CHAPTER 5

BIOLOGICAL NETWORKS

A discussion of various networks of interest in biology,
including biochemical networks, neural networks, and
ecological networks

ETWORKS are widely used in many branches of biology as a convenient
N representation of patterns of interaction between appropriate biological
elements. Molecular biologists, for example, use networks to represent the pat-
terns of chemical reactions among chemicals in the cell, while neuroscientists
use them to represent patterns of connections between brain cells, and ecolo-
gists study the networks of interactions between species in ecosystems, such
as predation or cooperation. In this chapter we describe the commonest kinds
of biological networks and discuss methods for determining their structure.

5.1 BIOCHEMICAL NETWORKS

Among the biological networks those attracting the most attention in recent
years have been biochemical networks, networks that represent the molecular-
level patterns of interaction and mechanisms of control in the biological cell.
The principal types of networks studied in this area are metabolic networks,
protein—protein interaction networks, and genetic regulatory networks.

5.1.1 METABOLIC NETWORKS

Metabolism is the chemical process by which cells break down food or nutrients
into usable building blocks (so-called catabolic metabolism) and then reassem-
ble those building blocks to form the biological molecules the cell needs to
complete its other tasks (anabolic metabolism). Typically this breakdown and
reassembly involves chains or pathways, sets of successive chemical reactions
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that convert initial inputs into useful end products by a series of steps. The
complete set of all reactions in all pathways forms a metabolic network.

The vertices in a metabolic network are the chemicals produced and con-
sumed by the reactions. These chemicals are known generically as metabo-
lites. By convention the definition of a metabolite is limited to small mole-
cules, meaning things like carbohydrates (such as sugars) and lipids (such as
fats), as well as amino acids and nucleotides. Amino acids and nucleotides are
themselves the building blocks for larger polymerized macromolecules such
as DNA, RNA, and proteins, but the macromolecules are not themselves con-
sidered metabolites—they are not produced by simple chemical reactions but
by more complex molecular machinery within the cell, and hence are treated
separately. (We discuss some of the mechanisms by which macromolecules are
produced in Section 5.1.3.)

Although the fundamental purpose of metabolism is to turn food into use-
ful biomolecules, one should be wary of thinking of it simply as an assembly
line, even a very complicated one. Metabolism is not just a network of con-
veyor belts in which one reaction feeds another until the final products fall out
the end; it is a dynamic process in which the concentrations of metabolites can
change widely and rapidly, and the cell has mechanisms for turning on and
off the production of particular metabolites or even entire portions of the net-
work. Metabolism is a complex machine that reacts to conditions both within
and outside the cell and generates a broad variety of chemical responses. A
primary reason for the high level of scientific interest in metabolic networks is
their importance as a stepping stone on the path towards an understanding of
the chemical dynamics of the cell.

Generically, an individual chemical reaction in the cell involves the con-
sumption of one or more metabolites that are broken down or combined to
produce one or more others. The metabolites consumed are called the sub-
strates of the reaction, while those produced are called the products.

The situation is complicated by the fact that most metabolic reactions do not
occur spontaneously, or do so only at a very low rate. To make reactions oc-
cur at a usable rate, the cell employs an array of chemical catalysts, referred to
as enzymes. Unlike metabolites, enzymes are mostly macromolecules, usually
proteins but occasionally RNAs. Like all catalysts, enzymes are not consumed
in the reactions they catalyze but they play an important role in metabolism
nonetheless. Not only do they enable reactions that would otherwise be ther-
modynamically disfavored or too slow to be useful, but they also provide one
of the mechanisms by which the cell controls its metabolism. By increasing or
decreasing the concentration of the enzyme that catalyzes a particular reaction,
the cell can turn that reaction on or off, or moderate its speed. Enzymes tend
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to be highly specific to the reactions they catalyze, each one enabling only one
or a small number of reactions. Thousands of enzymes are known and many
more are no doubt waiting to be discovered, and this large array of highly
specific catalysts allows for a fine degree of control over the processes of the
cell.

The details of metabolic networks vary between different species of or-
ganisms but, amongst animals at least, large parts are common to all or most
species. Many important pathways, cycles, or other subportions of metabolic
networks are essentially unchanged across the entire animal kingdom. For this
reason one often refers simply to “metabolism” without specifying a particu-
lar species of interest; with minor variations, observations made in one species
often apply to others.

The most correct representation of a metabolic network is as a bipartite net-
work. We encountered bipartite networks previously in Section 3.5 on social
affiliation networks and in Section 4.3.2 on recommender networks. A bipartite
network has two distinct types of vertex, with edges running only between
vertices of unlike kinds. In the case of affiliation networks, for example, the
two types of vertex represented people and the groups they belonged to. In
the case of a metabolic network they represent metabolites and metabolic re-
actions, with edges joining each metabolite to the reactions in which it partic-
ipates. In fact, a metabolic network is really a directed bipartite network, since
some metabolites go into the reaction (the substrates) and some come out of
it (the products). By placing arrows on the edges we can distinguish between
the ingoing and outgoing metabolites. An example is sketched in Fig. 5.1a.!

This bipartite representation of a metabolic network does not include any
way of representing enzymes, which, though not metabolites themselves, are
still an important part of the metabolism. Although it’s not often done, one
can in principle incorporate the enzymes by introducing a third class of vertex
to represent them, with edges connecting them to the reactions they catalyze.
Since enzymes are not consumed in reactions, these edges are undirected—
running neither into nor out of the reactions they participate in. An example
of such a network is sketched in Fig. 5.1b. Technically this is now a tripartite
network, partly directed and partly undirected.?

Correct and potentially useful though they may be, however, neither of
these representations is very often used for metabolic networks. The most

1The metabolic network is the only example of a directed bipartite network appearing in this
book, and indeed the only naturally occurring example of such a network the author has come
across, although no doubt there are others to be discovered if one looks hard enough.

