Graphical Representation of Biochemical Networks. (and Petri Nets)

Alberto Policriti

Dipartimento di Matematica e Informatica
Istituto di Genomica Applicata

SUMMARY

(1) Chemical Reactions

(2) Graphical Representations
(3) Petri Nets

MATERIAL FROM CHAPTER 1 AD 2 OF:

Chapmanim Fail/
Mathematical and Computational Biology Series

Stochastic Modelling

 for Systems BiologySECOND EDITION

Darren J. Wilkinson

FORMAL REPRESENTATION OF CHEMICAL REACTIONS

- precise
- qualitative and quantitative
- suitable to introduce discrete and stochastic ingredients

We begin with
Network of coupled chemical reactions
$m_{1} R_{1}+m_{2} R_{2}+\ldots+m_{r} R_{r} \rightarrow n_{1} P_{1}+n_{2} P_{2}+\ldots+n_{p} P_{p}$
\square

FORMAL REPRESENTATION OF CHEMICAL REACTIONS

- precise
- qualitative and quantitative
- suitable to introduce discrete and stochastic ingredients

We begin with
Network of coupled chemical reactions

$$
m_{1} R_{1}+m_{2} R_{2}+\ldots+m_{r} R_{r} \rightarrow n_{1} P_{1}+n_{2} P_{2}+\ldots+n_{p} P_{p}
$$

FORMAL REPRESENTATION OF CHEMICAL REACTIONS

- precise
- qualitative and quantitative
- suitable to introduce discrete and stochastic ingredients

We begin with
Network of coupled chemical reactions

$$
m_{1} R_{1}+m_{2} R_{2}+\ldots+m_{r} R_{r} \rightarrow n_{1} P_{1}+n_{2} P_{2}+\ldots+n_{p} P_{p}
$$

DEFINITIONS

(1) R_{i} 's: reactants;
(2) P_{j} 's: products;
(3) m_{i} 's and n_{j} 's: stoichiometries.

EXAMPLE: (PROCARYOTE) GENE TRANSCRIPTION

EXAMPLE: (PROCARYOTE) GENE TRANSCRIPTION

DETAILS

Reactants and Products need not be different:
Dimerisation of a protein P

$$
2 P \rightarrow P_{2}
$$

if reversible:

$$
2 P \leftrightarrow P_{2}
$$

NOT EVERY REACTION IS MODELLED
Some product "pops out" mysteriously
(DETAIL?)
rates are missing

EXAMPLE: MRNA TRANSLATION

$$
\begin{aligned}
r+\operatorname{Rib} & \leftrightarrow r \cdot \operatorname{Rib} \\
r \cdot \operatorname{Rib} \rightarrow r & +\operatorname{Rib}+P_{u} \\
P_{u} & \rightarrow P
\end{aligned}
$$

EXAMPLE: MRNA TRANSLATION

$$
\begin{aligned}
r+\operatorname{Rib} & \leftrightarrow r \cdot \operatorname{Rib} \\
r \cdot \operatorname{Rib} \rightarrow r & +\operatorname{Rib}+P_{u} \\
P_{u} & \rightarrow P
\end{aligned}
$$

EXAMPLE: RIBONUCLEASE MRNA DEGRADATION

$$
\begin{gathered}
r+R N a s e \rightarrow r \cdot R N a s e \\
r \cdot R N a s e \rightarrow R N a s e
\end{gathered}
$$

EXAMPLE: RIBONUCLEASE MRNA DEGRADATION

$$
\begin{gathered}
r+\text { RNase } \rightarrow r \cdot R N \text { ase } \\
r \cdot R N \text { ase } \rightarrow \text { RNase }
\end{gathered}
$$

EXAMPLE: NEGATIVE REGULATION

$$
\begin{aligned}
g+R & \leftrightarrow g \cdot R \\
g+R N A P & \leftrightarrow g \cdot R N A P \\
g \cdot R N A P & \rightarrow g+R N A P+r
\end{aligned}
$$

EXAMPLE: NEGATIVE REGULATION

THE ORDER OF REACTIONS

REACTIONS DO NOT EXECUTE IN LINEAR ORDER
The "interesting" ingredients come up when loops are present

EXAMPLE: NEGATIVE AUTO-REGULATION

EXAMPLE: NEGATIVE AUTO-REGULATION

$$
\begin{gathered}
g+P_{2} \leftrightarrow g \cdot P_{2} \\
g \rightarrow g+r \\
r \rightarrow r+P
\end{gathered}
$$

$$
\begin{aligned}
2 P & \leftrightarrow P_{2} \\
r & \rightarrow \emptyset \\
P & \rightarrow \emptyset
\end{aligned}
$$

