
CHAPTER THREE

Genome reconstruction: a
puzzle with a billion pieces

Phillip E. C. Compeau and Pavel A. Pevzner

While we can read a book one letter at a time, biologists still lack the ability to read a DNA
sequence one nucleotide at a time. Instead, they can identify short fragments (approximately
100 nucleotides long) called reads; however, they do not know where these reads are located
within the genome. Thus, assembling a genome from reads is like putting together a giant
puzzle with a billion pieces, a formidable mathematical problem. We introduce some of the
fascinating history underlying both the mathematical and the biological sides of DNA
sequencing.

1 Introduction to DNA sequencing

1.1 DNA sequencing and the overlap puzzle
Imagine that every copy of a newspaper has been stacked inside a wooden chest.
Now imagine that chest being detonated. We will ask you to further suspend your
disbelief and assume that the newspapers are not all incinerated, as would assuredly
happen in real life, but rather that they explode cartoonishly into tiny pieces of confetti
(Figure 3.1). We will concern ourselves only with the immediate journalistic problem
at hand: what did the newspaper say?
This “newspaper problem” becomes intellectually stimulating when we realize that

it does not simply reduce to gluing the remnants of newspaper as we would fit together
the disjoint pieces of a jigsaw puzzle. One reason why this is the case is that we
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stack of NY Times,
June 27, 2000
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NY Times say?

this is just hypothetical

Figure 3.1 The exploding newspapers.

have probably lost some information from each copy (the content that was blown
to smithereens). However, we can also see that because the chest contained many
identical copies of the same newspaper, different shreds of paper may overlap and
therefore contain some of the same information. The newspaper problem therefore
induces what we will call an overlap puzzle.
We reiterate that our analogy of exploding newspapers is far-fetched, but the newspa-

per problem nevertheless captures the essence of fragment assembly in DNA sequenc-
ing. The technology for “reading” an entire genome nucleotide by nucleotide, like read-
ing a newspaper one letter at a time, remains unknown. At the same time, researchers
can indirectly interpret short sequences of DNA, which are referred to as reads; the
most popular modern technology produces reads that are only 100 nucleotides long
(Figure 3.2). The idea behind DNA sequencing, then, is to generate many reads from
multiple copies of the same genome, which results in a giant overlap puzzle. For
instance, a three billion-nucleotide mammalian genome requires an overlap puzzle
with a billion (overlapping) pieces, the largest such puzzle ever assembled.
The problem of genome sequencing therefore reduces to read generation (a bio-

logical problem) and fragment assembly (an algorithmic problem). Read generation
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Multiple Genome Copies

Reads  

Figure 3.2 In DNA sequencing, multiple (typically more than a billion) copies of a genome are
broken in random locations to generate much shorter reads.

has its own long and tangled history that dates to the 1970s, when Walter Gilbert and
Fred Sanger won the Nobel Prize for inventing the first read generation technology.
In the early 1990s, modern DNA sequencing machines hit the market and the era of
high-throughput DNA sequencing began. In 2000, a few hundred such machines work-
ing around the clock for over a year eventually generated enough reads to enable the
fragment assembly of the human genome, which was completed within a few months
by some of the world’s most powerful supercomputers.

1.2 Complications of fragment assembly
Although we shall discuss read generation in some detail at the end of the chapter,
our primary target is the computational problem of fragment assembly, or using the
generated reads to infer the original genome.
We begin by noting that although we have seen that both the newspaper problem

and fragment assembly reduce to solving an overlap puzzle, fragment assembly is
substantially more difficult for several reasons, and not simply because of the sheer
scale of reconstructing a genome from a billion reads. First, keep in mind that a
newspaper is written in some understood language, whose rules will provide us with
context clues as to how different shreds of paper may or may not be connected,
regardless of whether these shreds overlap (see Figure 3.3a). Yet the rules for the
“language” of DNA still mostly elude biologists, and so it is practically impossible to
determine how two non-overlapping reads might be connected.
A second complication of fragment assembly is that the underlying nucleotide

“alphabet” for DNA contains only four letters: A, T, G, and C. Working with a small
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Figure 3.3 Complications of fragment assembly. (a) In the newspaper assembly problem,
we can see that even though these two shreds do not overlap they are nevertheless probably
connected, because we know that “murder” and “suspect” are highly correlated words.
(b) In the newspaper problem,“oz” and “zone” are likely the remnants of “ozone,” and we
can connect these two shreds even though they overlap in just one letter. In the DNA assembly
problem, with only four letters in the underlying alphabet, such clues are not available.
(c) Repeated regions complicate assembly, as demonstrated by the Triazzle R⃝. Note that every
frog in the Triazzle appears at least three times. (d) DNA sequencing machines are not perfect.
Here, the red ‘T’ was incorrectly sequenced and should be a ‘C’; this mistake of only one
nucleotide may cause these two reads to be interpreted as overlapping when they are not.
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alphabet actually complicates the reconstruction of the original sequence, because
we will observe a greater amount of fragment overlap that is purely attributable to
randomness. See Figure 3.3b.
Third, any DNA sequence contains a significant number of “conserved regions,”

or information that is repeated many times with minor changes. For example, the
approximately 300-nucleotide long Alu sequence occurs over a million times in the
human genome, with only a few nucleotides changed each time due to insertions,
deletions, or substitutions. Therefore, for any one particular fragment, it can become
difficult to identify the specific conserved region towhich it belongswithin the genome.
An appropriate illustration of this difficulty is the once-popular Triazzle R⃝ puzzle. Even
though a Triazzle is a jigsaw puzzle with only 16 pieces, it contains identical figures
shared by multiple pieces, making a Triazzle much more difficult than an ordinary
puzzle. See Figure 3.3c.
Last but not least, modern sequencing machines are not perfect, and the reads they

generate often contain errors; thus, reads which do not overlap in the genome may be
incorrectly interpreted as overlapping (see Figure 3.3d).
With the pitfalls of DNA sequencing established, we next must introduce a rigorous

mathematical framework in order to attack fragment assembly.

