
Architettura del Calcolatore e Manipolazione

dei Dati

Capitolo 2 del testo

Alberto Policriti

24 Ottobre, 2019

1

Il modello di von Neumann

4(5) Componenti Fondamentali

1. unità di elaborazione: CPU

2. memoria centrale: RAM

3. periferiche (memoria di massa)

4. bus di sistema

2

La Central Processing Unit:

chi manipola davvero i dati

CPU
è l’unità centrale di elaborazione. Alloggiata sul microprocessore,

dirige e controlla ogni attività del computer e coordina le attività

di memoria e delle unità periferiche oltre ad eseguire tutte le

operazioni aritmetiche e logiche relative ad esempio ad un

programma che si sta eseguendo. Tutte le operazioni sono eseguite

in bit (0 e 1).

3

La Central Processing Unit:

chi manipola davvero i dati

Caratteristiche

• è elettronica

• interpreta le istruzioni del linguaggio macchina

• accede alle locazioni di memoria della RAM

• è costituita da molte componenti, delle quali la più importante

è la Arithmetic Logic Unit (ALU)

• ... è il processore

3

La Central Processing Unit:

chi manipola davvero i dati

3

La Central Processing Unit:

chi manipola davvero i dati

Caratteristiche tecniche

• Piccole (chiamate anche microprocessori)

• Montate su una scheda madre

Oggigiorno le CPU possono essere costituite da diversi ”core”,

ognuno dei quali costituisce una CPU indipendente: di fatto si

viene a creare un sistema ”multiprocessore” utilizzando un solo

integrato; Questo rende possibile l’esecuzione contemporanea di

numerosi processi (programmi) senza rallentamento del sistema.

3

Come è fatta una CPU?

Tre componenti

1. Arithmetic-Logic Unit (ALU)

2. Control Unit

3. Register Unit (special/general purpose registers)

74 Chapter 2 Data Manipulation

In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture
The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPU’s are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics
A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers whereas others are special-purpose registers. We will discuss some of

Arithmetic/logic
unit

Register unit

Central processing unit Main memory

Control
unit

Bus

Registers

.

.

.

Figure 2.1 CPU and main memory connected via a bus

4

La visione d’insieme

5

Come si usa una CPU?

Cosa significa fare una somma?

1. Non solo l’algoritmo di somma

2. Si muovono dati

3. Si usano registri e indirizzi di memoria

752.1 Computer Architecture

the special-purpose registers in Section 2.3. For now, we are concerned only with
the general-purpose registers.

General-purpose registers serve as temporary holding places for data being
manipulated by the CPU. These registers hold the inputs to the arithmetic/logic
unit’s circuitry and provide storage space for results produced by that unit. To per-
form an operation on data stored in main memory, the control unit transfers the
data from memory into the general-purpose registers, informs the arithmetic/logic
unit which registers hold the data, activates the appropriate circuitry within the
arithmetic/logic unit, and tells the arithmetic/logic unit which register should
receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main memory
are connected by a collection of wires called a bus (see again Figure 2.1). Through
this bus, the CPU extracts (reads) data from main memory by supplying the address
of the pertinent memory cell along with an electronic signal telling the memory cir-
cuitry that it is supposed to retrieve the data in the indicated cell. In a similar man-
ner, the CPU places (writes) data in memory by providing the address of the
destination cell and the data to be stored together with the appropriate electronic sig-
nal telling main memory that it is supposed to store the data being sent to it.

Based on this design, the task of adding two values stored in main memory
involves more than the mere execution of the addition operation. The data must
be transferred from main memory to registers within the CPU, the values must
be added with the result being placed in a register, and the result must then be
stored in a memory cell. The entire process is summarized by the five steps
listed in Figure 2.2.

The Stored-Program Concept
Early computers were not known for their flexibility—the steps that each device
executed were built into the control unit as a part of the machine. To gain more
flexibility, some of the early electronic computers were designed so that the CPU
could be conveniently rewired. This flexibility was accomplished by means of a
pegboard arrangement similar to old telephone switchboards in which the ends
of jumper wires were plugged into holes.

Step 1.

Step 2. Get the other value to be
 added from memory and
 place it in another register.

Step 3. Activate the addition circuitry
 with the registers used in
 Steps 1 and 2 as inputs and
 another register designated
 to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Get one of the values to be
added from memory and
place it in a register.