2 Also the only such network in the book.
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Figure 5.1: Bipartite and tripartite representations of a portion of a metabolic net-
work. (a) A metabolic network can be represented as a directed bipartite network with
vertices for the metabolites (circles) and reactions (squares) and directed edges indicat-
ing which metabolites are substrates (inputs) and products (outputs) of which reactions.
(b) A third type of vertex (triangles) can be introduced to represent enzymes, with un-
directed edges linking them to the reactions they catalyze. The resulting network is a
mixed directed /undirected tripartite network.

common representations of metabolic networks project the network onto just
one set of vertices, either the metabolites or the reactions, with the former being
the more popular choice. In one approach the vertices in the network represent
metabolites and there is an undirected edge between any two metabolites that
participate in the same reaction, either as substrates or as products. Clearly
this projection loses much of the information contained in the full bipartite net-
work, but, as we have said, it is nonetheless widely used. Another approach,
probably the most common, is to represent the network as a directed network
with a single type of vertex representing metabolites and a directed edge from
one metabolite to another if there is a reaction in which the first metabolite ap-
pears as a substrate and the second as a product. This representation contains
more of the information from the full network, but is still somewhat unsat-
isfactory since a reaction with many substrates or many products appears as
many edges, with no easy way to tell that these edges represent aspects of the
same reaction. The popularity of this representation arises from the fact that
for many metabolic reactions only one product and one substrate are known

Projections of Dbipartite
networks and the associ-
ated loss of information
are discussed further in
Section 6.6.
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or are considered important, and therefore the reaction can be represented by
only a single directed edge with no confusion arising. A number of compa-
nies produce large charts showing the most important parts of the metabolic
network in this representation. An example is shown in Fig. 5.2. Such charts
have become quite popular as wall decorations in the offices of molecular bi-
ologists and biochemists, although whether they are actually useful in practice
is unclear.

The experimental measurement of metabolic networks is a complex and
laborious process, although it has been made somewhat easier in recent years
with the introduction of new techniques from molecular genetics. Experiments
tend to focus neither on whole networks nor on individual reactions but on
metabolic pathways. A number of tools are available to probe the details of
individual pathways. Perhaps the most common is the use of radioactive iso-
topes to trace the intermediate products along a pathway. In this technique, the
organism or cell under study is injected with a substrate for the pathway of in-
terest in which one or more of the atoms has been replaced by a radioisotope.
Typically this has little or no effect on the metabolic chemistry, but as the reac-
tions of the pathway proceed, the radioactive atoms move from metabolite to
metabolite. Metabolites can then be refined, for example by mass spectroscopy
or chromatography, and tested for radioactivity. Those that show it can be as-
sumed to be “downstream” products in the pathway fed by the initial radioac-
tive substrate.

This method tells us the products along a metabolic pathway, but of itself
does not tell us the order of the reactions making up the pathway. Knowl-
edge of the relevant biochemistry—which metabolites can be transformed into
which others by some chemical reaction—can often identify the ordering or at
least narrow down the possibilities. Careful measurement of the strength of ra-
dioactivity of different metabolites, coupled with a knowledge of the half-life
of the isotope used, can also give some information about pathway structure
as well as rates of reactions.

Notice, however, that there is no way to tell if any of the reactions discov-
ered have substrates other than those tagged with the radioisotope. If new
substrates enter the pathway at intermediate steps (that is, they are not pro-
duced by earlier reactions in the pathway) they will not be radioactive and so
will not be measured. Similarly, if there are reaction products that by chance
do not contain the radioactive marker they too will not be measured.

An alternative approach to probing metabolic pathways is simply to in-
crease the level of a substrate or enzyme for a particular reaction in the cell,
thereby increasing the levels of the products of that reaction and those down-
stream of it in the relevant pathway or pathways, increases that can be mea-
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Figure 5.2: A metabolic network. (See Plate IV for color version.) A wallchart showing
the network formed by the major metabolic pathways. Created by Donald Nicholson.
Copyright of the International Union of Biochemistry and Molecular Biology. Repro-
duced with permission.
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sured to determine the constituents of the pathway. This technique has the
advantage of being able to detect products other than those that carry a par-
ticular radioactive marker inherited from a substrate, but it is still incapable of
identifying substrates other than those produced as products along the path-
way.

A complementary experimental technique that can probe the substrates of
reactions is reaction inhibition, in which a reaction in a pathway is prevented
from taking place or its rate is reduced. Over time, this results in a build-up in
the cell of the substrates for that reaction, since they are no longer being used
up. By watching for this build-up one can determine the reaction substrates.
In principle the same method could also be used to determine the products
of the reaction, since their concentration would decrease because they are not
being produced any longer, but in practice this turns out to be a difficult meas-
urement and is rarely done.

The inhibition of a reaction is usually achieved by disabling or removing
an enzyme necessary for the reaction. This can be done in a couple of different
ways. One can use enzyme inhibitors, which are chemicals that bind to an en-
zyme and prevent it from performing its normal function as a catalyst, or one
can genetically alter the organism under study to remove or impair its ability
to produce the enzyme (a so-called knockout experiment). The same techniques
can also be used to determine which reactions are catalyzed by which enzymes
in the first place, and hence to discover the structure of the third, enzymatic
part of the tripartite metabolic network pictured in Fig. 5.1b.

The construction of a complete or partial picture of a metabolic network
involves the combination of data from many different pathways, almost cer-
tainly derived from experiments performed by many different experimenters
using many different techniques. There are now a number of public databases
of metabolic pathway data from which one can draw to assemble networks,
the best known being KEGG and MetaCyc. Assembling the network itself is
a non-trivial task. Because the data are drawn from many sources, careful
checking against the experimental literature (or “curation,” as the lingo goes)
is necessary to insure consistent and reliable inputs to the process, and miss-
ing steps in metabolic pathways must often be filled in by guesswork based
on biochemistry and a knowledge of the genetics. A number of computer
software packages have been developed that can reconstruct networks from
raw metabolic data in an automated fashion, but the quality of the networks
they create is generally thought to be poorer than that of networks created by
knowledgeable human scientists (although the computers are much faster).
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5.1.2 PROTEIN-PROTEIN INTERACTION NETWORKS

The metabolic networks of the previous section describe the patterns of chemi-
cal reactions that turn one chemical into another in the cell. As we have noted,
the traditional definition of metabolism is restricted to small molecules and
does not include proteins or other large molecules, except in the role of en-
zymes, in which they catalyze metabolic reactions but do not take part as reac-
tants themselves.

Proteins do however interact with one another and with other
biomolecules, both large and small, but the interactions are not
purely chemical. Proteins sometimes interact chemically with other
molecules—exchanging small subgroups, for example, such as the
exchange of a phosphate group in the process known as phosphor-
ylation. But the primary mode of protein—protein interaction—
interactions of proteins with other proteins—is physical, their com-
plicated folded shapes interlocking to create so-called protein com-
plexes (see Fig. 5.3) but without the exchange of particles or subunits
that defines chemical reactions.

