Genome Reconstruction: A Puzzle With a Billion Pieces

Genome Reconstruction: A Puzzle with a Billion Pieces

Phillip Compeau & Pavel Pevzner Modified by Alexander Niema Moshiri University of California, San Diego

The Newspaper Problem

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 1: Introduction to Genome Sequencing

Brief History of Genome Sequencing

- Late 1970s: Walter Gilbert and Frederick Sanger develop independent sequencing methods.
- **1980**: They share the Nobel Prize in Chemistry.
- Still, their sequencing methods were too expensive for large genomes: with a \$1 per nucleotide cost, it would cost \$3 billion to sequence a human genome.

Walter Gilbert

Frederick Sanger

Brief History of Genome Sequencing

• **1990**: The public Human Genome Project, headed by Francis Collins, aims to sequence the human genome.

• **1997**: Craig Venter founds Celera Genomics, a private firm, with the same goal.

Francis Collins

Craig Venter

Brief History of Mammalian Genome Sequencing

• 2000: The draft of the human genome is simultaneously completed by the (public) Human Genome Consortium and (private) Celera Genomics.

The Eulerian Approach to DNA Sequencing

• **2001**: Pavel Pevzner, Haixu Tang, and Michael Waterman propose an Eulerian Path approach to Genome Assembly

Pavel Pevzner

Haixu Tang

Michael Waterman

Brief History of Mammalian Genome Sequencing

• 2000s: Many more mammalian genomes are sequenced.

The Arrival of Personal Genomics

- **2010s**: The market for sequencing machines takes off.
 - Illumina reduces the cost of sequencing an individual human genome from \$3 billion to \$1,000.
 - Complete Genomics builds a genomic factory in Silicon Valley that sequences hundreds of genomes per month.
 - Beijing Genome Institute orders hundreds of sequencing machines, becoming the world's largest sequencing center.
 - 23andMe offers partial genome sequencing for \$499.

The Future of Genome Sequencing

• 2015+: Hopefully, sequencing an individual genome will soon become as routine as an X-ray.

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 2: The Newspaper Problem and Genome Sequencing

Returning to The Newspaper Problem

The Newspaper Problem as an "Overlap Puzzle"

- The newspaper problem is not the same as a jigsaw puzzle:
 - We have multiple copies of the *same* edition of a newspaper.
 - Plus, some pieces of paper got blown to bits in the explosion.

- Instead, we must use *overlapping* shreds of paper to reconstruct what the newspaper said.
- This gives us a giant overlap puzzle.

What Makes Genome Sequencing So Difficult?

- When we read a book, we can read the entire book one letter at a time from beginning to end.
- However, modern sequencing machines can only read short pieces of DNA (~100 nucleotides long), called **reads**.

Sequencing a Genome: Lab + Computation

• Read Generation: Chemically blow multiple copies of a genome to bits to obtain many reads.

• **Fragment Assembly:** Use these reads to algorithmically put the genome back together.

Sequencing a Genome: Illustration

Assemble the genome using overlapping reads

AGAATATCA GAGAATATC TGAGAATAT ...TGAGAATATCA...

What does this process remind you of?

Sound Familiar?

• **Conclusion**: Fragment assembly reduces to an *overlap puzzle*!

Sequencing is Harder than Newspaper Problem

• In the newspaper problem, we have the rules of grammar and common sense (e.g. "**murder**" and "**suspect**" would often appear near each other in a newspaper.)

e murder occurred at approximately 5:7

• However, the "grammar" of DNA remains largely unknown.

Sequencing is Harder than Newspaper Problem

• 50% of the human genome is made up of **repeats**, or strings that appear multiple times with minor variations.

• Analogy: The "Triazzle" contains lots of repeated figures, which makes it difficult to solve (even with just 16 pieces).

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 3: DNA Chips: A First Shot at Sequencing with Short Reads

DNA Chips: Implementation

- 1. Synthesize a *distinct* read of length *k* in each cell of an array.
- 2. Cover the array with multiple copies of our fluorescentlylabeled reads.
- 3. DNA will hybridize with a string if it contains its *reverse complement*.
- 4. Use a spectroscope to determine which sites emit light ...the *complements* of these sites will reveal the reads within the unknown DNA fragment.