Figure 2.2 Adding values stored in memory

6

Idee importanti

1. Stored-program (nella memoria principale)

2. Cache memory (e gerarchie di memorie)

7

Idee importanti

 96 Chapter 2 Data Manipulation

A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded and
stored in main memory. If the control unit is designed to extract the program
from memory, decode the instructions, and execute them, the program that the
machine follows can be changed merely by changing the contents of the com-
puter’s memory instead of rewiring the CPU.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today—so standard, in fact, that it seems obvious. What made it difficult origi-
nally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in many
of them today without our knowing it. Indeed, part of the excitement of the
science is that new insights are constantly opening doors to new theories and
applications.

Cache Memory
It is instructive to compare the memory facilities within a computer in relation to their
functionality. Registers are used to hold the data immediately applicable to the opera-
tion at hand; main memory is used to hold data that will be needed in the near future;
and mass storage is used to hold data that will likely not be needed in the immediate
future. Many machines are designed with an additional memory level, called cache
memory. Cache memory is a portion (perhaps several hundred KB) of high-speed
memory located within the CPU itself. In this special memory area, the machine
attempts to keep a copy of that portion of main memory that is of current interest. In
this setting, data transfers that normally would be made between registers and main
memory are made between registers and cache memory. Any changes made to cache
memory are then transferred collectively to main memory at a more opportune time.
The result is a CPU that can execute its machine cycle more rapidly because it is not
delayed by main memory communication.

 1. What sequence of events do you think would be required to move the
contents of one memory cell in a computer to another memory cell?

 2. What information must the CPU supply to the main memory circuitry to
write a value into a memory cell?

 3. Mass storage, main memory, and general-purpose registers are all storage
systems. What is the difference in their use?

Questions & Exercises

M02_BROO1160_12_SE_C02.indd 96 01/08/14 11:18 AM

7

Idee importanti

 972.2 Machine Language

Who Invented What?
Awarding a single individual credit for an invention is always a dubious undertaking.
Thomas Edison is credited with inventing the incandescent lamp, but other
researchers were developing similar lamps, and in a sense Edison was lucky to
be the one to obtain the patent. The Wright brothers are credited with inventing
the airplane, but they were competing with and benefited from the work of many
contemporaries, all of whom were preempted to some degree by Leonardo da Vinci,
who toyed with the idea of flying machines in the fifteenth century. Even Leonardo’s
designs were apparently based on earlier ideas. Of course, in these cases the des-
ignated inventor still has legitimate claims to the credit bestowed. In other cases,
history seems to have awarded credit inappropriately—an example is the stored-
program concept. Without a doubt, John von Neumann was a brilliant scientist
who deserves credit for numerous contributions. But one of the contributions for
which popular history has chosen to credit him, the stored-program concept, was
apparently developed by researchers led by J. P. Eckert at the Moore School of
Electrical Engineering at the University of Pennsylvania. John von Neumann was
merely the first to publish work reporting the idea and thus computing lore has
selected him as the inventor.

2.2 Machine Language
To apply the stored-program concept, CPUs are designed to recognize instructions
encoded as bit patterns. This collection of instructions along with the encoding
system is called the machine language. An instruction expressed in this lan-
guage is called a machine-level instruction or, more commonly, a machine
instruction.

The Instruction Repertoire
The list of machine instructions that a typical CPU must be able to decode and
execute is quite short. In fact, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not increase the machine’s
theoretical capabilities. In other words, beyond a certain point, additional fea-
tures may increase such things as convenience but add nothing to the machine’s
fundamental capabilities.

The degree to which machine designs should take advantage of this fact has
led to two philosophies of CPU architecture. One is that a CPU should be designed
to execute a minimal set of machine instructions. This approach leads to what is
called a reduced instruction set computer (RISC). The argument in favor of
RISC architecture is that such a machine is efficient, fast, and less expensive to
manufacture. On the other hand, others argue in favor of CPUs with the ability
to execute a large number of complex instructions, even though many of them
are technically redundant. The result of this approach is known as a complex
instruction set computer (CISC). The argument in favor of CISC architecture is
that the more complex CPU can better cope with the ever-increasing complexities

M02_BROO1160_12_SE_C02.indd 97 01/08/14 11:18 AM

7

Il Linguaggio Macchina

Collezione delle Istruzioni direttamente eseguibili dalla CPU
(Almeno) due filosofie diverse:

1. Reduced Instruction Set Computer (RISC: PowerPC - fixed

length)

2. Complex Instruction Set Computer (CISC: Intel - variable

length)

Comunque: poche istruzioni

8

Il Linguaggio Macchina

Tre gruppi:

1. data transfer (LOAD/STORE - I/O, ...)

