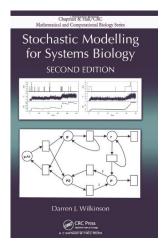
Graphical Representation of Biochemical Networks. (and Petri Nets)

Alberto Policriti

Dipartimento di Matematica e Informatica Istituto di Genomica Applicata

MATERIAL FROM CHAPTER 1 AD 2 OF:



FORMAL REPRESENTATION OF CHEMICAL REACTIONS

- $\bullet~{\rm precise}$
- qualitative and quantitative
- suitable to introduce *discrete* and *stochastic* ingredients

We begin with

Network of coupled chemical reactions

$m_1R_1 + m_2R_2 + \ldots + m_rR_r \to n_1P_1 + n_2P_2 + \ldots + n_pP_p$

DEFINITIONS

- R_i 's: reactants;
- $\bigcirc P_j$'s: products;
- 3 m_i 's and n_j 's: stoichiometries.

FORMAL REPRESENTATION OF CHEMICAL REACTIONS

- precise
- qualitative and quantitative
- suitable to introduce *discrete* and *stochastic* ingredients

We begin with

Network of coupled chemical reactions

$$m_1R_1 + m_2R_2 + \ldots + m_rR_r \to n_1P_1 + n_2P_2 + \ldots + n_pP_p$$

Definitions

- **2** P_j 's: products;
- 3 m_i 's and n_j 's: stoichiometries.

FORMAL REPRESENTATION OF CHEMICAL REACTIONS

- ${\scriptstyle \bullet }$ precise
- qualitative and quantitative
- suitable to introduce *discrete* and *stochastic* ingredients

We begin with

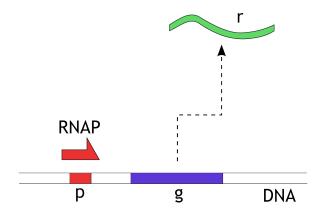
Network of coupled chemical reactions

$$m_1R_1 + m_2R_2 + \ldots + m_rR_r \to n_1P_1 + n_2P_2 + \ldots + n_pP_p$$

Definitions

- R_i 's: reactants;
- \bigcirc P_j 's: products;

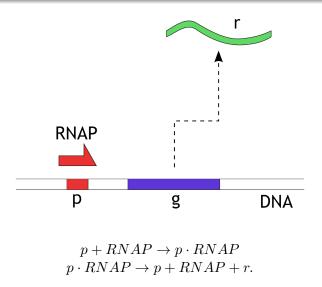
EXAMPLE: (PROCARYOTE) GENE TRANSCRIPTION



$p + RNAP \to p \cdot RNAP$ $p \cdot RNAP \to p + RNAP + r.$

A. Policriti Graphical Representation of Bio-Nets 5/28

EXAMPLE: (PROCARYOTE) GENE TRANSCRIPTION



DETAILS

Reactants and Products need not be different: Dimerisation of a protein P

$$2P \rightarrow P_2$$

if reversible:

$$2P \leftrightarrow P_2$$

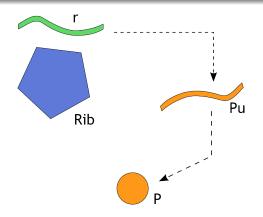
NOT EVERY REACTION IS MODELLED

Some product "pops out" mysteriously

(DETAIL?)

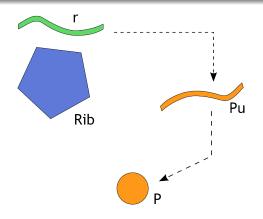
rates are missing

EXAMPLE: MRNA TRANSLATION



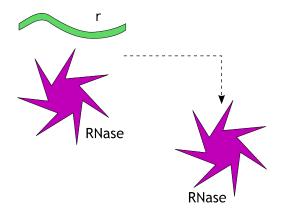
 $r + Rib \leftrightarrow r \cdot Rib$ $r \cdot Rib \rightarrow r + Rib + P_u$ $P_u \rightarrow P$

