
Linguaggi di Programmazione

Capitolo 6 del testo

Alberto Policriti

19 dicembre, 2019

1

La storia

Negli anni ’40 si scrivevano programmi usando il codice macchina:

“Muovi il contenuto del registro 5 al registro 6”

4056

oppure, usando mnemonici,

MOV R5 R6

2

La storia

Meglio, usando mnemonici e identificatori:

156C

166D

5056

306E

C000

LD R5,Price

LD R6,ShippingCharge

ADDI R0,R5 R6

ST R0,TotalCost

HLT

assembler
programmi in grado di convertire linguaggio macchina in un

linguaggio leggibile dall’umano: assembly language.

... ancora difficile da usare e, soprattutto, machine dependent.

2

La storia

prima generazione: linguaggio macchina

seconda generazione: assembly language

terza generazione: primitive di alto livello e istruzioni machine

independent

Example
FORTRAN (FORmula TRANslator)

COBOL (COmmon Business-Oriented Language)

I traduttori di seconda generazione evolvono in

compilatori e interpreti

Una volta realizzato che si poteva programmare in modo

indipendente ... programming environments: la macchina si adatta

all’uomo.

2

La storia

Programmng paradigms

In contrast to the imperative paradigm is the declarative paradigm, which
asks a programmer to describe the problem to be solved rather than an algorithm
to be followed. More precisely, a declarative programming system applies a
preestablished general-purpose problem-solving algorithm to solve problems
presented to it. In such an environment the task of a programmer becomes that
of developing a precise statement of the problem rather than of describing an
algorithm for solving the problem.

A major obstacle in developing programming systems based on the declara-
tive paradigm is the need for an underlying problem-solving algorithm. For this
reason early declarative programming languages tended to be special-purpose in
nature, designed for use in particular applications. For example, the declarative
approach has been used for many years to simulate a system (political, economic,
environmental, and so on) in order to test hypotheses or to obtain predictions.
In these settings, the underlying algorithm is essentially the process of simulat-
ing the passage of time by repeatedly recomputing values of parameters (gross
domestic product, trade deficit, and so on) based on the previously computed val-
ues. Thus, implementing a declarative language for such simulations requires
that one first implement an algorithm that performs this repetitive procedure.
Then the only task required of a programmer using the system is to describe the
situation to be simulated. In this manner, a weather forecaster does not need to
develop an algorithm for forecasting the weather but merely describes the cur-
rent weather status, allowing the underlying simulation algorithm to produce
weather predictions for the near future.

A tremendous boost was given to the declarative paradigm with the discovery
that the subject of formal logic within mathematics provides a simple problem-
solving algorithm suitable for use in a general-purpose declarative programming
system. The result has been increased attention to the declarative paradigm and
the emergence of logic programming, a subject discussed in Section 6.7.

Another programming paradigm is the functional paradigm. Under this
paradigm a program is viewed as an entity that accepts inputs and produces
outputs. Mathematicians refer to such entities as functions, which is the reason
this approach is called the functional paradigm. Under this paradigm a program
is constructed by connecting smaller predefined program units (predefined

2456.1 Historical Perspective

ML Scheme

Machine
Languages COBOL

FORTRAN

APL

BASIC C

Java
Object-oriented

Imperative

Declarative

Functional

1950 1960 1970 1980 1990 2000

LISP

Smalltalk

Pascal

Prolog

Ada

ALGOL

GPSS

C#Visual Basic

 C++

Figure 6.2 The evolution of programming paradigms

2

La storia

Funzionale
(Find diff (Find sum Old balance Credits) (Find sum

Debits))

functions) so that each unit’s outputs are used as another unit’s inputs in such a
way that the desired overall input-to-output relationship is obtained. In short, the
programming process under the functional paradigm is that of building func-
tions as nested complexes of simpler functions.

As an example, Figure 6.3 shows how a function for balancing your checkbook
can be constructed from two simpler functions. One of these, called Find_sum,
accepts values as its input and produces the sum of those values as its output. The
other, called Find_diff, accepts two input values and computes their difference.
The structure displayed in Figure 6.3 can be represented in the LISP programming
language (a prominent functional programming language) by the expression

(Find_diff (Find_sum Old_balance Credits) (Find_sum Debits))

The nested structure of this expression (as indicated by parantheses) reflects the
fact that the inputs to the function Find_diff are produced by two applications
of Find_sum. The first application of Find_sum produces the result of adding
all the Credits to the Old_balance. The second application of Find_sum
computes the total of all Debits. Then, the function Find_diff uses these results
to obtain the new checkbook balance.