The set of all protein—protein interactions forms a protein—protein
interaction network, in which the vertices are proteins and two ver-
tices are connected by an undirected edge if the corresponding pro-
teins interact. Although this representation of the network is the one

Figure 5.3: Two proteins joined to

commonly used, it omits much useful information about the interac-  form a protein complex. Protein mole-
tions. Interactions that involve three or more proteins, for instance, cules can have complicated shapes that
are represented by multiple edges, and there is no way to tell from  interlock with one another to form pro-

the network itself that such edges represent aspects of the same in-  tein complexes.

teraction. This problem could be addressed by adopting a bipartite
representation of the network similar to the one we sketched for
metabolic networks in Fig. 5.1, with two kinds of vertex representing proteins
and interactions, and undirected edges connecting proteins to the interactions
in which they participate. Such representations, however, are rarely used.
There are a number of experimental techniques available to probe for inter-
actions between proteins. One of the most reliable and trusted is co-immuno-
precipitation. Immunoprecipitation (without the “co-") is a technique for ex-
tracting a single protein species from a sample containing more than one. The
technique borrows from the immune system, which produces antibodies, spe-
cialized proteins that attach or bind to a specific other target protein when the
two encounter each other. The immune system uses antibodies to neutralize
proteins, complexes, or larger structures that are harmful to the body, but ex-
perimentalists have appropriated them for use in the laboratory. Immunopre-
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Antibody Proteins

In immunoprecipitation,
antibodies attached to a
solid surface bind to a spe-
cific protein, represented
here by the circles, pulling
it out of the solution.

Transcription factors are
discussed in more detail in
Section 5.1.3.
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cipitation involves attaching an antibody to a solid surface, such as the surface
of a glass bead, then passing a solution containing the target protein (as well
as others, in most cases) over the surface. The antibody and the target protein
bind together, effectively attaching the protein to the surface via the antibody.
The rest of the solution is then washed away, leaving the target protein to be
recovered from the surface.

There are known naturally occurring antibodies for many proteins of sci-
entific interest, but researchers also routinely create antibodies for specific pro-
teins by injecting those proteins (or more often a portion of a protein) into an
animal to provoke its immune system to generate the appropriate antibody.

Co-immunoprecipitation is an extension of the same method to the iden-
tification of protein interactions. An antibody is again attached to a suitable
solid surface and binds to a known protein in a sample. If that protein is at-
tached to others, forming a protein complex, then the entire complex will end
up attached to the surface and will remain after the solution is washed away.
Then the complex can be recovered from the surface and the different proteins
that make it up individually identified, typically by testing to see if they bind
to other known antibodies (a technique known as a Western blot).

Although well-established and reliable, co-immunoprecipitation is an im-
practical approach for reconstructing entire interaction networks, since indi-
vidual experiments, each taking days, have to be performed for every inter-
action identified. If appropriate antibodies also have to be created the pro-
cess would take even longer; the creation of a single antibody involves weeks
or months of work, and costs a considerable amount of money too. As a re-
sult, the large-scale study of protein—protein interaction networks did not re-
ally take off until the adoption in the 1990s and early 2000s of so-called high-
throughput methods for discovering interactions, methods that can identify in-
teractions quickly and in a semi-automated fashion.

The oldest and best established of the high-throughput methods for protein
interactions is the two-hybrid screen, invented by Fields and Song in 1989 [119].2
This method relies on the actions of a specialized protein known as a transcrip-
tion factor, which, if present in a cell, turns on the production of another pro-
tein, referred to as a reporter. The presence of the reporter can be detected by
the experimenter by any of a number of relatively simple means. The idea of
the two-hybrid screen is to arrange things so that the transcription factor is
created when two proteins of interest interact, thereby turning on the reporter,
which tells us that the interaction has taken place.

SAlso called a yeast two-hybrid screen or Y2HS for short, in recognition of the fact that the
technique is usually implemented inside yeast cells, as discussed later.
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The two-hybrid screen relies on the fact that transcription factors are typ-
ically composed of two distinct parts, a so-called binding domain and an acti-
vation domain. It turns out that most transcription factors do not require the
binding and activation domains to be actually attached to one another for the
transcription factor to work. If they are merely in close enough proximity pro-
duction of the reporter will be activated.

In a two-hybrid screen, a cell, usually a yeast cell, is persuaded to produce
two proteins of interest, each with one of the domains of the transcription fac-
tor attached to it. This is done by introducing plasmids into the cell, fragments
of DNA that code for the proteins and domains. Then, if the two proteins in ~ See Section 5.1.3 for a dis-
question interact and form a complex, the two domains of the transcription ~ cussion of DNA coding of
factor will be brought together and, with luck, will activate production of the =~ Proteins.
reporter.

In a typical two-hybrid experiment, the protein attached to the binding do-
main of the transcription factor is a known protein (called the bait protein)
whose interactions the experimenter wants to probe. Plasmids coding for a
large number of other proteins (called prey) attached to copies of the activa-
tion domain are created, resulting in a so-called library of possible interaction
targets for the bait. The plasmids for the bait and the library of prey are then
introduced into a culture of yeast cells, with the concentration of prey carefully
calibrated so that at most one prey plasmid enters each cell in most cases. Cells
observed to produce the reporter are then assumed to contain plasmids cod-
ing for prey proteins that interact with the bait and the plasmids are recovered
from those cells and analyzed to determine the proteins they correspond to.

The two-hybrid screen has two important advantages over older methods
like co-immunoprecipitation. First, one can employ a large library of prey
and hence test for interactions with many proteins in a single experiment,
and second, the method is substantially cheaper and faster than co-immuno-
precipitation per interaction detected. Where co-immunoprecipitation requires
one to obtain or create antibodies for every protein tested, the two-hybrid
screen requires only the creation of DNA plasmids and their later sequence
analysis, both relatively simple operations for an experimenter armed with the
machinery of modern genetic engineering.

One disadvantage of the two-hybrid screen is that the presence of the two
domains of the transcription factor attached to the bait and prey proteins can
get in the way of their interacting with one another and prevent the formation
of a protein complex, meaning that some legitimate protein—protein interac-
tions will not take place under the conditions of the experiment.

