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QUOTE OF THE DAY

Stochastic Simulation of Coupled Chemical Reactions J. oF PHYSICAL

There are two formalisms for mathematically describing the time
behavior of a spatially homogeneous chemical system: the
deterministic approach regards the time evolution as a continuous,
wholly predictable process which is governed by a set of coupled,
ordinary differential equations (the “reaction-rate equations”); the
stochastic approach regards the time evolution as a kind of
random-walk process which is governed by a single
differential-difference equation (the “master equation”). Fairly simple
kinetic theory arguments show that the stochastic formulation of
chemical kinetics has a firmer physical basis than the deterministic
formulation, but unfortunately the stochastic master equation is often
mathematically intractable. There is, however, a way to make exact
numerical calculations within the framework of the stochastic
formulation without having to deal with the master equation directly.

]

A. Policriti Stochastic Simulation

2/20



OUTLINE

@ STOCHASTIC PROCESSES

© THE GILLESPIE ALGORITHM
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Stochastic Processes

EXPONENTIAL DISTRIBUTION

An exponential distribution models the time of occurrence of a
(simple) random event.

It is given by a random variable T, with values in [0, c0), with
density
f() = 2™,

where A is the rate of the exponential distribution.
The probability of the event happening within time ¢ is

P(T<t)=1-—e*,

Mean: E[T] = + Variance: VAR[T] = Xlg

>

A is the average density of frequency of events per unit of time. )
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Stochastic Processes

CONTINUOUS TIME MARKOV CHAINS

What happens if we have more than one event competing?
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Stochastic Processes

CONTINUOUS TIME MARKOV CHAINS

What happens if we have more than one event competing?

f In this case, there is a race condition between
events: the fastest event is executed and modifies
globally the state of the system.
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Stochastic Processes

CONTINUOUS TIME MARKOV CHAINS

What happens if we have more than one event competing?

f In this case, there is a race condition between
events: the fastest event is executed and modifies
globally the state of the system.

CoONTINUOUS TIME MARKOV CHAINS

The is a discrete set of states, connected by transitions each
with an associated rate of an exponential distribution.

In each state, transitions compete in a race condition: the
fastest one determines the new state and the time elapsed.

In the new state, the race condition is started anew (memoryless
property).
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stic Processes

CONTINUOUS TIME MARKOV CHAINS

EQuivALENT CHAR

@ In each state, we select the next state
according to a probability distribution
obtained normalizing rates (from S to Si
with prob. —1—).

r1+7r2

n

@ The time spent in a state is given by an
exponentially distributed random variable,
I; with rate given by the sum of outgoing

transitions from the actual node (r1 + r2).
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The Gillespie algorithm

STOCHASTIC MODEL OF A CHEMICAL SYSTEM

We have a set of chemical substances S1,..., Sy contained in a
volume V', with

X; = number of molecules of species i,
subject to a set of chemical reactions
Ry,..., Ry,
where each R; is of the form
Rj: Xj + Xj, = Xy +...—|-ij/)]_,
Rj: Xj — Xy —i—...—l—Xj{pj,
Rj:0— Xy 4.+ Xy

The system is supposed to be in thermal equilibrium J
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The Gillespie algorithm

STOCHASTIC MODEL OF A CHEMICAL SYSTEM

KEY ASSUMPTION

Each reaction R; has associated a specific probability rate
constant c¢;:
cjdt = probability that a randomly chosen combination
of R; reactant molecules inside V' at time ¢
will react according to R; in the next infinitesimal
time interval [t,t + dt).
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The Gillespie algorithm

STOCHASTIC MODEL OF A CHEMICAL SYSTEM

KEY ASSUMPTION

Each reaction R; has associated a specific probability rate
constant c¢;:
cjdt = probability that a randomly chosen combination
of R; reactant molecules inside V' at time ¢
will react according to R; in the next infinitesimal
time interval [t,t + dt).

KEY OBSERVATION

The next reaction that will happen depends only on the current
configuration of the system (number of molecules), not on past
history (memoryless property).
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The Gillespie algorithm

DERIVING KINETIC PARAMETERS

Let’s focus on a bimolecular reaction...

<;MOLECULE 2
3

Figure 1. The “collision volume” &V, which molecule 1 will sweep
out relative to molecule 2 in the next small time interval &t.

PROBLEM

“... 1t is physically meaningless to talk about “the number of
molecules whose centers lie inside §V,,;” in the required limit of
vanishingly small §z. ...”
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The Gillespie algorithm

THE STOCHASTIC MODEL

Under the hypothesis of thermal equilibrium, molecules are
uniformly distributed in space, and velocities follow a
Boltzmann distribution.

The collision volume swept on average is
oV = 7T7“%2<’U12>(57f.
The collision probability is therefore

(5_V _ 7TT'%2<’Z)12>(515
Vo Vv '
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The Gillesp

THE STOCHASTIC MODEL

REACTION PROBABILITY

probability that a colliding pair of R;
Pj =def reactant molecules will chemically react
according to R;.

The basic rate of reaction c; is therefore

T = V_lwrfg (vi2)p;-
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The Gillespie algorithm

RATE FUNCTIONS

c; gives the rate of reaction for a single pair of molecules
involved in R;.

To determine the global rate of reaction R;, we need to count
how many pairs of reacting molecules we have. We do this with
the rate function h;(c;, X).

REACTANTS OF DIFFERENT SPECIES

le +Xj2 — 1 hj(Cj,X) = CijIXj2

REACTANTS OF THE SAME SPECIES

2Xj1 — i hj(Cj,X) = Cj%
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The Gillesp

CHEMICAL MASTER EQUATION

From rate functions, we can derive a differential equations saying how
the probability of being in different states (of having different number
of molecules) varies over time. It is called the chemical master
equation:

dPXt M
=>

( By X~ v)P(X—vpt)  — (e X)P(X, ) )
—— —

Jj=1 . o . ;
A reaction Rj; happened in time [t,t 4+ dt]  No reaction happened in [t, t + dt]

This equation is everything we need to know about the stochastic
process.

This equation is very difficult to solve, even numerically. I
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The Gillespie algorithm

THE APPROACH OF GILLESPIE

The central notion becomes the following definition of reaction
probability density function:

probability that, given the state X =
(X1,...,Xn) at time ¢, the next reac-

P(7,j) =ges tion in V will occur in the infinitesimal
time interval (t+7,t+ 7+ dt), and will
be an R; reaction
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The Gillespie algorithm

THE APPROACH OF GILLESPIE

EXPLICIT FORM OF P(7, )

hj (cj ) X)
ho(X)

next reaction

P(r,j) = ho(X)e "7
———

time elapsed

| |

INTUITIVELY...

The equation says that the next reaction is chosen with
probability %7 while the time elapsed to see this reaction
happen is exponentially distributed with rate hg.

This stochastic process is a Continuous Time Markov Chain.
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The Gillespie algorithm

NUMERICALLY SIMULATING P(7, )

NUMERICALLY SIMULATING P(T, )

A random number generator can be used to draw random pairs
(7, 1) whose probability density function is P(7, ).

Given 71 and ro randomly generated, determine 7 and g such
that:

7= (1/ho)log (1/r1)  SI_1h, <roho < ¥I_ b,

| A

THE METHOD

A general Monte Carlo technique called inversion method: x
will be randomly drawn with probability density function P(x)
if z = F~'(r) with  randomly drawn with uniform probability
density function in [0, 1] and F' is the probability distribution
function ([*__ P(y)dy).
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THE ALGORITHM

“Input values for e (v=1,...,4).
“Input initial values for X; (i=1,...,M).
-Set =0 and n=0.

“Initialize URN
“Calculate a =k ¢ (v=1,...,4).
vy

“Caleulate ao= | a .
=

i

“Generate r and rz £rom URN.

*Take 1=(1/ao)1n(1/r1).
-1

a,.
v

*Take  so that ) @, raa0t
1

v=1 v

I

W e

“Put t=teT.

*Adjust X, values according to R

Put n=n+l.

_

Figure 2. Schematic of the stochastic simulation algorithm.
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GILLESPIE ALGORITHM AND PETRI NETS

QP(—)PQ
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The Gillespie algorithm

GILLESPIE ALGORITHM AND PETRI NETS

hi(c1,X) op P
A )

= 1% (27 %28)/2 = 378
( X): «12=24
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The Gillespie algorithm

GILLESPIE ALGORITHM AND PETRI NETS

2P<—)P2
hi(1,X) = 1% (27 % 28)/2 = 378
ho(2,X) =2%12 =24
ho(X) = 378 + 24 = 402
D1 =0.94
po = 0.06
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The Gillespie algorithm

GILLESPIE ALGORITHM AND PETRI NETS

hi(c1,X) op P
2

1,X) = 1 (27 % 28)/2 = 378

2,X)=2%12 =24

X) = 378 + 24 = 402

P1 = 0.94

po = 0.06

time = 1/402
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The Gillespie algorithm

GILLESPIE ALGORITHM AND 7m-CALCULUS

Each channel has a basic rate A
associated to it.

The global rate of a channel depends on
how many agents are ready to

2 ao communicate on it.
. . In this example:
N b
AMN
a )

The functions h; are determined
implicitly by the semantics of the
language. Gillespie can be used to
simulate stochastic m-calculus as well!!!
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The Gillespie algorithm

AN EXAMPLE: GENETIC REGULATORY NETWORKS

Genes as logical gates

mF’b alE.b G_E’b

pos heg
Repressilator

Repressilator in sCCP

5 :
r

neg b

I a 1

neg

0 50 100 150 200
time (sec)
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