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Continuous probability models

BASIC DEFINITIONS

CONTINUOUS RANDOM QUANTITIES
Random quantities with a continuous sample space

... too large to define the probability of a single event.
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Continuous probability models

DEFINITION (PROBABILITY DENSITY FUNCTION)

X continuous random quantity, the Probability Density
Function (PDF) fx(x) is defined as a function such that:

Q fx(z)>0forall z
(2} ffooo fx(z)dx =1
Q@ Pla<z<b) = fab fx(x)dx for any a < b

v

... densities can be greater than 1 (as long as they integrate to 1)
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Continuous probability models

DEFINITION (CUMULATIVE DISTRIBUTION FUNCTION)

X continuous random quantity with PDF fx(z), the
Cumulative Distribution Function (CDF) is defined as a
function Fx(z) such that:

Fx(z) = P(X <ux)

. as the first derivative of Fx(x) is fx(x): the slope of the
CDF is the PDF
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Continuous probability models

DEFINITION (EXPECTATION AND VARIANCE)

E(X) = /OO xfx(z)dx

Var(X) = / "l — BOOR fx ()dz
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Continuous probability models

THE LAW OF LARGE NUMBERS

Suppose we want to approximate X by Xi,..., X, independent
realizations of X (our runs). Namely we consider the quantity:

SAMPLE MEAN

_ 1 &
X = =Y x,

... the key is to get n large enough to ensure—under appropriate
conditions—that X is a good estimate of E(X).

4
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Continuous probability models

Assume E(X) = pu and Var(X) = o? finite, and X defined as
above, then

2
E(X)=up and Var(X):a—.

n
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INEQUALITIES

LEMMA (MARKOV’S INEQUALITY)
Assume X > 0 and E(X) = u finite, then Ya > 0

P(X>a) < =
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Continuous probability models

THE LAWS

LEMMA (WEAK LAW OF LARGE NUMBERS)

Assume BE(X) = pu and Var(X) = o? finite, and X defined as
above, then Ve > 0

LEMMA (STRONG LAW OF LARGE NUMBERS)

Assume E(X) = pu and Var(X) = o? finite, and X defined as
above, then Ye > 0

PX 3 pu = 1
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Monte-Carlo simulation

MONTE-CARLO INTEGRATION

To understand a statistical model, simulate many realizations of
it.

A way of numerically solve a difficult integration problem. I
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Monte-Carlo simulation

X continuous random variable
fx(z) probability density function (PDF')
some function g¢(-) given

PROBLEM
Evaluate E(g(X)).
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Monte-Carlo simulation

.. in general: analytically intractable
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Monte-Carlo simulation

PRACTICAL SOLUTION

Q simulate x4, ..., x, realizations of X
@ produce g(z1),...,9(xy,) realizations of g(X)

@ assume the variance of g(X) is finite (to apply the law of
large numbers)
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Monte-Carlo simulation

WHAT IF WE CANNOT SIMULATE REALIZATIONS OF X7

... but we can simulate realizations yi,...,y, of Y (r.q.
analogous to X) with PDF h(-)

B(g(X)) = /X ) @i

and hence
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Monte-Carlo simulation

ARE WE DONE?

TWwO POSSIBILITIES:

@ the two PDF (f and h) almost agree.
© come up with a method to simulate a PDF with another one

y

The first strategy (when applicable) is called
Importance Sampling

The second approach is more general (and more challenging) J
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Monte-Carlo simulation

THE UNIFORM CASE

A NON TRIVIAL ASSUMPTION
We assume to have a (pseudo) random number generator

This is equivalent to say that we can simulate the uniform
distribution.

U ~ U(0,1)
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Monte-Carlo simulation

TRANSFORMATION METHODS

We can now hope to move from the uniform distribution to a
generic PDF f(-). This can be done IF the corresponding F' is
invertible.

THEOREM (INVERSE DISTRIBUTION METHOD)

Let F(-) be an invertible cumulative distribution function
(CDF), then

has CDF F(-)
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Monte-Carlo simulation

OJ
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Monte-Carlo simulation

THE DISCRETE-EVENT CONTINUOUS-TIME CASE

We must simulate which event and how much time has passed.
Let us start with time, using the inverse distribution (inversion)

method.
If X >0, then
1
X = X IOg(U),

has an Exp(X) distribution.

| \

Proor

Observe that X ~ Ezp()\) has density f(x) = Ae™** and
distribution F(z) =1 — e~*®. Then apply the inversion method.

y

A. Policriti Stochastic Simulation 21/21



Monte-Carlo simulation

THE DISCRETE-EVENT CONTINUOUS-TIME CASE

ToO SIMULATE X ~ Exzp(\) (USING U)
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