INFORMAL DIAGRAM

Chemical Reactions

$$
\begin{gathered}
g+P_{2} \leftrightarrow g \cdot P_{2} \\
g \rightarrow g+r \\
r \rightarrow r+P \\
2 P \leftrightarrow P_{2} \\
r \rightarrow \emptyset \\
P \rightarrow \emptyset
\end{gathered}
$$

CHEMICAL REACTIONS

$$
\begin{array}{cl}
g+P_{2} \leftrightarrow g \cdot P_{2} & \text { Repression } \\
g \rightarrow g+r & \text { Transcription } \\
r \rightarrow r+P & \text { Translation } \\
2 P \leftrightarrow P_{2} & \text { Dimerisation } \\
r \rightarrow \emptyset & \text { mRNA degradation } \\
P \rightarrow \emptyset & \text { Protein degradation }
\end{array}
$$

Fluxes

DEFINITIONS

Definition

A directed graph (digraph) \mathcal{G} is (V, E) where

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$;
- $E \subseteq\left\{\left\langle v_{i}, v_{j}\right\rangle \mid v_{i}, v_{j} \in V\right\}=V \times V$.

Definition

- \mathcal{G} is simple if there are no self-loops and no repeated edges.
© \mathcal{G} is bipartite if there exists $V_{1}, V_{2} \subset V$ such that $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, and
$\left\langle v_{i}, v_{j}\right\rangle \Rightarrow\left(v_{i} \in V_{1} \Leftrightarrow v_{j} \in V_{2}\right) ;$
- \mathcal{G} is weighted if every edge has a weight.

Why simple, bipartite, and weighted graphs?

DEFINITIONS

Definition

A directed graph (digraph) \mathcal{G} is (V, E) where

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$;
- $E \subseteq\left\{\left\langle v_{i}, v_{j}\right\rangle \mid v_{i}, v_{j} \in V\right\}=V \times V$.

Definition

(1) \mathcal{G} is simple if there are no self-loops and no repeated edges.
(2) \mathcal{G} is bipartite if there exists $V_{1}, V_{2} \subset V$ such that $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, and $\left\langle v_{i}, v_{j}\right\rangle \Rightarrow\left(v_{i} \in V_{1} \Leftrightarrow v_{j} \in V_{2}\right) ;$
(3) \mathcal{G} is weighted if every edge has a weight.

[^0]
DEFINITIONS

Definition

A directed graph (digraph) \mathcal{G} is (V, E) where

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$;
- $E \subseteq\left\{\left\langle v_{i}, v_{j}\right\rangle \mid v_{i}, v_{j} \in V\right\}=V \times V$.

Definition

(1) \mathcal{G} is simple if there are no self-loops and no repeated edges.
(2) \mathcal{G} is bipartite if there exists $V_{1}, V_{2} \subset V$ such that $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, and $\left\langle v_{i}, v_{j}\right\rangle \Rightarrow\left(v_{i} \in V_{1} \Leftrightarrow v_{j} \in V_{2}\right) ;$
(3) \mathcal{G} is weighted if every edge has a weight.

Why simple, bipartite, and weighted graphs?

REACTION GRAPHS

REACTION GRAPHS: THE DISCRETE INGREDIENT.

- We will work with species and reactions \Rightarrow simple and bipartite graphs.
- We want to keep track of stoichiometries \Rightarrow weighted graphs.

Place/Transition Petri Nets

$$
\begin{array}{cl}
g+P_{2} \leftrightarrow g \cdot P_{2} & \text { Repression } \\
g \rightarrow g+r & \text { Transcription } \\
r \rightarrow r+P & \text { Translation } \\
2 P \leftrightarrow P_{2} & \text { Dimerisation } \\
r \rightarrow \emptyset & \text { mRNA degradatior } \\
P \rightarrow \emptyset & \text { Protein degradatio }
\end{array}
$$

P/T PETRI NETS: ALTERNATIVE REPRESENTATION

	Reactants (Pre)					Products (Post)				
Species	$g \cdot P_{2}$	g	r	P	P_{2}	$g \cdot P_{2}$	g	r	P	P_{2}
Repression		1			1	1				
Reverse repression	1						1			1
Transcription		1					1	1		
Translation			1					1	1	
Dimerisation				2						1
Dissociation					1				2	
mRNA degradation			1							
Protein degradation				1						

P/T Petri Net: Marking

P/T Petri Net: Firing (two Reaction)

$g+P_{2} \rightarrow g \cdot P_{2} \quad$ Repression $r \rightarrow r+P \quad$ Translation

P/T Petri Net: FIRing (two REACTION)

$$
\begin{array}{cl}
g+P_{2} \rightarrow g \cdot P_{2} & \text { Repression } \\
r \rightarrow r+P & \text { Translation }
\end{array}
$$

P/T PETRI NET MARKING: ALTERNATIVE REPRESENTATION

Species	num. of tokens
$g \cdot P_{2}$	0
g	1
r	2
P	10
P_{2}	12

Species	num. of tokens
$g \cdot P_{2}$	1
g	0
r	2
P	11
P_{2}	11

P/T Petri Nets: Definition

Definition

A P / T Petri net is

$$
N=\langle P, T, \text { Pre }, \text { Post }, M\rangle
$$

where P is the vector of Places, T is the vector of Transitions, Pre and Post are the labels on arcs (remember: bipartite graph) and M is the initial marking vector.