2 The mathematics of DNA sequencing

2.1 Historical motivation
Before we jump headlong into mathematics, let us take two historical detours in order
to provide our mathematical discussion with some necessary context. We begin in the
eighteenth century and the Prussian city of Königsberg.1 Königsberg was formed of
opposing banks of the Pregel River, as well as two river islands; joining these four parts
of the city were seven bridges (see Figure 3.4a). Now, Königsberg’s residents enjoyed
taking walks, and they were curious if they could stroll through the city, cross each of
the seven bridges exactly once, and return back to their starting point. Their quandary
became known as the “Königsberg Bridge Problem,” and it was solved once and for
all in 1735 by the great Swiss mathematician Leonhard Euler2 (Figure 3.14a). Euler’s
result, which we discuss below, is profound because it applies not only to the bridges
of Königsberg, but in fact to any possible network of bridges.

1 Present-day Kaliningrad, Russia.
2 Pronounced “oiler.”
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(a)

(b)

Figure 3.4 (a) Map of old Königsberg, adapted from Joachim Bering’s 1613 illustration. The
seven bridges have been highlighted to make them easier to see. (b) The “Königsberg Bridge
Graph,” formed by compressing each of four land areas to a vertex and representing each of
the seven bridges as an edge.

Our second historical detour takes place in Dublin, with the creation in 1857 of
the Icosian Game by the Irish mathematician William Hamilton (Figure 3.14b). This
“game,” which even by contemporary standards could not possibly have been very
enjoyable, consisted of a wooden board with 20 pegholes and some lines connecting
the holes, as well as 20 numbered pegs (see Figure 3.5a). The game’s objective was to
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(a)

(b)

Figure 3.5 (a) The Icosian Game, along with (b) the corresponding graph.

place the numbered pegs in the holes in such a way that Peg 1 would be connected by
a line on the board to Peg 2, which would in turn be connected by a line to Peg 3, and
so on, until finally Peg 20 would be connected by a line back to Peg 1. In other words,
if we follow the lines on the board from peg to peg in ascending order, we reach every
peg exactly once and then arrive back at our starting peg.
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2.2 Graphs
With these two historical asides complete, we are ready to define a “graph” simply as
a collection of “vertices” and a collection of “edges,” for which each edge pairs two
vertices. The abstractness of this definition may be initially offputting, so we quickly
clarify that we can always think about a graph as a network or even a map, in which
the vertices are cities and the edges are roads connecting the vertices.
The benefit of providing ourselves with such a general definition is that “graph

theory,” or the branch of mathematics concerned with the study of graphs, can be
applied to many different types of problems. Applications of graph theory certainly
include road and communications networks; however, graph theory also extends to
less obvious examples, such as understanding the spread of disease or modeling the
webpage connectivity of the internet.
In particular, graph theory applies to both our historical examples. In the Königsberg

Bridge Problem, we obtain a graph K by assigning each of the four sectors of the city
to a vertex and then connecting two given vertices (sectors) with one edge for every
bridge that connects the two sectors (see Figure 3.4b). As for the Icosian Game, we
obtain a graph I by representing each peghole by a vertex and then turning the lines that
connect pegholes into edges that connect the corresponding vertices (see Figure 3.5b).

2.3 Eulerian and Hamiltonian cycles
Now we will generalize our two historical problems to all graphs. So assume that we
are given any graph, which we call G, and consider an ant standing on a vertex of G.
Just as the residents of Königsberg walk between the different parts of the city via
bridges, the ant may walk along edges from vertex to vertex. If the ant returns to where
it started, the result of its walk is a “cycle” of G. We will ask two questions about the
cycles of G:

1 Does there exist a cycle of G in which the ant walks along each edge exactly once?
2 Does there exist a cycle of G in which the ant travels to every vertex exactly once?

Fittingly, Question 1 is called the Eulerian Cycle Problem (ECP): note that solving the
ECP when our graph is K corresponds to solving the Königsberg Bridge Problem.3

We therefore define an “Eulerian cycle” in a graph G as a cycle of G which traverses
every edge in G once and only once.
The second question is called theHamiltonian Cycle Problem (HCP), because when

the underlying graph is I , we can solve the HCP by “winning” Hamilton’s Icosian

3 We call your attention to what we mean by “solving” an ECP: because a solution corresponds to a “Yes” or
“No” answer to Question 1, the ECP is considered solved when we have provided either an Eulerian cycle in
the graph, or definitive proof that no such cycle exists.
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Figure 3.6 A Hamiltonian cycle in the graph I, which provides a solution to Hamilton’s Icosian
Game.

game (see Figure 3.6). Naturally then, a “Hamiltonian cycle” in a graph G is a cycle
of G which travels to each vertex once and only once.
Finally, we define a “connected” graph as one in which an ant standing on any vertex

can reach any other vertex by walking through the graph. For our purposes, it only
makes sense to study the ECP and HCP for connected graphs. This is because a graph
that is not connected automatically contains neither an Eulerian nor a Hamiltonian
cycle, in which case the ECP and HCP are both trivial questions. Therefore, every
graph in this chapter will be assumed to be connected.