To more fully understand the distinction between the functional and impera-
tive paradigms, let us compare the functional program for balancing a checkbook to
the following pseudocode program obtained by following the imperative paradigm:

Total_credits ← sum of all Credits
Temp_balance ← Old_balance + Total_credits
Total_debits ← sum of all Debits
Balance ← Temp_balance - Total_debits

246 Chapter 6 Programming Languages

Old_balance Credits DebitsInputs:

Output: New_balance

Find_diff

Find_sum Find_sum

Figure 6.3 A function for checkbook balancing constructed from simpler functions

Imperativo
Total credits ← sum of all Credits

Temp balance ← Old balance + Total credits

Total debits ← sum of all Debits

Balance ← Temp balance − Total debits
2

La storia

Logico/Dichiarativo
Prolog - Constraint programming

Object Oriented

• oggetti

• metodi

• classi

• istanze

2

La storia

changing the value stored at the location, the value associated with the name
changes as the program executes. Our example languages require that variables
be identified via a declarative statement prior to being used elsewhere in the pro-
gram. These declarative statements also require that the programmer describe
the type of data that will be stored at the memory location associated with the
variable.

Such a type is known as a data type and encompasses both the manner in
which the data item is encoded and the operations that can be performed on that
data. For example, the type integer refers to numeric data consisting of whole
numbers, probably stored using two’s complement notation. Operations that can
be performed on integer data include the traditional arithmetic operations and
comparisons of relative size, such as determining whether one value is greater
than another. The type float (sometimes called real) refers to numeric data that
might contain values other than whole numbers, probably stored in floating-point
notation. Operations performed on data of type float are similar to those performed
on data of type integer. Recall, however, that the activity required for adding two
items of type float differs from that for adding two items of type integer.

Suppose, then, that we wanted to use the variable WeightLimit in a pro-
gram to refer to an area of main memory containing a numeric value encoded in
two’s complement notation. In the languages C, C++, Java, and C# we would
declare our intention by inserting the statement

int WeightLimit;

toward the beginning of the program. This statement means “The name
WeightLimit will be used later in the program to refer to a memory area con-
taining a value stored in two’s complement notation.” Multiple variables of the

250 Chapter 6 Programming Languages

A subset of the imperative programming languages is the collection of languages
known as scripting languages. These languages are typically used to perform admin-
istrative tasks rather than to develop complex programs. The expression of such a
task is known as a script, which explains the term “scripting language.” For example,
the administrator of a computer system might write a script to describe a sequence
of record-keeping activities that should be performed every evening, or the user of a
PC might write a script to direct the execution of a sequence of programs required to
read pictures from a digital camera, index the pictures by date, and store copies of
them in an archival storage system. The origin of scripting languages can be traced to
the job control languages of the 1960s that were used to direct an operating system
in the scheduling of batch processing jobs (see Section 3.1). Even today, many con-
sider scripting languages to be languages for directing the execution of other pro-
grams, which is a rather restrictive view of current scripting languages. Examples of
scripting languages include Perl and PHP, both of which are popular in controlling
server-side Web applications (see Section 4.3), as well as VBScript, which is a dialect
of Visual Basic that was developed by Microsoft and is used in Windows-specific
situations.

Scripting Languages

2

Ada, C, C++, C#, FORTRAN, Java

Vecchio stile

developed as an extension of the language C. Java and C# are object-oriented lan-
guages derived from C++. (Java was developed at Sun Microsystems, which was
later purchased by Oracle, whereas C# is a product of Microsoft.) FORTRAN and
Ada were originally designed as third-generation imperative languages although
their newer versions have expanded to encompass most of the object-oriented
paradigm. Appendix D contains a brief background of each of these languages.

Even though we are including object-oriented languages such as C++, Java,
and C# among our example languages, we will approach this section as though
we were writing a program in the imperative paradigm, because many units
within an object-oriented program (such as the procedures describing how an
object should react to an outside stimulus) are essentially short imperative
programs. Later, in Section 6.5, we will focus on features unique to the object-
oriented paradigm.