Notation: $|P|=u,|T|=v$, and both Pre and Post are $v \times u$ matrices.

P/T Petri Nets: definition

Definition

A P / T Petri net is

$$
N=\langle P, T, \text { Pre }, \text { Post }, M\rangle
$$

where P is the vector of Places, T is the vector of Transitions, Pre and Post are the labels on arcs (remember: bipartite graph) and M is the initial marking vector.

Notation: $|P|=u,|T|=v$, and both Pre and Post are $v \times u$ matrices.

P/T Petri Nets by matrices (EXAMPLE)

$P=\left(\begin{array}{c}g \cdot P_{2} \\ g \\ r \\ P \\ P_{2}\end{array}\right) T=\left(\begin{array}{c}\text { Repression } \\ \text { Reverse repression } \\ \text { Transcription } \\ \text { Translation } \\ \text { Dimerisation } \\ \text { Dissociation } \\ \text { mRNA degradation } \\ \text { Protein degradation }\end{array}\right) \quad M=\left(\begin{array}{c}0 \\ 1 \\ 2 \\ 10 \\ 12\end{array}\right)$

$$
\operatorname{Pre}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad \text { Post }=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Matrices!

The dynamics can be represented by ... a matrix:

$$
A=\text { Post }- \text { Pre }=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 2 & -1 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

... or equivalently by:

$$
S=A^{\prime}
$$

Names: A reaction matrix, S stoichiometry matrix.

COMPUTATION CAN BE PERFORMED BY MATRIX CALCULUS

Computing The markings

If we represent the transition that have taken place (in parallel) by a vector, we can multiply and sum matrices to compute the new marking.

Example

A Repression reaction and a Translation reaction can be represented by $r=(1,0,0,1,0,0,0,0)^{\prime}$ where:

Reactions	num. of transitions
Repression	1
Reverse repression	0
Transcription	0
Translation	1
Dimerisation	0
Dissociation	0
mRNA degradation	0
Protein degradation	0

$$
\tilde{M}=M+S r
$$

INVARIANTS

Definition

A P-invariant is a non-zero vector y such that $A y=0$.

P-Invariant as conservation laws

in the example $(1,1,0,0,0)^{\prime}$ is a P-invariant and corresponds to the observation that

$$
g \cdot P_{2}+g=\text { const } .
$$

PROOF

INVARIANTS

Definition

A P-invariant is a non-zero vector y such that $A y=0$.

P-Invariant as conservation laws

in the example $(1,1,0,0,0)^{\prime}$ is a P-invariant and corresponds to the observation that

$$
g \cdot P_{2}+g=\text { const } .
$$

PROOF

$$
\begin{array}{rlc}
y^{\prime} \tilde{M}-y^{\prime} M & = & y^{\prime}(\tilde{M}-M) \\
& = & y^{\prime} S r \\
& = & \left(S^{\prime} y\right)^{\prime} r \\
& = & (A y)^{\prime} r \\
& = & 0
\end{array}
$$

T-INVARIANTS

Definition

A T-invariant is a non-zero vector x such that $S x=0$.

T-INVARIANTS ARE canceling cycles OF ACTIONS

in the example $(1,1,0,0,0,0,0)^{\prime}$ is a T-invariant and corresponds to the observation that a Repression and a Reverse repression do cancel out.

Proor
Use again:

T-INVARIANTS

Definition

A T-invariant is a non-zero vector x such that $S x=0$.

T-INVARIANTS ARE canceling cycles OF ACTIONS

in the example $(1,1,0,0,0,0,0)^{\prime}$ is a T-invariant and corresponds to the observation that a Repression and a Reverse repression do cancel out.

PROOF

Use again:

$$
\tilde{M}=M+S r .
$$

... NEXT

- invariants correspond to loops in the dynamics: are important;
- rates are missing and their addition is the way to introduce the stochastic ingredient;
- (stochastic) quantitative aspects enter the picture via markings. It is not the only way;
- P/T Petri Nets are neat and compact but they are not modular: transitions link everything together.

[^0]: Why simple, bipartite, and weighted graphs?