2.4 Euler’s Theorem
The decision to extend our historical problems to questions about graphs in general
may be confusing, but this decision turns out to be key. While the ECP and HCP are
superficially very similar, computer scientists have discovered that the two problems
have a fundamentally different algorithmic fate: the ECP can be solved quickly even
for huge graphs, while an efficient algorithm for solving the HCP for large graphs
remains unknown and may not even exist.
First, we will discuss the ECP. Recall that when we introduced the Königsberg

Bridge Problem, we mentioned that Euler’s solution could be extended to any possible
collection of bridges.What wemeant by this was that Euler’s solution actually provided
a simple condition to solve the ECP for any graph.
Before stating Euler’s result, we first need a definition. For a vertex v in a graph G,

define the degree of v to be the number of edges connecting v to other vertices. For
example, for the Königsberg graph K in Figure 3.4b, the top, bottom, and right vertices
all have degree 3, while the left vertex (representing the main island of Königsberg)
has degree 5. In particular, observe that since a vertex v in K represents a sector of the
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city, the degree of v is equal to the number of bridges connecting that sector to other
parts of the city.

Theorem (Euler’s Theorem I). An equivalent condition to a graph G having an Eulerian
cycle is that the degree of every vertex of G is even.

We call your attention to what two conditions being “equivalent” really means. In a
sense, it means that if one is true, then the other is necessarily true as well (and vice
versa). In the case of Euler’s Theorem, the equivalence of the degree condition and
the cycle condition is profound because it implies that for a given graph G, we can
determine if G has an Eulerian cycle without ever having to draw any cycles. Instead,
we simply need to check the degree of every vertex, a relatively simple computational
task (even for a large graph).
Let us notice that Euler’s Theorem immediately solves the Königsberg Bridge Prob-

lem. We have seen above that it is not the case that every vertex of K has even degree.
Therefore, K does not contain an Eulerian cycle, and so we conclude that the walk for
which the citizens of Königsberg had yearned does not exist.
Since the eighteenth century, much has changed in the layout of Königsberg, and it

just so happens that the same graph drawn today for the present-day city of Kaliningrad
still does not contain an Eulerian cycle (see Figure 3.7); however, this graph does
contain an Eulerian path, which means that a denizen of Kaliningrad can cross every
bridge exactly once, but cannot do so and return to where he started. Thus, the citizens
of Kaliningrad finally achieved at least a small part of the goal set by the citizens
of Königsberg. Yet it is also worth noting that strolling around Kaliningrad is not as
pleasant as it would have been in 1735, since the beautiful old Königsberg was ravaged
by the combination of Allied bombing in 1944 and dreadful Soviet architecture in the
years following World War II.

2.5 Euler’s Theorem for directed graphs
We need a slightly reworked statement of Euler’s Theorem in order to handle the
impending application of graph theory to fragment assembly. So first assume that
we instead have a “directed graph,” which is simply a graph in which all edges are
provided with an orientation, so that an edge connecting v to w is not the same as an
edge connecting w to v. We might like to think of a directed graph as a network in
which all the edges are “one-way streets,” in which case our original undirected graph
is a network in which all the edges are “two-way streets.” Accordingly, an Eulerian
cycle in a directed graph G is simply an Eulerian cycle which always travels down the
streets in the correct direction. A Hamiltonian cycle in G is defined analogously. See
Figure 3.8.
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(a)

(b)

Figure 3.7 (a) Satellite map of present-day Kaliningrad, with its bridges highlighted. (b) The
graph for “Kaliningrad Bridge Problem.” Here is a challenge question: where could the city
council of Kaliningrad construct new bridges so that the resulting graph will contain an
Eulerian cycle?
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Figure 3.8 (a) A basic example of a directed graph. The arrows provide the orientations of the
edges, so that we can see the directions of the “one-way streets.” (b) An illustration of an
Eulerian cycle in the directed graph. The edges of the graph are numbered to indicate their
order in the cycle. (c) An illustration of a Hamiltonian cycle (red edges) in the directed graph.

For any vertex v in a directed graph G, we define the “indegree” of v as the number
of edges leading into v and the “outdegree” of v as the number of edges leading out
from v. We are now ready to state the application of Euler’s result to directed graphs.

Theorem (Euler’s Theorem II). An equivalent condition to a directed graph G having
an Eulerian cycle is that for every vertex v in G, the indegree and outdegree of v are
equal.

A proof of Euler’s Theorem is provided at the end of the chapter, as well as a
discussion of howwe can find an Eulerian cycle “quickly” in the parlance of computers.
The key point is that we do not have to test every possible cycle in a directed graph
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G in order to determine whether G contains an Eulerian cycle. We need only find the
indegree and outdegree of each vertex. If for each vertex, the indegree and outdegree
match, then finding an Eulerian cycle will be easy; on the other hand, if there is any
vertex for which the indegree and outdegree do not match, then we know that finding
an Eulerian cycle is impossible.

