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Basic definitions

Continuous random quantities
Random quantities with a continuous sample space

... too large to define the probability of a single event.
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Definition (Probability density function)

X continuous random quantity, the Probability Density
Function (PDF) fX(x) is defined as a function such that:

1 fX(x) ≥ 0 for all x
2

∫∞
−∞ fX(x)dx = 1

3 P (a ≤ x ≤ b) =
∫ b
a fX(x)dx for any a ≤ b

... densities can be greater than 1 (as long as they integrate to 1)
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Definition (Cumulative distribution function)

X continuous random quantity with PDF fX(x), the
Cumulative Distribution Function (CDF) is defined as a
function FX(x) such that:

FX(x) = P (X ≤ x)

= P (−∞ ≤ X ≤ x)

=

∫ x

−∞
fX(z)dz

... as the first derivative of FX(x) is fX(x): the slope of the
CDF is the PDF
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Definition (Expectation and variance)

E(X) =

∫ ∞
−∞

xfX(x)dx

V ar(X) =

∫ ∞
−∞

[x− E(X)]2fX(x)dx
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The Law of large numbers

Suppose we want to approximate X by X1, . . . , Xn independent
realizations of X (our runs). Namely we consider the quantity:

Sample mean

X̄ =
1

n

n∑
i=1

Xi

... the key is to get n large enough to ensure—under appropriate
conditions—that X̄ is a good estimate of E(X).

A. Policriti Stochastic Simulation 8/21



Continuous probability models
Monte-Carlo simulation

Lemma

Assume E(X) = µ and V ar(X) = σ2 finite, and X̄ defined as
above, then

E(X̄) = µ and V ar(X̄) =
σ2

n
.
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Inequalities

Lemma (Markov’s inequality)

Assume X ≥ 0 and E(X) = µ finite, then ∀a ≥ 0

P (X ≥ a) ≤ µ

a
.

Lemma (Chebyshev’s inequality)

Assume E(X) = µ and V ar(X) = σ2 finite, then ∀k ≥ 0

P (|X − µ| < kσ) ≥ 1− 1

k2
.
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The laws

Lemma (Weak law of large numbers)

Assume E(X) = µ and V ar(X) = σ2 finite, and X̄ defined as
above, then ∀ε > 0

P (|X̄ − µ| < ε) ≥ 1− σ2

nε2
n→
∞

1.

Lemma (Strong law of large numbers)

Assume E(X) = µ and V ar(X) = σ2 finite, and X̄ defined as
above, then ∀ε > 0

P (X̄
n→
∞
µ) = 1.
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Monte-Carlo integration

Rationale
To understand a statistical model, simulate many realizations of
it.

Concrete view
A way of numerically solve a difficult integration problem.
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Assumptions
X continuous random variable
fX(x) probability density function (PDF)
some function g(·) given

Problem
Evaluate E(g(X)).
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We know that

E(g(X)) =

∫
X
g(x)fX(x)dx

... in general: analytically intractable
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Practical solution

1 simulate x1, . . . , xn realizations of X
2 produce g(x1), . . . , g(xn) realizations of g(X)

3 assume the variance of g(X) is finite (to apply the law of
large numbers)

Hence

E(g(X)) ' 1

n

n∑
i=1

g(xi)
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What if we cannot simulate realizations of X?
... but we can simulate realizations y1, . . . , yn of Y (r.q.
analogous to X) with PDF h(·)

E(g(X)) =

∫
X
g(x)fX(x)dx

=

∫
X

g(x)fX(x)

h(x)
h(x)dx

and hence

E(g(X)) ' 1

n

n∑
i=1

g(yi)fX(yI)

h(yi)
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Are we done?

Two possibilities:
1 the two PDF (f and h) almost agree.
2 come up with a method to simulate a PDF with another one

The first strategy (when applicable) is called
Importance Sampling

The second approach is more general (and more challenging)
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The uniform case

A non trivial assumption
We assume to have a (pseudo) random number generator

This is equivalent to say that we can simulate the uniform
distribution.

Notation

U ∼ U(0, 1)
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Transformation methods

We can now hope to move from the uniform distribution to a
generic PDF f(·). This can be done IF the corresponding F is
invertible.

Theorem (Inverse distribution method)

Let F (·) be an invertible cumulative distribution function
(CDF), then

X = F−1(U)

has CDF F (·)
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Proof.

P (X ≤ x) = P (F−1(U) ≤ x)

= P (U ≤ F (x))

= FU (F (x))

= F (x)
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The discrete-event continuous-time case

We must simulate which event and how much time has passed.
Let us start with time, using the inverse distribution (inversion)
method.

Proposition
If λ > 0, then

X =
1

λ
log(U),

has an Exp(λ) distribution.

Proof

Observe that X ∼ Exp(λ) has density f(x) = λe−λx and
distribution F (x) = 1− e−λx. Then apply the inversion method.
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The discrete-event continuous-time case

To simulate X ∼ Exp(λ) (using U)

x = − 1

λ
log(u).

A. Policriti Stochastic Simulation 21/21


	Continuous probability models
	Monte-Carlo simulation