Generally, a program consists of a collection of statements that tend to fall into
three categories: declarative statements, imperative statements, and comments.
Declarative statements define customized terminology that is used later in the
program, such as the names used to reference data items; imperative statements
describe steps in the underlying algorithms; and comments enhance the readability
of a program by explaining its esoteric features in a more human-compatible
form. Normally, an imperative program (or an imperative program unit within an
object-oriented program) can be thought of as having the structure depicted in
Figure 6.4. It begins with a collection of declarative statements describing the data
to be manipulated by the program. This preliminary material is followed by imper-
ative statements that describe the algorithm to be executed. Many languages now
allow the declarative and imperative statements to be freely intermingled, but the
conceptual distinction remains. Comment statements are dispersed as needed to
clarify the program.

Following this lead, we approach our study of programming concepts by con-
sidering statement categories in the order in which we might encounter them in
a program, beginning with concepts associated with declaration statements.

Variables and Data Types
As suggested in Section 6.1, high-level programming languages allow locations in
main memory to be referenced by descriptive names rather than by numeric
addresses. Such a name is known as a variable, in recognition of the fact that by

2496.2 Traditional Programming Concepts

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

Program

The second part consists
of imperative statements
describing the action to
be performed.

Figure 6.4 The composition of a typical imperative program or program unit

• declarative statements

• imperative statements

• comments

3

Ada, C, C++, C#, FORTRAN, Java

Variabili

• (primitive) data type:

float Length, Width;

int Price, Tax, Total;

char Symbol;

Strutture dati (elementari)

• array

• record

• field

struct {char Name[25];

int Age;

float SkillRating;}

Employee;

3

Ada, C, C++, C#, FORTRAN, Java

Assegnamenti

Z = X + Y ;

Z := X + Y ;

Z ← X + Y ;

Operatori e loro precedenze

Overloading

3

Ada, C, C++, C#, FORTRAN, Java

Istruzioni di controllo

others such as Ada, C++, and C# may allow programmers to define additional
overloaded meanings or even add additional operators.

Control Statements
A control statement alters the execution sequence of the program. Of all the
programming constructs, those from this group have probably received the most
attention and generated the most controversy. The major villain is the simplest
control statement of all, the goto statement. It provides a means of directing
the execution sequence to another location that has been labeled for this pur-
pose by a name or number. It is therefore nothing more than a direct application
of the machine-level JUMP instruction. The problem with such a feature in a
high-level programming language is that it allows programmers to write a rat’s
nest like

goto 40
20 Apply procedure Evade

goto 70
40 if (KryptoniteLevel < LethalDose) then goto 60

goto 20
60 Apply procedure RescueDamsel
70 ...

when a single statement such as

if (KryptoniteLevel < LethalDose)
then (apply procedure RescueDamsel)
else (apply procedure Evade)

does the job.
To avoid such complexities, modern languages are designed with control

statements that allow an entire branching pattern to be expressed within a single
lexical structure. The choice of which control statements to incorporate into a
language is a design decision. The goal is to provide a language that not only
allows algorithms to be expressed in a readable form but also assists the pro-
grammer in obtaining such readability. This is done by restricting the use of
those features that have historically led to sloppy programming while encourag-
ing the use of better-designed features. The result is the practice known as
structured programming, which encompasses an organized design methodol-
ogy combined with the appropriate use of the language’s control statements. The
idea is to produce a program that can be readily comprehended and shown to
meet its specifications.

We have already met two popular branching structures in our pseudocode of
Chapter 5, represented by the if-then-else and while statements. These are
present in almost all imperative, functional, or object-oriented languages. More
precisely, the pseudocode statements

if (condition)
then (statementA)
else (statementB)

and

while (condition) do
(loop body)

256 Chapter 6 Programming Languages

others such as Ada, C++, and C# may allow programmers to define additional
overloaded meanings or even add additional operators.

Control Statements
A control statement alters the execution sequence of the program. Of all the
programming constructs, those from this group have probably received the most
attention and generated the most controversy. The major villain is the simplest
control statement of all, the goto statement. It provides a means of directing
the execution sequence to another location that has been labeled for this pur-
pose by a name or number. It is therefore nothing more than a direct application
of the machine-level JUMP instruction. The problem with such a feature in a
high-level programming language is that it allows programmers to write a rat’s
nest like

goto 40
20 Apply procedure Evade

goto 70
40 if (KryptoniteLevel < LethalDose) then goto 60

goto 20
60 Apply procedure RescueDamsel
70 ...