2.6 Tractable vs. intractable problems
Inspired by Euler’s Theorem, we should wonder whether there exists such a simple
result governing a quick solution of the HCP. Yet although it is easy to win the Icosian
Game, a solution to the HCP for an arbitrary graph has remained hidden.
The key challenge is that while we are guided by Euler’s Theorem in solving the

ECP, an analogous simple condition for the HCP remains unknown. Of course, you
could always employ the method of “brute force” to solve the HCP, in which you have a
computer explore all walks through the graph and report back if it finds a Hamiltonian
cycle. This method is simple enough to understand, yet think about a huge graph that
does not contain a Hamiltonian cycle. For this graph, the computer would have to
test every walk through the graph before reporting back that no Hamiltonian cycle
exists. The cataclysmic problem with this method is that for the average graph on just
a thousand vertices, there are more walks through the graph than there are atoms in
the universe!
The HCP was one of the first algorithmic problems that eluded all attempts to solve

it by some of the world’s most brilliant researchers. After years of fruitless effort,
computer scientists began to wonder whether the HCP is intractable, or in other words
that their failure to find a quick algorithm was not attributable to a lack of cleverness,
but rather because an efficient algorithm for solving the HCP simply does not exist.
Moreover, in the 1970s, computer scientists discovered thousands more algorithmic
problems with the same fate as the HCP: while they are superficially simple, no one
has been able to find efficient algorithms for solving them. A large subset of these
problems, along with the HCP, are now collectively known as “NP-complete.”
What has only exacerbated the frustration caused by the failure to find a simplifying

condition for the HCP is that while all the NP-complete problems are different, they
turn out to be equivalent to each other: if you find a fast algorithm for one of them,
you will be able to automatically find a fast algorithm for all of them! The problem of
efficiently solving NP-complete problems (or finally proving that they are intractable)
is so fundamental to both computer science and mathematics that it was named on the
list of “Millennium Problems” by the Clay Mathematics Institute in the year 2000: find
an efficient algorithm for any NP-complete problem, or show that any NP-complete
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problem is in fact intractable, and this institute will award you a prize of one million
dollars.
Henceforth, we will simply think of the ECP as “easy” and the HCP as “difficult.”

Keep this distinction between the two problems in mind, as it will shortly become
critical.

3 From Euler and Hamilton to genome assembly

3.1 Genome assembly as a Hamiltonian cycle problem
Equipped with all the mathematics that we need, we return to fragment assembly.
Having generated all our reads, wewill henceforthmake three simplifying assumptions
about the problem at hand in order to streamline our work:

1 The genome we are reconstructing is cyclic.
2 Every read has the same length l (a string of l nucleotides is called an “l-mer”).
3 All possible substrings of length l occurring in our genome have been generated as
reads.

4 The reads have been generated without any errors.

It turns out that we can relax each of these assumptions, but the resulting solution to
fragment assembly winds up being far more technical than what is suitable for this
text.
In the early days of DNA sequencing, the following idea for fragment assembly

was proposed. Construct a graph H by forming a vertex for every read (l-mer); we
connect l-mer R1 to l-mer R2 by a directed edge if the string formed by the final l − 1
characters of R1 (called the suffix of R1) matches the string formed by the first l − 1
characters of R2 (called the prefix of R2). For instance, in the case l = 5, we would
connect GGCAT to GCATC by a directed edge, but not vice versa. An example of such
a graph H is provided in Figure 3.9a.
Now, consider a cycle in H . It will begin with an l-mer R1, and then proceed along

a directed edge to a different l-mer R2; let us think of walking along this edge as
beginning with R1 and tacking on the lone non-overlapping character from R2 in order
to form a “superstring” S of length l + 1. To continue our above example, if we walk
from GGCAT to GCATC, then our superstring S will be GGCATC. Observe that the
first l characters of S will be R1, and the final l characters of S will be R2. At each
new vertex that we reach, we append one new character to S and notice that the final l
characters of our superstring will represent the read at the present vertex. At the end of
the cycle, our (cyclic) superstring S will therefore contain every l-mer that we reached
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ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG

ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG

(a)

(b)

Figure 3.9 (a) The graph H for the set of 3-mers ATG, CGT, GGC, AAT, GTG, TGG, TGC, CAA,
GCA, and GCG. (b) A Hamiltonian cycle in H . What is the cyclic “superstring” DNA sequence
corresponding to this Hamiltonian cycle?

along the way. Extending this reasoning, a Hamiltonian cycle in H , which travels to
every vertex in H , must correspond to a superstring of nucleotides which contains
every one of our l-mers. Furthermore, every substring of length l in S will correspond
to an l-mer, so S is as short as possible and therefore provides us with a candidate
DNA sequence! See Figure 3.9b.
The problemwith this method is that although it is elegant, it nevertheless rests upon

solving the HCP, so that it is impractical unless our graph H is small. Therefore, this
method is unsuitable for the graph obtained from a genome, which may have billions
of vertices.

3.2 Fragment assembly as an Eulerian cycle problem
Yet all is not lost. Instead of assigning each read to a vertex, let us make the admittedly
counterintuitive decision to assign each read to an edge. To this end, consider all
prefixes and suffixes of all reads. Note that different reads may share suffixes and
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AT TG

GT

GC

CG

CA

GG

AA

CGT

GCGGTG

TGG GGC

GCATGCATG

AA T CAA

Figure 3.10 The graph E for the same set of 3-mers as in Figure 3.9. Can you find an Eulerian
cycle in E ? What is the “superstring” DNA sequence corresponding to your Eulerian cycle?

prefixes; for example, reads CAGC and CAGT of length 4 share the prefix CAG. We
construct a graph E with each distinct prefix or suffix represented by a vertex; connect
an (l − 1)-mer A to an (l − 1)-mer B via a directed edge if there exists a read whose
prefix is A and whose suffix is B. See Figure 3.10 for an example using the same set
of reads from Figure 3.9.
Here, then, is the critical question: what does a cycle in E represent? Once again,

imagine that you are an ant starting at some vertex of E and that you walk along a
directed edge to another vertex. As with H , the result is the creation of a superstring
S by tacking on the non-overlapping characters from the second vertex to those of
the first. However, in this case S is just the read representing the edge connecting the
two vertices. Note that in Figure 3.10, we have labeled each edge with the appropriate
3-mer.
This process repeats itself as the ant walks through E ; with each new edge, we

append one additional nucleotide to the superstring S, but we also gain one additional
read. Therefore, an Eulerian cycle in E will induce a (cyclic) superstring S that contains
all our reads with maximum overlap, and so S is also a candidate DNA sequence. Yet in
contrast to our above graph H , we have no computational troubles: by Euler’s Theorem,
the ECP is easy to solve. Hence we have reduced fragment assembly to an easily solved
computational problem!
Nevertheless, the reduction of fragment assembly to solving the ECP on our graph