The principal disadvantage of the method, however, is that it is simply
unreliable. It produces high rates of both false positive results—apparent in-

87



BIOLOGICAL NETWORKS

88

teractions between proteins that in fact do not interact—and false negative
results—failure to detect true interactions. By some estimates the rate of false
positives may be as high as 50%, meaning that fully half of all interactions
detected by the method are not real. This has not stopped a number of re-
searchers from performing analyses on the interaction networks reconstructed
from two-hybrid screen data, but the results should be viewed with caution. It
is certainly possible that many or even most of the conclusions of such studies
are substantially inaccurate.

An alternative and more accurate class of methods for high-throughput de-
tection of protein interactions are the affinity purification methods (also some-
times called affinity precipitation methods). These methods are in some ways
similar to the co-immunoprecipitation method described previously, but avoid
the need to develop antibodies for each protein probed. In an affinity purifica-
tion method, a protein of interest is “tagged” by adding a portion of another
protein to it, typically by introducing a plasmid that codes for the protein plus
tag, in a manner similar to the introduction of plasmids in the two-hybrid
screen. Then the protein is given the opportunity to interact with a suitable
library of other proteins and a solution containing the resulting protein com-
plexes (if any) passed over a surface to which are attached antibodies that bind
to the tag. As a result, the tag, the attached protein, and its interaction part-
ners are bound to the surface while the rest of the solution is washed away.
Then, as in co-immunoprecipitation, the resulting complex or complexes can
be analyzed to determine the identities of the interaction partners.

The advantage of this method is that it requires only a single antibody that
binds to a known tag, and the same tag—antibody pair can be used in different
experiments to bind different proteins. Thus, as with the two-hybrid screen,
one need only generate new plasmids for each experiment, which is relatively
easy, as opposed to generating new antibodies, which is slow and difficult.
Some implementations of the method have a reliability comparable to that of
co-immunoprecipitation. Of particular note is the method known as tandem
affinity purification, which combines two separate purification stages and gen-
erates correspondingly higher-quality results. Tandem affinity purification is
the source for some of the most reliable current data for protein—protein inter-
action networks.

As with metabolic reactions, there are now substantial databases of protein
interactions available online, of which the most extensive are IntAct, MINT,
and DIP, and from these databases interaction networks can be constructed for
analysis. An example is shown in Fig. 5.4.
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Figure 5.4: A protein—protein interaction network for yeast. A network of interactions
between proteins in the single-celled organism Saccharomyces cerevisiae (baker’s yeast),
as determined using, primarily, two-hybrid screen experiments. From Jeong et al. [164].
Copyright Macmillan Publishers Ltd. Reproduced by permission.

5.1.3 GENETIC REGULATORY NETWORKS

As discussed in Section 5.1.1, the small molecules needed by biological organ-
isms, such as sugars and fats, are manufactured in the cell by the chemical
reactions of metabolism. Proteins, however, which are much larger molecules,
are manufactured in a different manner, following recipes recorded in the cell’s
genetic material, DNA.

Proteins are biological polymers, long-chain molecules formed by the con-
catenation of a series of basic units called amino acids. The individual amino
acids themselves are manufactured by metabolic processes, but their assembly
into complete proteins is accomplished by the machinery of genetics. There are

89



BIOLOGICAL NETWORKS

90

. ?4:
e}
e

y: tgg

g b .
3 .4
& }?{x 4 -' TR
L A ' ¢ ~
& A . e
¢ 3 (A g
~: R B
o (] yb
2 “‘\k SN ©

y :
T { Unfolded S ¢ Folded
(4]

Figure 5.5: Protein folding. Proteins, which are long-chain polymers of amino acids,
do not naturally remain in an open state (left), but collapse upon themselves to form a
more compact folded state (right).

20 distinct amino acids that are used by all living organisms to build proteins,
and different species of proteins are distinguished from one another by the
particular sequence of amino acids that make them up. Once created, a pro-
tein does not stay in a loose chain-like form, but folds up on itself under the
influence of thermodynamic forces and mechanical constraints, reliably pro-
ducing a specific folded form or conformation whose detailed shape depends on
the amino acid sequence—see Fig. 5.5. A protein’s conformation dictates the
physical interactions it can have with other molecules and can expose particu-
lar chemical groups or active sites on the surface of the protein that contribute
to its biological function within the organism.

A protein’s amino acid sequence is determined by a corresponding se-
quence stored in the DNA of the cell in which the protein is synthesized. This
is the primary function of DNA in living matter, to act as an information stor-
age medium containing the sequences of proteins needed by the cell. DNA is
itself a long-chain polymer made up of units called nucleotides, of which there
are four distinct species, adenine, cytosine, guanine, and thymine, commonly
denoted A, C, G, and T, respec:’cively.4 The amino acids in proteins are en-
coded in DNA as trios of consecutive nucleotides called codons, such as ACG

4Technically, DNA is a double-stranded polymer, having two parallel chains of nucleotides
forming the famous double helix shape. However, the two strands contain essentially the same
sequence of nucleotides and so for our purposes the fact that there are two is not important (al-
though it is very important in other circumstances, such as in the reproduction of a cell by cellular
division and in the repair of damaged DNA).
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or TTT, and a succession of such codons spells out the complete sequence of
amino acids in a protein. A single strand of DNA can code for many proteins—
hundreds or thousands of them—and two special codons, called the start and
stop codons, are used to signal the beginning and end within the larger DNA
strand of the sequence coding for a protein. The DNA code for a single protein,
from start codon to stop codon, is called a gene.

Proteins are created in the cell by a mechanism that operates in two stages.
In the first stage, known as transcription, an enzyme called RNA polymerase
makes a copy of the coding sequence of a single gene. The copy is made
of RNA, another information-bearing biopolymer, chemically similar but not
identical to DNA. RNA copies of this type are called messenger RNAs. In the
second stage, called translation, the protein is assembled, step by step, from
the RNA sequence by an ingenious piece of molecular machinery known as a
ribosome, a complex of interacting proteins and RNA. The translation process
involves the use of transfer RNAs, short molecules of RNA that have a region
at one end that recognizes and binds to a codon in the messenger RNA and
a region at the other end that pulls the required amino acid into the correct
place in the growing protein. The end result is a protein, assembled following
the exact prescription spelled out in the corresponding gene. In the jargon of
molecular biology, one says that the gene has been expressed.