when a single statement such as

if (KryptoniteLevel < LethalDose)
then (apply procedure RescueDamsel)
else (apply procedure Evade)

does the job.
To avoid such complexities, modern languages are designed with control

statements that allow an entire branching pattern to be expressed within a single
lexical structure. The choice of which control statements to incorporate into a
language is a design decision. The goal is to provide a language that not only
allows algorithms to be expressed in a readable form but also assists the pro-
grammer in obtaining such readability. This is done by restricting the use of
those features that have historically led to sloppy programming while encourag-
ing the use of better-designed features. The result is the practice known as
structured programming, which encompasses an organized design methodol-
ogy combined with the appropriate use of the language’s control statements. The
idea is to produce a program that can be readily comprehended and shown to
meet its specifications.

We have already met two popular branching structures in our pseudocode of
Chapter 5, represented by the if-then-else and while statements. These are
present in almost all imperative, functional, or object-oriented languages. More
precisely, the pseudocode statements

if (condition)
then (statementA)
else (statementB)

and

while (condition) do
(loop body)

256 Chapter 6 Programming Languages

programmazione strutturata

3

Ada, C, C++, C#, FORTRAN, Java

Istruzioni di controllo

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD}

in C, C++, C#, and Java requests the execution of statementA, statementB,
or statementC depending on whether the current value of variable is A, B,
or C, respectively or the execution of statementD if the value of variable is
something else. The same structure would be expressed as

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE

in Ada.
Still another common control structure, often called the for structure, is

shown in Figure 6.7 along with its representation in C++, C#, and Java. This is
a loop structure similar to that of the while statement in our pseudocode. The
difference is that all the initialization, modification, and termination of the loop
is incorporated in a single statement. Such a statement is convenient when the
body of the loop is to be performed once for each value within a specific range.
In particular, the statements in Figure 6.7 direct that the loop body be performed
repeatedly—first with the value of Count being 1, then with the value of Count
being 2, and again with the value of Count being 3.

258 Chapter 6 Programming Languages

Assign Count the value 1

Count < 4?

Body

True

False

Assign Count the
value Count + 1

for (int Count = 1; Count < 4; Count++)
body ;

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD}

in C, C++, C#, and Java requests the execution of statementA, statementB,
or statementC depending on whether the current value of variable is A, B,
or C, respectively or the execution of statementD if the value of variable is
something else. The same structure would be expressed as

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE

in Ada.
Still another common control structure, often called the for structure, is

shown in Figure 6.7 along with its representation in C++, C#, and Java. This is
a loop structure similar to that of the while statement in our pseudocode. The
difference is that all the initialization, modification, and termination of the loop
is incorporated in a single statement. Such a statement is convenient when the
body of the loop is to be performed once for each value within a specific range.
In particular, the statements in Figure 6.7 direct that the loop body be performed
repeatedly—first with the value of Count being 1, then with the value of Count
being 2, and again with the value of Count being 3.

258 Chapter 6 Programming Languages

Assign Count the value 1

Count < 4?

Body

True

False

Assign Count the
value Count + 1

for (int Count = 1; Count < 4; Count++)
body ;

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

3

Ada, C, C++, C#, FORTRAN, Java

Istruzioni di controllo

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD}

in C, C++, C#, and Java requests the execution of statementA, statementB,
or statementC depending on whether the current value of variable is A, B,
or C, respectively or the execution of statementD if the value of variable is
something else. The same structure would be expressed as

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE

in Ada.
Still another common control structure, often called the for structure, is

shown in Figure 6.7 along with its representation in C++, C#, and Java. This is
a loop structure similar to that of the while statement in our pseudocode. The
difference is that all the initialization, modification, and termination of the loop
is incorporated in a single statement. Such a statement is convenient when the
body of the loop is to be performed once for each value within a specific range.
In particular, the statements in Figure 6.7 direct that the loop body be performed
repeatedly—first with the value of Count being 1, then with the value of Count
being 2, and again with the value of Count being 3.

258 Chapter 6 Programming Languages

Assign Count the value 1

Count < 4?

Body

True

False

Assign Count the
value Count + 1

for (int Count = 1; Count < 4; Count++)
body ;

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

3

Ada, C, C++, C#, FORTRAN, Java

Procedure

imperative program, beginning with declaration statements that describe the
variables used in the procedure followed by imperative statements that describe
the steps to be performed when the procedure is executed.