E carries one vital concern: how do we know from the start that E even contains an
Eulerian cycle? After all, E was constructed with no thought as to whether it might
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Figure 3.11 The minimal superstring problem. Here we show the circular superstring
00011101 along with illustrations of the location of the 3-digit binary numbers 000 and 110.
Note that we can locate all 3-digit binary numbers in the superstring with no repeats, so
00011101 is as short as possible.

have an Eulerian cycle; if it does not, then the construction of E was simply nonsense,
and the process of creating a superstring by concatenating nucleotides as we progress
through E will not result in a candidate DNA sequence. In order to resolve this potential
quagmire, we will tell a third and final mathematical tale.

3.3 De Bruijn graphs
In 1946, theDutchmathematicianNicolaas deBruijn4 (see Figure 3.14c)was interested
in the problem of designing a circular superstring of minimal length that contains all
possible l-digit binary numbers as substrings. For example, the circular string 00011101
contains all 3-digit binary numbers: 000, 001, 010, 011, 100, 101, 110, and 111. It is
easy to see that 00011101 is the shortest such superstring, because it does not contain
any “extra” digits, meaning that each 3-digit substring of 00011101 is the unique
occurrence of one of the 3-digit binary numbers listed above. See Figure 3.11.
De Bruijn analyzed a specific class of graphs, defined as follows. Consider an

alphabet of n characters, as well as some fixed number l. Form all nl−1 possible “words”
of length l − 1, where a word is just a string of l − 1 letters from our alphabet.5 De
Bruijn constructed a graph B(n, l) (now known as the de Bruijn graph6) whose vertices

4 In contrast to Euler, the anglophone will find the pronunciation of “de Bruijn” very difficult: it is similar to
“brine,” except with a slight ‘r’ sound between the ‘i’ and the ‘n.’

5 There are nl−1 such words because there are n choices for the first letter, n choices for the second letter, and so
on. Since there are l − 1 letters to choose, we wind up with nl−1 total possibilities.

6 This nomenclature is a bit cruel to the British mathematician I. J. Good, who independently discovered de
Bruijn graphs.
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Figure 3.12 The de Bruijn graph B (2, 4), where our 2-character “alphabet” is composed of
just the digits 0 and 1. Observe that by Euler’s Theorem, this graph must have an Eulerian
cycle; we will find such a cycle for this graph in Figure 3.19.

are all nl−1 words of length l − 1; a directed edge connects wordw1 to wordw2 if there
exists an l-letter word W whose prefix is w1 and whose suffix is w2. See Figure 3.12.
The crucial property shared by all de Bruijn graphs is that every one of them will

always contain an Eulerian cycle. For example, in Figure 3.12 we can see that there
are two edges entering every vertex and two edges leaving every vertex of B(2, 4),
implying that it has an Eulerian cycle. To see why the same is true for any de Bruijn
graph B(n, l), consider a vertexw corresponding to a word of length l − 1. There exist
n words of length l whose prefix is w (each such word is obtained by adding one of n
letters to the end of w) and thus the outdegree of each vertex in B(n, l) is n. Similarly,
there exist n words of length l whose suffix isw (each such word is obtained by adding
one of n letters to the beginning of w) and thus the indegree of each vertex in B(n, l)
is also n. Hence every vertex of B(n, l) has indegree and outdegree both equal to n,
and so Euler’s Theorem implies that B(n, l) must have an Eulerian cycle.
The biological connection arises when we realize that our graph E above will be

contained in the de Bruijn graph B(4, l), because whereas the vertices of E are all
(l − 1)-mers occurring as prefixes or suffixes of our reads, the vertices of B(4, l) are
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Figure 3.13 This more general version of the graph from Figure 3.10 allows for the case that
the same read occurs in more than one location in the genome. The good news is that this
generalization does not make the problem any more difficult to solve: an Eulerian cycle in this
graph will still correspond to a candidate DNA sequence.

all possible (l − 1)-mers. Furthermore, it can be demonstrated that E itself has an
Eulerian cycle!

3.4 Read multiplicities and further complications
Imagine for a moment that our genome is ATGCATGC. Then we will obtain four reads
of length 3: ATG, TGC, GCA, and CAT; however, this might lead us to reconstruct the
genome as ATGC. The problem is that each of these reads actually occurs twice in the
original genome. Therefore, we will need to adjust genome reconstruction so that we
not only find all l-mers occurring as reads, but we also find how many times each such
l-mer occurs in the genome, called its “l-mer multiplicity.” The good news is that we
can still handle fragment assembly in the case l-mer multiplicities are known.
We simply use the same graph E , except that if the multiplicity of an l-mer is k,

we will connect its prefix to its suffix via k edges (instead of just one). Continuing our
ongoing example from Figure 3.10, if during read generation we discover that each of
the four 3-mers TGC, GCG, CGT, and GTG has multiplicity 2, and that each of the
six 3-mers ATG, TGG, GGC, GCA, CAA, and AAT has multiplicity 1, we create the
graph shown in Figure 3.13. In general, it is easy to see that the graph resulting from
adding multiplicity edges is Eulerian, as both the indegree and outdegree of a vertex
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Figure 3.14 The three mathematicians. (a) Leonhard Euler. (b) William Hamilton.
(c) Nicolaas de Bruijn.