2. arithmetic-logic (AND, OR, XOR, SHIFT, ROTATE, ...)

3. control (JUMP, STOP, ...)

792.2 Machine Language

memory cell is commonly referred to as a LOAD instruction; conversely, a
request to transfer the contents of a register to a memory cell is called a STORE
instruction. In Figure 2.2, Steps 1 and 2 are LOAD instructions, and Step 4 is a
STORE instruction.

An important group of instructions within the data transfer category consists
of the commands for communicating with devices outside the CPU-main memory
context (printers, keyboards, display screens, disk drives, etc.). Since these
instructions handle the input/output (I/O) activities of the machine, they are
called I/O instructions and are sometimes considered as a category in their own
right. On the other hand, Section 2.5 describes how these I/O activities can be
handled by the same instructions that request data transfers between the CPU
and main memory. Thus, we shall consider the I/O instructions to be a part of the
data transfer group.

Arithmetic/Logic The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic unit. Step 3 in
Figure 2.2 falls into this group. As its name suggests, the arithmetic/logic unit is
capable of performing operations other than the basic arithmetic operations. Some
of these additional operations are the Boolean operations AND, OR, and XOR,
introduced in Chapter 1, which we will discuss in more detail later in this chapter.

Another collection of operations available within most arithmetic/logic units
allows the contents of registers to be moved to the right or the left within the reg-
ister. These operations are known as either SHIFT or ROTATE operations,
depending on whether the bits that “fall off the end” of the register are merely
discarded (SHIFT) or are used to fill the holes left at the other end (ROTATE).

Control The control group consists of those instructions that direct the execution
of the program rather than the manipulation of data. Step 5 in Figure 2.2 falls
into this category, although it is an extremely elementary example. This group
contains many of the more interesting instructions in a machine’s repertoire,
such as the family of JUMP (or BRANCH) instructions used to direct the CPU to
execute an instruction other than the next one in the list. These JUMP instruc-
tions appear in two varieties: unconditional jumps and conditional jumps.

Step 1. LOAD a register with a value
 from memory.

Step 2. LOAD another register with
 another value from memory.

Step 3. If this second value is zero,
 JUMP to Step 6.

Step 4. Divide the contents of the
 first register by the second
 register and leave the result
 in a third register.

Step 5. STORE the contents of the
 third register in memory.

Step 6. STOP.

Figure 2.3 Dividing values stored in memory

8

Il Linguaggio Macchina

Esempio
Consideriamo una architettura da 16 registri e RAM da 256 celle.

Usiamo indirizzi scritti in esadecimale.

80 Chapter 2 Data Manipulation

An example of the former would be the instruction “Skip to Step 5”; an example
of the latter would be, “If the value obtained is 0, then skip to Step 5.” The dis-
tinction is that a conditional jump results in a “change of venue” only if a certain
condition is satisfied. As an example, the sequence of instructions in Figure 2.3
represents an algorithm for dividing two values where Step 3 is a conditional
jump that protects against the possibility of division by zero.

An Illustrative Machine Language
Let us now consider how the instructions of a typical computer are encoded.
The machine that we will use for our discussion is described in Appendix C and
summarized in Figure 2.4. It has 16 general-purpose registers and 256 main
memory cells, each with a capacity of 8 bits. For referencing purposes, we label
the registers with the values 0 through 15 and address the memory cells with
the values 0 through 255. For convenience we think of these labels and
addresses as values represented in base two and compress the resulting bit pat-
terns using hexadecimal notation. Thus, the registers are labeled 0 through F,
and the memory cells are addressed 00 through FF.

The encoded version of a machine instruction consists of two parts: the op-code
(short for operation code) field and the operand field. The bit pattern appearing
in the op-code field indicates which of the elementary operations, such as
STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The bit patterns
found in the operand field provide more detailed information about the opera-
tion specified by the op-code. For example, in the case of a STORE operation, the
information in the operand field indicates which register contains the data to be
stored and which memory cell is to receive the data.

The entire machine language of our illustrative machine (Appendix C) con-
sists of only twelve basic instructions. Each of these instructions is encoded
using a total of 16 bits, represented by four hexadecimal digits (Figure 2.5). The
op-code for each instruction consists of the first 4 bits or, equivalently, the first
hexadecimal digit. Note (Appendix C) that these op-codes are represented by
the hexadecimal digits 1 through C. In particular, the table in Appendix C shows

Central processing unit

Bus

Registers

0

1

2

F

.

.

.

Program counter

Instruction register

Main memory

Address

00

01

02

03

FF

.

