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The Newspaper Problem



Section 1: Introduction to 

Genome Sequencing



Brief History of Genome Sequencing

• Late 1970s: Walter Gilbert and Frederick 

Sanger develop independent sequencing 

methods.

• 1980: They share the Nobel Prize in 

Chemistry.

• Still, their sequencing methods were too 

expensive for large genomes: with a $1 per 

nucleotide cost, it would cost $3 billion to 

sequence a human genome.

Walter Gilbert

Frederick Sanger



Brief History of Genome Sequencing

• 1990: The public Human Genome Project, 

headed by Francis Collins, aims to 

sequence the human genome. 

• 1997: Craig Venter founds Celera 

Genomics, a private firm, with the same 

goal.

Francis Collins

Craig Venter



Brief History of Mammalian Genome Sequencing

• 2000: The draft of the human genome is simultaneously 

completed by the (public) Human Genome Consortium and 

(private) Celera Genomics. 



The Eulerian Approach to DNA Sequencing

• 2001: Pavel Pevzner, Haixu Tang, and Michael Waterman 

propose an Eulerian Path approach to Genome Assembly

Pavel Pevzner Haixu Tang Michael Waterman



Brief History of Mammalian Genome Sequencing

• 2000s: Many more mammalian genomes are sequenced.



The Arrival of Personal Genomics

• 2010s: The market for sequencing machines takes off.

• Illumina reduces the cost of sequencing an individual human 

genome from $3 billion to $1,000.

• Complete Genomics builds a genomic factory in Silicon 

Valley that sequences hundreds of genomes per month.

• Beijing Genome Institute orders hundreds of sequencing 

machines, becoming the world’s largest sequencing center.

• 23andMe offers partial genome sequencing for $499.



The Future of Genome Sequencing

• 2015+: Hopefully, sequencing an individual genome will soon 

become as routine as an X-ray. 



Section 2: The 

Newspaper Problem and 

Genome Sequencing



Returning to The Newspaper Problem



The Newspaper Problem as an “Overlap Puzzle”

• The newspaper problem is not the same as a 

jigsaw puzzle:

• We have multiple copies of the same

edition of a newspaper.

• Plus, some pieces of paper got blown to 

bits in the explosion.

• Instead, we must use overlapping shreds of 

paper to reconstruct what the newspaper 

said.

• This gives us a giant overlap puzzle.



What Makes Genome Sequencing So Difficult?

• When we read a book, we can read the entire book one letter at a 

time from beginning to end.

• However, modern sequencing machines can only read short 

pieces of DNA (~100 nucleotides long), called reads.



Sequencing a Genome: Lab + Computation

• Read Generation:

Chemically blow multiple copies 

of a genome to bits to obtain many 

reads.

• Fragment Assembly: Use these 

reads to algorithmically

put the genome back together.



Sequencing a Genome: Illustration

Multiple identical 

copies of a genome

AGAATATCASequence the reads

Shatter the genome 

into reads

Assemble the 

genome using 

overlapping reads

...TGAGAATATCA...

  AGAATATCA

 GAGAATATC

TGAGAATAT

GAGAATATCTGAGAATAT

What does this process remind you of?



Sound Familiar?

• Conclusion: Fragment assembly reduces to an overlap puzzle!



• In the newspaper problem, we have the rules of grammar and 

common sense (e.g. “murder” and “suspect” would often 

appear near each other in a newspaper.)

• However, the “grammar” of DNA remains largely unknown.

Sequencing is Harder than Newspaper Problem 



Sequencing is Harder than Newspaper Problem 

• 50% of the human genome is made 

up of repeats, or strings that appear 

multiple times with minor variations.

• Analogy: The “Triazzle”

contains lots of repeated

figures, which makes it

difficult to solve (even with

just 16 pieces).



Section 3: DNA Chips: A 

First Shot at Sequencing 

with Short Reads



DNA Chips: Implementation 

1. Synthesize a distinct read of length k in each cell of an array. 

2. Cover the array with multiple copies of our fluorescently-

labeled reads.

3. DNA will hybridize with

a string if it contains its

reverse complement. 

4. Use a spectroscope to

determine which sites emit

light  …the complements

of these sites will reveal the

reads within the unknown

DNA fragment.



DNA Chips: Example

• What are our reads?

CAT
|||

ATG 

CAC CGC TGC

CAT

CCA GCA

GCC

ACG TTG

ATT



DNA Chips: Example

• What are our reads?

• So 3-mer ATG must

occur in the genome!