(represented by an (l − 1)-mer) equals the number of times this (l − 1)-mer appears in
the genome.
In practice, information about the exact multiplicities of (l − 1)-mers in the genome

may be difficult to obtain, even with modern sequencing technologies. However, com-
puter scientists have recently found a way to reconstruct the genome even when this
information is unavailable. Furthermore, DNA sequencing machines are prone to
errors, our reads will have varying lengths, and so on. However, with every variation
to fragment assembly, it has proven fruitful to apply some cousin of de Bruijn graphs
in order to transform a question involving Hamiltonian cycles into a different question
about Eulerian cycles.

4 A short history of read generation

4.1 The tale of three biologists: DNA chips
While Euler, Hamilton, and de Bruijn could not possibly meet each other, their math-
ematical fates got intricately criss-crossed. In 1988, three other Europeans would find
their fates intertwined (Figure 3.15). Radoje Drmanac (Serbia), Andrey Mirzabekov
(Russia), and Edwin Southern (UK) simultaneously and independently developed the
futuristic and at the time completely implausible method ofDNA chips as a proposal for
read generation. None of these three biologists knew of the work of Euler, Hamilton,
and de Bruijn; none could have possibly imagined that the implications of his own
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(a) (b) (c)

FPO

Figure 3.15 The three biologists. (a) Radoje Drmanac. (b) Andrey Mirzabekov.
(c) Edwin Southern.

experimental research would eventually bring him face to face with these giants of
mathematics.
In 1977 Fred Sanger and colleagues sequenced the first virus, the tiny 5,375

nucleotide long bacteriophage φX174. However, while biologists in the late 1980s
were routinely sequencing viruses containing hundreds of thousands of nucleotides,
the idea of sequencing bacterial (let alone human) genomes seemed preposterous,
both experimentally and computationally. Drmanac, Mirzabekov, and Southern real-
ized that one main problem with the original DNA sequencing technology developed
in the 1970s is the fact that it is not cost-effective for larger genomes. Indeed, gen-
erating a single read in the late 1980s cost more than a dollar, and thus sequencing a
mammalian genome would have been a billion-dollar enterprise.7 Due to such a high
cost, it was infeasible to generate all l-mers from a genome, one of our conditions
for the successful application of the Eulerian approach. DNA chips were therefore
invented with the goal of cheaply generating all l-mers from a genome, albeit with
a smaller read length l than the original DNA sequencing technology. For example,
whereas traditional sequencing techniques generated reads containing approximately
500 nucleotides, the inventors of DNA arrays aimed at producing reads with around
15 nucleotides.
DNA chips work as follows. One first synthesizes all 4l possible l-mers (i.e. all DNA

fragments of length l) and attaches them to a DNA array, which is a grid on which
each l-mer is assigned a unique location. We next take an (unknown) DNA fragment,

7 Even in 2000, when the cost of read generation reduced substantially, sequencing the human genome still cost
a few hundred million dollars.
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Figure 3.16 A schematic of the DNA array containing all possible 3-mers. Ten fluorescently
labeled 3-mers represent complements of the 10 3-mers from Figures 3.9 and 3.10. In order to
obtain our reads from this array, we simply take the complements of the highlighted 3-mers.
For example, CAC is highlighted, which means that GTG (the complement of CAC) is one of our
reads. Note that this DNA array provides no information regarding l-mer multiplicities.

fluorescently label it, and apply a solution containing this fluorescently labeled DNA to
the DNA array. The upshot is that the nucleotides in the DNA fragment will hybridize
(bond) to their complements on the array (A will bond to T, and C to G). All we
need to do is use spectroscopy to analyze which sites on the array emit the greatest
fluorescence; the complement of the l-mer corresponding to such a site on the array
must therefore be one of our reads. See Figure 3.16 for an illustration of the DNA array
for our recurring set of reads.
At first, almost no one believed that the idea of DNA arrays would work, because

both the biochemical problem of synthesizingmillions of short DNA fragments and the
mathematical problem of sequence reconstruction appeared too complicated. In 1988,
Science magazine wrote that given the amount of work required to synthesize a DNA
array, “using DNA arrays for sequencing would simply be substituting one horrendous
task for another.” It turned out that Science was wrong: in the mid 1990s, a number of
startup companies perfected technologies for designing large DNA arrays. However,
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DNA arrays ultimately failed to realize the dream that motivated their inventors. Arrays
are incapable of sequencing DNA, because the fidelity of DNA hybridization with the
array is too low and because the value of l is too small.
Yet the failure of DNA arrays was a spectacular one: while the original goal (DNA

sequencing) was out of reach for the moment, two new unexpected applications of
DNA arrays emerged. Today, arrays are used to measure gene expression, as well as
to analyze genetic variations. These new applications transformed DNA arrays into a
multi-billion dollar industry that included Hyseq (founded by Radoje Drmanac) and
Oxford Gene Technology (founded by Sir Edwin Southern).