As a general rule, a variable declared within a procedure is a local variable,
meaning that it can be referenced only within that procedure. This eliminates any
confusion that might occur if two procedures, written independently, happen to
use variables of the same name. (The portion of a program in which a variable can
be referenced is called the scope of the variable. Thus, the scope of a local variable
is the procedure in which it is declared. Variables whose scopes are not restricted to
a particular part of a program are called global variables. Most programming lan-
guages provide a means of specifying whether a variable is to be local or global.)

In contrast to our pseudocode of Chapter 5 in which we requested the
execution of a procedure by a statement such as “Apply the procedure
DeactivateKrypton,” as specified, most modern programming languages
allow procedures to be called by merely stating the procedure’s name. For
example, if GetNames, SortNames, and WriteNames were the names of pro-
cedures for acquiring, sorting, and printing a list of names, then a program to
get, sort, and print the list could be written as

GetNames;
SortNames;
WriteNames;

rather than

Apply the procedure GetNames.
Apply the procedure SortNames.
Apply the procedure WriteNames.

Note that by assigning each procedure a name that indicates the action per-
formed by the procedure, this condensed form appears as a sequence of com-
mands that reflect the meaning of the program.

2616.3 Procedural Units

Calling
program unit

ProcedureControl is
transferred
to procedure.

Procedure is
executed.

Control is returned to
calling environment when
procedure is completed.

Calling program
unit requests
procedure.

Calling program
unit continues.

Figure 6.8 The flow of control involving a procedure

procedure’s header, (local/global variables, scopes)

3

Ada, C, C++, C#, FORTRAN, Java

Procedure e parametri

Parameters
Procedures are often written using generic terms that are made specific when the
procedure is applied. For example, Figure 5.11 of the preceding chapter is expressed
in terms of a generic list rather than a specific list. In our pseudocode, we agreed to
identify such generic terms within parentheses in the procedure’s header. Thus the
procedure in Figure 5.11 begins with the header

procedure Sort (List)

and then proceeds to describe the sorting process using the term List to refer to
the list being sorted. If we want to apply the procedure to sort a wedding guest
list, we need merely follow the directions in the procedure, assuming that the
generic term List refers to the wedding guest list. If, however, we want to sort a
membership list, we need merely interpret the generic term List as referring to
the membership list.

Such generic terms within procedures are called parameters. More pre-
cisely, the terms used within the procedure are called formal parameters and
the precise meanings assigned to these formal parameters when the procedure is
applied are called actual parameters. In a sense, the formal parameters repre-
sent slots in the procedure into which actual parameters are plugged when the
procedure is requested.

As in the case of our pseudocode, most programming languages require that,
when defining a procedure, the formal parameters be listed in parentheses in the
procedure’s header. As an example, Figure 6.9 presents the definition of a proce-
dure named ProjectPopulation as it might be written in the programming

262 Chapter 6 Programming Languages

Starting the head with the term
“void” is the way that a C
programmer specifies that the
program unit is a procedure
rather than a function. We will
learn about functions shortly.

The formal parameter list. Note
that C, as with many programming
languages, requires that the data
type of each parameter be specified.

This declares a local variable
named Year.

void (float GrowthRate)ProjectPopulation

int Year;

Population[0] = 100.0;
for (Year = 0; Year =< 10; Year++)
Population[Year+1] = Population[Year] + (Population[Year] * GrowthRate);

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

}

{

Figure 6.9 The procedure ProjectPopulation written in the programming language C

parametri formali/attuali

3

Ada, C, C++, C#, FORTRAN, Java

Procedure e parametri: by value

procedure direct access to the actual parameters by telling it the addresses of the
actual parameters in the calling program unit. In this case we say that the
parameters are passed by reference. Note that passing parameters by reference
allows the procedure to modify the data residing in the calling environment.
Such an approach would be desirable in the case of a procedure for sorting a list
since the point of calling such a procedure would be to cause changes in the list.

As an example, let us suppose that the procedure Demo was defined as

procedure Demo (Formal)
Formal ← Formal + 1;

Moreover, suppose that the variable Actual was assigned the value 5 and we
called Demo with the statement

Demo(Actual)

Then, if parameters were passed by value, the change to Formal in the procedure
would not be reflected in the variable Actual (Figure 6.10). But, if parameters
were passed by reference, the value of Actual would be incremented by
one (Figure 6.11).

264 Chapter 6 Programming Languages

a. When the procedure is called, a copy of the data is given to
 the procedure

Actual

Calling environment Procedure‘s environment

Formal
5 5

b. and the procedure manipulates its copy.