DNA Chips: Example

• What are our reads?

САТ | | | ЭЦ

		CAC	CGC			TGC
		CAT				
		CCA		GCA		
				GCC		
ACG						TTG
	ATT					

DNA Chips: Example

• What are our reads?

ATG

• So 3-mer **ATG** must occur in the genome!

		CAC	CGC			TGC
		ATG				
		CCA		GCA		
				GCC		
A <mark>CG</mark>						TTG
	ATT					

Red Reads Must Occur in the Genome

- What are our reads?
 - CAC → GTG
 - CGC \rightarrow GCG
 - CAT → ATG
 - TGC \rightarrow GCA
 - ACG → CGT
 - ATT → AAT
 - CCA \rightarrow TGG
 - GCA \rightarrow TGC
 - GCC \rightarrow GGC
 - TTG \rightarrow CAA

		GTG	GCG			GCA
		ATG				
		TGG		тбс		
				GGC		
CGT						CAA
	ΑΑΤ					

From Biological Data to Computational Problem

- Aim: Construct a shortest possible genome containing all our reads.
- How in the world would we solve this problem if we had *a billion* reads?

		GTG	GCG			GCA
		ATG				
		TGG		TGC		
				GGC		
ССТ						CAA
	AAT					

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 4: Two Mathematical Detours

The Bridges of Königsberg

• The people of Königsberg, Prussia (present-day Kaliningrad, Russia) enjoyed taking walks.

The Bridges of Königsberg

• They wondered if they could walk through the city, cross each bridge (blue) **exactly once**, and return where they started.

The Bridges of Königsberg

- **1735**: Leonhard Euler develops an approach to answer this question for *any* city, even for a "city" with a million islands.
- We will soon discuss Euler's approach.

Leonhard Euler

The Icosian Game

- Over a century passes...
- **1857**: Irish mathematician William Hamilton designs a game consisting of a board representing 20 "islands" connected by "bridges."
- Goal: find a walk that visits every island exactly once and returns back where it started.

Icosian Game

Similar Problems with Very Different Fates

- These two stories have something in common:
 - Find a walk that uses every *bridge* once and returns home (Konigsberg Bridge Problem)
 - Find a walk that visits every *island* once and returns home (Icosian game)
- However, while Euler solved the first problem (even for a city with a million *bridges*), mathematicians still do not know how to solve the second problem, even for a city with just a thousand *islands*.
- But where are the genomes???

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 5: Hamiltonian and Eulerian Cycles

Königsberg Bridges Network

- For the Königsberg Bridge Problem, we create a **network**:
 - Nodes = 4 land masses of the city
 - Edges = 7 bridges connecting land masses

Icosian Game Network

Can you see a solution?

Eulerian and Hamiltonian Cycles

- Two questions:
 - 1. Can the ant walks through each *edge* exactly once and return to where it started? **Eulerian cycle**
 - 2. Can the ant walk through each *node* exactly once and return to where it started? **Hamiltonian cycle**

Eulerian Cycles

• If there were a solution to the Königsberg Bridge Problem, then we could find an Eulerian cycle in this network.

• However, no such cycle exists. Why?

• If we add two more edges, there will be such a cycle.

Hamiltonian Cycles

• A **Hamiltonian cycle** in a network uses each node exactly once and returns to its starting node.

Finding Eulerian Cycles vs Hamiltonian Cycles

- Given a network *G*, we now have two questions that we can program a computer to answer about *G*.
- Eulerian Cycle Problem (ECP): Find an Eulerian cycle in *G* or prove that *G* does not have an Eulerian cycle.
- Hamiltonian Cycle Problem (HCP): Find a Hamiltonian cycle in *G* or prove that *G* does not have a Hamiltonian cycle.

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 6: Euler's Theorem

Directed Networks

- **Directed Network**: A network in which each edge has a *direction* (represented by an arrow).
 - You might like to think of directed edges as "one-way bridges."

Eulerian Cycles in Directed Networks

- An **Eulerian cycle** in a directed network must travel down all the edges in the correct direction.
- Does this graph have an Eulerian cycle?

