Memorizzazione dei Dati

Capitolo 1 del testo

Alberto Policriti

17 Ottobre, 2019

La nozione fondamentale

Bits

Binary Digits

- numeri,
- cifre in base 2,
- simboli,
- acceso/spento,
- si/no,
- vero/falso,
- ...

Stringhe

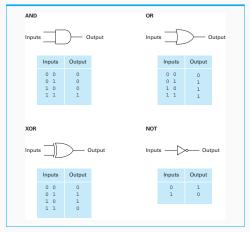
stringhe di bits \Rightarrow stringhe in un alfabeto di 2 caratteri \Rightarrow ... stringhe in un alfabeto di 4 caratteri \Rightarrow DNA l bit possono essere visti anche come la quantità di informazione contenuta in un carattere: S insieme qualsiasi

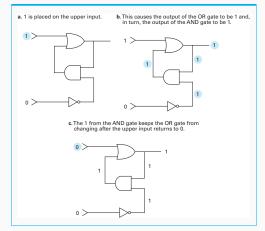
Quante domande devo fare per trovare $x \in S$?

Entropia (di un insieme S)

 $\mathcal{H}(S) = \log |S|$

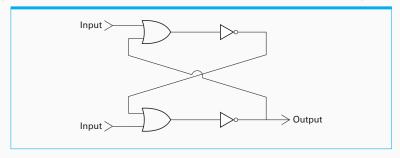
Quanta informazione contiene un elemento in S?


BITs vs. SHANNONs


Operazioni Booleane

AND	OR	NOT	XOR	IF-THI	EN etc				
The AND operation									
		AND 0 0	AND 1 0	$\frac{\text{AND} \overset{1}{\underset{0}{0}}}{_{0}}$	<u>AND 1</u> 1				
The OR operation									
		OR 0 0	0 0R 1 1	$\frac{OR \begin{array}{c} 1 \\ 0 \\ 1 \end{array}}{1}$	$\frac{OR 1}{1}$				
The XOR operation									
		XOR 0 0	XOR 1 1	$\frac{\text{XOR} \begin{array}{c} 1 \\ 0 \\ 1 \end{array}$	$\frac{\text{XOR} 1}{0}$				

Porte (logiche)—gates Realizzazioni in *hardware* degli operatori del calcolo proposizionale.


Memorizzazione di un bit di informazione: flip-flop Realizzazione in *hardware* della memoria per 1 bit.

Flip-Flop

- 1. Combinando porte ottengo circuiti che hanno comportamenti complessi (memoria).
- **2.** Una volta costruito il circuito non mi interesso più ai dettagli: astrazione.
- **3.** *Tanti* circuiti *tanta* potenza (in poco spazio: Very Large Scale Integration—VLSI—, computers on a chip)

Esercizio: un altro modo di implementare un flip-flop (in realtà non vengono implementati né così né come prima).

Stringhe, Pattern, Stream, ... di bits

Idea (vecchia): cambiamo base—i.e. introduciamo nuovi simboli che corrispondono a stringhe di bit.

Example

La *codifica* dei numeri naturali in base 16 (hexadecimal encoding system):

Memoria Principale: RAM (Random Access Memory)

Terminologia

- main memory: hw per memorizzare tutti i bit che mi servono durante il calcolo (... "tanti flip-flop");
- cella di memoria: collezioni di bit (normalmente 8) che vengono manipolati insieme;
- byte: 8 bit;

• indirizzo (di una cella) : posizione della cella nella lista delle celle:

Suppose you want to interchange the values stored in memory cells 2 and 3. What is wrong with the following sequence of steps: *Step 1.* Move the contents of cell number 2 to cell number 3. *Step 2.* Move the contents of cell number 3 to cell number 2. Design a sequence of steps that correctly interchanges the contents of these cells. If needed, you may use additional cells.