ATG

CAC CGC TGC

ATG

CCA GCA

GCC

ACG TTG

ATT



Red Reads Must Occur in the Genome

GTG GCG GCA

ATG

TGG TGC

GGC

CGT CAA

AAT

• What are our reads?

• CAC  GTG

• CGC  GCG

• CAT  ATG

• TGC  GCA

• ACG  CGT

• ATT  AAT

• CCA  TGG

• GCA  TGC

• GCC  GGC

• TTG  CAA



From Biological Data to Computational Problem 

GTG GCG GCA

ATG

TGG TGC

GGC

CGT CAA

AAT

• Aim: Construct a

shortest possible genome

containing all our reads.

• How in the world would

we solve this problem

if we had a billion reads?



Section 4: Two 

Mathematical Detours



The Bridges of Königsberg

• The people of Königsberg, Prussia (present-day Kaliningrad, 

Russia) enjoyed taking walks.



The Bridges of Königsberg

• They wondered if they could walk through the city, cross each 

bridge (blue) exactly once, and return where they started.



The Bridges of Königsberg

• 1735: Leonhard Euler develops an approach to 

answer this question for any city, even for a 

“city” with a million islands.

• We will soon discuss Euler’s approach. 

Leonhard Euler



The Icosian Game

• Over a century passes…

• 1857: Irish mathematician 

William Hamilton designs a 

game consisting of a board 

representing 20 “islands” 

connected by “bridges.”

• Goal: find a walk that visits 

every island exactly once 

and returns back where it 

started.

Icosian Game



Similar Problems with Very Different Fates 

• These two stories have something in common: 

• Find a walk that uses every bridge once and returns home 

(Konigsberg Bridge Problem) 

• Find a walk that visits every island once and returns home 

(Icosian game)

• However, while Euler solved the first problem (even for a city 

with a million bridges), mathematicians still do not know how 

to solve the second problem, even for a city with just a 

thousand islands.  

• But where are the genomes???



Section 5: Hamiltonian 

and Eulerian Cycles



Königsberg Bridges Network

• For the Königsberg Bridge Problem, we create a network:

• Nodes = 4 land masses of the city

• Edges = 7 bridges connecting land masses



Icosian Game Network

Can you see a solution?



The Icosian Game



Eulerian and Hamiltonian Cycles

• Two questions:

1. Can the ant walks through each edge exactly once and 

return to where it started? Eulerian cycle

2. Can the ant walk through each node exactly once and return 

to where it started? Hamiltonian cycle

“???!!!”



Eulerian Cycles

1

23

4

5

6

78

9

• If there were a solution to the Königsberg

Bridge Problem, then we could find an

Eulerian cycle in this network.

• However, no such cycle exists.  Why?

• If we add two more edges, there will be such a cycle.



Hamiltonian Cycles

• A Hamiltonian cycle in a network uses each node exactly 

once and returns to its starting node.

1 2

3
4

5

6

7

8
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1213
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15

1617
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Finding Eulerian Cycles vs Hamiltonian Cycles

• Given a network G, we now have two questions that we can 

program a computer to answer about G.

• Eulerian Cycle Problem (ECP): Find an Eulerian cycle in G

or prove that G does not have an Eulerian cycle.

• Hamiltonian Cycle Problem (HCP): Find a Hamiltonian

cycle in G or prove that G does not have a Hamiltonian cycle.



Section 6: Euler’s 

Theorem



Directed Networks

• Directed Network: A network in which each edge has a 

direction (represented by an arrow).

• You might like to think of directed edges as “one-way 

bridges.”

Undirected Directed



Eulerian Cycles in Directed Networks

• An Eulerian cycle in a directed network must travel down all 

the edges in the correct direction.

• Does this graph have an Eulerian cycle?



• indegree(v) = the number of edges leading into node v.

• outdegree(v) = the number of edges leading out of node v.

• A graph is balanced if indegree(v) = outdegree(v) for 

every node v.

• Label each node v with

(indegree(v), outdegree(v))

• Adding some edges makes

the graph balanced.

Balanced Graphs 

(2, 2)

(2, 2)

(1, 1)

(2, 2)

(1, 1)

(2, 2)
(1, 1)



Euler’s Theorem

• Euler’s Theorem: A directed network contains an Eulerian 

cycle when the network is connected and balanced.

