testing

Implementation

16

uc Transformation Purpose (Refinement)

Model
Transformation for

Quality

Pattern Recov ery

Find Design Pattern

Find Architectural
Pattern

Find Antipattern

Model Rev erse Engineering

PIM Rev erse
Engineering

Tombstone Packages

Model Properties

Dependency Goes Up

«realize»

«realize»
«realize»

«realize»

«realize»

«realize»

Transformations for Quality

Circular
Dependency

is-a

9

17

class Player

Player

+ MoveMode
+ Player
+ Team

(from Logical View)

Player

MoveMode

Team

GameComponent
Game::Ball

Circular Dependency (Antipattern)

class Game

Game

+ Arena
+ Ball
+ Game
+ GameComponent

(from Logical View)

Game

GameComponent

Ball

Arena

Player::Player

18

Circular Dependency (full diagram)
uc Dependency Diagram

Game::Arena

Game::Ball

Game::Game

Game::
GameComponent

Player::
MoveMode

Player::Player Player::Team

Is this
approach
scalable?

Only with proper tool
support (smart

visualization, automatic
diagram synthesis!,

automatic consistency
management,…)

10

19

File dependency diagram of a 70,000-line program (138 classes, 470 relations)

Don’t Expect Miracles!

The tool should:
keep hiddenhidden the full graph dependency
extract only relevant dependenciesonly relevant dependencies from the dependency graph in
order to reveal the “pattern” we are looking for

20

uc Transformation Purpose (Refinement)

Model
Transformation for

Quality

Pattern Recov ery

Find Design Pattern

Find Architectural
Pattern

Find Antipattern

Model Rev erse Engineering

PIM Rev erse
Engineering

Tombstone Packages

Model Properties

Dependency Goes Up

«realize»

«realize»
«realize»

«realize»

«realize»

«realize»

Find Architectural Patterns

Layer

is-a

11

21

Layer [POSA1]

Intent: helps to structure applications that can be decomposeddecomposed
into groups of subtasksgroups of subtasks in which each group of subtasks is at a
particular level of abstractionparticular level of abstraction
Structure:

Layer N’s services may depend on other services in Layer N or N-1
Dependencies between Layer N and Layer N-2 are forbidden
Services at Layer N should have
the same level of abstraction

A tool is able to
automatically check
only dependencies,

not abstraction levels!

class Circular Dependency ...

Layer1

LayerN-1

LayerN

Dependencies between
classes become

dependencies between
packages!

22

uc Transformation Purpose (Refinement)

Model
Transformation for

Quality

Pattern Recov ery

Find Design Pattern

Find Architectural
Pattern

Find Antipattern

Model Rev erse Engineering

PIM Rev erse
Engineering

Tombstone Packages

Model Properties

Dependency Goes Up

«realize»

«realize»
«realize»

«realize»

«realize»

«realize»

Find good Model Properties (inspired by good principles)

12

23

Stratification and Dependency Inversion Principle (DIP)

It has the insidious characteristic that the
Policy Layer (more abstract) is sensitive
to changes all the way down in the
Utility Layer (more concrete)!
Abstractions should be more stable than
concretizations!

Each of the lower level layers
are represented by an abstract
class. The actual layers are
then derived from these
abstract classes
Each of the higher level
classes uses the next lowest
layer through the abstract
interface

24

DIP decomposes systems by means of
abstractions
What if we apply DIP to every dependencyevery dependency
(rather than only to generalization)?

Abstract things should not depend from concrete
things
General (more reusable) things should not
depend from specific things
Observation: a composite class is less general
(reusable) than its components!

A generalized form of DIP

13

25

Dependency Goes Up (Carlo Pescio)

Before
transformation …

26

Dependency Goes Up (after transformation)

Useful for
identify circular
dependencies

at glance!

Abstraction layers
identification

cannot be
automated!

Not all people
preceive this

layout as natural,
especially with
composition.

14

27

uc Transformation Purpose (Refinement)

Model
Transformation for

Quality

Pattern Recov ery

Find Design Pattern

Find Architectural
Pattern

Find Antipattern

Model Rev erse Engineering

PIM Rev erse
Engineering

Tombstone Packages

Model Properties

Dependency Goes Up

«realize»

«realize»
«realize»

«realize»

«realize»

«realize»

Relation between Patterns and Good Principles

Layer

is-a imply

Circular
Dependency

is-a

violate

28

Transformations for Correctness

Verify the dynamic view of the system against the static view
and its constraints (“software contracts”)

Identify and refine specifications too strong

Identify new constraints (specifications too weak?)