Balanced Graphs

- **indegree**(*v*) = the number of edges leading into node *v*.
- **outdegree**(*v*) = the number of edges leading out of node *v*.
 - A graph is balanced if indegree(v) = outdegree(v) for every node v.
- Label each node v with
 (indegree(v), outdegree(v))
- Adding some edges makes the graph balanced.

Euler's Theorem

- Euler's Theorem: A directed network contains an Eulerian cycle when the network is connected and balanced.
 - A graph is **connected** if for every pair of vertices {*u*, *v*}, an ant can legally travel either from *u* to *v* or from *v* to *u*.

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 7: ECP vs. HCP and Algorithmic Complexity

What's the Big Deal?

• "I thought computers were supermachines!"

• "Computers don't need 300-year old mathematics to help them solve problems."

• "Aren't computers going to take over the world anyway?"

• Let's examine the case of finding a *Hamiltonian* cycle...

Searching for an Efficient Algorithm for HCP

- **Key Point**: No one has ever found a similar efficient test if a network has a Hamiltonian cycle.
- Of course, we could examine every possible ant walk through the graph to solve the HCP.
- However, this **brute force** approach is just not *efficient*: there are more walks through the average network with just 1,000 nodes than there are atoms in the universe!

- In fact, the HCP has been classified as *NP*-Complete.
- This means that the HCP belongs to a collection containing thousands of computational problems that cannot be solved quickly for large data sets.
- *NP*-Complete problems are all **equivalent** to each other: find an efficient solution to one, and you have an efficient solution to them all.

• Attempting to solve any *NP*-Complete problem is difficult.

"I can't find an efficient algorithm, I guess I'm just too dumb."

From Garey and Johnson. Computers and Intractability. 1979

- Attempting to solve any *NP*-Complete problem is difficult.
- The hope is that you could verify that you failed because an efficient algorithm to an *NP*-Complete problem doesn't exist.

"I can't find an efficient algorithm, because no such algorithm is possible."

From Garey and Johnson. Computers and Intractability. 1979

- Attempting to solve any *NP*-Complete problem is difficult.
- The hope is that you could verify that you failed because an efficient algorithm to an *NP*-Complete problem doesn't exist.
- The present state of affairs is somewhere in between.

"I can't find an efficient algorithm, but neither can all these smart people."

From Garey and Johnson. Computers and Intractability. 1979

Pvs. NP, NP-Complete vs. NP-Hard

- *NP*: The set of problems that can be <u>verified</u> efficiently
- *P*: The set of problems that can be <u>solved</u> efficiently
- As can be seen, *P* is a subset of *NP*

Pvs. NP, NP-Complete vs. NP-Hard

- *NP*: The set of problems that can be <u>verified</u> efficiently
- *P*: The set of problems that can be <u>solved</u> efficiently
- As can be seen, *P* is a subset of *NP*
- Problems in *NP* that are not in *P* are called *NP*-Complete

Pvs. NP, NP-Complete vs. NP-Hard

- *NP*-Hard: Problems that cannot be solved nor verified efficiently
- *P* vs. *NP* Problem: Can we prove that P = NP, or that $P \neq NP$?
- If *P* = *NP*, then ALL *NP* problems can be solved efficiently
- If $P \neq NP$, then *NP*-Complete problems can't be solved efficiently

The *NP*-Completeness of the HCP

- The question of whether or not *NP*-Complete problems (including the HCP) can be solved efficiently is one of seven **Millennium Problems** in mathematics.
- Find an efficient algorithm for the HCP, or demonstrate that no such algorithm exists, and you will get \$1 million.
- However, if you become a mathematician, odds are that you are not in it for the \$\$\$...recently, Grigory Perelman solved one of these problems but turned down the prize.

Grigory Perelman

Section 8: From Euler and Hamilton to Fragment Assembly

First Try: The Network H

• Create a node for every read detected by our array.

First Try: The Network *H*

- Create a node for every read detected by our array.
 - **Prefix**: First 2 nucleotides of a read (CAA)
 - Suffix: Last 2 nucleotides of a read (CAA)
- Different 3-mers may share a prefix/suffix: ATG, TGA, CTG

First Try: The Network *H*

• As for the edges of *H*, connect node *v* to node *w* with a *directed edge* if the suffix of *v* matches the prefix of *w*.

Hamiltonian Cycles in H

- Here we have a Hamiltonian cycle in *H*:
 - ATG \rightarrow TGG \rightarrow GGC \rightarrow GCG \rightarrow CGT \rightarrow GTG \rightarrow TGC \rightarrow GCA \rightarrow CAA \rightarrow AAT \rightarrow ATG

Hamiltonian Cycles in H

- Here we have a Hamiltonian cycle in *H*:
- ATG \rightarrow TGG \rightarrow GGC \rightarrow GCG \rightarrow CGT \rightarrow GTG \rightarrow TGC \rightarrow GCA \rightarrow CAA \rightarrow AAT \rightarrow ATG ATG TGG Α GGC GCG CGT G GTG TGC G **GCA** CAA AAT ATG G Genome: ATGGCGTGCA

Hamiltonian Cycles in H

• What is wrong with this approach?

Problem with H

• Ultimately, we must solve the HCP on *H* (millions of nodes) in order to obtain a candidate genome ...

Second Try: The Network E

- Form a different network *E* as follows: •
 - Create a node for each *distinct* prefix/suffix from reads. •
 - Connect node *v* to node • w with a directed edge if there is a read whose prefix is v and whose suffix is w.

Second Try: The Network E

- Form a different network *E* as follows:
 - Create a node for each *distinct* prefix/suffix from reads.

Eulerian Cycles in E

• We have an Eulerian cycle in *E*:

Eulerian Cycles in E

- We have an Eulerian cycle in *E*:
 - ATG \rightarrow TGG \rightarrow GGC \rightarrow GCG \rightarrow CGT \rightarrow GTG \rightarrow TGC \rightarrow GCA \rightarrow CAA \rightarrow AAT

ATG

Genome: ATGGCGTGCA

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG

- This is the same sequence of reads that we had in *H*!
- Thus we will obtain the same sequenced genome as before.

Eulerian Cycles in E

- We have an Eulerian cycle in *E*:
 - ATG \rightarrow TGG \rightarrow GGC \rightarrow GCG \rightarrow CGT \rightarrow GTG \rightarrow TGC \rightarrow GCA \rightarrow CAA \rightarrow AAT
 - This is the same sequence of reads that we had in *H*!
 - Thus we will obtain the same sequenced genome as before.
 - The only difference: a computer can find an Eulerian cycle quickly.

	ATG TGG GGC GCG
ter	CGT GTG TGC
ickly.	GCA CAA AAT
Genome:	ATG

Example Problem

• What is the genome assembled from the following reads? Start with the read "GAT" when creating your Eulerian cycle

ACA AGA ATT CAG GAT TAC

Example Problem

Example Problem

Linear Genomes

- The previous example was for a circular genome, but what about for a linear genome?
- Example: "ACGT" (not circular)

• Now, we can use the exact same algorithm as before!

Genome Reconstruction: A Puzzle With a Billion Pieces

Section 9: Practical Complications

Analysis of E

- **Good News**: We now only have to find an Eulerian cycle in the network *E*.
- **Bad News**: We made some unrealistic assumptions.
 - 1. In practice, reads are **error-prone**.
 - 2. Reads have **imperfect coverage** (so we will not always be able to move from one read to the next).
 - 3. Etc.

1st Unrealistic Assumption: Coverage Is Perfect

• Real reads capture only a small fraction of genome substrings.

atgccgtatggacaacgact atgccgtatg gccgtatgga gtatggacaa gacaacgact

• What can we do?

Breaking Reads into Shorter Pieces

atgccgtatggacaacgact atgccgtatg	atgccgtatggacaacgact atgcc
gccgtatgga	tgccg
gtatggacaa	gccgt
gacaacgact	ccgta
	cgtat
	gtatg
	tatgg
	atgga
	tggac
	ggaca
	gacaa
	acaac
	caacg
	aacga
	acgac
	cgact

2nd Unrealistic Assumption: No Errors