The cell does not, in general, need to produce at all times every possible
protein for which it contains a gene. Individual proteins serve specific pur-
poses, such as catalyzing metabolic reactions, and it is important for the cell
to be able to respond to its environment and circumstances by turning on or
off the production of individual proteins as required. It does this by the use of
transcription factors, which are themselves proteins and whose job is to control
the transcription process by which DNA sequences are copied to RNA.

Transcription is performed by the enzyme RNA polymerase, which works
by attaching to a DNA strand and moving along it, copying nucleotides one
by one. The RNA polymerase doesn’t just attach spontaneously, however, but
is aided by a transcription factor. Transcription factors are specific to particu-
lar genes or sets of genes and regulate transcription in a variety of ways, but
most commonly by binding to a recognized sub-sequence in the DNA, called
a promoter region, which is adjacent to the beginning of the gene. The binding
of the transcription factor to the promoter region makes it thermodynamically
favorable for the RNA polymerase to attach to the DNA at that point and start
transcribing the gene. (The end of the gene is marked by a stop codon and
upon encountering this codon the RNA polymerase automatically detaches
from the DNA strand and transcription ends.) Thus the presence in the cell of
the transcription factor for the gene turns on or enhances the expression of that
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gene. We encountered an example of a transcription factor previously in our
discussion of the two-hybrid screen in Section 5.1.2.

There are also transcription factors that inhibit expression by binding to a
DNA strand in such a way as to prevent RNA polymerase from attaching to
the strand and hence prevent transcription and the production of the corre-
sponding protein.

But now here is the interesting point: being proteins, transcription factors
are themselves produced by transcription from genes. Thus the protein en-
coded in a given gene can act as a transcription factor promoting or inhibiting
production of one or more other proteins, which themselves can act as tran-
scription factors for further proteins and so forth. The complete set of such
interactions forms a genetic regulatory network. The vertices in this network are
proteins or equivalently the genes that code for them and a directed edge from
gene A to gene B indicates that A regulates the expression of B. A slightly more
sophisticated representation of the network distinguishes between promoting
and inhibiting transcription factors, giving the network two distinct types of
edge.

The experimental determination of the structure of genetic regulatory net-
works involves identifying transcription factors and the genes that they reg-
ulate. The process has several steps. To begin with, one first confirms that a
given candidate protein does bind to DNA roughly in the region of a gene of
interest. The commonest technique for establishing the occurrence of such a
binding is the electrophoretic mobility shift assay.® In this technique one creates
strands of DNA containing the sequence to be tested and mixes them in so-
lution with the candidate protein. If the two indeed bind, then the combined
DNA /protein complex can be detected by gel electrophoresis, a technique in
which one measures the speed of migration of electrically charged molecules
or complexes through an agarose or polyacrylamide gel in an imposed electric
field. In the present case the binding of the DNA and protein hinders the mo-
tion of the resulting complex through the gel, measurably reducing its speed
when compared with unbound DNA strands. Typically one runs two experi-
ments side by side, one with protein and one without, and compares the rate
of migration to determine whether the protein binds to the DNA. One can also
run parallel experiments using many different DNA sequences to test which
(if any) bind to the protein.

An alternative though less sensitive technique for detecting binding is the
deoxyribonuclease footprinting assay. Deoxyribonucleases (also called DNases

5“Assay” is biological jargon for an experimental test.
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for short) are enzymes that, upon encountering DNA strands, cut them into
shorter strands. There are many different DNases, some of which cut DNA
only in particular places according to the sequence of nucleotides, but the foot-
printing technique uses a relatively indiscriminate DNase that will cut DNA at
any point. If, however, a protein binds to a DNA strand at a particular location
it will often (though not always) prevent the DNase from cutting the DNA at
or close to that location. Footprinting makes use of this by mixing strands of
DNA containing the sequence to be tested with the DNase and observing the
resulting mix of strand lengths after the DNase has cut the DNA samples into
pieces in a variety of different ways. Repeating the experiment with the pro-
tein present will result in a different mix of strand length if the protein binds
to the DNA and prevents it from being cut in certain places. The mix is usually
determined again by gel electrophoresis (strands of different lengths move at
different speeds under the influence of the electric field) and one again runs
side-by-side gel experiments with and without the protein to look for the ef-
fects of binding.

Both the mobility shift and footprinting assays can tell us if a protein binds
somewhere on a given DNA sequence. To pin down exactly where it binds
one typically must do some further work. For instance, one can create short
strands of DNA, called oligonucleotides, containing possible sequences that the
protein might bind to, and add them to the mix. If they bind to the protein then
this will reduce the extent to which the longer DNAs bind and visibly affect the
outcome of the experiment. By a combination of such experiments, along with
computer-aided guesswork about which oligonucleotides are likely to work
best, one can determine the precise sub-sequence to which a particular protein
binds.

While these techniques can tell us the DNA sequence to which a protein
binds, they cannot tell us which gene’s promoter region that sequence belongs
to (if any), whether the protein actually affects transcription of that gene, or, if
it does, whether the transcription is promoted or inhibited. Further investiga-
tions are needed to address these issues.

Identification of the gene is typically done not by experiment but by com-
putational means and requires a knowledge of the sequence of the DNA in the
region where the protein binds. If we know the DNA sequence then we can
search it for occurrences of the sub-sequence to which our protein binds, and
then examine the vicinity to determine what gene or genes are there, looking
for example for start and stop codons in the region and then recording the se-
quence of other codons that falls between them. Complete DNA sequences
are now known for a number of organisms as a result of sequencing experi-
ments starting in the late 1990s, and the identification of genes is as a result a
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relatively straightforward task.

Finally, we need to establish whether or not our protein actually acts as
a transcription factor, which can be done either computationally or experi-
mentally. The computational approach involves determining whether the sub-
sequence to which the protein binds is indeed a promoter region for the iden-
tified gene. (It is possible for a protein to bind near a gene but not act as a
transcription factor because the point at which it binds has no effect on tran-
scription.) This is a substantially harder task than simply identifying nearby
genes. The structure of promoter regions is, unfortunately, quite complex and
varies widely, but computer algorithms have been developed that can identify
them with some reliability.