• A graph is connected if for every pair of vertices {u, v}, an 

ant can legally travel either from u to v or from v to u.
(2, 2)

(2, 2)

(1, 1)

(2, 2)

(1, 1)

(2, 2)
(1, 1)

Not Connected
Connected

+   Balanced
=    Eulerian



Section 7: ECP vs. HCP 

and Algorithmic Complexity



What’s the Big Deal?

• “I thought computers were supermachines!”

• “Computers don’t need 300-year old mathematics to help 

them solve problems.”

• “Aren’t computers going to take over the world anyway?”

• Let’s examine the case of finding a Hamiltonian cycle…



Searching for an Efficient Algorithm for HCP 

• Key Point: No one has ever found

a similar efficient test if a network

has a Hamiltonian cycle.

• Of course, we could examine every

possible ant walk through the

graph to solve the HCP.

• However, this brute force approach

is just not efficient: there are more

walks through the average network

with just 1,000 nodes than there are atoms in the universe!



NP-Complete Problems

• In fact, the HCP has been classified as NP-Complete.

• This means that the HCP belongs to a collection containing 

thousands of computational problems that cannot be solved 

quickly for large data sets.

• NP-Complete problems are all equivalent to each other: find 

an efficient solution to one, and you have an efficient solution 

to them all.



NP-Complete Problems

“I can't find an efficient 
algorithm, I guess I'm just too 
dumb.”

From Garey and Johnson. Computers and Intractability. 1979

• Attempting to solve any NP-Complete problem is difficult.



NP-Complete Problems

“I can't find an efficient 
algorithm, because no such 
algorithm is possible.” 

• Attempting to solve any NP-Complete problem is difficult.

• The hope is that you could verify that you failed because an 

efficient algorithm to an NP-Complete problem doesn’t exist.

From Garey and Johnson. Computers and Intractability. 1979



NP-Complete Problems

“I can't find an efficient 
algorithm, but neither can all 
these smart people.” 

• Attempting to solve any NP-Complete problem is difficult.

• The hope is that you could verify that you failed because an 

efficient algorithm to an NP-Complete problem doesn’t exist.

• The present state of affairs is somewhere in between.

From Garey and Johnson. Computers and Intractability. 1979



NP

P vs. NP, NP-Complete vs. NP-Hard

• NP: The set of problems that can be 

verified efficiently

• P: The set of problems that can be 

solved efficiently

• As can be seen, P is a subset of NP

P



NP-Complete

P vs. NP, NP-Complete vs. NP-Hard

• NP: The set of problems that can be 

verified efficiently

• P: The set of problems that can be 

solved efficiently

• As can be seen, P is a subset of NP

• Problems in NP that are not in P are 

called NP-Complete P



NP-Complete

P vs. NP, NP-Complete vs. NP-Hard

• NP-Hard: Problems that cannot be 

solved nor verified efficiently

• P vs. NP Problem: Can we prove 

that P = NP, or that P ≠ NP?

• If P = NP, then ALL NP problems 

can be solved efficiently

• If P ≠ NP, then NP-Complete 

problems can’t be solved efficiently

P

NP-Hard



The NP-Completeness of the HCP

• The question of whether or not NP-Complete problems 

(including the HCP) can be solved efficiently is one of seven 

Millennium Problems in mathematics.  

• Find an efficient algorithm for the HCP, or demonstrate that no 

such algorithm exists, and you will get $1 million.

• However, if you become a

mathematician, odds are that you are

not in it for the $$$...recently, Grigory

Perelman solved one of these

problems but turned down the prize. Grigory Perelman



Section 8: From Euler and 

Hamilton to Fragment 

Assembly



First Try: The Network H

• Create a node for every read

detected by our array. 
GTGGCG GCA

ATG

TGG TGC

GGC

CGT CAA

AAT



First Try: The Network H

• Create a node for every read

detected by our array.

• Prefix:  First 2 nucleotides of a read (CAA)

• Suffix:  Last 2 nucleotides of a read (CAA)

• Different 3-mers may share a prefix/suffix: ATG, TGA, CTG

ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG



First Try: The Network H

• As for the edges of H, connect node v to node w with a 

directed edge if the suffix of v matches the prefix of w.

ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG



Hamiltonian Cycles in H

• Here we have a Hamiltonian cycle in H:

• ATG  TGG  GGC  GCG  CGT  GTG 
TGC  GCA  CAA  AAT  ATG

ATG CGT GGC AAT GTG TGG TGC CAA GCA GCG



Hamiltonian Cycles in H

• Here we have a Hamiltonian cycle in H:

• ATG  TGG  GGC  GCG  CGT  GTG 
TGC  GCA  CAA  AAT  ATG

ATG
TGG 
GGC
GCG
CGT
GTG 
TGC 
GCA 
CAA 
AAT
ATG

ATGGCGTGCAGenome:

A
T

G

G

C
G

T

G

C

A



Hamiltonian Cycles in H

• What is wrong with this approach?