Actual

Calling environment Procedure‘s environment

Formal
5 6

Calling environment

c. Thus, when the procedure has terminated, the calling
 environment has not been changed.

Actual
5

Figure 6.10 Executing the procedure Demo and passing parameters by value

3

Ada, C, C++, C#, FORTRAN, Java

Procedure e parametri: by reference

2656.3 Procedural Units

Figure 6.11 Executing the procedure Demo and passing parameters by reference

a. When the procedure is called, the formal parameter becomes
 a reference to the actual parameter.

b. Thus, changes directed by the procedure are made to the
 actual parameter

c. and are, therefore, preserved after the procedure has
 terminated.

Calling environment

Actual
6

Actual

Actual

Calling environment Procedure’s environment

Formal
5

Actual Formal

Actual

Calling environment Procedure’s environment

Formal
6

FormalActual

Visual Basic
Visual Basic is an object-oriented programming language that was developed by
Microsoft as a tool by which users of Microsoft’s Windows operating system could
develop their own GUI applications. Actually, Visual Basic is more than a language—
it is an entire software development package that allows a programmer to construct
applications from predefined components (such as buttons, check boxes, text boxes,
scroll bars, etc.) and to customize these components by describing how they should
react to various events. In the case of a button, for example, the programmer would
describe what should happen when that button is clicked. In Chapter 7 we will learn
that this strategy of constructing software from predefined components represents
the current trend in software development techniques.

The popularity of the Windows operating system combined with the conven-
ience of the Visual Basic development package has promoted Visual Basic to a widely
used programming language. Whether this prominence will continue now that
Microsoft has introduced C# remains to be seen.

3

Ada, C, C++, C#, FORTRAN, Java

Funzioni

Functions are defined within a program in much the same way as proce-
dures. The difference is that a function header usually begins by specifying the
data type of the value that is to be returned, and the function definition usually
ends with a return statement in which the value to be returned is specified.
Figure 6.12 presents a definition of a function named CylinderVolume as it
might be written in the language C. (Actually, a C programmer would use a more
succinct form, but we will use this somewhat verbose version for pedagogical
reasons.) When called, the function receives specific values for the formal
parameters Radius and Height and returns the result of computing the volume
of a cylinder with those dimensions. Thus the function could be used elsewhere
in the program in a statement such as

Cost = CostPerVolUnit * CylinderVolume(3.45, 12.7);

to determine the cost of the contents of a cylinder with radius 3.45 and height 12.7.

2676.3 Procedural Units

Questions & Exercises

1. What is meant by the “scope” of a variable?
2. What is the difference between a procedure and a function?
3. Why do many programming languages implement I/O operations as if

they were calls to procedures?
4. What is the difference between a formal parameter and an actual parameter?
5. When writing in modern programming languages, programmers tend to

use verbs for names of procedures and nouns for names of functions. Why?

The function header begins with
the type of the data that will
be returned.

Compute the volume of
the cylinder.

float CylinderVolume (float Radius, float Height)

Declare a
local variable
named Volume.

float Volume;

return Volume;

Volume = 3.14 * Radius * Radius * Height;

Terminate the function and
return the value of the
variable Volume.

{

}

Figure 6.12 The function CylinderVolume written in the programming language C

3

Implementazione (dei linguaggi di programmazione)

Traduzione: source to object

6.4 Language Implementation
In this section we investigate the process of converting a program written in a
high-level language into a machine-executable form.

The Translation Process
The process of converting a program from one language to another is called
translation. The program in its original form is the source program; the trans-
lated version is the object program. The translation process consists of three
activities—lexical analysis, parsing, and code generation—that are performed by
units in the translator known as the lexical analyzer, parser, and code generator
(Figure 6.13).

Lexical analysis is the process of recognizing which strings of symbols from
the source program represent a single entity, or token. For example, the three
symbols 153 should not be interpreted as a 1, a 5, and a 3 but should be
recognized as representing a single numeric value. Likewise, a word appearing
in the program, although composed of individual symbols, should be interpreted
as a single unit. Most humans perform lexical analysis with little conscious
effort. When asked to read aloud, we pronounce words rather than individual
characters.

Thus the lexical analyzer reads the source program symbol by symbol, iden-
tifying which groups of symbols represent tokens, and classifying those tokens
according to whether they are numeric values, words, arithmetic operators, and
so on. The lexical analyzer encodes each token with its classification and hands
them to the parser. During this process, the lexical analyzer skips over all com-
ment statements.