EXAMPLE: MRNA TRANSLATION



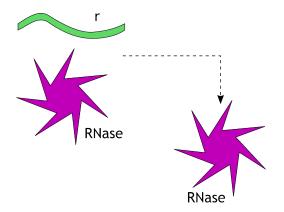
$$\begin{array}{c} r+Rib\leftrightarrow r\cdot Rib\\ r\cdot Rib\rightarrow r+Rib+P_u\\ P_u\rightarrow P\end{array}$$

EXAMPLE: RIBONUCLEASE MRNA DEGRADATION



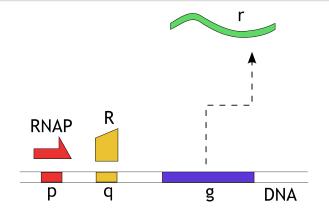
 $r + RNase \rightarrow r \cdot RNase$ $r \cdot RNase \rightarrow RNase$

EXAMPLE: RIBONUCLEASE MRNA DEGRADATION



 $\begin{array}{c} r + RNase \rightarrow r \cdot RNase \\ r \cdot RNase \rightarrow RNase \end{array}$

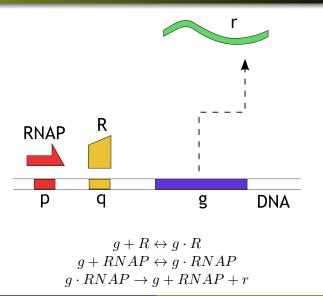
EXAMPLE: NEGATIVE REGULATION



$\begin{array}{c} g+R \leftrightarrow g \cdot R \\ g+RNAP \leftrightarrow g \cdot RNAP \\ g \cdot RNAP \rightarrow g+RNAP + \eta \end{array}$

A. Policriti Graphical Representation of Bio-Nets 9/28

EXAMPLE: NEGATIVE REGULATION

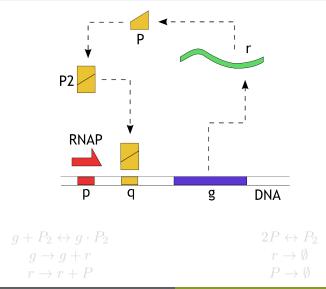


THE ORDER OF REACTIONS

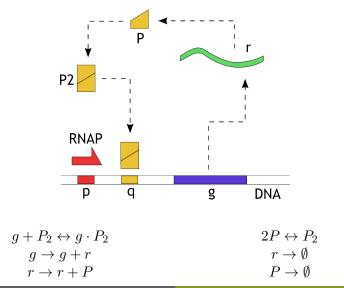
Reactions do not execute in linear order

The "interesting" ingredients come up when loops are present

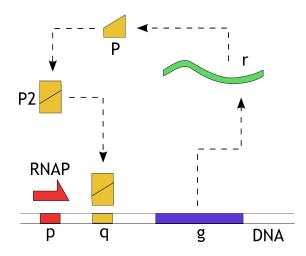
EXAMPLE: NEGATIVE AUTO-REGULATION



EXAMPLE: NEGATIVE AUTO-REGULATION



INFORMAL DIAGRAM



A. Policriti Graphical Representation of Bio-Nets 12/28

CHEMICAL REACTIONS

$$g + P_2 \leftrightarrow g \cdot P_2$$

$$g \rightarrow g + r$$

$$r \rightarrow r + P$$

$$2P \leftrightarrow P_2$$

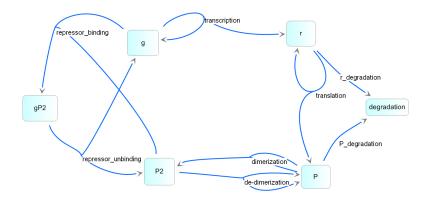
$$r \rightarrow \emptyset$$

$$P \rightarrow \emptyset$$

CHEMICAL REACTIONS

$$\begin{array}{ll} g+P_2\leftrightarrow g\cdot P_2 & \text{Repression} \\ g\to g+r & \text{Transcription} \\ r\to r+P & \text{Translation} \\ 2P\leftrightarrow P_2 & \text{Dimerisation} \\ r\to \emptyset & \text{mRNA degradation} \\ P\to \emptyset & \text{Protein degradation} \end{array}$$

FLUXES



DEFINITIONS

DEFINITION

A directed graph (digraph) \mathcal{G} is (V, E) where

•
$$V = \{v_1, \ldots, v_n\};$$

•
$$E \subseteq \{ \langle v_i, v_j \rangle \mid v_i, v_j \in V \} = V \times V.$$

Definition

0 \mathcal{G} is simple if there are no self-loops and no repeated edges.

- **2** \mathcal{G} is **bipartite** if there exists $V_1, V_2 \subset V$ such that $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$, and $\langle v_i, v_j \rangle \Rightarrow (v_i \in V_1 \Leftrightarrow v_j \in V_2);$
- ③ \mathcal{G} is weighted if every edge has a *weight*.

Why simple, bipartite, and weighted graphs?

DEFINITIONS

Definition

A directed graph (digraph) \mathcal{G} is (V, E) where

•
$$V = \{v_1, \ldots, v_n\};$$

•
$$E \subseteq \{ \langle v_i, v_j \rangle \mid v_i, v_j \in V \} = V \times V.$$

Definition

Q is simple if there are no self-loops and no repeated edges.

- ② \mathcal{G} is bipartite if there exists $V_1, V_2 \subset V$ such that $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$, and $\langle v_i, v_j \rangle \Rightarrow (v_i \in V_1 \Leftrightarrow v_j \in V_2);$
- **③** \mathcal{G} is weighted if every edge has a *weight*.

Why simple, bipartite, and weighted graphs?

DEFINITIONS

Definition

A directed graph (digraph) \mathcal{G} is (V, E) where

•
$$V = \{v_1, \ldots, v_n\};$$

•
$$E \subseteq \{ \langle v_i, v_j \rangle \mid v_i, v_j \in V \} = V \times V.$$

Definition

Q is simple if there are no self-loops and no repeated edges.

- ② \mathcal{G} is bipartite if there exists $V_1, V_2 \subset V$ such that $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$, and $\langle v_i, v_j \rangle \Rightarrow (v_i \in V_1 \Leftrightarrow v_j \in V_2);$
- **③** \mathcal{G} is weighted if every edge has a *weight*.

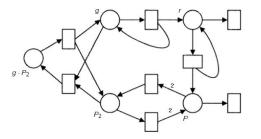
Why simple, bipartite, and weighted graphs?

REACTION GRAPHS

REACTION GRAPHS: THE DISCRETE INGREDIENT.

- We will work with *species* and *reactions* ⇒ simple and bipartite graphs.
- We want to keep track of *stoichiometries* ⇒ weighted graphs.

PLACE/TRANSITION PETRI NETS



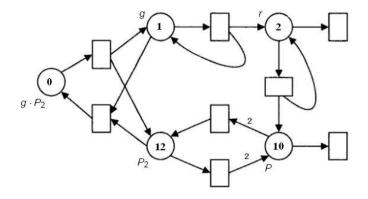
$+P_2 \leftrightarrow g \cdot P_2$	Repression
$g \rightarrow g + r$	Transcription
$r \to r + P$	Translation
$2P \leftrightarrow P_2$	Dimerisation
$r \to \emptyset$	mRNA degradation
$P \to \emptyset$	Protein degradation

g

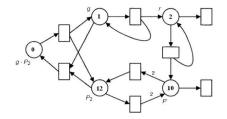
P/T Petri Nets: Alternative representation

	Reactants (<i>Pre</i>) Products (<i>Po</i>			Pos	t)					
Species	$g \cdot P_2$	g	r	P	P_2	$g \cdot P_2$	g	r	P	P_2
Repression		1			1	1				
Reverse repression	1						1			1
Transcription		1					1	1		
Translation			1					1	1	
Dimerisation				2						1
Dissociation					1				2	
mRNA degradation			1							
Protein degradation				1						

P/T Petri Net: Marking

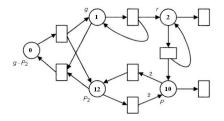


P/T Petri Net: Firing (*two* reaction)

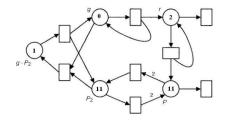


 $g + P_2 \rightarrow g \cdot P_2$ Repression $r \rightarrow r + P$ Translation

P/T Petri Net: Firing (*two* reaction)



$$g + P_2 \rightarrow g \cdot P_2$$
 Repression
 $r \rightarrow r + P$ Translation



P/T PETRI NET MARKING: ALTERNATIVE REPRESENTATION

Species	num. of tokens	Species	num. of tokens
$g \cdot P_2$	0	$g \cdot P_2$	1
g	1	g	0
r	2	r	2
P	10	P	11
P_2	12	P_2	11

P/T Petri Nets: definition

Definition

A P/T Petri net is

$$N = \langle P, T, Pre, Post, M \rangle$$

where P is the vector of Places, T is the vector of Transitions, *Pre* and *Post* are the labels on arcs (remember: bipartite graph) and M is the initial marking vector.

Notation: |P| = u, |T| = v, and both *Pre* and *Post* are $v \times u$ matrices.

P/T PETRI NETS: DEFINITION

Definition

A P/T Petri net is

$$N = \langle P, T, Pre, Post, M \rangle$$

where P is the vector of Places, T is the vector of Transitions, *Pre* and *Post* are the labels on arcs (remember: bipartite graph) and M is the initial marking vector.

Notation: |P| = u, |T| = v, and both *Pre* and *Post* are $v \times u$ matrices.

P/T Petri Nets by matrices (example)

MATRICES!

The *dynamics* can be represented by ... a matrix:

$$A = Post - Pre = \begin{pmatrix} 1 & -1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

... or equivalently by:

$$S = A'$$

Names: A reaction matrix, S stoichiometry matrix.

COMPUTATION CAN BE PERFORMED BY MATRIX CALCULUS

Computing the markings

If we represent the transition that have taken place (in parallel) by a vector, we can multiply and sum matrices to compute the new marking.

Example

A Repression reaction and a Translation reaction can be represented by $r=(1,0,0,1,0,0,0,0)^\prime$ where:

Reactions	num. of transitions
Repression	1
Reverse repression	0
Transcription	0
Translation	1
Dimerisation	0
Dissociation	0
mRNA degradation	0
Protein degradation	0

$$\tilde{M} = M + Sr$$

INVARIANTS

Definition

A *P*-invariant is a non-zero vector y such that Ay = 0.

P-INVARIANT AS conservation laws

in the example $(1,1,0,0,0)^\prime$ is a P-invariant and corresponds to the observation that

$$g \cdot P_2 + g = const.$$

PROOF

$$y'\tilde{M} - y'M = y'(\tilde{M} - M)$$

$$= y'Sr$$

$$= (S'y)'r$$

$$= (Ay)'r$$

$$= 0$$

INVARIANTS

Definition

A *P*-invariant is a non-zero vector y such that Ay = 0.

P-INVARIANT AS conservation laws

in the example $(1,1,0,0,0)^\prime$ is a P-invariant and corresponds to the observation that

$$g \cdot P_2 + g = const.$$

PROOF

$$y'\tilde{M} - y'M = y'(\tilde{M} - M)$$

= $y'Sr$
= $(S'y)'r$
= $(Ay)'r$
= 0

T-INVARIANTS

Definition

A *T*-invariant is a non-zero vector x such that Sx = 0.

T-INVARIANTS ARE canceling cycles OF ACTIONS

in the example (1, 1, 0, 0, 0, 0, 0)' is a *T*-invariant and corresponds to the observation that a Repression and a Reverse repression do cancel out.

PROOF

Use again:

$$\tilde{M} = M + Sr.$$

T-INVARIANTS

Definition

A *T*-invariant is a non-zero vector x such that Sx = 0.

T-INVARIANTS ARE canceling cycles OF ACTIONS

in the example (1, 1, 0, 0, 0, 0, 0)' is a *T*-invariant and corresponds to the observation that a Repression and a Reverse repression do cancel out.

PROOF

Use again:

$$\tilde{M} = M + Sr.$$

- invariants correspond to *loops* in the dynamics: are important;
- rates are missing and their addition is the way to introduce the *stochastic ingredient*;
- (stochastic) quantitative aspects enter the picture via *markings*. It is not the only way;
- P/T Petri Nets are neat and compact but they are not modular: transitions link everything together.