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Introduction: What can Informatics do for
Biology?

Systems Biology. New approaches are needed to determine the logical
and informational processes that underpin cellular behaviorur.

Paul Nurse. Understanding Cells. Nature vol. 24 (2003)

[...] An important part of the search for such explanations is the
identification, characterization and classification of the logical and
informational modules that operate in cells. For example, the types of
modules that may be involved in the dynamics of intracellular
communication include feedback loops, switches, timers, oscillators and
amplifiers. Many of these could be similar in formal structure to those
already studied in the development of machine theory, computing and
electronic circuitry. When these modules are coupled in space by processes
such as reaction diffusion and regulated cytoskeletal transport, they help to
provide a basis for the spatial organization of the cell. The identification
and characterization of these modules will require extensive experimental
investigation, followed by realistic modelling of the processes involved.[...]
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Computational Systems Biology

Computational Systems Biology.
H. Kitano. Computational Systems Biology. Nature vol. 420 (2002)

To understand complex biological systems requires the integration of
experimental and computational research - in other words a systems biology
approach. Computational biology, through pragmatic modelling and
theoretical exploration, provides a powerful foundation from which to
address critical scientific questions head-on. The reviews in this Insight
cover many different aspects of this energetic field, although all, in one way
or another, illuminate the functioning of modular circuits, including their
robustness, design and manipulation. Computational systems biology
addresses questions fundamental to our understanding of life, yet progress
here will lead to practical innovations in medicine, drug discovery and
engineering. [...]
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What does it mean modeling?

modeling = describing “systems” using the precise and formal
language of mathematics. Useful for:

(re)organization of knowledge;
simulation;
prediction of properties and behaviors.

What we can model in biology?
Protein interaction networks, genetic regulation networks...
(already now)
cells, tissues, organs, organisms... (in the future)
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An example: MAPKinase
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Choosing the detail of models

The choice of the level of detail of models is an art, depending
on the phenomenon one wishes to describe.

photosynthesis - simplified model
6CO2 + 6H2O → C6H12O6 + 6O2

photosynthesis - extended model

light-dependent phase

2H2O+ADP+Pi+2NADP+ → O2+ATP+2NADPH+2H+

carbon-fixation phase

CO2 +ATP + 2NADPH + 2H+ →
(CH2O) +H2O +ADP + Pi+ 2NADP+
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Modeling process
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What mathematics?

What we want to capture of biological systems?
The dynamics, i.e. their temporal evolution.

Differential Equations
Concentration of molecules
The instantaneous
variation of the
concentration of a molecule
is given by the balance of
ingoing and outgoing
fluxes.

Stochastic Processes
Number of molecules
The variation of the
number of molecules is
governed by probabilistic
laws (noise).
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An example: reaction catalyzed by an enzyme

S
E→ P
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The dilemma: deterministic or stochastic?

Let’s consider a colony of bacteria, in which every bacteria
generates new offspring with rate λ (i.e. it generates λ new
bacteria per unit of time) and dies with rate µ (i.e. the fraction
of bacteria dying per unit of time is µ).

Formalization
X(t) is the number of bacteria at time t.
Birth rate at time t: ∝ X(t) (= λX(t))
Death rate at time t: ∝ X(t) (= µX(t))
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Model with differential equations

X(t) is a continuous variable (taking values in R).
The speed of change of X(t):

dX(t)

dt
= λX(t)− µX(t) = (λ− µ)X(t)

This differential equation has solution

X(t) = X0e
(λ−µ)t.
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Model with stochastic processes

X(t) is a discrete variable (values in N).
We observe a sequence of (discrete) events in (continuous) time,
each happening with a certain probability. Mathematically, the
model is a Continuous Time Markov Chain.

prob. birth =
λX(t)

λX(t)+µX(t)

prob. death =

µX(t)
λX(t)+µX(t)
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Comparing the two models

ODE
Population of bacteria does
not fluctuate.
Bacteria can
asymptotically go extinct.
Dynamics determined by
λ− µ.

Stochastic Processes
Noisy evolution.
Bacteria can extinguish in
finite time.
Dynamics determined by
λ− µ (trend) and λ+ µ
(variance).
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Analysis of the stochastic model

Analysis are usually performed simulating the model
several times.
We can study the average behavior, or distributions at
specific times or of specific events.

Distribution of bacteria at time t = 1

100000 runs mean = 37.07; sd = 13.50

Distribution of extinction time

100000 runs mean = 3.82; sd = 1.23
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Stochasticity in biological systems?

Stochastic mechanisms act when number of molecules is low.
They are central in genetic regulatory networks. For instance,
they may be responsible for phenotypic variation in isogenic
population of bacteria.

H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. PNAS, 1997.
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Stochasticity in biological systems
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Effect of stochasticity

Lotka-Volterra system

C →kd

E →kb 2E
C + E →ke 2C
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