Thus the parser views the program in terms of lexical units (tokens) rather
than individual symbols. It is the parser’s job to group these units into state-
ments. Indeed, parsing is the process of identifying the grammatical structure of
the program and recognizing the role of each component. It is the technicalities
of parsing that cause one to hesitate when reading the sentence

The man the horse that won the race threw was not hurt.

(Try this one: “That that is is. That that is not is not. That that is not is not
that that is.”!)

To simplify the parsing process, early programming languages insisted that
each program statement be positioned in a particular manner on the printed page.
Such languages were known as fixed-format languages. Today, most program-
ming languages are free-format languages, meaning that the positioning of

268 Chapter 6 Programming Languages

Figure 6.13 The translation process

Source
program

Lexical
analyzer

Code
generatorParser

tokens parse
trees

Object
program

4

Implementazione (dei linguaggi di programmazione)

Sintassi: diagrammi

statements is not critical. The advantage of free-format languages lies in a program-
mer’s ability to organize the written program in a way that enhances readability
from a human’s point of view. In these cases it is common to use indentation to help
a reader grasp the structure of a statement. Rather than writing

if Cost < CashOnHand then pay with cash else use
credit card

a programmer might write

if Cost < CashOnHand
then pay with cash
else use credit card

For a machine to parse a program written in a free-format language, the syntax
of the language must be designed so that the structure of a program can be identi-
fied regardless of the spacing used in the source program. To this end, most free-
format languages use punctuation marks such as semicolons to mark the ends of
statements, as well as key words such as if, then, and else to mark the beginning
of individual phrases. These key words are often reserved words, meaning that
they cannot be used by the programmer for other purposes within the program.

The parsing process is based on a set of rules that define the syntax of
the programming language. Collectively, these rules are called a grammar. One
way of expressing these rules is by means of syntax diagrams, which are picto-
rial representations of a language’s grammatical structure. Figure 6.14 shows a
syntax diagram of the if-then-else statement from our pseudocode in Chapter 5.
This diagram indicates that an if-then-else structure begins with the word
if, followed by a Boolean expression, followed by the word then, followed by
a Statement. This combination might or might not be followed by the word else
and a Statement. Notice that terms that actually appear in an if-then-else

2696.4 Language Implementation

Figure 6.14 A syntax diagram of our if-then-else pseudocode statement

if Boolean
expression then elseStatement Statement

Python

Python is a programming language that was created by Guido van Rossum in the late
1980s. Today it is popular in developing Web applications, in scientific computation,
and as an introductory language for students. Python emphasizes readability, and
includes elements of the imperative, object-oriented, and functional programming
paradigms. Python is also an example of a modern language that uses a form of fixed
formatting. It uses indentation to denote program blocks, rather than punctuation
marks or reserved words.

4

Implementazione (dei linguaggi di programmazione)

Sintassi: espressioni

270 Chapter 6 Programming Languages

statement are enclosed in ovals, whereas terms that require further description,
such as Boolean expression and Statement, are enclosed in rectangles. Terms that
require further description (those in rectangles) are called nonterminals; terms
that appear in ovals are called terminals. In a complete description of a lan-
guage’s syntax the nonterminals are described by additional diagrams.

As a more complete example, Figure 6.15 presents a set of syntax diagrams
that describes the syntax of a structure called Expression, which is intended to be
the structure of simple arithmetic expressions. The first diagram describes an
Expression as consisting of a Term that might or might not be followed by either a
! or " symbol followed by another Expression. The second diagram describes a
Term as consisting of either a single Factor or a Factor followed by a # or $ sym-
bol, followed by another Term. Finally, the last diagram describes a Factor as one
of the symbols x, y, or z.

The manner in which a particular string conforms to a set of syntax dia-
grams can be represented in a pictorial form by a parse tree, as demonstrated in
Figure 6.16, which presents a parse tree for the string

x ! y # z

based on the set of diagrams in Figure 6.15. Note that the tree starts at the top
with the nonterminal Expression and at each level shows how the nonterminals
at that level are decomposed until the symbols in the string itself are obtained. In
particular, the figure shows that (according to the first diagram in Figure 6.15) an
Expression can be decomposed as a Term, followed by the ! symbol, followed by

Figure 6.15 Syntax diagrams describing the structure of a simple algebraic expression

Expression

Expression

Term

Term

Term

Factor

Factor

x

y

z

#

$

!