4.2 Recent revolution in DNA sequencing
After founding Hyseq, Radoje Drmanac did not abandon his dream of inventing
an alternative DNA sequencing technology. In 2005 he founded Complete Genomics,
which recently developed the technology to generate (nearly) all l-mers from a genome,
thus at last enabling the method of Eulerian assembly. While his nanoball arrays
technology is quite different from the DNA chip technology he proposed in 1988,
one can still recognize the intellectual legacy of DNA chips in nanoball arrays, a
testament that good ideas do not die even if they fail. Moreover, a number of other
companies, including Illumina and Life Technologies, are competing with Complete
Genomics by using their own technologies to generate (nearly) all l-mers from a
genome.While DNA arrays failed to generate accurate reads even 15 nucleotides long,
the next generation sequencing technologies generate reads of length 25 nucleotides
and longer (and producing hundreds of millions such reads in a single experiment).
These developments in next-generation sequencing technologies in the last five years
have revolutionized genomics, and biologists are presently preparing to assemble the
genomes of all the mammals on Earth (Figure 3.17) ... while still relying on the grand
idea that Leonhard Euler developed in 1735.

5 Proof of Euler’s Theorem

We now will prove Euler’s Theorem. First, let us restate his result for the case of
undirected graphs, which we may recall are graphs for which the edges are “two-way
streets.”

Theorem (Euler’s Theorem I). An equivalent condition to a graph G having an Eulerian
cycle is that the degree of every vertex of G is even.
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Figure 3.17 At the moment, only nine mammals have had their genomes sequenced: human,
mouse, rat, dog, chimpanzee, macaque, opossum, horse, and cow. This is all about to change.

We shall only prove the second version of Euler’s Theorem for directed graphs (in
which the edges are “one-way streets”), which is ultimately more relevant to the themes
of this chapter. We urge you to read through the proof we provide carefully, and then
see if you can prove Euler’s Theorem I for yourself. Do not be terrified. The overall
structure of the two proofs is identical, except for a few details. Simply follow the
proof of Euler’s Theorem II and fit in the appropriate details for undirected graphs.
Here, then, is the restatement of Euler’s Theorem for directed graphs.

Theorem (Euler’s Theorem II). An equivalent condition to a directed graph G having an
Eulerian cycle is that for every vertex v in G, the indegree and outdegree of v are
equal.

Recall that two conditions being “equivalent” means that if one is true, then the
other must be true. In this specific instance, our equivalent conditions are as follows
for a given directed graph G:

1 G has an Eulerian cycle.
2 Each vertex of G has equal indegree and outdegree.

So in order to prove that these two conditions are equivalent, we simply need to
demonstrate two statements. First, we need to show that if (1) is true for a directed
graph G, then so is (2). Second, we must show that if (2) is true for a directed graph
G, then so is (1). If these two statements hold, then there is no way that we can have a
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directed graph for which condition (1) is true and condition (2) is false, or vice versa.
In other words, our two conditions above will be equivalent.

Proof First we will show that if condition (1) is true, then so is condition (2). So
assume that we are given a directed graph G which contains an Eulerian cycle; our
aim is to show that each vertex of G has equal indegree and outdegree. Every time we
enter a vertex in the Eulerian cycle of G, we leave it via a different edge. If a vertex
v is used k times throughout the course of the cycle, then we enter v via a total of k
edges and leave v via a total of k edges. All 2k edges are distinct, because since our
cycle is Eulerian, no edge can be used more than once. Furthermore, these 2k edges
constitute all edges touching this vertex, since an Eulerian cycle uses every edge in
G. Therefore the indegree and outdegree of v are both equal to k. We can iterate this
argument on every vertex in G to obtain that every vertex in G has equal indegree and
outdegree, as needed.
Conversely, we need to show that if condition (2) is true, then so is condition (1).

So assume that we are given a directed graph G for which each vertex has indegree
equal to its outdegree. We will actually form an Eulerian cycle in G by the following
procedure. Choose any vertex v in G, and choose any edge leaving v. Travel down
this edge to the next vertex. Continue this process of choosing any unused edge to
walk down, creating what is called a “random walk,” while making sure only that we
never use the same edge twice. Eventually, we will reach our original vertex v, creating
a cycle which we call C1. We should be suspicious of why a random walk in G is
guaranteed to produce a cycle; this fact is ensured by the assumed condition that every
vertex has equal indegree and outdegree, so that every time we arrive at a vertex, we
must be able to find an unused edge leaving it (i.e. we cannot get “stuck” along our
walk).
Now, once we have formed our cycle C1, there are two possibilities for it. Either

C1 is an Eulerian cycle, in which case we are finished, or C1 is not Eulerian. In the
latter case, remove C1 from G to form a new graph H . Because every vertex of C1
(a cycle) must have indegree equal to its outdegree, condition (2) must also hold for
every vertex in H . Since G is connected, we are guaranteed to have some vertex w in
H that contains edges in both H and C1. So since condition (2) holds for H , we can
start at w and form an arbitrary cycle C2 in H via a random walk in H .
We now have two cycles, C1 and C2, which do not share any edges but which both

pass throughw. We can therefore consolidate C1 and C2 to form a single “supercycle,”
which we call C . See Figure 3.18 for a brief illustration of how we form C .
In turn, we test if C is Eulerian, and if not we can iterate the above procedure

indefinitely. If at any step our supercycle C becomes an Eulerian cycle, then we are
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Figure 3.18 Cycle consolidation. If we have two cycles passing through the same vertex w,
then we can combine them into a single cycle simply by changing the order in which we
choose edges leaving w.

finished. The only concern is that C might never become Eulerian. However, this is
impossible: there are only finitely many edges in the original graph G, so that since we
remove some edges at each step, eventually we must reach a step at which we run out
of edges. When we consolidate cycles at this step, our supercycle will use every edge
in G without using any edges more than once, which is precisely the definition of an
Eulerian cycle in G. Therefore G has an Eulerian cycle, which is what we set out to
show.