Build precise UML models
Class diagrams
Sequence diagrams
Statechart diagrams
(OCL) specifications (the software contract)

Independence from the specification language (OCL, Promela,
Alloy,…)

15

29

The notion of class correctness

But what happens when this does not hold?
Faulty Program or Inconsistent Specification?

Due to the size of most systems, bugs in assertions are not so unlikely!

Ab1

30

The Starting point: an Object Model and its specifications

Flight

flightNumber:int

availableSeats():int

Airplane

numberOfSeats:int0..* 1
flights itsPlane

Person

name:string

0..*

0..*

passengers

flights
context Flight
inv: passengers->size() <= itsPlane.numberOfSeats

context Flight::availableSeats() : int
body: itsPlane.numberOfSeats - passengers->size()

sd Flight

p :Person :Flight

r :Reservation

book(p)

availableSeats()

:return seatsAvailable

[seatsAvailable]: new

setReservationProperties(p)

:r

Diapositiva 29

Ab1 This notion clearly states what has to happen when we call a method in a state
which satisfies Prem [x/e] ^ InvC, but what happens when this does not hold?
As already said, failure to meet any of the responsibilities stated in the contract
results in a break of the contract, and indicates the existence of a bug somewhere
in the design or implementation of the software or in the assertions themselves.
Due to the size of most systems, the latter chance is not so unlikely.
Andrea Baruzzo; 08/03/2007

16

31

Our method for Static Verification of UML model consistency –
The process (BEDAV) [MoDeV2a06]

Build the UML model of the system
Build the structure view
Build the dynamic (behavioral) view

Enrich the model with the (OCL) specifications

Decompose sequence diagrams in blocks

Annotate each block with formulas to be imposed and to be
checked

Verify sequence diagrams against the formulas of each block

32

The method at work – the model

sd Employee dynamics

andrea :EmployeeACME :Company

Client

{salary= 800}
{age > 40}

{salary > 1000}

hire(andrea)

getAge()

age

[age > 30]: raiseSalary(700)

salary

salary

17

33

The method at work – the (OCL) specifications

34

The method at work - decomposition

Ab3

Diapositiva 34

Ab3 per ciascuno di questi blocchi costruiamo delle formule che ci garantiscano che
l'esecuzione del blocco preservi gli invarianti delle classi e sia consistente con le pre
e post condizioni di ciascun metodo
Andrea Baruzzo; 26/09/2006

18

35

The method at work – decomposition

36

The method at work – validation (equations checked)

Ab

Diapositiva 36

Ab4 If we add in the diagram an initial constraint specifying that
Company.employee −> excludes(Andrea) then we can prove the new (i) and
then the diagram becomes consistent.
Andrea Baruzzo; 26/09/2006

19

37

… now the diagram becomes consistent!

{Company.employee −> excludes(Andrea)}

38

Tools for computerTools for computer--aided validation of UML modelsaided validation of UML models
Visual debuggers, simulators, model animations…

Tools for computerTools for computer--aided verification of UML modelsaided verification of UML models
Proof engines, formal verification methods (static or dynamic), test
case generators, model testing tools

Metrics tools for UML modelsMetrics tools for UML models

UML profiles for qualityUML profiles for quality

Formal specifications of Design PatternsFormal specifications of Design Patterns

Tools for automate the layout of UML diagramsTools for automate the layout of UML diagrams
(i.e. according to Dependency Goes Up rule)

Tools for model transformationsTools for model transformations

Project for Thesis

20

39

Bibliography

[Mens&VanGorp, 2005]
Tom Mens, Pieter Van Gorp – “A Taxonomy of Model Transformation
and its Application to Graph Transformation”, Université de Mons-
Hainaut, Mons, Belgium, 2005

[Meyer92]
Bertrand Meyer, “Applying Design by Contract”, ACM Computer, Volume 25, Issue 10, 1992

[MoDeV2a06]
Andrea Baruzzo and Marco Comini, “Static Verification of UML Model Consistency”,
MoDeV2a Workshop, Satellite Event of the MoDELS 2006 ACM/IEEE 9th International
Conference on Model Driven Engineering Languages and Systems, Genoa, Oct. 1-6, 2006

[POSA1, 1996]
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal – “Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns”, Wiley&Sons, 1996

[Seidewitz, 2003]
Ed Seidewitz – “What Models Means”, IEEE Computer, 2003