"

4

Implementazione (dei linguaggi di programmazione)

Sintassi: parsing

an Expression. In turn, the Term can be decomposed (using the second diagram
in Figure 6.15) as a Factor (which turns out to be the symbol x), and the final
Expression can be decomposed (using the third diagram in Figure 6.15) as a Term
(which turns out to be y ! z).

2716.4 Language Implementation

Figure 6.16 The parse tree for the string x " y " z based on the syntax diagrams in Figure 6.15

Term

Factor Term

Term

Term

Factor

Factor

Expression

Expression

Expression

x

+

y

!

z

Implementation of Java AND C#
In some cases, such as in the control of an animated Web page, software must be
transferred over the Internet and executed on distant machines. If this software is
supplied in source program form, additional delays will result at the destination
because the software will have to be translated into the proper machine language
before it is executed. However, supplying the software in machine-language form
would mean that a different version of the software would have to be provided
depending on the machine language used by the distant computer.

Sun Microsystems and Microsoft have resolved this problem by designing
“universal machine languages” (called bytecode in the case of Java and .NET Common
Intermediate Language in the case of C#) into which source programs can be trans-
lated. Although these languages are not really machine languages, they are designed
to be quickly translatable. Thus if software written in Java or C# is translated into the
appropriate “universal machine language,” then it can be transferred to other
machines in the Internet where it can be executed efficiently. In some cases this exe-
cution is performed by an interpreter. In other cases, it is quickly translated prior to
execution, a process known as just-in-time compilation.

4

Implementazione (dei linguaggi di programmazione)

Sintassi: parsing (ambigui)

The process of parsing a program is essentially that of constructing a parse tree
for the source program. Indeed, a parse tree represents the parser’s interpretation of
the program’s grammatical composition. For this reason the syntax rules describing
a program’s grammatical structure must not allow two distinct parse trees for one
string, since this would lead to ambiguities within the parser. A grammar that does
allow two distinct parse trees for one string is said to be an ambiguous grammar.

Ambiguities in grammars can be quite subtle. In fact, the rule in Figure 6.14 con-
tains such a flaw. It allows both the parse trees in Figure 6.17 for the single statement

if B1 then if B2 then S1 else S2

272 Chapter 6 Programming Languages

Figure 6.17 Two distinct parse trees for the statement if B1 then if B2 then S1 else S2

if then

then

else

if

Statement

B1

B2 S1

Boolean
expression Statement

S2

Boolean
expression Statement Statement

thenif

then elseif

Statement

B1

B2 S1 S2

Boolean
expression Statement Statement

Boolean
expression Statement

4

Implementazione (dei linguaggi di programmazione)

OO translation process

The final activity in the translation process is code generation, which is the
process of constructing the machine-language instructions to implement the state-
ments recognized by the parser. This process involves numerous issues, one
being that of producing efficient machine-language versions of programs. For
example, consider the task of translating the two-statement sequence

x ← y + z;
w ← x + z;

If these statements are translated as individual statements, each would require
that data be transferred from main memory into the CPU before the indicated
addition takes place. However, efficiency can be gained by recognizing that
once the first statement has been executed, the values of x and z will already
be in the CPU’s general-purpose registers and therefore need not be loaded
from memory before performing the second addition. Implementing insights
such as this is called code optimization and is an important task of the code
generator.

Finally, we should note that the steps of lexical analysis, parsing, and code
generation are not carried out in a strict sequential order. Instead, these activi-
ties are intertwined. The lexical analyzer begins by reading characters from the
source program and identifying the first token. It hands this token to the
parser. Each time the parser receives a token from the lexical analyzer, it ana-
lyzes the grammatical structure being read. At this point it might request
another token from the lexical analyzer or, if the parser recognizes that a com-
plete phrase or statement has been read, it calls on the code generator to pro-
duce the proper machine instructions. Each such request causes the code
generator to build machine instructions that are added to the object program.
In turn, the task of translating a program from one language to another con-
forms naturally to the object-oriented paradigm. The source program, lexical
analyzer, parser, code generator, and object program are objects that interact by
sending messages back and forth as each object goes about performing its task
(Figure 6.18).

274 Chapter 6 Programming Languages

Figure 6.18 An object-oriented approach to the translation process

Source
program

Parser

Code
generator

Object
program

Lexical
analyzer

4

