Stochastic Simulation.

Alberto Policriti

Dipartimento di Matematica e Informatica Istituto di Genomica Applicata

SUMMARY

MATERIAL FROM

BASIC DEFINITIONS

Continuous random quantities

Random quantities with a continuous sample space

... too *large* to define the probability of a single event.

DEFINITION (PROBABILITY DENSITY FUNCTION)

X continuous random quantity, the Probability Density Function (PDF) $f_X(x)$ is defined as a function such that:

•
$$f_X(x) \ge 0$$
 for all x

$$P(a \le x \le b) = \int_a^b f_X(x) dx \text{ for any } a \le b$$

 \ldots densities can be greater than 1 (as long as they integrate to 1)

Definition (Cumulative distribution function)

X continuous random quantity with PDF $f_X(x)$, the Cumulative Distribution Function (CDF) is defined as a function $F_X(x)$ such that:

$$F_X(x) = P(X \le x)$$

= $P(-\infty \le X \le x)$
= $\int_{-\infty}^x f_X(z) dz$

... as the first derivative of $F_X(x)$ is $f_X(x)$: the slope of the CDF is the PDF

DEFINITION (EXPECTATION AND VARIANCE)

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$Var(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f_X(x) dx$$

THE LAW OF LARGE NUMBERS

Suppose we want to approximate X by X_1, \ldots, X_n independent realizations of X (our *runs*). Namely we consider the quantity:

SAMPLE MEAN

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

... the key is to get *n* large enough to ensure—under appropriate conditions—that \bar{X} is a good estimate of E(X).

LEMMA

Assume $E(X) = \mu$ and $Var(X) = \sigma^2$ finite, and \bar{X} defined as above, then

$$E(\bar{X}) = \mu$$
 and $Var(\bar{X}) = \frac{\sigma^2}{n}$.

INEQUALITIES

LEMMA (MARKOV'S INEQUALITY)

Assume $X \ge 0$ and $E(X) = \mu$ finite, then $\forall a \ge 0$

$$P(X \ge a) \le \frac{\mu}{a}.$$

LEMMA (CHEBYSHEV'S INEQUALITY)

Assume $E(X) = \mu$ and $Var(X) = \sigma^2$ finite, then $\forall k \ge 0$ $P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}.$

THE LAWS

LEMMA (WEAK LAW OF LARGE NUMBERS)

Assume $E(X) = \mu$ and $Var(X) = \sigma^2$ finite, and \bar{X} defined as above, then $\forall \epsilon > 0$

$$P(|\bar{X} - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2} \stackrel{n}{\longrightarrow} 1.$$

LEMMA (STRONG LAW OF LARGE NUMBERS)

Assume $E(X) = \mu$ and $Var(X) = \sigma^2$ finite, and \overline{X} defined as above, then $\forall \epsilon > 0$

$$P(\bar{X} \xrightarrow{n}{\infty} \mu) = 1.$$

MONTE-CARLO INTEGRATION

RATIONALE

To understand a statistical model, simulate many realizations of it.

Concrete view

A way of numerically solve a difficult integration problem.

Assumptions

X continuous random variable $f_X(x)$ probability density function (PDF) some function $g(\cdot)$ given

PROBLEM

Evaluate E(g(X)).

WE KNOW THAT

$$E(g(X)) = \int_X g(x) f_X(x) dx$$

... in general: analytically intractable

PRACTICAL SOLUTION

- **()** simulate x_1, \ldots, x_n realizations of X
- **2** produce $g(x_1), \ldots, g(x_n)$ realizations of g(X)
- **③** assume the variance of g(X) is finite (to apply the law of large numbers)

HENCE

$$E(g(X)) \simeq \frac{1}{n} \sum_{i=1}^{n} g(x_i)$$

What if we cannot simulate realizations of X?

... but we can simulate realizations y_1, \ldots, y_n of Y (r.q. analogous to X) with PDF $h(\cdot)$

$$E(g(X)) = \int_X g(x) f_X(x) dx$$

=
$$\int_X \frac{g(x) f_X(x)}{h(x)} h(x) dx$$

and hence

$$E(g(X)) \simeq \frac{1}{n} \sum_{i=1}^{n} \frac{g(y_i) f_X(y_I)}{h(y_i)}$$

ARE WE DONE?

Two possibilities:

- the two PDF (f and h) almost agree.
- \bigcirc come up with a method to simulate a *PDF* with another one

The first strategy (when applicable) is called $Importance \ Sampling$

The second approach is more general (and more challenging)

THE UNIFORM CASE

A NON TRIVIAL ASSUMPTION

We assume to have a (pseudo) random number generator

This is equivalent to say that we can simulate the uniform distribution.

NOTATION

$$U \sim U(0,1)$$

TRANSFORMATION METHODS

We can now hope to *move* from the uniform distribution to a generic PDF $f(\cdot)$. This can be done IF the corresponding F is invertible.

THEOREM (INVERSE DISTRIBUTION METHOD)

Let $F(\cdot)$ be an invertible cumulative distribution function (CDF), then

$$X = F^{-1}(U)$$

has CDF $F(\cdot)$

PROOF.

$$P(X \le x) = P(F^{-1}(U) \le x)$$

= $P(U \le F(x))$
= $F_U(F(x))$
= $F(x)$

THE DISCRETE-EVENT CONTINUOUS-TIME CASE

We must simulate which event and how much time has passed. Let us start with time, using the inverse distribution (inversion) method.

PROPOSITION

If $\lambda > 0$, then

$$X = \frac{1}{\lambda}\log(U),$$

has an $Exp(\lambda)$ distribution.

Proof

Observe that $X \sim Exp(\lambda)$ has density $f(x) = \lambda e^{-\lambda x}$ and distribution $F(x) = 1 - e^{-\lambda x}$. Then apply the inversion method.

THE DISCRETE-EVENT CONTINUOUS-TIME CASE

TO SIMULATE $X \sim Exp(\lambda)$ (USING U)

$$x = -\frac{1}{\lambda}\log(u).$$