.

.
.
.
.

Cells

Figure 2.4 The architecture of the machine described in Appendix C

8

Il Linguaggio Macchina

Codifica delle istruzioni macchina (Appendix C)

1. op-code

2. operand

812.2 Machine Language

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 28 different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 digits)

Figure 2.5 The composition of an instruction for the machine in Appendix C

3 5 A 7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Op-code 3 means
to store the contents
of a register in a
memory cell.

Instruction

Figure 2.6 Decoding the instruction 35A7

N.B. Usiamo il primo carattere dell’operando per indicare il registro

(ne abbiamo 16) e gli altri due per indicare la cella nella RAM (ne

abbiamo 256). Potenze di 2.

35A7 in binario: 0011010110100111.
8

Il Linguaggio Macchina

812.2 Machine Language

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 28 different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 digits)

Figure 2.5 The composition of an instruction for the machine in Appendix C

3 5 A 7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Op-code 3 means
to store the contents
of a register in a
memory cell.

Instruction

Figure 2.6 Decoding the instruction 35A7

8

Il Linguaggio Macchina

82 Chapter 2 Data Manipulation

As another example of how the operand field is used to clarify the general
instruction given by op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will see
what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two
hexadecimal digits indicate which two registers are to be ORed. Thus the instruc-
tion 70C5 translates to the statement “OR the contents of register C with the con-
tents of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads
a register with the contents of a memory cell, whereas the op-code 2 (hexa-
decimal) identifies an instruction that loads a register with a particular value.
The difference is that the operand field in an instruction of the first type con-
tains an address, whereas in the second type the operand field contains the
actual bit pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two’s com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent val-
ues encoded in two’s complement notation requires different activities within the
arithmetic/logic unit from adding values encoded in floating-point notation.

We close this section with Figure 2.7, which contains an encoded version of
the instructions in Figure 2.2. We have assumed that the values to be added are
stored in two’s complement notation at memory addresses 6C and 6D and the
sum is to be placed in the memory cell at address 6E.

156C

166D

5056

306E

C000

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

Encoded
instructions Translation

Figure 2.7 An encoded version of the instructions in Figure 2.2

8

L’esecuzione di un programma

Le istruzioni devono venire:

1. Caricate (dalla memoria principale) nella CPU

2. Interpretate

3. Eseguite

Il ruolo dei registri
Due (importanti) registri special purpose

• instruction register

• program counter

Una importante nozione

• ciclo macchina

9

L’esecuzione di un programma

84 Chapter 2 Data Manipulation

machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program
counter by two so that the counter contains the address of the next instruction
stored in memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits for
main memory to send the data, and then places the data in the requested regis-
ter; if the instruction is for an arithmetic operation, the CPU activates the appro-
priate circuitry in the arithmetic/logic unit with the correct registers as inputs
and waits for the arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruction
at address 58 (hexadecimal) if the contents of register 2 is the same as that of reg-
ister 0.” In this case, the execute step of the machine cycle begins with the com-
parison of registers 2 and 0. If they contain different bit patterns, the execute step

1. Retrieve the next
 instruction from
 memory (as indicated
 by the program
 counter) and then
 increment the
 program counter.

Fe
tc

h

Decode

Execute

3. Perform the action
 required by the
 instruction in the
 instruction register.

2. Decode the bit pattern
 in the instruction register.

Figure 2.8 The machine cycle

9

L’esecuzione di un programma

Domanda
Perché mi serve coordinare le attività della macchina?

Perché mi serve un clock?

9

L’esecuzione di un programma 852.3 Program Execution

terminates and the next machine cycle begins. If, however, the contents of these
registers are equal, the machine places the value 58 (hexadecimal) in its program
counter during the execute step. In this case, then, the next fetch step finds 58 in
the program counter, so the instruction at that address will be the next instruction
to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and
thus must have equal content. In turn, any instruction of the form B0XY will
cause a jump to be executed to the memory location XY regardless of the con-
tents of register 0.

B 2 5 8

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

Instruction

Figure 2.9 Decoding the instruction B258

Comparing Computer Power
When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, which
generates pulses that are used to coordinate the machine’s activities—the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal to
one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for mega-
hertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in
one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel
processor to one based on ARM, it would be more meaningful to compare perform-
ance by means of benchmarking, which is the process of comparing the performance
of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaning-
ful comparisons for various market segments.