I dati (le celle) sono ordinati

- Posso parlare non solo della cella che si trova ad un dato indirizzo, ma anche della cella che *viene dopo/prima* ...
- Posso memorizzare stringhe lunghe usando celle consecutive

RAM

Posso accedere ad una cella qualunque semplicemente specificandone l'indirizzo

DRAM: Dynamic RAM (*refresh*) SDRAM: Synchronous DRAM (*synchronous* refresh)

- 1 bit: 2 informazioni
- 2 bit: 4 informazioni
- 3 bit: 8 informazioni
- ...
- 8 bit: 256 informazioni \Rightarrow un byte B.

Misuriamo

- Kilo byte: $2^{10} = 1024$ B
- Mega byte: 2¹⁰ = 1024 K
- Giga byte: 2¹⁰ = 1024 M
- Tera byte: $2^{10} = 1024 \text{ G}$
- Peta byte: 2¹⁰ = 1024 T
- ...

Convenzioni

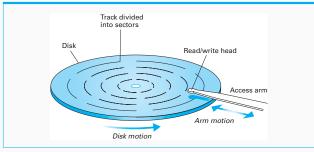
Memoria in byte.

Banda di trasmissione in bit.

Memoria Secondaria

Memorie di massa: memoria non volatile

<u>On-line</u> and <u>Off-line</u> Memorie *lente*. Spesso richiedono (addirittura) movimenti di parti *meccaniche*.

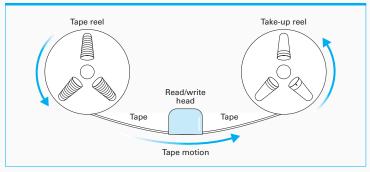

Solid-state vs. mechanical

Esempi

- dischi magnetici
- CD
- DVD
- nastri magnetici
- flash drives

Memoria Secondaria

Dischi Magnetici

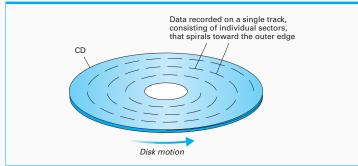

Tecnologicamente molto sofisticati (e.g. coated, zoned)

- cilindri
- settori
- formattazione

- seek time
- latency time
- acess time

Memoria Secondaria

Nastri Magnetici



Basso transfer rate (associato ad ogni tecnologia)

- Molti fattori coinvolti.
- Molte tecniche per miglioralo.
- Dell'ordine dei MB al secondo

Sistemi ottici

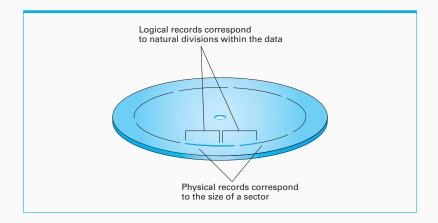
Compact Disks

Digital Versatile Disks e Blu-ray Disks DVD: superfici sovrapposte con diversi fuochi

BD: usano la parte blu dello spettro della luce

SSD: niente più parti in movimento!

- Spedisco segnali e memorizzo informazioni *intrappolando* elettroni.
- In linea di principio dovrebbero funzionale come delle RAM ma le tecnologie di oggi consentono solo il trasferimento di (grossi) *blocchi* di dati.
- Non hanno una vita molto lunga.


Varianti

- 1. Secure Digital memory cards (SD)
- 2. Secure Digital High Capacity memory cards (SDHC)
- **3.** Secure Digital Extended Capacity memory cards (SDXC, arrivano ai TB!)

Cos'è un file? Formalmente si definisce come una: *unità concettuale di memoria di massa*

Definizioni (usiamo l'inglese)

- **physical record** blocco minimo trasferibile dalla tecnologia utilizzata per la memorizzazione dei dati
- **logical record** blocco naturalmente definibile in funzione del tipo di dati memorizzati
- field sotto-unità dei record logici
- chiave campo identificativo (ci ritorneremo parlando di basi di dati)
- **buffer** (in questo caso) regione della RAM usata per contenere adeguate quantità di record fisici e per indirizzare record logici

American National Standards Institute (ANSI)

Caratteri: <u>codice</u> **ASCII** American Standard Code for Information Interchange:

7 bit: 128 combinazioni

codifico lettere maiuscole, minuscole e digit da 0 a 9

Non è l'unico codice ma l'idea è sempre la stessa.

International Organization for Standardization (ISO)

Rappresentazione dei dati: testo

La tabella:

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-@	32	20	Space	64	40	0	96	60	,
1	1	Start of heading	SOH	CTRL-A	33	21	1	65	41	A	97	61	а
2	2	Start of text	STX	CTRL-B	34	22		66	42	в	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	С	99	63	с
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	E	101	65	е
6	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
7	7	Bell	BEL	CTRL-G	39	27		71	47	G	103	67	9
8	8	Backspace	BS	CTRL-H	40	28	(72	48	н	104	68	h
9	9	Horizontal tab	HT	CTRL-I	41	29)	73	49	I	105	69	i
10	0A	Line feed	LF	CTRL-J	42	2A	•	74	4A	J	106	6A	j
11	OB	Vertical tab	VT	CTRL-K	43	2B	+	75	4B	K	107	6B	k
12	0C	Form feed	FF	CTRL-L	44	2C	,	76	4C	L	108	6C	1
13	0D	Carriage feed	CR	CTRL-M	45	2D	-	77	4D	м	109	6D	m
14	0E	Shift out	SO	CTRL-N	46	2E		78	4E	N	110	6E	n
15	OF	Shift in	SI	CTRL-O	47	2F	/	79	4F	0	111	6F	0
16	10	Data line escape	DLE	CTRL-P	48	30	0	80	50	P	112	70	р
17	11	Device control 1	DC1	CTRL-Q	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	r
19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	S	115	73	s
20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	т	116	74	t
21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	SYN	CTRL-V	54	36	6	86	56	V	118	76	v
23	17	End of xmit block	ETB	CTRL-W	55	37	7	87	57	w	119	77	w
24	18	Cancel	CAN	CTRL-X	56	38	8	88	58	х	120	78	×
25	19	End of medium	EM	CTRL-Y	57	39	9	89	59	Y	121	79	У
26	1A	Substitute	SUB	CTRL-Z	58	ЗA	:	90	5A	Z	122	7A	z
27	1B	Escape	ESC	CTRL-[59	3B	;	91	5B	[123	7B	{
28	1C	File separator	FS	CTRL-\	60	3C	<	92	5C	1	124	7C	1
29	1D	Group separator	GS	CTRL-]	61	ЗD	-	93	5D	1	125	7D	}
30	1E	Record separator	RS	CTRL-^	62	3E	>	94	5E	~	126	7E	~
31	1F	Unit separator	US	CTRL	63	ЗF	?	95	5F	_	127	7F	DEL

Esercizio Che differenza c'è tra la rappresentazione di

124924596

come testo o come numero?

Text files

- text editors
- word processors

Dati numerici

- Numeri naturali: (semplice) rappresentazione binaria.
- Numeri interi: uso il primo bit per il segno.
- Numeri reali:
 - virgola fissa: un intero (parte intera) ed un razionale (parte decimale);
 - virgola mobile: mantissa ed esponente.

Pixel (Picture element)

- bit map: un pixel un(o o più) bit(s)
 - ok per printer e schermi,
 - un pixel può essere 0/1 o un valore numerico (scala di grigi, RGB, ...),
 - problematico se dobbiamo riscalare l'immagine;
- rappresentazione vettoriale: l'immagine è rappresentata come collezione di oggetti geometrici ed il dispositivo "decide" come rappresentarla (deve essere in grado di farlo ⇒ CPU)
 - TrueType (Microsoft and Apple per i caratteri)
 - PostScript (Adobe Systems per i caratteri e non solo)

Suono

- ampiezze d'onda
- MIDI (Musical Instrument Digital Interface)

Le istruzioni sono rappresentate come sequenze di bit costituite da due parti:

Che operazione voglio eseguire? Su quali dati?