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Quote of the day

D.T. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions J. of Physical
Chemistry, 81(25), 1977

There are two formalisms for mathematically describing the time
behavior of a spatially homogeneous chemical system: the
deterministic approach regards the time evolution as a continuous,
wholly predictable process which is governed by a set of coupled,
ordinary differential equations (the “reaction-rate equations”); the
stochastic approach regards the time evolution as a kind of
random-walk process which is governed by a single
differential-difference equation (the “master equation”). Fairly simple
kinetic theory arguments show that the stochastic formulation of
chemical kinetics has a firmer physical basis than the deterministic
formulation, but unfortunately the stochastic master equation is often
mathematically intractable. There is, however, a way to make exact
numerical calculations within the framework of the stochastic
formulation without having to deal with the master equation directly.
[...]
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Exponential distribution

An exponential distribution models the time of occurrence of a
(simple) random event.

It is given by a random variable T , with values in [0,∞), with
density

f(t) = λe−λt,

where λ is the rate of the exponential distribution.
The probability of the event happening within time t is

P (T ≤ t) = 1− e−λt.

Mean: E[T ] = 1
λ Variance: V AR[T ] = 1

λ2

λ is the average density of frequency of events per unit of time.
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Continuous Time Markov Chains

What happens if we have more than one event competing?

In this case, there is a race condition between
events: the fastest event is executed and modifies
globally the state of the system.

Continuous Time Markov Chains
The is a discrete set of states, connected by transitions each
with an associated rate of an exponential distribution.

In each state, transitions compete in a race condition: the
fastest one determines the new state and the time elapsed.

In the new state, the race condition is started anew (memoryless
property).
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Continuous Time Markov Chains

Equivalent Characterization

In each state, we select the next state
according to a probability distribution
obtained normalizing rates (from S to S1

with prob. r1
r1+r2

).

The time spent in a state is given by an
exponentially distributed random variable,
with rate given by the sum of outgoing
transitions from the actual node (r1 + r2).
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Stochastic model of a chemical system

We have a set of chemical substances S1, . . . , SN contained in a
volume V , with

Xi = number of molecules of species i,

subject to a set of chemical reactions

R1, . . . , RM ,

where each Rj is of the form

Rj : Xj1 +Xj2 → Xj′1
+ . . .+Xj′pj

,

Rj : Xj1 → Xj′1
+ . . .+Xj′pj

,

Rj : ∅ → Xj′1
+ . . .+Xj′pj

,

The system is supposed to be in thermal equilibrium
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Stochastic model of a chemical system

Key assumption
Each reaction Rj has associated a specific probability rate
constant cj :
cjdt = probability that a randomly chosen combination

of Rj reactant molecules inside V at time t
will react according to Rj in the next infinitesimal
time interval [t, t+ dt).

Key observation
The next reaction that will happen depends only on the current
configuration of the system (number of molecules), not on past
history (memoryless property).
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Deriving kinetic parameters

Let’s focus on a bimolecular reaction...

Problem
“... it is physically meaningless to talk about “the number of
molecules whose centers lie inside δVcoll” in the required limit of
vanishingly small δt. ...”
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The stochastic model

Under the hypothesis of thermal equilibrium, molecules are
uniformly distributed in space, and velocities follow a
Boltzmann distribution.

The collision volume swept on average is

δV = πr212〈v12〉δt.

The collision probability is therefore

δV

V
=
πr212〈v12〉δt

V
.
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The stochastic model

Reaction probability

pj =def

probability that a colliding pair of Rj

reactant molecules will chemically react
according to Rj .

The basic rate of reaction cj is therefore

cj = V −1πr212〈v12〉pj .
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Rate functions

cj gives the rate of reaction for a single pair of molecules
involved in Rj .

To determine the global rate of reaction Rj , we need to count
how many pairs of reacting molecules we have. We do this with
the rate function hj(cj ,X).

Reactants of different species

Xj1 +Xj2 → � hj(cj ,X) = cjXj1Xj2

Reactants of the same species

2Xj1 → � hj(cj ,X) = cj
Xj1 (Xj1−1)

2
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Chemical Master Equation

From rate functions, we can derive a differential equations saying how
the probability of being in different states (of having different number
of molecules) varies over time. It is called the chemical master
equation:

dP (X, t)

dt
=

M∑
j=1

(
hj(cj ,X− νj)P (X− νj , t)︸ ︷︷ ︸

A reaction Rj happened in time [t, t + dt]

− hj(cj ,X)P (X, t)︸ ︷︷ ︸
No reaction happened in [t, t + dt]

)

Pro

This equation is everything we need to know about the stochastic
process.

Cons

This equation is very difficult to solve, even numerically.
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The approach of Gillespie

The central notion becomes the following definition of reaction
probability density function:

P (τ, j) =def

probability that, given the state X =
(X1, . . . , XN ) at time t, the next reac-
tion in V will occur in the infinitesimal
time interval (t+ τ, t+ τ + dt), and will
be an Rj reaction
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The approach of Gillespie

Explicit form of P (τ, j)

P (τ, j) = h0(X)e−h0(X)τ︸ ︷︷ ︸
time elapsed

· hj(cj ,X)

h0(X)︸ ︷︷ ︸
next reaction

Intuitively...
The equation says that the next reaction is chosen with
probability hj

h0
, while the time elapsed to see this reaction

happen is exponentially distributed with rate h0.

This stochastic process is a Continuous Time Markov Chain.
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Numerically simulating P (τ, µ)

Numerically simulating P (τ, µ)

A random number generator can be used to draw random pairs
(τ, µ) whose probability density function is P (τ, µ).
Given r1 and r2 randomly generated, determine τ and µ such
that:

τ = (1/h0) log (1/r1) Σj−1
ν=1hν < r2h0 ≤ Σj

ν=1hν

The method
A general Monte Carlo technique called inversion method: x
will be randomly drawn with probability density function P (x)
if x = F−1(r) with r randomly drawn with uniform probability
density function in [0, 1] and F is the probability distribution
function (

∫ x
−∞ P (y)dy).
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The algorithm
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Gillespie Algorithm and Petri Nets

2P ↔ P2

h1(1,X) = 1 ∗ (27 ∗ 28)/2 = 378
h2(2,X) = 2 ∗ 12 = 24
h0(X) = 378 + 24 = 402
p1 = 0.94
p2 = 0.06
time = 1/402
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Gillespie Algorithm and π-calculus

Each channel has a basic rate λ
associated to it.

The global rate of a channel depends on
how many agents are ready to
communicate on it.

In this example:

λMN

The functions hi are determined
implicitly by the semantics of the
language. Gillespie can be used to
simulate stochastic π-calculus as well!!!
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An example: genetic regulatory networks

Genes as logical gates

Repressilator
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