9

L’esecuzione di un programma

Una istruzione “particolare”

852.3 Program Execution

terminates and the next machine cycle begins. If, however, the contents of these
registers are equal, the machine places the value 58 (hexadecimal) in its program
counter during the execute step. In this case, then, the next fetch step finds 58 in
the program counter, so the instruction at that address will be the next instruction
to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and
thus must have equal content. In turn, any instruction of the form B0XY will
cause a jump to be executed to the memory location XY regardless of the con-
tents of register 0.

B 2 5 8

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

Instruction

Figure 2.9 Decoding the instruction B258

Comparing Computer Power
When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, which
generates pulses that are used to coordinate the machine’s activities—the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal to
one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for mega-
hertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in
one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel
processor to one based on ARM, it would be more meaningful to compare perform-
ance by means of benchmarking, which is the process of comparing the performance
of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaning-
ful comparisons for various market segments.

9

L’esecuzione di un programma

Esempio

86 Chapter 2 Data Manipulation

An Example of Program Execution
Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere in
memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location A0 and placing this instruction
(156C) in its instruction register (Figure 2.11a). Notice that, in our machine,
instructions are 16 bits (two bytes) long. Thus the entire instruction to be fetched
occupies the memory cells at both address A0 and A1. The CPU is designed to
take this into account so it retrieves the contents of both cells and places the bit
patterns received in the instruction register, which is 16 bits long. The CPU then
adds two to the program counter so that this register contains the address of the
next instruction (Figure 2.11b). At the end of the fetch step of the first machine
cycle, the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory
cells starting at address A2. The CPU places this instruction in the instruction

CPU Main memory

Registers

Program counter

Instruction register

Bus
0

1

2

F

A0

CellsAddress

15A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

6C

16

6D

50

56

30

6E

C0

00

Program counter contains
address of first instructions.

Program is
stored in
main memory
beginning at
address A0.

.

.

.

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution

9

L’esecuzione di un programma

Esempio

872.3 Program Execution

register and increments the program counter to A4. The values in the program
counter and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next
instruction starting at this address. The result is that 5056 is placed in the
instruction register, and the program counter is incremented to A6. The CPU
now decodes the contents of its instruction register and executes it by activating
the two’s complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the

Bus

Bus

CPU Main memory

CellsAddress

15A0

A1

A2

A3

6C

16

6D

Instruction register

Program counter

A0

156C

a. At the beginning of the fetch step the instruction starting at address A0 is
 retrieved from memory and placed in the instruction register.

CPU Main memory

CellsAddress

15A0

A1

A2

6C

16

A3 6D

Instruction register

Program counter

A2

156C

b. Then the program counter is incremented so that it points to the next instruction.

Figure 2.11 Performing the fetch step of the machine cycle

9

Arithmetic/Logic operations

bitwise operations

 110 Chapter 2 Data Manipulation

 4. Suppose the memory cells at addresses F0 to F9 in the machine described
in Appendix C contain the (hexadecimal) bit patterns described in the
following table:

Address Contents
F0 20
F1 C0
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what does
the machine do when it reaches the instruction at address F8?

2.4 Arithmetic/Logic Instructions
As indicated earlier, the arithmetic/logic group of instructions consists of instruc-
tions requesting arithmetic, logic, and shift operations. In this section, we look at
these operations more closely.

Logic Operations
We introduced the logic operations AND, OR, and XOR (exclusive or, often pro-
nounced, “ex-or”) in Chapter 1 as operations that combine two input bits to pro-
duce a single output bit. These operations can be extended to bitwise operations
that combine two strings of bits to produce a single output string by applying the
basic operation to individual columns. For example, the result of ANDing the
patterns 10011010 and 11001001 results in

 10011010
AND 11001001
 10001000

where we have merely written the result of ANDing the two bits in each column at
the bottom of the column. Likewise, ORing and XORing these patterns would produce

 10011010
OR 11001001
 11011011

 10011010
XOR 11001001
 01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. There are many applications for
this in practice, such as filtering certain colors out of a digital image represented
in the RGB format, as described in the previous chapter. Consider, for example,
what happens if the byte 00001111 is the first operand of an AND operation.

M02_BROO1160_12_SE_C02.indd 110 01/08/14 11:18 AM

 110 Chapter 2 Data Manipulation

 4. Suppose the memory cells at addresses F0 to F9 in the machine described
in Appendix C contain the (hexadecimal) bit patterns described in the
following table:

Address Contents
F0 20
F1 C0
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what does
the machine do when it reaches the instruction at address F8?

2.4 Arithmetic/Logic Instructions
As indicated earlier, the arithmetic/logic group of instructions consists of instruc-
tions requesting arithmetic, logic, and shift operations. In this section, we look at
these operations more closely.

Logic Operations
We introduced the logic operations AND, OR, and XOR (exclusive or, often pro-
nounced, “ex-or”) in Chapter 1 as operations that combine two input bits to pro-
duce a single output bit. These operations can be extended to bitwise operations
that combine two strings of bits to produce a single output string by applying the
basic operation to individual columns. For example, the result of ANDing the
patterns 10011010 and 11001001 results in

 10011010
AND 11001001
 10001000

where we have merely written the result of ANDing the two bits in each column at
the bottom of the column. Likewise, ORing and XORing these patterns would produce

 10011010
OR 11001001
 11011011

 10011010
XOR 11001001
 01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. There are many applications for
this in practice, such as filtering certain colors out of a digital image represented
in the RGB format, as described in the previous chapter. Consider, for example,
what happens if the byte 00001111 is the first operand of an AND operation.

M02_BROO1160_12_SE_C02.indd 110 01/08/14 11:18 AM

 110 Chapter 2 Data Manipulation

 4. Suppose the memory cells at addresses F0 to F9 in the machine described
in Appendix C contain the (hexadecimal) bit patterns described in the
following table:

Address Contents
F0 20
F1 C0
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what does
the machine do when it reaches the instruction at address F8?

2.4 Arithmetic/Logic Instructions
As indicated earlier, the arithmetic/logic group of instructions consists of instruc-
tions requesting arithmetic, logic, and shift operations. In this section, we look at
these operations more closely.

Logic Operations
We introduced the logic operations AND, OR, and XOR (exclusive or, often pro-
nounced, “ex-or”) in Chapter 1 as operations that combine two input bits to pro-
duce a single output bit. These operations can be extended to bitwise operations
that combine two strings of bits to produce a single output string by applying the
basic operation to individual columns. For example, the result of ANDing the
patterns 10011010 and 11001001 results in

 10011010
AND 11001001
 10001000

where we have merely written the result of ANDing the two bits in each column at
the bottom of the column. Likewise, ORing and XORing these patterns would produce

 10011010
OR 11001001
 11011011

 10011010
XOR 11001001
 01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. There are many applications for
this in practice, such as filtering certain colors out of a digital image represented
in the RGB format, as described in the previous chapter. Consider, for example,
what happens if the byte 00001111 is the first operand of an AND operation.

M02_BROO1160_12_SE_C02.indd 110 01/08/14 11:18 AM

mask bitmap shift ...

10

Arithmetic/Logic operations

 1132.4 Arithmetic/Logic Instructions

5 to the right by 1 bit.” In particular, if register 5 originally contained the bit
pattern 65 (hexadecimal), then it would contain B2 after this instruction is exe-
cuted (Figure 2.12). (You may wish to experiment with how other shift and rotate
instructions can be produced with combinations of the instructions provided in
the machine language of Appendix C. For example, since a register is eight bits
long, a right circular shift of three bits produces the same result as a left circular
shift of five bits.)

Arithmetic Operations
Although we have already mentioned the arithmetic operations of add, subtract,
multiply, and divide, a few loose ends should still be connected. First, we have
already seen that subtraction can be simulated by means of addition and negation.
Moreover, multiplication is merely repeated addition and division is repeated sub-
traction. (Six divided by two is three because three twos can be subtracted from
six.) For this reason, some small CPUs are designed with only the add or perhaps
only the add and subtract instructions.

We should also mention that numerous variations exist for each arithmetic
operation. We have already alluded to this in relation to the add operations avail-
able on our machine in Appendix C. In the case of addition, for example, if the
values to be added are stored in two’s complement notation, the addition process
must be performed as a straightforward column by column addition. However, if
the operands are stored as floating-point values, the addition process must extract
the mantissa of each, shift them right or left according to the exponent fields,
check the sign bits, perform the addition, and translate the result into floating-
point notation. Thus, although both operations are considered addition, the action
of the machine is not the same.

Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right

1 The original bit pattern0 1 1 0 0 1 0

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

The final bit pattern1 0 1 1 0 0 1 0

0 1 1 0 0 1 0

M02_BROO1160_12_SE_C02.indd 113 01/08/14 11:18 AM

... arithmetic

10

Word

Parola (word) di memoria del calcolatore
La RAM è una sequenza di parole (word) che ... più sono e meglio

è:

Organizzazione della RAM

 Parola (word) del calcolatore
 La RAM e’ una sequenza di word (più

sono meglio è)

prima parola
seconda parola
terza parola
....

parole da 32 bit

bit1 bit2 bit3 bit32

..........