Problem with H

• Ultimately, we must solve the HCP on H (millions of nodes) in 

order to obtain a candidate genome …



Second Try: The Network E

• Form a different network E as follows:

• Create a node for each distinct prefix/suffix from reads.

• Connect node v to node 

w with a directed edge if

there is a read whose

prefix is v and whose

suffix is w.

CAGC

CG

TG

GT

GG

AT

AA

TGC
GGC
CGT
CAA
AAT

GTG
GCG
GCA
ATG
TGG

Reads



Second Try: The Network E

• Form a different network E as follows:

• Create a node for each distinct prefix/suffix from reads.

• Connect node v to node 

w with a directed edge if

there is a read whose

prefix is v and whose

suffix is w.

CAGC

CG

TG

GT

GG

AT

AA

TGC
GGC
CGT
CAA
AAT

GTG
GCG
GCA
ATG
TGG

Reads

ATG

TGG GGC

GCG

CGT

GTG

TGC GCA

CAAAAT



Eulerian Cycles in E

• We have an Eulerian cycle in E:

• ATG  TGG  GGC  GCG  CGT  GTG 

TGC  GCA  CAA  AAT

3

CAGC

CG

TG

GT

GG

AT

AA

ATG

TGG GGC

GCG

CGT

GTG

TGC GCA

CAAAAT

1

2

4

5

6

7 8

910



Eulerian Cycles in E

• We have an Eulerian cycle in E:

• ATG  TGG  GGC  GCG  CGT  GTG 
TGC  GCA  CAA  AAT

• This is the same sequence

of reads that we had in H!

• Thus we will obtain the same

sequenced genome as before.

ATG
TGG 
GGC
GCG
CGT
GTG 
TGC 
GCA 
CAA 
AAT
ATG

ATGGCGTGCAGenome:

A
T

G

G

C
GT

G

C

A



Eulerian Cycles in E

• We have an Eulerian cycle in E:

• ATG  TGG  GGC  GCG  CGT  GTG 
TGC  GCA  CAA  AAT

• This is the same sequence

of reads that we had in H!

• Thus we will obtain the same

sequenced genome as before.

• The only difference: a computer

can find an Eulerian cycle quickly.

ATG
TGG 
GGC
GCG
CGT
GTG 
TGC 
GCA 
CAA 
AAT
ATG

ATGGCGTGCAGenome:



Example Problem

• What is the genome assembled from the following reads? Start 

with the read “GAT” when creating your Eulerian cycle

ACA

AGA

ATT

CAG

GAT

TAC

TTA



Example Problem

CA

GA TA TT

ATAGAC

Reads:

ACA
AGA
ATT
CAG
GAT
TAC
TTA



Example Problem

CA

GA TA TT

ATAGAC

ACA
Reads:

ACA
AGA
ATT
CAG
GAT
TAC
TTATTA



Example Problem

CA

GA TA TT

ATAGAC

ACA

TTA

GATTACA





Linear Genomes

• The previous example was for a circular genome, but what 

about for a linear genome?

• Example: “ACGT” (not circular)

• Now, we can use the exact same algorithm as before!

GTCGAC
ACG CGT



Section 9: Practical 

Complications



Analysis of E

• Good News: We now only have to find an Eulerian cycle in 

the network E.

• Bad News: We made some unrealistic assumptions.

1. In practice, reads are error-prone.

2. Reads have imperfect coverage (so we will not always be 

able to move from one read to the next).

3. Etc.



1st Unrealistic Assumption: Coverage Is Perfect

• Real reads capture only a small fraction of genome substrings.

• What can we do?

atgccgtatggacaacgact

atgccgtatg

gccgtatgga

gtatggacaa

gacaacgact



Breaking Reads into Shorter Pieces

atgccgtatggacaacgact atgccgtatggacaacgact

atgccgtatg atgcc

gccgtatgga tgccg

gtatggacaa gccgt

gacaacgact ccgta

cgtat

gtatg

tatgg

atgga

tggac

ggaca

gacaa

acaac

caacg

aacga

acgac

cgact



2nd Unrealistic Assumption: No Errors

CGCA GCAT CATGCCGC

GCCGC

CCGCA CGCAT GCATG

CATGBubble!

CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA


