
Lecture Notes on

GRAPH THEORY

Tero Harju
Department of Mathematics

University of Turku
FIN-20014 Turku, Finland

e-mail: harju@utu.fi
1994 – 2011



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Graphs and their plane figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Paths and cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Connectivity of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Bipartite graphs and trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Tours and Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Eulerian graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Hamiltonian graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Edge colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Ramsey Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Vertex colourings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Graphs on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Colouring planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Genus of a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Network Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



1

Introduction

Graph theory may be said to have its begin-
ning in 1736 when EULER considered the (gen-
eral case of the) Königsberg bridge problem:
Does there exist a walk crossing each of the
seven bridges of Königsberg exactly once? (So-
lutio Problematis ad geometriam situs perti-
nentis, Commentarii Academiae Scientiarum Impe-
rialis Petropolitanae 8 (1736), pp. 128-140.)

It took 200 years before the first book on graph theory was written. This was “The-
orie der endlichen und unendlichen Graphen” ( Teubner, Leipzig, 1936) by KÖNIG in
1936. Since then graph theory has developed into an extensive and popular branch of
mathematics, which has been applied to many problems in mathematics, computer
science, and other scientific and not-so-scientific areas. For the history of early graph
theory, see

N.L. BIGGS, R.J. LLOYD AND R.J. WILSON, “Graph Theory 1736 – 1936”, Clarendon
Press, 1986.

There are no standard notations for graph theoretical objects. This is natural, be-
cause the names one uses for the objects reflect the applications. Thus, for instance, if
we consider a communications network (say, for email) as a graph, then the comput-
ers taking part in this network, are called nodes rather than vertices or points. On the
other hand, other names are used for molecular structures in chemistry, flow charts
in programming, human relations in social sciences, and so on.

These lectures study finite graphs and majority of the topics is included in

J.A. BONDY, U.S.R. MURTY, “Graph Theory with Applications”, Macmillan, 1978.

R. DIESTEL, “Graph Theory”, Springer-Verlag, 1997.

F. HARARY, “Graph Theory”, Addison-Wesley, 1969.

D.B. WEST, “Introduction to Graph Theory”, Prentice Hall, 1996.

R.J. WILSON, “Introduction to Graph Theory”, Longman, (3rd ed.) 1985.

In these lectures we study combinatorial aspects of graphs. For more algebraic topics
and methods, see

N. BIGGS, “Algebraic Graph Theory”, Cambridge University Press, (2nd ed.) 1993.

C. GODSIL, G.F. ROYLE, “Algebraic Graph Theory”, Springer, 2001.
and for computational aspects, see

S. EVEN, “Graph Algorithms”, Computer Science Press, 1979.
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In these lecture notes we mention several open problems that have gained respect
among the researchers. Indeed, graph theory has the advantage that it contains easily
formulated open problems that can be stated early in the theory. Finding a solution
to any one of these problems is another matter.

Sections with a star (∗) in their heading are optional.

Notations and notions

• For a finite set X, |X| denotes its size (cardinality, the number of its elements).
• Let

[1, n] = {1, 2, . . . , n},

and in general,
[i, n] = {i, i + 1, . . . , n}

for integers i ≤ n.
• For a real number x, the floor and the ceiling of x are the integers

⌊x⌋ = max{k ∈ Z | k ≤ x} and ⌈x⌉ = min{k ∈ Z | x ≤ k}.

• A family {X1, X2, . . . , Xk} of subsets Xi ⊆ X of a set X is a partition of X, if

X =
⋃

i∈[1,k]

Xi and Xi ∩ Xj = ∅ for all different i and j .

• For two sets X and Y,

X ×Y = {(x, y) | x ∈ X, y ∈ Y}

is their Cartesian product, and

X△Y = (X \ Y) ∪ (Y \ X)

is their symmetric difference. Here X \ Y = {x | x ∈ X, x /∈ Y}.
• Two integers n, k ∈ N (often n = |X| and k = |Y| for sets X and Y) have the same
parity, if both are even, or both are odd, that is, if n ≡ k (mod 2). Otherwise, they
have opposite parity.

Graph theory has abundant examples of NP-complete problems. Intuitively, a
problem is in P 1 if there is an efficient (practical) algorithm to find a solution to it. On
the other hand, a problem is in NP 2, if it is first efficient to guess a solution and then
efficient to check that this solution is correct. It is conjectured (and not known) that
P ̸= NP. This is one of the great problems in modern mathematics and theoretical
computer science. If the guessing in NP-problems can be replaced by an efficient
systematic search for a solution, then P=NP. For any one NP-complete problem, if it
is in P, then necessarily P=NP.

1 Solvable – by an algorithm – in polynomially many steps on the size of the problem instances.
2 Solvable nondeterministically in polynomially many steps on the size of the problem instances.
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1.1 Graphs and their plane figures

Let V be a finite set, and denote by

E(V) = {{u, v} | u, v ∈ V, u ̸= v} .

the 2-sets of V, i.e., subsets of two distinct elements.

DEFINITION. A pair G = (V, E) with E ⊆ E(V) is called a graph (on V). The elements
of V are the vertices of G, and those of E the edges of G. The vertex set of a graph G
is denoted by VG and its edge set by EG. Therefore G = (VG, EG).

In literature, graphs are also called simple graphs; vertices are called nodes or points;
edges are called lines or links. The list of alternatives is long (but still finite).

A pair {u, v} is usually written simply as uv. Notice that then uv = vu. In order to
simplify notations, we also write v ∈ G and e ∈ G instead of v ∈ VG and e ∈ EG.

DEFINITION. For a graph G, we denote

νG = |VG| and εG = |EG| .

The number νG of the vertices is called the order of G, and εG is the size of G. For an
edge e = uv ∈ G, the vertices u and v are its ends. Vertices u and v are adjacent or
neighbours, if uv ∈ G. Two edges e1 = uv and e2 = uw having a common end, are
adjacent with each other.

A graph G can be represented as a plane figure by
drawing a line (or a curve) between the points u and
v (representing vertices) if e = uv is an edge of G.
The figure on the right is a geometric representation
of the graph G with VG = {v1, v2, v3, v4, v5, v6} and
EG = {v1v2, v1v3, v2v3, v2v4, v5v6}.

v1

v2

v3

v4 v5

v6

Often we shall omit the identities (names v) of the vertices in our figures, in which
case the vertices are drawn as anonymous circles.

Graphs can be generalized by allowing loops vv and parallel (or multiple) edges
between vertices to obtain a multigraph G = (V, E, ψ), where E = {e1, e2, . . . , em} is
a set (of symbols), and ψ : E → E(V) ∪ {vv | v ∈ V} is a function that attaches an
unordered pair of vertices to each e ∈ E: ψ(e) = uv.
Note that we can have ψ(e1) = ψ(e2). This is drawn in
the figure of G by placing two (parallel) edges that con-
nect the common ends. On the right there is (a draw-
ing of) a multigraph G with vertices V = {a, b, c}
and edges ψ(e1) = aa, ψ(e2) = ab, ψ(e3) = bc, and
ψ(e4) = bc.

a

b

c
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Later we concentrate on (simple) graphs.

DEFINITION. We also study directed graphs or digraphs
D = (V, E), where the edges have a direction, that is, the
edges are ordered: E ⊆ V × V. In this case, uv ̸= vu.

The directed graphs have representations, where the edges are drawn as arrows.
A digraph can contain edges uv and vu of opposite directions.

Graphs and digraphs can also be coloured, labelled, and weighted:

DEFINITION. A function α : VG → K is a vertex colouring of G by a set K of colours.
A function α : EG → K is an edge colouring of G. Usually, K = [1, k] for some k ≥ 1.

If K ⊆ R (often K ⊆ N), then α is a weight function or a distance function.

Isomorphism of graphs

DEFINITION. Two graphs G and H are isomorphic, denoted by G ∼= H, if there exists
a bijection α : VG → VH such that

uv ∈ EG ⇐⇒ α(u)α(v) ∈ EH

for all u, v ∈ G.

Hence G and H are isomorphic if the vertices of H are renamings of those of G.
Two isomorphic graphs enjoy the same graph theoretical properties, and they are often
identified. In particular, all isomorphic graphs have the same plane figures (excepting
the identities of the vertices). This shows in the figures, where we tend to replace the
vertices by small circles, and talk of ‘the graph’ although there are, in fact, infinitely
many such graphs.
Example 1.1. The following graphs are
isomorphic. Indeed, the required iso-
morphism is given by v1 4→ 1, v2 4→ 3,
v3 4→ 4, v4 4→ 2, v5 4→ 5. v1

v2 v3

v4

v5 1

3

42

5

Isomorphism Problem. Does there exist an efficient algorithm to check whether any two
given graphs are isomorphic or not?

The following table lists the number 2(
n
2) of all graphs on a given set of n vertices,

and the number of all nonisomorphic graphs on n vertices. It tells that at least for
computational purposes an efficient algorithm for checking whether two graphs are
isomorphic or not would be greatly appreciated.

n 1 2 3 4 5 6 7 8 9

graphs 1 2 8 64 1024 32 768 2 097 152 268 435 456 236 > 6 · 1010

nonisomorphic 1 2 4 11 34 156 1044 12 346 274 668
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Other representations

Plane figures catch graphs for our eyes, but if a problem on graphs is to be pro-
grammed, then these figures are, to say the least, unsuitable. Integer matrices are ideal
for computers, since every respectable programming language has array structures
for these, and computers are good in crunching numbers.

Let VG = {v1, . . . , vn} be ordered. The adjacency ma-
trix of G is the n × n-matrix M with entries Mij = 1
or Mij = 0 according to whether vivj ∈ G or vivj /∈ G.
For instance, the graph in Example 1.1 has an adja-
cency matrix on the right. Notice that the adjacency
matrix is always symmetric (with respect to its diag-
onal consisting of zeros).

⎛

⎜⎜⎜⎜⎝

0 1 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 0

⎞

⎟⎟⎟⎟⎠

A graph has usually many different adjacency matrices, one for each ordering of
its set VG of vertices. The following result is obvious from the definitions.

Theorem 1.1. Two graphs G and H are isomorphic if and only if they have a common adja-
cency matrix. Moreover, two isomorphic graphs have exactly the same set of adjacency matri-
ces.

Graphs can also be represented by sets. For this, let X = {X1, X2, . . . , Xn} be a
family of subsets of a set X, and define the intersection graph GX as the graph with
vertices X1, . . . , Xn, and edges XiXj for all i and j (i ̸= j) with Xi ∩ Xj ̸= ∅.

Theorem 1.2. Every graph is an intersection graph of some family of subsets.

Proof. Let G be a graph, and define, for all v ∈ G, a set

Xv = {{v, u} | vu ∈ G}.

Then Xu ∩ Xv ̸= ∅ if and only if uv ∈ G. ⊓6

Let s(G) be the smallest size of a base set X such that G can be represented as an
intersection graph of a family of subsets of X, that is,

s(G) = min{|X| | G ∼= GX for some X ⊆ 2X} .

How small can s(G) be compared to the order νG (or the size εG) of the graph? It was
shown by KOU, STOCKMEYER AND WONG (1976) that it is algorithmically difficult to
determine the number s(G) – the problem is NP-complete.

Example 1.2. As yet another example, let A ⊆ N be a finite set of natural numbers,
and let GA = (A, E) be the graph with rs ∈ E if and only if r and s (for r ̸= s) have a
common divisor > 1. As an exercise, we state: All graphs can be represented in the form
GA for some set A of natural numbers.
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1.2 Subgraphs

Ideally, given a nice problem the local properties of a graph determine a solution.
In these situations we deal with (small) parts of the graph (subgraphs), and a solu-
tion can be found to the problem by combining the information determined by the
parts. For instance, as we shall later see, the existence of an Euler tour is very local, it
depends only on the number of the neighbours of the vertices.

Degrees of vertices

DEFINITION. Let v ∈ G be a vertex a graph G. The neighbourhood of v is the set

NG(v) = {u ∈ G | vu ∈ G} .

The degree of v is the number of its neighbours:

dG(v) = |NG(v)| .

If dG(v) = 0, then v is said to be isolated in G, and if dG(v) = 1, then v is a leaf of the
graph. The minimum degree and the maximum degree of G are defined as

δ(G) = min{dG(v) | v ∈ G} and ∆(G) = max{dG(v) | v ∈ G} .

The following lemma, due to EULER (1736), tells that if several people shake
hands, then the number of hands shaken is even.

Lemma 1.1 (Handshaking lemma). For each graph G,

∑
v∈G

dG(v) = 2 · εG .

Moreover, the number of vertices of odd degree is even.

Proof. Every edge e ∈ EG has two ends. The second claim follows immediately from
the first one. ⊓6

Lemma 1.1 holds equally well for multigraphs, when dG(v) is defined as the num-
ber of edges that have v as an end, and when each loop vv is counted twice.

Note that the degrees of a graph G do not determine G. Indeed, there are graphs
G = (V, EG) and H = (V, EH) on the same set of vertices that are not isomorphic, but
for which dG(v) = dH(v) for all v ∈ V.
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Subgraphs

DEFINITION. A graph H is a subgraph of a graph G, denoted by H ⊆ G, if VH ⊆ VG

and EH ⊆ EG. A subgraph H ⊆ G spans G (and H is a spanning subgraph of G), if
every vertex of G is in H, i.e., VH = VG.

Also, a subgraph H ⊆ G is an induced subgraph, if EH = EG ∩ E(VH). In this
case, H is induced by its set VH of vertices.

In an induced subgraph H ⊆ G, the set EH of edges consists of all e ∈ EG such that
e ∈ E(VH). To each nonempty subset A ⊆ VG, there corresponds a unique induced
subgraph

G[A] = (A, EG ∩ E(A)) .

To each subset F ⊆ EG of edges there corresponds a unique spanning subgraph of G,

G[F] = (VG, F) .

G subgraph spanning induced

For a set F ⊆ EG of edges, let

G−F = G[EG \ F]

be the subgraph of G obtained by removing (only) the edges e ∈ F from G. In partic-
ular, G−e is obtained from G by removing e ∈ G.

Similarly, we write G + F, if each e ∈ F (for F ⊆ E(VG)) is added to G.

For a subset A ⊆ VG of vertices, we let G−A ⊆ G be the subgraph induced by
VG \ A, that is,

G−A = G[VG \ A] ,

and, e.g., G−v is obtained from G by removing the vertex v together with the edges
that have v as their end.

Reconstruction Problem. The famous open problem, Kelly-Ulam problem or the Re-
construction Conjecture, states that a graph of order at least 3 is determined up to isomor-
phism by its vertex deleted subgraphs G−v (v ∈ G): if there exists a bijection α : VG → VH

such that G−v ∼= H−α(v) for all v, then G ∼= H.
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2-switches

DEFINITION. For a graph G, a 2-switch with respect
to the edges uv, xy ∈ G with ux, vy /∈ G replaces the
edges uv and xy by ux and vy. Denote

G
2s
−→ H

if there exists a finite sequence of 2-switches that car-
ries G to H.

u

v

x

y

u

v

x

y

Note that if G
2s
−→ H then also H

2s
−→ G since we can apply the sequence of 2-

switches in reverse order.
Before proving Berge’s switching theorem we need the following tool.

Lemma 1.2. Let G be a graph of order n with a degree sequence d1 ≥ d2 ≥ · · · ≥ dn, where

dG(vi) = di. Then there is a graph G′ such that G
2s
−→ G′ with NG′(v1) = {v2, . . . , vd1+1}.

Proof. Let d = ∆(G) (= d1). Suppose that there is a vertex vi with 2 ≤ i ≤ d + 1 such
that v1vi /∈ G. Since dG(v1) = d, there exists a vj with
j ≥ d + 2 such that v1vj ∈ G. Here di ≥ dj, since j > i.
Since v1vj ∈ G, there exists a vt (2 ≤ t ≤ n) such that
vivt ∈ G, but vjvt /∈ G. We can now perform a 2-switch
with respect to the vertices v1, vj, vi, vt. This gives a new
graph H, where v1vi ∈ H and v1vj /∈ H, and the other
neighbours of v1 remain to be its neighbours.

v1 vi vj

vt

When we repeat this process for all indices i with v1vi /∈ G for 2 ≤ i ≤ d + 1, we
obtain a graph G′ as required. ⊓6

Theorem 1.3 (BERGE (1973)). Two graphs G and H on a common vertex set V satisfy
dG(v) = dH(v) for all v ∈ V if and only if H can be obtained from G by a sequence of
2-switches.

Proof. If G
2s
−→ H, then clearly H has the same degrees as G.

In converse, we use induction on the order νG. Let G and H have the same degrees.
By Lemma 1.2, we have a vertex v and graphs G′ and H′ such that G

2s
−→ G′ and

H
2s
−→ H′ with NG′(v) = NH′(v). Now the graphs G′−v and H′−v have the same

degrees. By the induction hypothesis, G′−v
2s
−→ H′−v, and thus also G′ 2s

−→ H′.
Finally, we observe that H′ 2s

−→ H by the ‘reverse 2-switches’, and this proves the
claim. ⊓6

DEFINITION. Let d1, d2, . . . , dn be a descending sequence of nonnegative integers, that
is, d1 ≥ d2 ≥ · · · ≥ dn. Such a sequence is said to be graphical, if there exists a graph
G = (V, E) with V = {v1, v2, . . . , vn} such that di = dG(vi) for all i.
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Using the next result recursively one can decide whether a sequence of integers is
graphical or not.

Theorem 1.4 (HAVEL (1955), HAKIMI (1962)). A sequence d1, d2, . . . , dn (with d1 ≥ 1 and
n ≥ 2) is graphical if and only if

d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn (1.1)

is graphical (when put into nonincreasing order).

Proof. (⇐) Consider G of order n − 1 with vertices (and degrees)

dG(v2) = d2 − 1, . . . , dG(vd1+1) = dd1+1 − 1,
dG(vd1+2) = dd1+2, . . . , dG(vn) = dn

as in (1.1). Add a new vertex v1 and the edges v1vi for all i ∈ [2, dd1+1]. Then in the
new graph H, dH(v1) = d1, and dH(vi) = di for all i.

(⇒) Assume dG(vi) = di. By Lemma 1.2 and Theorem 1.3, we can suppose that
NG(v1) = {v2, . . . , vd1+1}. But now the degree sequence of G−v1 is in (1.1). ⊓6

Example 1.3. Consider the sequence s = 4, 4, 4, 3, 2, 1. By Theorem 1.4,

s is graphical ⇐⇒ 3, 3, 2, 1, 1 is graphical
2, 1, 1, 0 is graphical

0, 0, 0 is graphical.

The last sequence corresponds to a graph with no
edges, and hence also our original sequence s is graph-
ical. Indeed, the graph G on the right has this degree
sequence.

v1

v2

v3

v4

v5

v6

Special graphs

DEFINITION. A graph G = (V, E) is trivial, if it has only one vertex, i.e., νG = 1;
otherwise G is nontrivial.

The graph G = KV is the complete graph on V, if every
two vertices are adjacent: E = E(V). All complete graphs
of order n are isomorphic with each other, and they will be
denoted by Kn.

The complement of G is the graph G on VG, where EG = {e ∈ E(V) | e /∈ EG}. The
complements G = KV of the complete graphs are called discrete graphs. In a discrete
graph EG = ∅. Clearly, all discrete graphs of order n are isomorphic with each other.

A graph G is said to be regular, if every vertex of G has the same degree. If this
degree is equal to r, then G is r-regular or regular of degree r.
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A discrete graph is 0-regular, and a complete graph Kn is (n − 1)-regular. In par-
ticular, εKn = n(n − 1)/2, and therefore εG ≤ n(n − 1)/2 for all graphs G that have
order n.

Many problems concerning (induced) subgraphs are algorithmically difficult. For
instance, to find a maximal complete subgraph (a subgraph Km of maximum order)
of a graph is unlikely to be even in NP.

Example 1.4. The graph on the right is the Petersen
graph that we will meet several times (drawn differ-
ently). It is a 3-regular graph of order 10.

Example 1.5. Let k ≥ 1 be an integer, and consider the set Bk of all binary strings
of length k. For instance, B3 = {000, 001, 010, 100, 011, 101, 110, 111}. Let Qk be the
graph, called the k-cube, with VQk

= Bk, where uv ∈ Qk if and only if the strings u
and v differ in exactly one place.

The order of Qk is νQk
= 2k, the number of binary

strings of length k. Also, Qk is k-regular, and so, by the
handshaking lemma, εQk

= k · 2k−1. On the right we
have the 3-cube, or simply the cube.

000

100 101

001

010

110 111

011

Example 1.6. Let n ≥ 4 be any even number. We show by induction that there exists
a 3-regular graph G with νG = n. Notice that all 3-regular graphs have even order by
the handshaking lemma.
If n = 4, then K4 is 3-regular. Let G be a 3-regular
graph of order 2m − 2, and suppose that uv, uw ∈ EG.
Let VH = VG ∪ {x, y}, and EH = (EG \ {uv, uw}) ∪
{ux, xv, uy, yw, xy}. Then H is 3-regular of order 2m.

u

vw

x y

1.3 Paths and cycles

The most fundamental notions in graph theory are practically oriented. Indeed, many
graph theoretical questions ask for optimal solutions to problems such as: find a
shortest path (in a complex network) from a given point to another. This kind of
problems can be difficult, or at least nontrivial, because there are usually choices what
branch to choose when leaving an intermediate point.

Walks

DEFINITION. Let ei = uiui+1 ∈ G be edges of G for i ∈ [1, k]. The sequence W =
e1e2 . . . ek is a walk of length k from u1 to uk+1. Here ei and ei+1 are compatible in the
sense that ei is adjacent to ei+1 for all i ∈ [1, k − 1].
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We write, more informally,

W : u1 −→ u2 −→ . . . −→ uk −→ uk+1 or W : u1
k
−→ uk+1 .

Write u ⋆−→ v to say that there is a walk of some length from u to v. Here we under-
stand that W : u ⋆−→ v is always a specific walk, W = e1e2 . . . ek, although we sometimes
do not care to mention the edges ei on it. The length of a walk W is denoted by |W|.

DEFINITION. Let W = e1e2 . . . ek (ei = uiui+1) be a walk.
W is closed, if u1 = uk+1.
W is a path, if ui ̸= uj for all i ̸= j.
W is a cycle, if it is closed, and ui ̸= uj for i ̸= j except that u1 = uk+1.
W is a trivial path, if its length is 0. A trivial path has no edges.
For a walk W : u = u1 −→ . . . −→ uk+1 = v, also

W−1 : v = uk+1 −→ . . . −→ u1 = u

is a walk in G, called the inverse walk of W.
A vertex u is an end of a path P, if P starts or ends in u.
The join of two walks W1 : u ⋆−→ v and W2 : v ⋆−→ w is the walk W1W2 : u ⋆−→ w.

(Here the end v must be common to the walks.)
Paths P and Q are disjoint, if they have no vertices in common, and they are

independent, if they can share only their ends.

Clearly, the inverse walk P−1 of a path P is a path (the inverse path of P). The join
of two paths need not be a path.

A (sub)graph, which is a path (cycle) of length
k − 1 (k, resp.) having k vertices is denoted by
Pk (Ck, resp.). If k is even (odd), we say that the
path or cycle is even (odd). Clearly, all paths of
length k are isomorphic. The same holds for cy-
cles of fixed length.

P5 C6

Lemma 1.3. Each walk W : u ⋆−→ v with u ̸= v contains a path P : u ⋆−→ v, that is, there is a
path P : u ⋆−→ v that is obtained from W by removing edges and vertices.

Proof. Let W : u = u1 −→ . . . −→ uk+1 = v. Let i < j be indices such that ui = uj.
If no such i and j exist, then W, itself, is a path. Otherwise, in W = W1W2W3 : u ⋆−→
ui

⋆−→ uj
⋆−→ v the portion U1 = W1W3 : u ⋆−→ ui = uj

⋆−→ v is a shorter walk. By
repeating this argument, we obtain a sequence U1, U2, . . . , Um of walks u ⋆−→ v with
|W| > |U1| > · · · > |Um|. When the procedure stops, we have a path as required.
(Notice that in the above it may very well be that W1 or W3 is a trivial walk.) ⊓6
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DEFINITION. If there exists a walk (and hence a path) from u to v in G, let

dG(u, v) = min{k | u
k
−→ v}

be the distance between u and v. If there are no walks u ⋆−→ v, let dG(u, v) = ∞ by
convention. A graph G is connected, if dG(u, v) < ∞ for all u, v ∈ G; otherwise, it
is disconnected. The maximal connected subgraphs of G are its connected compo-
nents. Denote

c(G) = the number of connected components of G .

If c(G) = 1, then G is, of course, connected.

The maximality condition means that a subgraph H ⊆ G is a connected compo-
nent if and only if H is connected and there are no edges leaving H, i.e., for every ver-
tex v /∈ H, the subgraph G[VH ∪ {v}] is disconnected. Apparently, every connected
component is an induced subgraph, and

N∗
G(v) = {u | dG(v, u) < ∞}

is the connected component of G that contains v ∈ G. In particular, the connected
components form a partition of G.

Shortest paths

DEFINITION. Let Gα be an edge weighted graph, that is, Gα is a graph G together
with a weight function α : EG → R on its edges. For H ⊆ G, let

α(H) = ∑
e∈H

α(e)

be the (total) weight of H. In particular, if P = e1e2 . . . ek is a path, then its weight is
α(P) = ∑

k
i=1 α(ei). The minimum weighted distance between two vertices is

dα
G(u, v) = min{α(P) | P : u ⋆−→ v} .

In extremal problems we seek for optimal subgraphs H ⊆ G satisfying specific
conditions. In practice we encounter situations where G might represent

• a distribution or transportation network (say, for mail), where the weights on
edges are distances, travel expenses, or rates of flow in the network;

• a system of channels in (tele)communication or computer architecture, where the
weights present the rate of unreliability or frequency of action of the connections;

• a model of chemical bonds, where the weights measure molecular attraction.
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In these examples we look for a subgraph with the smallest weight, and which
connects two given vertices, or all vertices (if we want to travel around). On the other
hand, if the graph represents a network of pipelines, the weights are volumes or
capacities, and then one wants to find a subgraph with the maximum weight.

We consider the minimum problem. For this, let G be a graph with an integer
weight function α : EG → N. In this case, call α(uv) the length of uv.

The shortest path problem: Given a connected graph G with a weight function α : EG →
N, find dα

G(u, v) for given u, v ∈ G.

Assume that G is a connected graph. Dijkstra’s algorithm solves the problem for
every pair u, v, where u is a fixed starting point and v ∈ G. Let us make the conven-
tion that α(uv) = ∞, if uv /∈ G.

Dijkstra’s algorithm:

(i) Set u0 = u, t(u0) = 0 and t(v) = ∞ for all v ̸= u0.

(ii) For i ∈ [0, νG − 1]: for each v /∈ {u1, . . . , ui},

replace t(v) by min{t(v), t(ui) + α(uiv)} .

Let ui+1 /∈ {u1, . . . , ui} be any vertex with the least value t(ui+1).

(iii) Conclusion: dα
G(u, v) = t(v).

Example 1.7. Consider the following weighted graph G. Apply Dijkstra’s algorithm
to the vertex v0.

• u0 = v0, t(u0) = 0, others are ∞.
• t(v1) = min{∞, 2} = 2, t(v2) = min{∞, 3} = 3,
others are ∞. Thus u1 = v1.
• t(v2) = min{3, t(u1) + α(u1v2)} = min{3, 4} = 3,
t(v3) = 2 + 1 = 3, t(v4) = 2 + 3 = 5, t(v5) = 2 + 2 = 4.
Thus choose u2 = v3.
• t(v2) = min{3, ∞} = 3, t(v4) = min{5, 3 + 2} = 5,
t(v5) = min{4, 3 + 1} = 4. Thus set u3 = v2.

v0

v1

v2

v3

v4

v5

2

3

1

3 2

1

2

1

2

2

• t(v4) = min{5, 3 + 1} = 4, t(v5) = min{4, ∞} = 4. Thus choose u4 = v4.

• t(v5) = min{4, 4 + 1} = 4. The algorithm stops.

We have obtained:

t(v1) = 2, t(v2) = 3, t(v3) = 3, t(v4) = 4, t(v5) = 4 .

These are the minimal weights from v0 to each vi.
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The steps of the algorithm can also be rewritten as a table:

v1 2 - - - -
v2 3 3 3 - -
v3 ∞ 3 - - -
v4 ∞ 5 5 4 -
v5 ∞ 4 4 4 4

The correctness of Dijkstra’s algorithm can verified be as follows.
Let v ∈ V be any vertex, and let P : u0

⋆−→ u ⋆−→ v be a shortest path from u0 to v,
where u is any vertex u ̸= v on such a path, possibly u = u0. Then, clearly, the first
part of the path, u0

⋆−→ u, is a shortest path from u0 to u, and the latter part u ⋆−→ v
is a shortest path from u to v. Therefore, the length of the path P equals the sum of
the weights of u0

⋆−→ u and u ⋆−→ v. Dijkstra’s algorithm makes use of this observation
iteratively.



2

Connectivity of Graphs

2.1 Bipartite graphs and trees

In problems such as the shortest path problem we look for minimum solutions that
satisfy the given requirements. The solutions in these cases are usually subgraphs
without cycles. Such connected graphs will be called trees, and they are used, e.g., in
search algorithms for databases. For concrete applications in this respect, see

T.H. CORMEN, C.E. LEISERSON AND R.L. RIVEST, “Introduction to Algorithms”,
MIT Press, 1993.
Certain structures with operations are representable
as trees. These trees are sometimes called construction
trees, decomposition trees, factorization trees or grammatical
trees. Grammatical trees occur especially in linguistics,
where syntactic structures of sentences are analyzed.
On the right there is a tree of operations for the arith-
metic formula x · (y + z) + y.

+

·

x +

y z

y

Bipartite graphs

DEFINITION. A graph G is called bipartite, if VG has a partition to two subsets X and
Y such that each edge uv ∈ G connects a vertex of X and a vertex of Y. In this case,
(X, Y) is a bipartition of G, and G is (X, Y)-bipartite.
A bipartite graph G (as in the above) is complete (m, k)-
bipartite, if |X| = m, |Y| = k, and uv ∈ G for all u ∈ X
and v ∈ Y.
All complete (m, k)-bipartite graphs are isomorphic. Let
Km,k denote such a graph.
A subset X ⊆ VG is stable, if G[X] is a discrete graph.

K2,3

The following result is clear from the definitions.

Theorem 2.1. A graph G is bipartite if and only if VG has a partition to two stable subsets.

Example 2.1. The k-cube Qk of Example 1.5 is bipartite for all k. Indeed, consider
A = {u | u has an even number of 1′s} and B = {u | u has an odd number of 1′s}.
Clearly, these sets partition Bk, and they are stable in Qk.
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Theorem 2.2. A graph G is bipartite if and only if G it has no odd cycles (as subgraph).

Proof. (⇒) Observe that if G is (X, Y)-bipartite, then so are all its subgraphs. How-
ever, an odd cycle C2k+1 is not bipartite.

(⇐) Suppose that all cycles in G are even. First, we note that it suffices to show
the claim for connected graphs. Indeed, if G is disconnected, then each cycle of G
is contained in one of the connected components G1, . . . , Gp of G. If Gi is (Xi, Yi)-
bipartite, then G has the bipartition (X1 ∪ X2 ∪ · · · ∪ Xp, Y1 ∪ Y2 ∪ · · · ∪ Yp).

Assume thus that G is connected. Let v ∈ G be a chosen vertex, and define

X = {x | dG(v, x) is even} and Y = {y | dG(v, y) is odd} .

Since G is connected, VG = X ∪ Y. Also, by the definition of distance, X ∩ Y = ∅.
Let then u, w ∈ G be both in X or both in Y, and let P : v ⋆−→ u and Q : v ⋆−→ w

be (among the) shortest paths from v to u and w. Assume that x is the last common
vertex of P and Q: P = P1P2, Q = Q1Q2, where P2 : x ⋆−→ u and Q2 : x ⋆−→ w are
independent. Since P and Q are shortest paths, P1 and Q1 are shortest paths v ⋆−→ x.
Consequently, |P1| = |Q1|.
Thus |P2| and |Q2| have the same parity and hence the
sum |P2| + |Q2| is even, i.e., the path P−1

2 Q2 is even,
and so uw /∈ EG by assumption. Therefore X and Y are
stable subsets, and G is bipartite as claimed. ⊓6

v x

u

w

P1

Q1

P2

Q2

uw

Checking whether a graph is bipartite is easy. Indeed,
this can be done by using two ‘opposite’ colours, say
1 and 2. Start from any vertex v1, and colour it by 1.
Then colour the neighbours of v1 by 2, and proceed by
colouring all neighbours of an already coloured vertex
by the opposite colour.

1
2

2

1
21

1

2

1

2

If the whole graph can be coloured without contradiction, then G is (X, Y)-bipartite,
where X consists of those vertices with colour 1, and Y of those vertices with colour
2; otherwise, at some point one of the vertices gets both colours, and in this case, G is
not bipartite.

Example 2.2 (ERDÖS (1965)). We show that each graph G has a bipartite subgraph
H ⊆ G such that εH ≥ 1

2 εG. Indeed, let VG = X ∪ Y be a partition such that the
number of edges between X and Y is maximum. Denote

F = EG ∩ {uv | u ∈ X, v ∈ Y} ,

and let H = G[F]. Obviously H is a spanning subgraph, and it is bipartite.
By the maximum condition, dH(v) ≥ dG(v)/2, since, otherwise, v is on the wrong

side. (That is, if v ∈ X, then the pair X′ = X \ {v}, Y′ = Y ∪ {v} does better that the
pair X, Y.) Now

εH =
1
2 ∑

v∈H

dH(v) ≥
1
2 ∑

v∈G

1
2

dG(v) =
1
2

εG .
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Bridges

DEFINITION. An edge e ∈ G is a bridge of the graph G,
if G−e has more connected components than G, that is,
if c(G−e) > c(G). In particular, and most importantly,
an edge e in a connected G is a bridge if and only if G−e
is disconnected.
On the right (only) the two horizontal lines are bridges.

We note that, for each edge e ∈ G,

e = uv is a bridge ⇐⇒ u, v in different connected components of G−e .

Theorem 2.3. An edge e ∈ G is a bridge if and only if e is not in any cycle of G.

Proof. (⇒) If there is a cycle in G containing e, say C = PeQ, then QP : v ⋆−→ u is a
path in G−e, and so e is not a bridge.

(⇐) If e = uv is not a bridge, then u and v are in the same connected component
of G−e, and there is a path P : v ⋆−→ u in G−e. Now, eP : u −→ v ⋆−→ u is a cycle in G
containing e. ⊓6

Lemma 2.1. Let e be a bridge in a connected graph G.

(i) Then c(G−e) = 2.

(ii) Let H be a connected component of G−e. If f ∈ H is a bridge of H, then f is a bridge
of G.

Proof. For (i), let e = uv. Since e is a bridge, the ends u and v are not connected in
G−e. Let w ∈ G. Since G is connected, there exists a path P : w ⋆−→ v in G. This is a
path of G−e, unless P : w ⋆−→ u → v contains e = uv, in which case the part w ⋆−→ u is
a path in G−e.

For (ii), if f ∈ H belongs to a cycle C of G, then C does not contain e (since e is in
no cycle), and therefore C is inside H, and f is not a bridge of H. ⊓6

Trees

DEFINITION. A graph is called acyclic, if it has no cycles. An acyclic graph is also
called a forest. A tree is a connected acyclic graph.

By Theorem 2.3 and the definition of a tree, we have

Corollary 2.1. A connected graph is a tree if and only if all its edges are bridges.

Example 2.3. The following enumeration result for trees has many different proofs,
the first of which was given by CAYLEY in 1889: There are nn−2 trees on a vertex set V of
n elements. We omit the proof.
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On the other hand, there are only a few trees up to isomorphism:

n 1 2 3 4 5 6 7 8
trees 1 1 1 2 3 6 11 23

n 9 10 11 12 13 14 15 16
trees 47 106 235 551 1301 3159 7741 19 320

The nonisomorphic trees of order 6 are:

We say that a path P : u ⋆−→ v is maximal in a graph G, if there are no edges e ∈ G
for which Pe or eP is a path. Such paths exist, because νG is finite.

Lemma 2.2. Let P : u ⋆−→ v be a maximal path in a graph G. Then NG(v) ⊆ P. Moreover, if
G is acyclic, then dG(v) = 1.

Proof. If e = vw ∈ EG with w /∈ P, then also Pe is a path, which contradicts the
maximality assumption for P. Hence NG(v) ⊆ P. For acyclic graphs, if wv ∈ G, then
w belongs to P, and wv is necessarily the last edge of P in order to avoid cycles. ⊓6

Corollary 2.2. Each tree T with νT ≥ 2 has at least two leaves.

Proof. Since T is acyclic, both ends of a maximal path have degree one. ⊓6

Theorem 2.4. The following are equivalent for a graph T.

(i) T is a tree.

(ii) Any two vertices are connected in T by a unique path.

(iii) T is acyclic and εT = νT − 1.

Proof. Let νT = n. If n = 1, then the claim is trivial. Suppose thus that n ≥ 2.

(i)⇒(ii) Let T be a tree. Assume the claim does not hold, and let P, Q : u ⋆−→ v
be two different paths between the same vertices u and v. Suppose that |P| ≥ |Q|.
Since P ̸= Q, there exists an edge e which belongs to P but not to Q. Each edge of T
is a bridge, and therefore u and v belong to different connected components of T−e.
Hence e must also belong to Q; a contradiction.

(ii)⇒(iii) We prove the claim by induction on n. Clearly, the claim holds for n = 2,
and suppose it holds for graphs of order less than n. Let T be any graph of order n
satisfying (ii). In particular, T is connected, and it is clearly acyclic.
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Let P : u ⋆−→ v be a maximal path in T. By Lemma 2.2, we have dT(v) = 1. In this
case, P : u ⋆−→ w −→ v, where vw is the unique edge having an end v. The subgraph
T−v is connected, and it satisfies the condition (ii). By induction hypothesis, εT−v =
n − 2, and so εT = εT−v + 1 = n − 1, and the claim follows.

(iii)⇒(i) Assume (iii) holds for T. We need to show that T is connected. Indeed,
let the connected components of T be Ti = (Vi, Ei), for i ∈ [1, k]. Since T is acyclic, so
are the connected graphs Ti, and hence they are trees, for which we have proved that
|Ei| = |Vi|− 1. Now, νT = ∑

k
i=1 |Vi|, and εT = ∑

k
i=1 |Ei|. Therefore,

n − 1 = εT =
k

∑
i=1

(|Vi|− 1) =
k

∑
i=1

|Vi|− k = n − k ,

which gives that k = 1, that is, T is connected. ⊓6

Example 2.4. Consider a cup tournament of n teams. If during a round there are k
teams left in the tournament, then these are divided into ⌊k⌋ pairs, and from each
pair only the winner continues. If k is odd, then one of the teams goes to the next
round without having to play. How many plays are needed to determine the winner?

So if there are 14 teams, after the first round 7 teams continue, and after the second
round 4 teams continue, then 2. So 13 plays are needed in this example.

The answer to our problem is n − 1, since the cup tournament is a tree, where a
play corresponds to an edge of the tree.

Spanning trees

Theorem 2.5. Each connected graph has a spanning tree, that is, a spanning graph that is
a tree.

Proof. Let T ⊆ G be a maximum order subtree of G (i.e., subgraph that is a tree). If
VT ̸= VG, there exists an edge uv /∈ EG such that u ∈ T and v /∈ T. But then T is not
maximal; a contradiction. ⊓6

Corollary 2.3. For each connected graph G, εG ≥ νG − 1. Moreover, a connected graph G is
a tree if and only if εG = νG − 1.

Proof. Let T be a spanning tree of G. Then εG ≥ εT = νT − 1 = νG − 1. The second
claim is also clear. ⊓6

Example 2.5. In Shannon’s switching game a positive player P and a negative player
N play on a graph G with two special vertices: a source s and a sink r. P and N al-
ternate turns so that P designates an edge by +, and N by −. Each edge can be des-
ignated at most once. It is P’s purpose to designate a path s ⋆−→ r (that is, to designate
all edges in one such path), and N tries to block all paths s ⋆−→ r (that is, to designate
at least one edge in each such path). We say that a game (G, s, r) is
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• positive, if P has a winning strategy no matter who begins the game,
• negative, if N has a winning strategy no matter who begins the game,
• neutral, if the winner depends on who begins the game.

The game on the right is neutral.

s

r

LEHMAN proved in 1964 that Shannon’s switching game (G, s, r) is positive if and only
if there exists H ⊆ G such that H contains s and r and H has two spanning trees with no
edges in common.

In the other direction the claim can be proved along the following lines. Assume
that there exists a subgraph H containing s and r and that has two spanning trees
with no edges in common. Then P plays as follows. If N marks by − an edge from
one of the two trees, then P marks by + an edge in the other tree such that this
edge reconnects the broken tree. In this way, P always has two spanning trees for the
subgraph H with only edges marked by + in common.

In converse the claim is considerably more difficult to prove.
There remains the problem to characterize those Shannon’s switching games

(G, s, r) that are neutral (negative, respectively).

The connector problem

To build a network connecting n nodes (towns, computers, chips in a computer) it
is desirable to decrease the cost of construction of the links to the minimum. This is
the connector problem. In graph theoretical terms we wish to find an optimal span-
ning subgraph of a weighted graph. Such an optimal subgraph is clearly a spanning
tree, for, otherwise a deletion of any nonbridge will reduce the total weight of the
subgraph.

Let then Gα be a graph G together with a weight function α : EG → R+ (posi-
tive reals) on the edges. Kruskal’s algorithm (also known as the greedy algorithm)
provides a solution to the connector problem.
Kruskal’s algorithm: For a connected and weighted graph Gα of order n:

(i) Let e1 be an edge of smallest weight, and set E1 = {e1}.

(ii) For each i = 2, 3, . . . , n − 1 in this order, choose an edge ei /∈ Ei−1 of smallest
possible weight such that ei does not produce a cycle when added to G[Ei−1], and
let Ei = Ei−1 ∪ {ei}.

The final outcome is T = (VG, En−1).
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By the construction, T = (VG, En−1) is a spanning tree of G, because it contains no
cycles, it is connected and has n − 1 edges. We now show that T has the minimum
total weight among the spanning trees of G.

Suppose T1 is any spanning tree of G. Let ek be the first edge produced by the
algorithm that is not in T1. If we add ek to T1, then a cycle C containing ek is created.
Also, C must contain an edge e that is not in T. When we replace e by ek in T1, we
still have a spanning tree, say T2. However, by the construction, α(ek) ≤ α(e), and
therefore α(T2) ≤ α(T1). Note that T2 has more edges in common with T than T1.

Repeating the above procedure, we can transform T1 to T by replacing edges, one
by one, such that the total weight does not increase. We deduce that α(T) ≤ α(T1).

The outcome of Kruskal’s algorithm need not be unique. Indeed, there may exist
several optimal spanning trees (with the same weight, of course) for a graph.

Example 2.6. When applied to the weighted
graph on the right, the algorithm produces the se-
quence: e1 = v2v4, e2 = v4v5, e3 = v3v6, e4 = v2v3
and e5 = v1v2. The total weight of the spanning
tree is thus 9.
Also, the selection e1 = v2v5, e2 = v4v5, e3 = v5v6,
e4 = v3v6, e5 = v1v2 gives another optimal solu-
tion (of weight 9).

v1 v2 v3

v4 v5 v6

3

4

2

1

1
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Problem. Consider trees T with weight functions α : ET → N. Each tree T of order n
has exactly (n

2) paths. (Why is this so?) Does there exist a weighted tree Tα of order n such
that the (total) weights of its paths are 1, 2, . . . , (n

2)?

In such a weighted tree Tα different paths have
different weights, and each i ∈ [1, (n

2)] is a weight
of one path. Also, α must be injective.

No solutions are known for any n ≥ 7.
2

1

5

8

4

TAYLOR (1977) proved: if T of order n exists, then necessarily n = k2 or n = k2 + 2 for
some k ≥ 1.

Example 2.7. A computer network can be presented as a graph G, where the vertices
are the node computers, and the edges indicate the direct links. Each computer v has
an address a(v), a bit string (of zeros and ones). The length of an address is the number
of its bits. A message that is sent to v is preceded by the address a(v). The Hamming
distance h(a(v), a(u)) of two addresses of the same length is the number of places,
where a(v) and a(u) differ; e.g., h(00010, 01100) = 3 and h(10000, 00000) = 1.

It would be a good way to address the vertices so that the Hamming distance
of two vertices is the same as their distance in G. In particular, if two vertices were
adjacent, their addresses should differ by one symbol. This would make it easier for
a node computer to forward a message.
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A graph G is said to be addressable, if it has an
addressing a such that dG(u, v) = h(a(u), a(v)). 000

100

010

110 111

We prove that every tree T is addressable. Moreover, the addresses of the vertices of T can
be chosen to be of length νT − 1.

The proof goes by induction. If νT ≤ 2, then the claim is obvious. In the case
νT = 2, the addresses of the vertices are simply 0 and 1.

Let then VT = {v1, . . . , vk+1}, and assume that dT(v1) = 1 (a leaf) and v1v2 ∈ T. By
the induction hypothesis, we can address the tree T−v1 by addresses of length k − 1.
We change this addressing: let ai be the address of vi in T−v1, and change it to 0ai.
Set the address of v1 to 1a2. It is now easy to see that we have obtained an addressing
for T as required.

The triangle K3 is not addressable. In order to gain more generality, we modify
the addressing for general graphs by introducing a special symbol ∗ in addition to
0 and 1. A star address will be a sequence of these three symbols. The Hamming
distance remains as it was, that is, h(u, v) is the number of places, where u and v
have a different symbol 0 or 1. The special symbol ∗ does not affect h(u, v). So, h(10 ∗
∗01, 0 ∗ ∗101) = 1 and h(1 ∗ ∗ ∗ ∗∗, ∗00 ∗ ∗∗) = 0. We still want to have h(u, v) =
dG(u, v).

We star address this graph as follows:

a(v1) = 0000 , a(v2) = 10 ∗ 0 ,
a(v3) = 1 ∗ 01 , a(v4) = ∗ ∗ 11 .

These addresses have length 4. Can you design a
star addressing with addresses of length 3?

v1 v2

v3

v4

WINKLER proved in 1983 a rather unexpected result: The minimum star address
length of a graph G is at most νG − 1.

For the proof of this, see VAN LINT AND WILSON, “A Course in Combinatorics”.

2.2 Connectivity

Spanning trees are often optimal solutions to problems, where cost is the criterion.
We may also wish to construct graphs that are as simple as possible, but where two
vertices are always connected by at least two independent paths. These problems oc-
cur especially in different aspects of fault tolerance and reliability of networks, where
one has to make sure that a break-down of one connection does not affect the func-
tionality of the network. Similarly, in a reliable network we require that a break-down
of a node (computer) should not result in the inactivity of the whole network.
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Separating sets

DEFINITION. A vertex v ∈ G is a cut vertex, if c(G−v) > c(G).
A subset S ⊆ VG is a separating set, if G−S is disconnected. We
also say that S separates the vertices u and v and it is a (u, v)-
separating set, if u and v belong to different connected compo-
nents of G−S.

If G is connected, then v is a cut vertex if and only if G−v is disconnected, that is,
{v} is a separating set. The following lemma is immediate.

Lemma 2.3. If S ⊆ VG separates u and v, then every path P : u ⋆−→ v visits a vertex of S.

Lemma 2.4. If a connected graph G has no separating sets, then it is a complete graph.

Proof. If νG ≤ 2, then the claim is clear. For νG ≥ 3, assume that G is not complete,
and let uv /∈ G. Now VG \ {u, v} is a separating set. The claim follows from this. ⊓6

DEFINITION. The (vertex) connectivity number κ(G) of G is defined as

κ(G) = min{k | k = |S|, G−S disconnected or trivial, S ⊆ VG} .

A graph G is k-connected, if κ(G) ≥ k.

In other words,

• κ(G) = 0, if G is disconnected,
• κ(G) = νG − 1, if G is a complete graph, and
• otherwise κ(G) equals the minimum size of a separating set of G.

Clearly, if G is connected, then it is 1-connected.

DEFINITION. An edge cut F of G consists of edges so that G−F is disconnected. Let

κ′(G) = min{k | k = |F|, G−F disconnected, F ⊆ EG} .

For trivial graphs, let κ′(G) = 0. A graph G is k-edge connected, if κ′(G) ≥ k. A
minimal edge cut F ⊆ EG is a bond (F \ {e} is not an edge cut for any e ∈ F).

Example 2.8. Again, if G is disconnected, then
κ′(G) = 0. On the right, κ(G) = 2 and κ′(G) = 2.
Notice that the minimum degree is δ(G) = 3.

Lemma 2.5. Let G be connected. If e = uv is a bridge, then either G = K2 or one of u or v is
a cut vertex.
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Proof. Assume that G ̸= K2 and thus that νG ≥ 3, since G is connected. Let Gu =
N∗

G−e(u) and Gv = N∗
G−e(v) be the connected components of G−e containing u and

v. Now, either νGu ≥ 2 (and u is a cut vertex) or νGv ≥ 2 (and v is a cut vertex). ⊓6

Lemma 2.6. If F be a bond of a connected graph G, then c(G−F) = 2.

Proof. Since G−F is disconnected, and F is minimal, the subgraph H = G−(F \ {e})
is connected for given e ∈ F. Hence e is a bridge in H. By Lemma 2.1, c(H−e) = 2,
and thus c(G−F) = 2, since H−e = G−F. ⊓6

Theorem 2.6 (WHITNEY (1932)). For any graph G,

κ(G) ≤ κ′(G) ≤ δ(G) .

Proof. Assume G is nontrivial. Clearly, κ′(G) ≤ δ(G), since if we remove all edges
with an end v, we disconnect G. If κ′(G) = 0, then G is disconnected, and in this case
also κ(G) = 0. If κ′(G) = 1, then G is connected and contains a bridge. By Lemma 2.5,
either G = K2 or G has a cut vertex. In both of these cases, also κ(G) = 1.

Assume then that κ′(G) ≥ 2. Let F be an edge cut of G with |F| = κ′(G), and let
e = uv ∈ F. Then F is a bond, and G−F has two connected components.

Consider the connected subgraph
H = G−(F \ {e}) = (G−F) + e,
where e is a bridge.

...
...

G

F

...
...

H
e

Now for each f ∈ F \ {e} choose an end different from u and v. (The choices for
different edges need not be different.) Note that since f ̸= e, either end of f is different
from u or v. Let S be the collection of these choices. Thus |S| ≤ |F|− 1 = κ′(G)− 1,
and G−S does not contain edges from F \ {e}.

If G−S is disconnected, then S is a separating set and so κ(G) ≤ |S| ≤ κ′(G)− 1
and we are done. On the other hand, if G−S is connected, then either G−S = K2 (= e),
or either u or v (or both) is a cut vertex of G−S (since H−S = G−S, and therefore
G−S ⊆ H is an induced subgraph of H). In both of these cases, there is a vertex
of G−S, whose removal results in a trivial or a disconnected graph. In conclusion,
κ(G) ≤ |S|+ 1 ≤ κ′(G), and the claim follows. ⊓6

Menger’s theorem

Theorem 2.7 (MENGER (1927)). Let u, v ∈ G be nonadjacent vertices of a connected graph
G. Then the minimum number of vertices separating u and v is equal to the maximum number
of independent paths from u to v.

Proof. If a subset S ⊆ VG is (u, v)-separating, then every path u ⋆−→ v of G visits S.
Hence |S| is at least the number of independent paths from u to v.
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Conversely, we use induction on m = νG + εG to show that if S = {w1, w2, . . . , wk}
is a (u, v)-separating set of the smallest size, then G has at least (and thus exactly) k
independent paths u ⋆−→ v.

The case for k = 1 is clear, and this takes care of the small values of m, required
for the induction.

(1) Assume first that u and v have a common neighbour w ∈ NG(u)∩ NG(v). Then
necessarily w ∈ S. In the smaller graph G−w the set S \ {w} is a minimum (u, v)-
separating set, and the induction hypothesis yields that there are k − 1 independent
paths u ⋆−→ v in G−w. Together with the path u −→ w −→ v, there are k independent
paths u ⋆−→ v in G as required.

(2) Assume then that NG(u) ∩ NG(v) = ∅, and denote by Hu = N∗
G−S(u) and

Hv = N∗
G−S(v) the connected components of G−S for u and v.

(2.1) Suppose next that S ! NG(u) and S ! NG(v).
Let v̂ be a new vertex, and define Gu to be the graph
on Hu ∪ S ∪ {v̂} having the edges of G[Hu ∪ S] to-
gether with v̂wi for all i ∈ [1, k]. The graph Gu is con-
nected and it is smaller than G. Indeed, in order for
S to be a minimum separating set, all wi ∈ S have
to be adjacent to some vertex in Hv. This shows that
εGu ≤ εG, and, moreover, the assumption (2.1) rules
out the case Hv = {v}. So |Hv| ≥ 2 and νGu < νG.

u

v̂

w1

w2

. . .

wk

If S′ is any (u, v̂)-separating set of Gu, then S′ will separate u from all wi ∈ S \ S′ in
G. This means that S′ separates u and v in G. Since k is the size of a minimum (u, v)-
separating set, we have |S′| ≥ k. We noted that Gu is smaller than G, and thus by the
induction hypothesis, there are k independent paths u ⋆−→ v̂ in Gu. This is possible
only if there exist k paths u ⋆−→ wi, one for each i ∈ [1, k], that have only the end u in
common.

By the present assumption, also u is nonadjacent to some vertex of S. A symmetric
argument applies to the graph Gv (with a new vertex û), which is defined similarly
to Gu. This yields that there are k paths wi

⋆−→ v that have only the end v in common.
When we combine these with the above paths u ⋆−→ wi, we obtain k independent
paths u ⋆−→ wi

⋆−→ v in G.

(2.2) There remains the case, where for all (u, v)-separating sets S of k elements,
either S ⊆ NG(u) or S ⊆ NG(v). (Note that then, by (2), S ∩ NG(v) = ∅ or S ∩
NG(u) = ∅.)

Let P = e f Q be a shortest path u ⋆−→ v in G, where e = ux, f = xy, and Q : y ⋆−→ v.
Notice that, by the assumption (2), |P| ≥ 3, and so y ̸= v. In the smaller graph G− f ,
let S′ be a minimum set that separates u and v.

If |S′| ≥ k, then, by the induction hypothesis, there are k independent paths u ⋆−→ v
in G− f . But these are paths of G, and the claim is clear in this case.
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If, on the other hand, |S′| < k, then u and v are still connected in G−S′. Every path
u ⋆−→ v in G−S′ necessarily travels along the edge f = xy, and so x, y /∈ S′.
Let

Sx = S′ ∪ {x} and Sy = S′ ∪ {y} .

These sets separate u and v in G (by the above fact), and they have size k. By our
current assumption, the vertices of Sy are adjacent to v, since the path P is shortest
and so uy /∈ G (meaning that u is not adjacent to all of Sy). The assumption (2) yields
that u is adjacent to all of Sx, since ux ∈ G. But now both u and v are adjacent to the
vertices of S′, which contradicts the assumption (2). ⊓6

Theorem 2.8 (MENGER (1927)). A graph G is k-connected if and only if every two vertices
are connected by at least k independent paths.

Proof. If any two vertices are connected by k independent paths, then it is clear
that κ(G) ≥ k.

In converse, suppose that κ(G) = k, but that G has vertices u and v connected by at
most k − 1 independent paths. By Theorem 2.7, it must be that e = uv ∈ G. Consider
the graph G−e. Now u and v are connected by at most k − 2 independent paths in
G−e, and by Theorem 2.7, u and v can be separated in G−e by a set S with |S| = k− 2.
Since νG > k (because κ(G) = k), there exists a w ∈ G that is not in S ∪ {u, v}. The
vertex w is separated in G−e by S from u or from v; otherwise there would be a path
u ⋆−→ v in (G−e)−S. Say, this vertex is u. The set S ∪ {v} has k − 1 elements, and it
separates u from w in G, which contradicts the assumption that κ(G) = k. This proves
the claim. ⊓6

We state without a proof the corresponding separation property for edge connec-
tivity.

DEFINITION. Let G be a graph. A uv-disconnecting set is a set F ⊆ EG such that
every path u ⋆−→ v contains an edge from F.

Theorem 2.9. Let u, v ∈ G with u ̸= v in a graph G. Then the maximum number of edge-
disjoint paths u ⋆−→ v equals the minimum number k of edges in a uv-disconnecting set.

Corollary 2.4. A graph G is k-edge connected if and only if every two vertices are connected
by at least k edge disjoint paths.

Example 2.9. Recall the definition of the cube Qk from Example 1.5. We show that
κ(Qk) = k.

First of all, κ(Qk) ≤ δ(Qk) = k. In converse, we show the claim by induction.
Extract from Qk the disjoint subgraphs: G0 induced by {0u | u ∈ Bk−1} and G1
induced by {1u | u ∈ Bk−1}. These are (isomorphic to) Qk−1, and Qk is obtained from
the union of G0 and G1 by adding the 2k−1 edges (0u, 1u) for all u ∈ Bk−1.
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Let S be a separating set of Qk with |S| ≤ k. If both G0−S and G1−S were con-
nected, also Qk−S would be connected, since one pair (0u, 1u) necessarily remains in
Qk−S. So we can assume that G0−S is disconnected. (The case for G1−S is symmet-
ric.) By the induction hypothesis, κ(G0) = k − 1, and hence S contains at least k − 1
vertices of G0 (and so |S| ≥ k − 1). If there were no vertices from G1 in S, then, of
course, G1−S is connected, and the edges (0u, 1u) of Qk would guarantee that Qk−S
is connected; a contradiction. Hence |S| ≥ k.

Example 2.10. We have κ′(Qk) = k for the k-cube. Indeed, by Whitney’s theorem,
κ(G) ≤ κ′(G) ≤ δ(G). Since κ(Qk) = k = δ(Qk), also κ′(Qk) = k.

Algorithmic Problem. The connectivity problems tend to be algorithmically difficult.
In the disjoint paths problem we are given a set (ui, vi) of pairs of vertices for i =
1, 2, . . . , k, and it is asked whether there exist paths Pi : ui

⋆−→ vi that have no vertices in
common. This problem was shown to be NP-complete by KNUTH in 1975. (However,
for fixed k, the problem has a fast algorithm due to ROBERTSON and SEYMOUR (1986).)

Dirac’s fans
DEFINITION. Let v ∈ G and S ⊆ VG such that v /∈ S
in a graph G. A set of paths from v to a vertex in S is
called a (v, S)-fan, if they have only v in common.

Theorem 2.10 (DIRAC (1960)). A graph G is k-connected
if and only if νG > k and for every v ∈ G and S ⊆ VG with
|S| ≥ k and v /∈ S, there exists a (v, S)-fan of k paths.

v

. . .

∗

∗

∗

S

Proof. Exercise. ⊓6

Theorem 2.11 (DIRAC (1960)). Let G be a k-connected graph for k ≥ 2. Then for any k
vertices, there exists a cycle of G containing them.

Proof. First of all, since κ(G) ≥ 2, G has no cut vertices, and thus no bridges. It
follows that every edge, and thus every vertex of G belongs to a cycle.

Let S ⊆ VG be such that |S| = k, and let C be a cycle of G that contains the
maximum number of vertices of S. Let the vertices of S ∩ VC be v1, . . . , vr listed in
order around C so that each pair (vi, vi+1) (with indices modulo r) defines a path
along C (except in the special case where r = 1). Such a path is referred to as a segment
of C. If C contains all vertices of S, then we are done; otherwise, suppose v ∈ S is not
on C.

It follows from Theorem 2.10 that there is a (v, VC)-fan of at least min{k, |VC|}
paths. Therefore there are two paths P : v ⋆−→ u and Q : v ⋆−→ w in such a fan that end
in the same segment (vi, vi+1) of C. Then the path W : u ⋆−→ w (or w ⋆−→ u) along C
contains all vertices of S ∩ VC. But now PWQ−1 is a cycle of G that contains v and all
vi for i ∈ [1, r]. This contradicts the choice of C, and proves the claim. ⊓6
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Tours and Matchings

3.1 Eulerian graphs

The first proper problem in graph theory was the Königsberg bridge problem. In gen-
eral, this problem concerns of travelling in a graph such that one tries to avoid using
any edge twice. In practice these eulerian problems occur, for instance, in optimiz-
ing distribution networks – such as delivering mail, where in order to save time each
street should be travelled only once. The same problem occurs in mechanical graph
plotting, where one avoids lifting the pen off the paper while drawing the lines.

Euler tours

DEFINITION. A walk W = e1e2 . . . en is a trail, if ei ̸= ej for all i ̸= j. An Euler trail of
a graph G is a trail that visits every edge once. A connected graph G is eulerian, if it
has a closed trail containing every edge of G. Such a trail is called an Euler tour.

Notice that if W = e1e2 . . . en is an Euler tour (and so EG = {e1, e2, . . . , en}), also
eiei+1 . . . ene1 . . . ei−1 is an Euler tour for all i ∈ [1, n]. A complete proof of the following
Euler’s Theorem was first given by HIERHOLZER in 1873.

Theorem 3.1 (EULER (1736), HIERHOLZER (1873)). A connected graph G is eulerian if
and only if every vertex has an even degree.

Proof. (⇒) Suppose W : u ⋆−→ u is an Euler tour. Let v ( ̸= u) be a vertex that occurs
k times in W. Every time an edge arrives at v, another edge departs from v, and
therefore dG(v) = 2k. Also, dG(u) is even, since W starts and ends at u.

(⇐) Assume G is a nontrivial connected graph such that dG(v) is even for all v ∈
G. Let

W = e1e2 . . . en : v0
⋆−→ vn with ei = vi−1vi

be a longest trail in G. It follows that all e = vnw ∈ G are among the edges of W, for,
otherwise, W could be prolonged to We. In particular, v0 = vn, that is, W is a closed
trail. (Indeed, if it were vn ̸= v0 and vn occurs k times in W, then dG(vn) = 2(k− 1)+ 1
and that would be odd.)

If W is not an Euler tour, then, since G is connected, there exists an edge f = viu ∈
G for some i, which is not in W. However, now

ei+1 . . . ene1 . . . ei f

is a trail in G, and it is longer than W. This contradiction to the choice of W proves
the claim. ⊓6
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Example 3.1. The k-cube Qk is eulerian for even integers k, because Qk is k-regular.

Theorem 3.2. A connected graph has an Euler trail if and only if it has at most two vertices
of odd degree.

Proof. If G has an Euler trail u ⋆−→ v, then, as in the proof of Theorem 3.1, each vertex
w /∈ {u, v} has an even degree.

Assume then that G is connected and has at most two vertices of odd degree. If G
has no vertices of odd degree then, by Theorem 3.1, G has an Euler trail. Otherwise,
by the handshaking lemma, every graph has an even number of vertices with odd
degree, and therefore G has exactly two such vertices, say u and v. Let H be a graph
obtained from G by adding a vertex w, and the edges uw and vw. In H every vertex
has an even degree, and hence it has an Euler tour, say u ⋆−→ v −→ w −→ u. Here the
beginning part u ⋆−→ v is an Euler trail of G. ⊓6

The Chinese postman

The following problem is due to GUAN MEIGU (1962). Consider a village, where a
postman wishes to plan his route to save the legs, but still every street has to be
walked through. This problem is akin to Euler’s problem and to the shortest path
problem.

Let G be a graph with a weight function α : EG → R+. The Chinese postman
problem is to find a minimum weighted tour in G (starting from a given vertex, the
post office).

If G is eulerian, then any Euler tour will do as a solution, because such a tour
traverses each edge exactly once and this is the best one can do. In this case the weight
of the optimal tour is the total weight of the graph G, and there is a good algorithm
for finding such a tour:

Fleury’s algorithm:

• Let v0 ∈ G be a chosen vertex, and let W0 be the trivial path on v0.
• Repeat the following procedure for i = 1, 2, . . . as long as possible: suppose a trail

Wi = e1e2 . . . ei has been constructed, where ej = vj−1vj.
Choose an edge ei+1 ( ̸= ej for j ∈ [1, i]) so that

(i) ei+1 has an end vi, and
(ii) ei+1 is not a bridge of Gi = G−{e1, . . . , ei}, unless there is no alternative.

Notice that, as is natural, the weights α(e) play no role in the eulerian case.

Theorem 3.3. If G is eulerian, then any trail of G constructed by Fleury’s algorithm is an
Euler tour of G.

Proof. Exercise. ⊓6
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If G is not eulerian, the poor postman has to walk at least one street twice. This
happens, e.g., if one of the streets is a dead end, and in general if there is a street corner
of an odd number of streets. We can attack this case by reducing it to the eulerian case
as follows. An edge e = uv will be duplicated, if it is added to G parallel to an existing
edge e′ = uv with the same weight, α(e′) = α(e).
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Above we have duplicated two edges. The rightmost multigraph is eulerian.
There is a good algorithm by EDMONDS AND JOHNSON (1973) for the construction

of an optimal eulerian supergraph by duplications. Unfortunately, this algorithm is
somewhat complicated, and we shall skip it.

3.2 Hamiltonian graphs

In the connector problem we reduced the cost of a spanning graph to its minimum.
There are different problems, where the cost is measured by an active user of the
graph. For instance, in the travelling salesman problem a person is supposed to visit
each town in his district, and this he should do in such a way that saves time and
money. Obviously, he should plan the travel so as to visit each town once, and so
that the overall flight time is as short as possible. In terms of graphs, he is looking
for a minimum weighted Hamilton cycle of a graph, the vertices of which are the
towns and the weights on the edges are the flight times. Unlike for the shortest path
and the connector problems no efficient reliable algorithm is known for the travelling
salesman problem. Indeed, it is widely believed that no practical algorithm exists for
this problem.

Hamilton cycles

DEFINITION. A path P of a graph G is a Hamilton path,
if P visits every vertex of G once. Similarly, a cycle C is
a Hamilton cycle, if it visits each vertex once. A graph is
hamiltonian, if it has a Hamilton cycle.

Note that if C : u1 → u2 → · · · → un is a Hamilton cycle, then so is ui → . . . un →
u1 → . . . ui−1 for each i ∈ [1, n], and thus we can choose where to start the cycle.

Example 3.2. It is obvious that each Kn is hamiltonian whenever n ≥ 3. Also, as is
easily seen, Kn,m is hamiltonian if and only if n = m ≥ 2. Indeed, let Kn,m have a
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bipartition (X, Y), where |X| = n and |Y| = m. Now, each cycle in Kn,m has even
length as the graph is bipartite, and thus the cycle visits the sets X, Y equally many
times, since X and Y are stable subsets. But then necessarily |X| = |Y|.

Unlike for eulerian graphs (Theorem 3.1) no good characterization is known for
hamiltonian graphs. Indeed, the problem to determine if G is hamiltonian is NP-
complete. There are, however, some interesting general conditions.

Lemma 3.1. If G is hamiltonian, then for every nonempty subset S ⊆ VG,

c(G−S) ≤ |S| .

Proof. Let ∅ ̸= S ⊆ VG, u ∈ S, and let C : u ⋆−→ u be a Hamilton cycle of G. Assume
G−S has k connected components, Gi, i ∈ [1, k]. The case k = 1 is trivial, and hence
suppose that k > 1. Let ui be the last vertex of C that belongs to Gi, and let vi be the
vertex that follows ui in C. Now vi ∈ S for each i by the choice of ui, and vj ̸= vt for
all j ̸= t, because C is a cycle and uivi ∈ G for all i. Thus |S| ≥ k as required. ⊓6

Example 3.3. Consider the graph on the right. In G,
c(G−S) = 3 > 2 = |S| for the set S of black ver-
tices. Therefore G does not satisfy the condition of
Lemma 3.1, and hence it is not hamiltonian. Interest-
ingly this graph is (X, Y)-bipartite of even order with
|X| = |Y|. It is also 3-regular.

Example 3.4. Consider the Petersen graph on the right,
which appears in many places in graph theory as a
counter example for various conditions. This graph
is not hamiltonian, but it does satisfy the condition
c(G−S) ≤ |S| for all S ̸= ∅. Therefore the conclusion
of Lemma 3.1 is not sufficient to ensure that a graph is
hamiltonian.

The following theorem, due to ORE, generalizes an earlier result by DIRAC (1952).

Theorem 3.4 (ORE (1962)). Let G be a graph of order νG ≥ 3, and let u, v ∈ G be such that

dG(u) + dG(v) ≥ νG .

Then G is hamiltonian if and only if G + uv is hamiltonian.

Proof. Denote n = νG. Let u, v ∈ G be such that dG(u) + dG(v) ≥ n. If uv ∈ G, then
there is nothing to prove. Assume thus that uv /∈ G.

(⇒) This is trivial since if G has a Hamilton cycle C, then C is also a Hamilton
cycle of G + uv.

(⇐) Denote e = uv and suppose that G + e has a Hamilton cycle C. If C does not
use the edge e, then it is a Hamilton cycle of G. Suppose thus that e is on C. We may
then assume that C : u ⋆−→ v −→ u. Now u = v1 −→ v2 −→ . . . −→ vn = v is a Hamilton
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path of G. There exists an i with 1 < i < n such that uvi ∈ G and vi−1v ∈ G. For,
otherwise, dG(v) < n − dG(u) would contradict the assumption.

v1 v2 ◦ ◦ vi−1 vi ◦ ◦ vn

But now u = v1
⋆−→ vi−1 −→ vn −→ vn−1

⋆−→ vi+1 −→ vi −→ v1 = u is a Hamilton cycle
in G. ⊓6

Closure

DEFINITION. For a graph G, define inductively a sequence G0, G1, . . . , Gk of graphs
such that

G0 = G and Gi+1 = Gi + uv ,

where u and v are any vertices such that uv /∈ Gi and dGi
(u) + dGi

(v) ≥ νG. This
procedure stops when no new edges can be added to Gk for some k, that is, in Gk, for
all u, v ∈ G either uv ∈ Gk or dGk

(u) + dGk
(v) < νG. The result of this procedure is the

closure of G, and it is denoted by cl(G) (= Gk) .

In each step of the construction of cl(G) there are usually alternatives which edge
uv is to be added to the graph, and therefore the above procedure is not deterministic.
However, the final result cl(G) is independent of the choices.

Lemma 3.2. The closure cl(G) is uniquely defined for all graphs G of order νG ≥ 3.

Proof. Denote n = νG. Suppose there are two ways to close G, say

H = G + {e1, . . . , er} and H′ = G + { f1, . . . , fs} ,

where the edges are added in the given orders. Let Hi = G + {e1, . . . , ei} and H′
i =

G + { f1, . . . , fi}. For the initial values, we have G = H0 = H′
0. Let ek = uv be the

first edge such that ek ̸= fi for all i. Then dHk−1(u) + dHk−1(v) ≥ n, since ek ∈ Hk,
but ek /∈ Hk−1. By the choice of ek, we have Hk−1 ⊆ H′, and thus also dH′(u) +
dH′(v) ≥ n, which means that e = uv must be in H′; a contradiction. Therefore H ⊆
H′. Symmetrically, we deduce that H′ ⊆ H, and hence H′ = H. ⊓6

Theorem 3.5. Let G be a graph of order νG ≥ 3.

(i) G is hamiltonian if and only if its closure cl(G) is hamiltonian.

(ii) If cl(G) is a complete graph, then G is hamiltonian.

Proof. First, G ⊆ cl(G) and G spans cl(G), and thus if G is hamiltonian, so is cl(G).
In the other direction, let G = G0, G1, . . . , Gk = cl(G) be a construction sequence

of the closure of G. If cl(G) is hamiltonian, then so are Gk−1, . . . , G1 and G0 by Theo-
rem 3.4.

The Claim (ii) follows from (i), since each complete graph is hamiltonian. ⊓6
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Theorem 3.6. Let G be a graph of order νG ≥ 3. Suppose that for all nonadjacent vertices u
and v, dG(u) + dG(v) ≥ νG. Then G is hamiltonian. In particular, if δ(G) ≥ 1

2 νG, then G is
hamiltonian.

Proof. Since dG(u) + dG(v) ≥ νG for all nonadjacent vertices, we have cl(G) = Kn

for n = νG, and thus G is hamiltonian. The second claim is immediate, since now
dG(u) + dG(v) ≥ νG for all u, v ∈ G whether adjacent or not. ⊓6

Chvátal’s condition

The hamiltonian problem of graphs has attracted much attention, at least partly be-
cause the problem has practical significance. (Indeed, the first example where DNA
computing was applied, was the hamiltonian problem.)

There are some general improvements of the previous results of this chapter, and
quite many improvements in various special cases, where the graphs are somehow
restricted. We become satisfied by two general results.

Theorem 3.7 (CHVÁTAL (1972)). Let G be a graph with VG = {v1, v2, . . . , vn}, for n ≥ 3,
ordered so that d1 ≤ d2 ≤ · · · ≤ dn, for di = dG(vi). If for every i < n/2,

di ≤ i =⇒ dn−i ≥ n − i , (3.1)

then G is hamiltonian.

Proof. First of all, we may suppose that G is closed, G = cl(G), because G is hamil-
tonian if and only if cl(G) is hamiltonian, and adding edges to G does not decrease
any of its degrees, that is, if G satisfies (3.1), so does G + e for every e. We show that,
in this case, G = Kn, and thus G is hamiltonian.

Assume on the contrary that G ̸= Kn, and let uv /∈ G with dG(u) ≤ dG(v) be
such that dG(u) + dG(v) is as large as possible. Because G is closed, we must have
dG(u) + dG(v) < n, and therefore dG(u) = i < n/2. Let A = {w | vw /∈ G, w ̸= v}.
By our choice, dG(w) ≤ i for all w ∈ A, and, moreover,

|A| = (n − 1)− dG(v) ≥ dG(u) = i .

Consequently, there are at least i vertices w with dG(w) ≤ i, and so di ≤ dG(u) = i.
Similarly, for each vertex from B = {w | uw /∈ G, w ̸= u}, dG(w) ≤ dG(v) <

n − dG(u) = n − i, and

|B| = (n − 1)− dG(u) = (n − 1)− i .

Also dG(u) < n − i, and thus there are at least n − i vertices w with dG(w) < n −
i. Consequently, dn−i < n − i. This contradicts the obtained bound di ≤ i and the
condition (3.1). ⊓6

Note that the condition (3.1) is easily checkable for any given graph.
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3.3 Matchings

In matching problems we are given an availability relation between the elements of
a set. The problem is then to find a pairing of the elements so that each element is
paired (matched) uniquely with an available companion.

A special case of the matching problem is the marriage problem, which is stated
as follows. Given a set X of boys and a set Y of girls, under what condition can each
boy marry a girl who cares to marry him? This problem has many variations. One of
them is the job assignment problem, where we are given n applicants and m jobs,
and we should assign each applicant to a job he is qualified. The problem is that
an applicant may be qualified for several jobs, and a job may be suited for several
applicants.

Maximum matchings

DEFINITION. For a graph G, a subset M ⊆ EG is a matching of G, if M contains no
adjacent edges. The two ends of an edge e ∈ M are matched under M. A matching
M is a maximum matching, if for no matching M′, |M| < |M′|.

The two vertical edges on the right constitute a match-
ing M that is not a maximum matching, although you
cannot add any edges to M to form a larger matching.
This matching is not maximum because the graph has
a matching of three edges.
DEFINITION. A matching M saturates v ∈ G, if v is an
end of an edge in M. Also, M saturates A ⊆ VG, if it
saturates every v ∈ A. If M saturates VG, then M is a
perfect matching.

It is clear that every perfect matching is maximum.
On the right the horizontal edges form a perfect match-
ing.
DEFINITION. Let M be a matching of G. An odd path
P = e1e2 . . . e2k+1 is M-augmented, if

• P alternates between EG \ M and M
(that is, e2i+1 ∈ G−M and e2i ∈ M), and

• the ends of P are not saturated.

Lemma 3.3. If G is connected with ∆(G) ≤ 2, then G is a path or a cycle.

Proof. Exercise. ⊓6

We start with a result that gives a necessary and sufficient condition for a match-
ing to be maximum. One can use the first part of the proof to construct a maximum
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matching in an iterative manner starting from any matching M and from any M-
augmented path.

Theorem 3.8 (BERGE (1957)). A matching M of G is a maximum matching if and only if
there are no M-augmented paths in G.

Proof. (⇒) Let a matching M have an M-augmented path P = e1e2 . . . e2k+1 in G.
Here e2, e4, . . . , e2k ∈ M, e1, e3, . . . , e2k+1 /∈ M. Define N ⊆ EG by

N = (M \ {e2i | i ∈ [1, k]}) ∪ {e2i+1 | i ∈ [0, k]} .

Now, N is a matching of G, and |N| = |M| + 1. Therefore M is not a maximum
matching.

(⇐) Assume N is a maximum matching, but M is not. Hence |N| > |M|. Consider
the subgraph H = G[M △ N] for the symmetric difference M △ N. We have dH(v) ≤
2 for each v ∈ H, because v is an end of at most one edge in M and N. By Lemma 3.3,
each connected component A of H is either a path or a cycle.

Since no v ∈ A can be an end of two edges from N or from M, each connected
component (path or a cycle) A alternates between N and M. Now, since |N| > |M|,
there is a connected component A of H, which has more edges from N than from
M. This A cannot be a cycle, because an alternating cycle has even length, and it
thus contains equally many edges from N and M. Hence A : u ⋆−→ v is a path (of
odd length), which starts and ends with an edge from N. Because A is a connected
component of H, the ends u and v are not saturated by M, and, consequently, A is an
M-augmented path. This proves the theorem. ⊓6

Example 3.5. Consider the k-cube Qk for k ≥ 1. Each maximum matching of Qk has
2k−1 edges. Indeed, the matching M = {(0u, 1u) | u ∈ Bk−1}, has 2k−1 edges, and it
is clearly perfect.

Hall’s theorem

For a subset S ⊆ VG of a graph G, denote

NG(S) = {v | uv ∈ G for some u ∈ S} .

If G is (X, Y)-bipartite, and S ⊆ X, then NG(S) ⊆ Y.

The following result, known as the

Theorem 3.9 (HALL (1935)). Let G be a (X, Y)-bipartite graph. Then G contains a matching
M saturating X if and only if

|S| ≤ |NG(S)| for all S ⊆ X. (3.2)
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Proof. (⇒) Let M be a matching that saturates X. If |S| > |NG(S)| for some S ⊆ X,
then not all x ∈ S can be matched with different y ∈ NG(S).

(⇐) Let G satisfy Hall’s condition (3.2). We prove the claim by induction on |X|.
If |X| = 1, then the claim is clear. Let then |X| ≥ 2, and assume (3.2) implies the

existence of a matching that saturates every proper subset of X.
If |NG(S)| ≥ |S| + 1 for every nonempty S ⊆ X with S ̸= X, then choose an

edge uv ∈ G with u ∈ X, and consider the induced subgraph H = G−{u, v}. For all
S ⊆ X \ {u}, |NH(S)| ≥ |NG(S)|− 1 ≥ |S| , and hence, by the induction hypothesis,
H contains a matching M saturating X \ {u}. Now M∪ {uv} is a matching saturating
X in G, as was required.

Suppose then that there exists a nonempty subset R ⊆ X with R ̸= X such that
|NG(R)| = |R|. The induced subgraph H1 = G[R ∪ NG(R)] satisfies (3.2) (since G
does), and hence, by the induction hypothesis, H1 contains a matching M1 that satu-
rates R (with the other ends in NG(R)).

Also, the induced subgraph H2 = G[VG \ A], for A = R ∪ NG(R), satisfies (3.2).
Indeed, if there were a subset S ⊆ X \ R such that |NH2(S)| < |S|, then we would
have

|NG(S ∪ R)| = |NH2(S)|+ |NH1(R)| < |S|+ |NG(R)| = |S|+ |R| = |S ∪ R|

(since S ∩ R = ∅), which contradicts (3.2) for G. By the induction hypothesis, H2 has
a matching M2 that saturates X \ R (with the other ends in Y \ NG(R)). Combining
the matchings for H1 and H2, we get a matching M1 ∪ M2 saturating X in G. ⊓6

Second proof. This proof of the direction (⇐) uses Menger’s theorem. Let H be the
graph obtained from G by adding two new vertices x, y such that x is adjacent to each
v ∈ X and y is adjacent to each v ∈ Y. There exists a matching saturating X if (and
only if) the number of independent paths x ⋆−→ y is equal to |X|. For this, by Menger’s
theorem, it suffices to show that every set S that separates x and y in H has at least
|X| vertices.

Let S = A ∪ B, where A ⊆ X and B ⊆ Y. Now,
vertices in X \ A are not adjacent to vertices of Y \ B,
and hence we have NG(X \ A) ⊆ B, and thus that
|X \ A| ≤ |NG(X \ A)| ≤ |B| using the condition (3.2).

x y

X \ A Y \ B

A B

We conclude that |S| = |A|+ |B| ≥ |X|. ⊓6

Corollary 3.1 (FROBENIUS (1917)). If G is a k-regular bipartite graph with k > 0, then G
has a perfect matching.

Proof. Let G be k-regular (X, Y)-bipartite graph. By regularity, k · |X| = εG = k · |Y|,
and hence |X| = |Y|. Let S ⊆ X. Denote by E1 the set of the edges with an end in
S, and by E2 the set of the edges with an end in NG(S). Clearly, E1 ⊆ E2. Therefore,
k · |NG(S)| = |E2| ≥ |E1| = k · |S|, and so |NG(S)| ≥ |S|. By Theorem 3.9, G has a
matching that saturates X. Since |X| = |Y|, this matching is necessarily perfect. ⊓6
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Applications of Hall’s theorem

DEFINITION. Let S = {S1, S2, . . . , Sm} be a family of finite nonempty subsets of a set
S. (Si need not be distinct.) A transversal (or a system of distinct representatives) of
S is a subset T ⊆ S of m distinct elements one from each Si.

As an example, let S = [1, 6], and let S1 = S2 = {1, 2}, S3 = {2, 3} and S4 =
{1, 4, 5, 6}. For S = {S1, S2, S3, S4}, the set T = {1, 2, 3, 4} is a transversal. If we add
the set S5 = {2, 3} to S , then it is impossible to find a transversal for this new family.

The connection of transversals to the Marriage Theorem is as follows. Let S = Y
and X = [1, m]. Form an (X, Y)-bipartite graph G such that there is an edge (i, s)
if and only if s ∈ Si. The possible transversals T of S are then obtained from the
matchings M saturating X in G by taking the ends in Y of the edges of M.

Corollary 3.2. Let S be a family of finite nonempty sets. Then S has a transversal if and only
if the union of any k of the subsets Si of S contains at least k elements.

Example 3.6. An m × n latin rectangle is an m × n integer matrix M with entries
Mij ∈ [1, n] such that the entries in the same row and in the same column are different.
Moreover, if m = n, then M is a latin square. Note that in a m × n latin rectangle M,
we always have that m ≤ n.

We show the following: Let M be an m × n latin rectangle (with m < n). Then M can
be extended to a latin square by the addition of n − m new rows.

The claim follows when we show that M can be extended to an (m + 1)× n latin
rectangle. Let Ai ⊆ [1, n] be the set of those elements that do not occur in the i-th
column of M. Clearly, |Ai| = n − m for each i, and hence ∑i∈I |Ai| = |I|(n − m) for
all subsets I ⊆ [1, n]. Now |∪i∈I Ai| ≥ |I|, since otherwise at least one element from
the union would be in more than n − m of the sets Ai with i ∈ I. However, each row
has all the n elements, and therefore each i is missing from exactly n −m columns. By
Marriage Theorem, the family {A1, A2, . . . , An} has a transversal, and this transversal
can be added as a new row to M. This proves the claim.

Tutte’s theorem

The next theorem is a classic characterization of perfect matchings.

DEFINITION. A connected component of a graph G is said to be odd (even), if it has
an odd (even) number of vertices. Denote by codd(G) the number of odd connected
components in G.

Denote by m(G) be the number of edges in a maximum matching of a graph G.
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Theorem 3.10 (Tutte-Berge Formula). Each maximum matching of a graph G has

m(G) = min
S⊆VG

νG + |S|− codd(G−S)
2

(3.3)

elements.

Note that the condition in (ii) includes the case, where S = ∅.

Proof. We prove the result for connected graphs. The result then follows for discon-
nected graphs by adding the formulas for the connected components.

We observe first that ≤ holds in (3.3), since, for all S ⊆ VG,

m(G) ≤ |S|+ m(G−S) ≤ |S|+
|VG \ S|− codd(G−S)

2
=

νG + |S|− codd(G−S)
2

.

Indeed, each odd component of G−S must have at least one unsaturated vertex.
The proof proceeds by induction on νG. If νG = 1, then the claim is trivial. Suppose

that νG ≥ 2.
Assume first that there exists a vertex v ∈ G such that v is saturated by all

maximum matchings. Then m(G−v) = m(G) − 1. For a subset S′ ⊆ G−v, denote
S = S′ ∪ {v}. By the induction hypothesis, for all S′ ⊆ G−v,

m(G)− 1 ≥
1
2
(
(νG − 1) + |S′|− codd(G−(S′ ∪ {v}))

)

=
1
2
((νG + |S|− codd(G−S)))− 1.

The claim follows from this.
Suppose then that for each vertex v, there is a maximum matching that does not

saturate v. We claim that m(G) = (νG − 1)/2. Suppose to the contrary, and let M be a
maximum matching having two different unsaturated vertices u and v, and choose M
so that the distance dG(u, v) is as small as possible. Now dG(u, v) ≥ 2, since otherwise
uv ∈ G could be added to M, contradicting the maximality of M. Let w be an inter-
mediate vertex on a shortest path u ⋆−→ v. By assumption, there exists a maximum
matching N that does not saturate w. We can choose N such that the intersection
M ∩ N is maximal. Since dG(u, w) < dG(u, v) and dG(w, v) < dG(u, v), N saturates
both u and v. The (maximum) matchings N and M leave equally many vertices un-
saturated, and hence there exists another vertex x ̸= w saturated by M but which is
unsaturated by N. Let e = xy ∈ M. If y is also unsaturated by N, then N ∪ {e} is a
matching, contradicting maximality of N. It also follows that y ̸= w. Therefore there
exists an edge e′ = yz in N, where z ̸= x. But now N′ = N ∪ {e} \ {e′} is a maximum
matching that does not saturate w. However, N ∩ M ⊂ N′ ∩ M contradicts the choice
of N. Therefore, every maximum matching leaves exactly one vertex unsaturated, i.e.,
m(G) = (νG − 1)/2.

In this case, for S = ∅, the right hand side of (3.3) gets value (νG − 1)/2, and
hence, by the beginning of the proof, this must be the minimum of the right hand
side. ⊓6
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For perfect matchings we have the following corollary, since for a perfect matching
we have m(G) = (1/2)νG .

Theorem 3.11 (TUTTE (1947)). Let G be a nontrivial graph. The following are equivalent.

(i) G has a perfect matching.

(ii) For every proper subset S ⊂ VG, codd(G−S) ≤ |S|.

Tutte’s theorem does not provide a good algorithm for constructing a perfect
matching, because the theorem requires ‘too many cases’. Its applications are mainly
in the proofs of other results that are related to matchings. There is a good algorithm
due to EDMONDS (1965), which uses ‘blossom shrinkings’, but this algorithm is some-
what involved.

Example 3.7. The simplest connected graph that has no perfect matching is the path
P3. Here removing the middle vertex creates two odd components.
The next 3-regular graph (known as the Sylvester
graph) does not have a perfect matching, because re-
moving the black vertex results in a graph with three
odd connected components. This graph is the smallest
regular graph with an odd degree that has no perfect
matching.

Using Theorem 3.11 we can give a short proof of PETERSEN’s result for 3-regular
graphs (1891).

Theorem 3.12 (PETERSEN (1891)). If G is a bridgeless 3-regular graph, then it has a perfect
matching.

Proof. Let S be a proper subset of VG, and let Gi, i ∈ [1, t], be the odd connected
components of G−S. Denote by mi the number of edges with one end in Gi and the
other in S. Since G is 3-regular,

∑
v∈Gi

dG(v) = 3 · νGi
and ∑

v∈S

dG(v) = 3 · |S| .

The first of these implies that

mi = ∑
v∈Gi

dG(v)− 2 · εGi

is odd. Furthermore, mi ̸= 1, because G has no bridges, and therefore mi ≥ 3. Hence
the number of odd connected components of G−S satisfies

t ≤
1
3

t

∑
i=1

mi ≤
1
3 ∑

v∈S

dG(v) = |S| ,

and so, by Theorem 3.11, G has a perfect matching. ⊓6
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Stable Marriages

DEFINITION. Consider a bipartite graph G with a bipartition (X, Y) of the vertex set.
In addition, each vertex x ∈ G supplies an order of preferences of the vertices of
NG(x). We write u <x v, if x prefers v to u. (Here u, v ∈ Y, if x ∈ X, and u, v ∈ X, if
x ∈ Y.) A matching M of G is said to be stable, if for each unmatched pair xy /∈ M
(with x ∈ X and y ∈ Y), it is not the case that x and y prefer each other better than
their matched companions:

xv ∈ M and y <x v, or uy ∈ M and x <y u.

We omit the proof of the next theorem.

Theorem 3.13. For bipartite graphs G, a stable matching exists for all lists of preferences.

Example 3.8. That was the good news. There is a catch, of
course. A stable matching need not saturate X and Y. For
instance, the graph on the right does have a perfect match-
ing (of 4 edges).

4

2

3

1 5

6

7

8

Suppose the preferences are the following:

1 : 5 2 : 6 < 8 < 7 3 : 8 < 5 4 : 7 < 5
5 : 4 < 1 < 3 6 : 2 7 : 2 < 4 8 : 3 < 2

Then there is no stable matchings of four edges. A stable matching of G is the follow-
ing: M = {28, 35, 47}, which leaves 1 and 6 unmatched. (You should check that there
is no stable matching containing the edges 15 and 26.)

Theorem 3.14. Let G = Kn,n be a complete bipartite graph. Then G has a perfect and stable
matching for all lists of preferences.

Proof. Let the bipartition be (X, Y). The algorithm by GALE AND SHAPLEY (1962)
works as follows.

Procedure.
Set M0 = ∅, and P(x) = ∅ for all x ∈ X.
Then iterate the following process until all vertices are saturated:
Choose a vertex x ∈ X that is unsaturated in Mi−1. Let y ∈ Y be the
most preferred vertex for x such that y /∈ P(x).

(1) Add y to P(x).
(2) If y is not saturated, then set Mi = Mi−1 ∪ {xy}.
(3) If zy ∈ Mi−1 and z <y x, then set Mi = (Mi−1 \ {zy}) ∪ {xy}.

First of all, the procedure terminates, since a vertex x ∈ X takes part in the iter-
ation at most n times (once for each y ∈ Y). The final outcome, say M = Mt, is a
perfect matching, since the iteration continues until there are no unsaturated vertices
x ∈ X.
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Also, the matching M = Mt is stable. Note first that, by (3), if xy ∈ Mi and zy ∈ Mj

for some x ̸= z and i < j, then x <y z. Assume the that xy ∈ M, but y <x z for some
z ∈ Y. Then xy is added to the matching at some step, xy ∈ Mi, which means that
z ∈ P(x) at this step (otherwise x would have ‘proposed’ z). Hence x took part in the
iteration at an earlier step Mk, k < i (where z was put to the list P(x), but xz was not
added). Thus, for some u ∈ X, uz ∈ Mk−1 and x <z u, and so in M the vertex z is
matched to some w with x <z w.

Similarly, if x <y v for some v ∈ X, then y <v z for the vertex z ∈ Y such that
vz ∈ M. ⊓6