Alternatively, one can perform an experiment to measure directly the con-
centration of the messenger RNA produced when the gene is transcribed. This
can be achieved for example by using a microarray (colloquially known as a
“DNA chip”), tiny dots of DNA strands attached in a grid-like array to a solid
surface. RNA will bind to a dot if a part of its sequence matches the sequence
of the dot’s DNA and this binding can be measured using a fluorescence tech-
nique. By observing the simultaneous changes in binding on all the dots of
the microarray, one can determine with some accuracy the change in concen-
tration of any specific RNA and hence quantify the effect of the transcription
factor. This technique can also be used to determine whether a transcription
factor is a promoter or an inhibitor, something that is currently not easy using
computational methods.

As with metabolic pathways and protein—protein interactions, there now
exist electronic databases of genes and transcription factors, such as EcoCyc,
from which it is possible to assemble snapshots of genetic regulatory networks.
Current data on gene regulation are substantially incomplete and hence so are
our networks, but more data are being added to the databases all the time.

5.2 NEURAL NETWORKS

A completely different use of networks in biology arises in the study of the
brain and central nervous system in animals. One of the main functions of the
brain is to process information and the primary information processing ele-
ment is the neuron, a specialized brain cell that combines (usually) several in-
puts to generate a single output. Depending on the animal, an entire brain can
contain anywhere from a handful of neurons to more than a hundred billion,
wired together, the output of one cell feeding the input of another, to create a
neural network capable of remarkable feats of calculation and decision making.

Figure 5.6 shows a sketch of a typical neuron, which consists of a cell body
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Dendrites

Axon terminal

Figure 5.6: The structure of a neuron. A typical neuron is composed of a cell body or
soma with many dendrites that act as inputs and a single axon that acts as an output.
Towards its tip, the axon branches to allow it to connect to the inputs of several other
neurons.

or soma, along with a number of protruding tentacles, which are essentially
wires for carrying signals in and out of the cell. Most of the wires are inputs,
called dendrites, of which a neuron may have just one or two, or as many as a
thousand or more. Most neurons have only one main output, called the axon,
which is typically longer than the dendrites and may in some cases extend
over large distances to connect the cell to others some way away. Although
there is just one axon, it usually branches near its end to allow the output of
the cell to feed the inputs of several others. The tip of each branch ends at an
axon terminal that abuts the tip of the input dendrite of another neuron. There
is a small gap, called a synapse, between terminal and dendrite across which
the output signal of the first (presynaptic) neuron must be conveyed in order
to reach the second (postsynaptic) neuron. The synapse plays an important
role in the function of the brain, allowing transmission from cell to cell to be
regulated by chemically modifying the properties of the gap.°®

The actual signals that travel within neurons are electrochemical in nature.
They consist of traveling waves of electrical voltage created by the motion of
positively charged sodium and potassium ions in and out of the cell. These

®Neurons do sometimes have direct connections between them without synapses. These direct
connections are called gap junctions, a confusing name, since it sounds like it might be a description
of a synapse but is in reality quite different. In our brief treatment of neural networks, however,
we will ignore gap junctions.

NEURAL NETWORKS
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waves are called action potentials and typically consist of voltages on the order
of tens of millivolts traveling at tens of meters per second. When an action
potential reaches a synapse, it cannot cross the gap between the axon terminal
and the opposing dendrite and the signal is instead transmitted chemically; the
arrival of the action potential stimulates the production of a chemical neuro-
transmitter by the terminal, and the neurotransmitter diffuses across the gap
and is detected by receptor molecules on the dendrite at the other side. This in
turn causes ions to move in and out of the dendrite, changing its voltage.

These voltage changes, however, do not yet give rise to another traveling
wave. The soma of the postsynaptic neuron sums the inputs from its dendrites
and as a result may (or may not) send an output signal down its own axon.
The neuron is stable against perturbations caused by voltages at a small num-
ber of its inputs, but if enough inputs are excited they can collectively drive
the neuron into an unstable runaway state in which it “fires,” generating a
large electrochemical pulse that starts a new action potential traveling down
the cell’s axon and so a signal is passed on to the next neuron or neurons in the
network. Thus the neuron acts as a switch or gate that aggregates the signals
at its inputs and only fires when enough inputs are excited.

As described, inputs to neurons are excitatory, increasing the chance of fir-
ing of the neuron, but inputs can also be inhibiting—signals received at in-
hibiting inputs make the receiving neuron less likely to fire. Excitatory and
inhibiting inputs can be combined in a single neuron and the combination al-
lows neurons to perform quite complex information processing tasks all on
their own, while an entire brain or brain region consisting of many neurons
can perform tasks of extraordinary complexity. Current science cannot yet tell
us exactly how the brain performs the more sophisticated cognitive tasks that
allow animals to survive and thrive, but it is known that the brain constantly
changes the pattern of wiring between neurons in response to inputs and ex-
periences, and it is presumed that this pattern—the neural network—holds
much of the secret. An understanding of the structure of neural networks is
thus crucial if we are ever to explain the higher-level functions of the brain.

At the simplest level, a neuron can be thought of as a unit that accepts
a number of inputs, either excitatory or inhibiting, combines them, and gen-
erates an output result that is sent to one or more further neurons. In net-
work terms, a neural network can thus be represented as a set of vertices—the
neurons—connected by two types of directed edges, one for excitatory inputs
and one for inhibiting inputs. By convention, excitatory connections are de-
noted by an edge ending with an arrow “—»", while inhibiting connections
are denoted by an edge ending with a bar “—".

In practice, neurons are not all the same. They come in a variety of differ-
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ent types and even relatively small regions or circuits in the brain may contain
many types. This variation can be encoded in our network representation by
different types of vertex. Visually the types are often denoted by using dif-
ferent shapes for the vertices or by labeling. In functional terms, neurons can
differ in a variety of ways, including the number and type of their inputs and
outputs, the nature and speed of their response to their inputs, whether and to
what extent they can fire spontaneously without receiving inputs, and many
other things besides.

Experimental determination of the structure of neural networks is difficult
and the lack of straightforward experimental techniques for probing network
structure is a major impediment to current progress in neuroscience. Some use-
ful techniques do exist, however, although their application can be extremely
laborious.