..........

..........

..........

..........

11

Word

Question:
I’ve done some research. A byte is 8 bits and a word is the smallest

unit that can be addressed on memory. The exact length of a word

varies. What I don’t understand is what’s the point of having a

byte? Why not say 8 bits?

I asked a prof this question and he said most machines these days

are byte-addressable, but what would that make a word?

11

Word

Answer:
Byte: Today, a byte is almost always 8 bit. However, that wasn’t always

the case and there’s no ”standard” or something that dictates this. Since

8 bits is a convenient number to work with it became the de facto

standard.

Word: The natural size with which a processor is handling data (the

register size). The most common word sizes encountered today are 8, 16,

32 and 64 bits, but other sizes are possible. For examples, there were a

few 36 bit machines, or even 12 bit machines.

11

Word

Answer:
The byte is the smallest addressable unit for a CPU. If you want to

set/clear single bits, you first need to fetch the corresponding byte from

memory, mess with the bits and then write the byte back to memory.

The word by contrast is biggest chunk of bits with which a processor can

do processing (like addition and subtraction) at a time. That definition is

to be take a bit loose, as some processor might have different word sizes

for different tasks (integer vs. floating point processing for example).

The word size is what the majority of operations work with.

There are also a few processors who have a different pointer size: for

example, the 8086 is a 16-bit processor which means its registers are 16

bit wide. But its pointers (addresses) are 24 bit wide and were calculated

by combining two 16 bit registers in a certain way.
11

Componenti della CPU

• Unità di controllo

• Orologio di sistema

• Unità aritmetico logica (ALU)

• Registri (per l’accesso veloce)

• DR (Data Register, h bit), AR (Address Register, k bit)

• Registro Istruzione corrente (CIR) (Current Instruction

Register, h bit)

• Program counter (PC) (k bit)

• Registo delle interruzioni (INTR)

• Registri operandi ALU: A e B

• Registri di lavoro e registro di stato (State Register SR)
12

Componenti della CPU

PC

INTR

working
CIR

B

A

SR

DR

working

AR

clock
U.di Controllo

ALU

12

La visione d’insieme

13

Periferiche e Loro interfacce

Interfacce
Per comunicare con le periferiche si usano “piccole CPU” dedicate:

interfacce (intelligenti).

Le interfacce sono dotate di unità di controllo proprie e di registri.

14

Periferiche e Loro interfacce

Registri per le interfacce di I/O

• Registro dati della periferica (PDR) manda i dati sul bus dei

controlli

• Registro comando della periferica (PCR) manda i valori sul

bus dei controlli

• Registro di stato della periferica (PSR) contiene informazioni

sullo stato della periferica e può essere collegato direttamente

al registro INTR

14

Controllers

 1152.5 Communicating with Other Devices

patterns represent values stored in the floating-point format discussed in
Chapter 1?

 11. Using the machine language of Appendix C, write a program that places
a 1 in the most significant bit of the memory cell whose address is A7
without modifying the remaining bits in the cell.

 12. Using the machine language of Appendix C, write a program that copies
the middle four bits from memory cell E0 into the least significant four
bits of memory cell E1, while placing 0s in the most significant four bits
of the cell at location E1.

2.5 Communicating with Other Devices
Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, communicates
with peripheral devices such as mass storage systems, printers, keyboards, mice,
display screens, digital cameras, and even other computers.

The Role of Controllers
Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a per-
sonal computer, a controller may consist of circuitry permanently mounted on
the computer’s motherboard or, for flexibility, it may take the form of a circuit
board that plugs into a slot on the motherboard. In either case, the controller
connects via cables to peripheral devices within the computer case or perhaps to
a connector, called a port, on the back of the computer where external devices
can be attached. These controllers are sometimes small computers themselves,
each with its own memory circuitry and simple CPU that performs a program
directing the activities of the controller.

A controller translates messages and data back and forth between forms com-
patible with the internal characteristics of the computer and those of the periph-
eral device to which it is attached. Originally, each controller was designed for a
particular type of device; thus, purchasing a new peripheral device often required
the purchase of a new controller as well.

Recently, steps have been taken within the personal computer arena to
develop standards, such as the universal serial bus (USB) and FireWire, by
which a single controller is able to handle a variety of devices. For example, a
single USB controller can be used as the interface between a computer and any
collection of USB-compatible devices. The list of devices on the market today that
can communicate with a USB controller includes mice, printers, scanners, mass
storage devices, digital cameras, and smartphones.

Each controller communicates with the computer itself by means of con-
nections to the same bus that connects the computer’s CPU and main memory
 (Figure 2.13). From this position it is able to monitor the signals being sent between
the CPU and main memory as well as to inject its own signals onto the bus.

M02_BROO1160_12_SE_C02.indd 115 01/08/14 11:18 AM

15

Controllers

 116 Chapter 2 Data Manipulation

With this arrangement, the CPU is able to communicate with the controllers
attached to the bus in the same manner that it communicates with main memory.
To send a bit pattern to a controller, the bit pattern is first constructed in one
of the CPU’s general-purpose registers. Then an instruction similar to a STORE
instruction is executed by the CPU to “store” the bit pattern in the controller.
Likewise, to receive a bit pattern from a controller, an instruction similar to a
LOAD instruction is used.

In some computer designs the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses while main memory is
designed to ignore references to these locations. Thus when the CPU sends a
message on the bus to store a bit pattern at a memory location that is assigned to
a controller, the bit pattern is actually “stored” in the controller rather than main
memory. Likewise, if the CPU tries to read data from such a memory location,
as in a LOAD instruction, it will receive a bit pattern from the controller rather
than from memory. Such a communication system is called memory-mapped
I/O because the computer’s input/output devices appear to be in various memory
locations (Figure 2.14).

An alternative to memory-mapped I/O is to provide special op-codes in
the machine language to direct transfers to and from controllers. Instructions
with these op-codes are called I/O instructions. As an example, if the language

Figure 2.13 Controllers attached to a machine’s bus

CD drive

Controller

Controller Controller

Modem

Controller

Disk driveMonitor

Bus
CPU

Main
memory

Figure 2.14 A conceptual representation of memory-mapped I/O

CPU
Bus Main

memory

Controller Peripheral device

M02_BROO1160_12_SE_C02.indd 116 01/08/14 11:18 AM

15

Controllers

 1172.5 Communicating with Other Devices

described in Appendix C followed this approach, it might include an instruction
such as F5A3 to mean “STORE the contents of register 5 in the controller identi-
fied by the bit pattern A3.”

Direct Memory Access
Since a controller is attached to a computer’s bus, it can carry on its own com-
munication with main memory during those nanoseconds in which the CPU is
not using the bus. This ability of a controller to access main memory is known
as direct memory access (DMA), and it is a significant asset to a computer’s
performance. For instance, to retrieve data from a sector of a disk, the CPU can
send requests encoded as bit patterns to the controller attached to the disk asking
the controller to read the sector and place the data in a specified area of main
memory. The CPU can then continue with other tasks while the controller per-
forms the read operation and deposits the data in main memory via DMA. Thus
two activities will be performed at the same time. The CPU will be executing a
program and the controller will be overseeing the transfer of data between the
disk and main memory. In this manner, the computing resources of the CPU are
not wasted during the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the commu-
nication taking place over a computer’s bus. Bit patterns must move between the
CPU and main memory, between the CPU and each controller, and between each
controller and main memory. Coordination of all this activity on the bus is a major
design issue. Even with excellent designs, the central bus can become an impedi-
ment as the CPU and the controllers compete for bus access. This impediment

USB and FireWire
The universal serial bus (USB) and FireWire are standardized serial communication
systems that simplify the process of adding new peripheral devices to a personal com-
puter. USB was developed under the lead of Intel. The development of FireWire was
led by Apple. In both cases the underlying theme is for a single controller to provide
external ports at which a variety of peripheral devices can be attached. In this set-
ting, the controller translates the internal signal characteristics of the computer to the
appropriate USB or FireWire standard signals. In turn, each device connected to the
controller converts its internal idiosyncrasies to the same USB or FireWire standard,
allowing communication with the controller. The result is that attaching a new device
to a PC does not require the insertion of a new controller. Instead, one merely plugs
any USB compatible device into a USB port or a FireWire compatible device into a
FireWire port.

Of the two, FireWire provides a faster transfer rate, but the lower cost of USB 2.0
technology has made it the leader in the lower-cost mass market arena. A new, faster
version of the USB standard, version 3.0, has also begun to appear on the market.
USB-compatible devices on the market today include mice, keyboards, printers, scan-
ners, digital cameras, smartphones, and mass storage systems designed for backup
applications. FireWire applications tend to focus on devices that require higher trans-
fer rates such as video recorders and online mass storage systems.

M02_BROO1160_12_SE_C02.indd 117 01/08/14 11:18 AM

15