The brilliant facet of this proof (as well as the proof of Euler’s Theorem I) is that it
serves as an example of what mathematicians call a “constructive proof,” or a proof that
not only proves the desired result, but also delivers us with a very precise method for
actually constructing what we need, which in this case is an Eulerian cycle. Therefore,
if we are given a graph and asked to find an Eulerian cycle in it, we can easily test to
see if each vertex has indegree equal to its outdegree (or if the degree of each vertex is
even, as in the case of undirected graphs). If this condition fails, then the graph contains
no Eulerian cycle; if it holds, we simply follow the idea outlined in the proof and form
an arbitrary sequence of cycles that do not share any edges, combining the cycles into
a single “supercycle” at each step, and iterating this process until an Eulerian cycle is
inevitably obtained.
Let us conclude by illustrating the power of our constructive proof. In Figure 3.19, we

apply Euler’s Theorem to find an Eulerian cycle in the deBruijn graph fromFigure 3.12.
Keep in mind that the same method will work for genome graphs containing billions
of edges. At last, we have definitively solved our giant puzzle!
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Figure 3.19 Obtaining an Eulerian cycle from a graph in which all vertices have the
appropriate degrees. Here, we find an Eulerian cycle in the directed graph B (2, 3) from
Figure 3.12. (a) We first find three arbitrary cycles in the graph at hand (here shaded with three
different colors). Once we have chosen the green cycle, we remove it from the graph and
choose the blue cycle, which we then remove from the graph and choose the red cycle. (b) We
next consolidate the green and blue cycles into a single cycle (black). The edge numberings
give the order of the edges if we start at vertex 000. Note that the red cycle is dashed to
indicate that it is not yet part of our supercycle. (c) Finally, we add the red cycle into our
supercycle, which is Eulerian. The edges are renumbered as needed. The resulting Eulerian
cycle spells the cyclic superstring 0000110010111101.
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DISCUSSION

We have met three mathematicians of three different centuries, Euler, Hamilton,
and de Bruijn, spread out across the European continent, each with his own
queries. We might be inclined to feel a sense of adventure at their work and how
it converged to this singular point in modern biology. Yet the first biologists who
worked on DNA sequencing had no idea of how graph theory could be applied to
this subject; what’s more, the first paper combining the trio’s mathematical ideas
into fragment assembly was published lifetimes after the deaths of Euler and
Hamilton, when de Bruijn was in his seventies. So perhaps we might think of
these three men not as adventurers, but instead as lonely wanderers. As is so
often the mathematician’s curse, each man passionately pursued questions in the
abstract mathematical world while having no idea where the answers might one
day lead without him in the real world.

NOTES
Euler’s solution of the Königsberg Bridge Problem was presented to the Imperial
Russian Academy of Sciences in St. Petersburg on August 26, 1735. Euler was the
most prolific writer of mathematics of all time: besides graph theory, he first
introduced the notation f (x) to represent a function, i for the square root of −1,
and π for the circular constant. Working very hard throughout his entire life, he
became blind. In 1735, he lost the use of his right eye. He kept working. In 1766,
he lost the use of his left eye and commented: “Now I will have fewer
distractions.” He kept working. Even after becoming completely blind, he
published hundreds of papers.

After Euler’s work on the Königsberg Bridge Problem, graph theory was
forgotten for over a hundred years, but was revived in the second half of the
nineteenth century by prominent mathematicians, among them William Hamilton.
Graph theory flourished in the twentieth century, when it became an area of
mainstream mathematical research.

DNA sequencing methods were invented independently and simultaneously in
1977 by Frederick Sanger and colleagues [1] as well as Walter Gilbert and
colleagues [2]. The Hamiltonian cycle approach to DNA sequencing was first
outlined in 1984 [3] and further developed by John Kececioglu and Eugene Myers
in 1995 [4]. Advances in DNA sequencing led to the sequencing of the entire
1800 kb H. influenzae bacterial genome in the mid 1990s. The human genome
was sequenced using the Hamiltonian approach in 2001.
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DNA arrays were proposed simultaneously and independently in 1988 by
Radoje Drmanac and colleagues in Yugoslavia [5], Andrey Mirzabekov and
colleagues in Russia [6], and Ed Southern in the UK [7]. The Eulerian approach to
DNA arrays was described in [8]. The Eulerian approach to DNA sequencing was
described in [9] and further developed in 2001 [10], when hardly anybody
believed it could be made practical.

At roughly the same time, Sydney Brenner and colleagues introduced the
Massively Parallel Signature Sequencing (MPSS) method [11], which brought in
the era of next generation sequencing with short reads. Throughout the last
decade, MPSS in addition to technologies developed by such companies as
Complete Genomics, Illumina, and Life Technologies revolutionized genomics.
Next-generation techniques produce rather short reads, which vary in length from
30 to 100 nucleotides and result in a challenging fragment assembly problem. To
address this challenge, a number of assembly tools have been developed [12–15],
all of which follow the Eulerian approach.

QUESTIONS

(1) Does the graph I representing the Icosian Game contain an Eulerian cycle? Why or why
not?

(2) Construct the de Bruijn Graph B(3, 3) and find an Eulerian cycle in it.
(3) Give three Eulerian cycles in the graph of Figure 3.13 along with their corresponding cyclic

superstrings.
(4) From the following set of reads of length 4, use the ideas of this chapter to provide a

(cyclic) candidate DNA sequence: AACG, TCGT, GATC (multiplicity 2), TATC, ATCG, CCCG,
ATCC (multiplicity 2), CGGA, CCCT, GTAT, CCGA, CTAA, TCCC (multiplicity 2), GGAT,
CCTA, TAAC, CGAT, CGTA, ACGG.

(5) Prove Euler’s Theorem I.
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