The basic tool for structure determination is microscopy, either optical or
electronic. One relatively simple approach works with cultured neurons on
flat dishes. Neurons taken from animal brains at an early stage of embryonic
development can be successfully cultured in a suitable nutrient medium and
will, without prompting, grow synaptic connections to form a network. If cul-
tured on a flat surface, the network is then roughly two-dimensional and its
structure can be determined with reasonable reliability by simple optical mi-
croscopy. The advantage of this approach is that it is quick and inexpensive,
but it has the substantial disadvantage that the networks studied are not the
networks of real living animals and their structure is probably not very similar
to that of a functional brain circuit.

In this respect, studies of real brains are much more satisfactory and likely
to lead to greater insight, but they are also far harder, because real brains
are three-dimensional and we do not currently have any form of microscopy
suitable for probing such three-dimensional structures. Instead, therefore, re-
searchers have resorted to cutting suitably preserved brains or brain regions
into thin slices, whose structure is then determined by electron microscopy.
Given the structure of an entire set of consecutive slices, one can, at least
in principle, reconstruct the three-dimensional structure, identifying different
types of neurons by their appearance, where possible. In the early days of such
studies, most reconstruction was done by hand but more recently researchers
have developed computer programs that can significantly speed the recon-
struction process. Nonetheless, studies of this kind are very laborious and
can take months or years to complete, depending on the size and complexity
of the network studied.

Figure 5.7 shows an example of a “wiring diagram” of a neural network,
reconstructed by hand from electron microscope studies of this type. The net-
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Figure 5.7: A diagram of a part of the brain circuitry of a worm. A portion of the neural circuitry of the nematode
Caenorhabditis elegans, reconstructed by hand from electron micrographs of slices through the worm’s brain. Reproduced
from White ef al. [328]. Copyright of the Royal Society. Reproduced by permission.
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work in question is the neural network of the worm Caenorhabditis elegans, one
of the best studied organisms in biology. The brain of C. elegans is simple—it
has less than 300 neurons and essentially every specimen of the worm has the
same wiring pattern. Several types of neuron, denoted by shapes and labels,
are shown in the figure, along with a number of different types of connection,
both excitatory and inhibiting. Some of the connections run out of the figure or
enter from somewhere off the page. These are connections that run to or from
other parts of the network not shown. The original experimenters determined
the structure of the entire network and presented it as set of interconnected
wiring diagrams like this one [328].
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5.3 ECOLOGICAL NETWORKS

The final class of biological network that we consider in this chapter is net-
works of ecological interactions between species. Species in an ecosystem can
interact in a number of different ways. They can eat one another, they can par-
asitize one another, they can compete for resources, or they can have any of a
variety of mutually advantageous interactions, such as pollination or seed dis-
persal. Although in principle the patterns of interactions of all of these types
could be represented in a combined “interaction network” with several differ-
ent edge types, ecologists have traditionally separated interaction types into
different networks. Food webs, for example—networks of predator-prey in-
teractions (i.e., who eats whom)—have a long history of study. Networks of
hosts and parasites or of mutualistic interactions are less well studied, but have
nonetheless received significant attention in recent years.

5.3.1 FOOD WEBS

The biological organisms on our planet can be divided into ecosystems, groups
of organisms that interact with one another and with elements of their environ-
ment such as sources of material, nutrients, and energy. Mountains, valleys,
lakes, islands, and larger regions of land or water can all be home to ecosys-
tems composed of many organisms each. Within ecological theory, ecosys-
tems are usually treated as self-contained units with no outside interactions,
although in reality perfect isolation is rare and many ecosystems are only ap-
proximately self-contained. Nonetheless, the ecosystem concept is one of sig-
nificant practical utility for understanding ecological dynamics.

A food web is a directed network that represents which species prey on
which others in a given ecosystem.” The vertices in the network correspond to
species and the directed edges to predator-prey interactions. Figure 5.8 shows
a small example, representing predation among species living in Antarctica.
There are several points worth noticing about this figure. First, notice that not
all of the vertices actually represent single species in this case. Some of them
do—the vertices for sperm whales and humans, for instance. But some of them
represent collections of species, such as birds or fish. This is common practice

7In common parlance, one refers to a food chain, meaning a chain of predator—prey relations be-
tween organisms starting with some lowly organism at the bottom of the chain, such as a microbe
of some kind, and working all the way up to some ultimate predator at the top, such as a lion or a
human being. Only a moment’s reflection, however, is enough to convince us that real ecosystems
cannot be represented by single chains, and a complete network of interactions is needed in most
cases.

ECOLOGICAL NETWORKS
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Figure 5.8: A food web of species in Antarctica. Vertices in a food web represent
species or sometimes, as with some of the vertices in this diagram, groups of related
species, such as fish or birds. Directed edges represent predator-prey interactions and
run in the direction of energy flow, i.e., from prey to predator.

in the network representation of food webs. If a set of species such as birds
all prey upon and are preyed on by the same other species, then the network
can be simplified by representing them as a single vertex, without losing any
information about who preys on whom. Indeed, even in cases where a set of
species only have mostly, but not exactly, the same predators and prey we still
sometimes group them, if we feel the benefits of the resulting simplification
are worth a small loss of information. A set of species with the same or similar
predators and prey is sometimes referred to as a trophic species.

Second, notice the direction of the edges in the network. One might imag-
ine that the edges would point from predators to prey, but ecologists conven-
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tionally draw them in the opposite direction, from prey to predator. Thus the
edge representing the eating of fish by birds runs from the fish vertex to the bird
vertex. The reason for this apparently odd choice is that ecologists view food
webs as representations of the flow of energy (or sometimes carbon) within
ecosystems. The arrow from fish to birds indicates that the population of birds
gains energy from the population of fish when the birds eat the fish.

Third, notice that almost all the arrows in the figure run up the page. Di-
rected networks with this property—that they can be drawn so that the edges
all run in one direction—are called acyclic networks. We encountered acyclic
networks previously in our discussion of citation networks in Section 4.2. Food  Acyclic networks are dis-
webs are usually only approximately acyclic. There are usually a few edges  cussed in more detail in
that do not run in the right direction,? but it is often a useful approximation to ~ Section 6.4.2.
assume that the network is acyclic.

The acyclic nature of food webs indicates that there is an intrinsic pecking
order among the species in ecosystems. Those higher up the order (which
means higher up the page in Fig. 5.8) prey on those lower down, but not vice
versa. A species’ position in this pecking order is called by ecologists its trophic
level. Species at the very bottom of the food web, of which there is just one in
our example—the phytoplankton—have trophic level 1. Those that prey on
them—Kkrill, herbivorous plankton—have trophic level 2, and so forth all the
way up to the species at the top of the web, which have no predators at all.
In our antarctic example there are two species that have no predators, humans
and small whales. (Note however that although such species are all, in a sense,
at “the top of the food chain” they need not have the same trophic level.)

Trophic level is a useful general guide to the roles that species play in
ecosystems, those in lower trophic levels tending to be smaller, more abundant
species that are prey to other species higher up the food web, while those in
higher trophic levels are predators, usually larger-bodied and less numerous.
Calculating a species’ trophic level, however, is not always easy. In principle,
the rule is simple: a species’ trophic level is 1 greater than the trophic level of
its prey. Thus the herbivorous plankton and krill in our example have trophic
level 2, because their prey has trophic level 1, and the carnivorous plankton
have trophic level 3. On the other hand, the squid in our example prey on
species at two different levels, levels 2 and 3, so it is unclear what level they
belong to. A variety of mathematical definitions have been proposed to re-
solve this issue. One strategy is to define trophic level to be 1 greater than the
mean of the trophic levels of the prey. There is, however, no accepted standard

8In Fig. 5.8, for example, there are edges in both directions between the fish and squid vertices,
which makes it impossible to draw the network with all edges running in the same direction.

101



BIOLOGICAL NETWORKS

102

definition, and the only indisputable statement one can make is that in most
food webs some species have ill-defined or mixed trophic level.

The food webs appearing in the ecological literature come in two basic
types. Community food webs are complete webs for an entire ecosystem, as in
Fig. 5.8—they represent, at least in theory, every predator—prey interaction in
the system. Source food webs and sink food webs are subsets of complete webs that
focus on species connected, directly or indirectly, to a specific prey or preda-
tor. In a source food web, for instance, one records all species that derive en-
ergy from a particular source species, such as grass. Our food web of antarctic
species is, in fact, both a community food web and a source food web, since all
of the species in the network derive their energy ultimately from phytoplank-
ton. Phytoplankton is the source in this example, and the species above it (all
of the species in this case) form the corresponding source web. A sink food
web is the equivalent construct for a particular top predator in the network.
In the antarctic example, for instance, humans consume the sperm and baleen
whales and elephant seals, which in turn derive their energy from fish, squid,
plankton, krill, and ultimately phytoplankton. This subset of species, there-
fore, constitutes the sink food web for humans—the web that specifies through
which species or species groups the energy consumed by humans passes.

The experimental determination of the structure of food webs is typically
done in one of two different ways, or sometimes a mixture of both. The first
and most straightforward method is direct measurement. Having settled on
the ecosystem to be studied, one first assembles a list of the species in that
ecosystem and then determines their predator—prey interactions. For large-
bodied animals such as mammals, birds, or larger fish, some predation can
be established simply by observation in the field—we see a bird eating a fish
and the presence of the corresponding edge is thereby established. More often,
however, and particularly with smaller-bodied animals, interactions are estab-
lished by catching and dissecting the animals in question and examining the
contents of their stomachs to determine what they have been eating.

The second primary method of constructing food webs is by compilation
from existing literature. Many predator—prey interactions are already known
and have been recorded in the scientific literature, but not in the context of
the larger food web, and one can often reconstruct a complete or partial pic-
ture of a food web by searching the literature for such records. Many of the
currently available food web data sets were assembled in this way from pre-
existing data, and some others were assembled by a combination of experi-
mental measurement and literature searches.

In some cases attempts have also been made to measure not merely the
presence (or absence) of interactions between species but also the strength of
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those interactions. One can quantify interaction strength by the fraction of its
energy a species derives from each of its predators, or by the total rate of energy
flow between a prey species and a predator. The result is a weighted directed
network that sheds considerably more light on the flow of energy through an
ecosystem than the more conventional unweighted food web. Measurements
of interaction strength are, however, time-consuming, difficult, and yield un-
certain results, so the current data on weighted food webs should be treated
with caution.

Food web data from a variety of sources have been assembled into publicly
available databases, starting in the late 1980s. Examples include the Ecoweb
database [73] and the web-based collection at www . foodwebs . org.

5.3.2 OTHER ECOLOGICAL NETWORKS

Two other types of ecological network have received significant attention in
the scientific literature (although less than has been paid to food webs). Host—
parasite networks are networks of parasitic relationships between organisms,
such as the relationship between a large-bodied animal and the insects and
microorganisms that live on and inside it. In a sense parasitic relations are
a form of predation—one species eating another—but in practical terms they
are quite distinct from traditional predator—prey interactions. Parasites, for
example, tend to be smaller-bodied than their hosts where predators tend to
be larger, and parasites can live off their hosts for long, sometimes indefinite,
periods of time without killing them, where predation usually results in the
death of the prey.

Parasitic interactions, however, do form networks that are somewhat sim-
ilar to traditional food webs. Parasites themselves frequently play host to still
smaller parasites (called “hyperparasites”), which may have their own still
smaller ones, and so forth through several levels.’ There is a modest but grow-
ing literature on host—parasite networks, much of it based on research within
the agriculture community, a primary reason for interest in parasites being
their prevalence in and effects on livestock and crop species.

The other main class of ecological networks is that of mutualistic networks,
meaning networks of mutually beneficial interactions between species. Three

One is reminded of the schoolhouse rhyme by Augustus de Morgan:

Great fleas have little fleas upon their backs to bite ‘em,
And little fleas have lesser fleas, and so ad infinitum.
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specific types of mutualistic network that have received attention in the eco-
logical literature are networks of plants and the animals (primarily insects)
that pollinate them, networks of plants and the animals (such as birds) that
disperse their seeds, and networks of ant species and the plants that they pro-
tect and eat. Since the benefit of a mutualistic interaction runs, by definition, in
both directions between a pair of species, mutualistic networks are undirected
networks (or bidirectional, if you prefer), in contrast with the directed inter-
actions of food webs and host—parasite networks. Most mutualistic networks
studied are also bipartite, consisting of two distinct, non-overlapping sets of
species (such as plants and ants), with interactions only between members of
different sets. In principle, however, non-bipartite mutualistic networks are
also possible.



