Introduction to
Pseudo-Random Number Generators

Nicola Gigante
March 9, 2016

Why random numbers?

LifeAAZs most important questions are, for the most
part, nothing but probability problems.

Pierre-Simon de Laplace

Why random numbers?

It often happens to be required to “throw a dice”:

e Randomized algorithms
e Simulation of physical phenomena
e Cryptography
So random numbers are really important in Computer Science.

But what does random mean, by the way?

Table of Contents

What is Randomness?

Pseudo-Random
Number Generators

Linear Congruency Generators
Overview of Mersenne Twister

Cryptographic PRNGs

What is Randomness?

What is Randomness?

int getRondomNumber ()

return 4. // chosen by fair dice roll.
// Quaranteed to be random.

RFC 1149.5 specifies 4 as the standard |IEEE-vetted random
number.

Which of these two sequences is more random?
1. 01

2. 0010010000111111011010101000100010000101

Uniform probability and predictability

Imagine to have a fair coin, e.g. P(x =0) =P(x =1) =3

e Then both sequences have the same probability 2—10 of all the
other possible 40-bits sequences.
e Nevertheless the second seems more random, why?
1. Frequency of substrings is more uniform

2. The sequence seems more unpredictable

e We will precisely define both properties later

Uniform probability and predictability

Uniformity and predictability seem related, but:

e Uniformity is an objective measure: are all substrings equally
frequent?

e Predictability is not an objective property. ..

Uniform probability and predictability

Predictability is in the eye of the observer:
e Recall the sequence nAy2?
e It is the (beginning of the) binary expansion of 7.
e So unpredictability and uniform probability are different things.

e We may want both, or only one of them, depending on the
application.

10

Different definitions of randomness

We will look at different definitions of randomness, based on:

e Statistical features of the sequence
e Algorithmic complexity of the sequence

e Predictability of the sequence

Different kinds of randomness will be suitable for different
applications.

11

Randomness as equidistribution

Definition (Equidistribution)
A sequence x; of values with x; € [0, N| is equidistributed if every
subinterval [a, b] contains a number of different values proportional

to the length of the interval.

Informally

There is no region more “dense” than another.

The concept generalizes to k dimensions: k-distribution

12

Equidistribution (example)

13

Statistical randomness

Equidistribution is not the only way to define randomness in

statistical terms.

Statistical randomness tells us how a given sequence is likely to

come from a randomness source.

More on that on a statistics book.

14

Randomness as absence of patterns

The example of 71 before suggests a characterization.
We may want to exclude strings which exhibit patterns.

There are (at least) two different ways to define this concept:

e Shannon’s Entropy

e Kolmogorov Complexity

15

Definition
The empirical Shannon’s Entropy of a sequence s is the following

quantity:

H(s) = — Z fy logs (fy)

fD
where X is the alphabet and f; is the frequency of appearance of

the character ¢ in the sequence.

16

Important points

e The entropy function has its maximum when the characters
are drawn from a uniform distribution.

e So a string with higher entropy is more likely to come from a
source of uniform probability.

e The entropy of a string is the lower bound to how much it can
be compressed by a zero-order compression algorithm
(Shannon's Theorem).

e So a string with high entropy is also less compressible.

17

Kolmogorov Complexity

Definition
Let s be a string in some alphabet. The Kolmogorov Complexity of
s, K(s), is the size of the shorter program that can produce s as

output.

18

Kolmogorov Complexity

Important points

e The computation model or programming language used does
not matter.

e The size of the shorter program is another way to tell the
minimum size to which the string can be compressed.
e To decompress, just execute the program.
e Related to Shannon's Entropy, but different.

e The 7T sequence has a very high entropy, but a tiny
Kolmogorov Complexity.
e Clearly the converse cannot happen.

19

Kolmogorov Complexity and Randomness

Definition (Martin-LA(if)
A string s is called algorithmically random if K(s) > |s| — ¢, for

some C.

This would be the perfect measure for randomness:

e If K(s) < |s|, the string contain some regular patterns that
can be exploited to write a shorter program that produce s as
output.

e If K(s) > |s|, it means the only way to produce the string is
to show the string itself.

Where's the catch?

20

Uncomputability of Kolmogorov Complexity

Kolmogorov Complexity is not computable.

Suppose by contraddiction that it is. Fix a k € IN and consider the
following program:

foreach string s:
if K(s) >= k:
print s
terminate

This program outputs a string s with K(s) > k, but has length
O(log(k)).
So it's shorter than the shorter one that can output s. %

21

Randomness test by compression

So we cannot use K (s) to test randomness, but:

e Asymptotically optimal compression algorithms approximate it

e Approximated Martin-LA{f test: compress the data; if the size
shrinks, data was not random enough.

22

Unpredictability

Possible definitions of randomness seen so far take into account
statistical features of the sequences.

e This is the definition we care about in applications like

randomized algorithms or physical simulations.

e The quality of the outcome depends on how much the
sequence resemble a really uniform distribution.

However, in other applications, like cryptography and secure
communication protocols, good statistical properties are not
enough.

23

Random numbers in cryptography

Cryptographic algorithms make heavy use of random numbers:

e Key generation of public-key cyphers.
e Key exchange protocols.

e Initialization vectors of encyphered connections.

The security of cryptographic techniques is based on the
assumption that an attacker cannot guess the random values

choosen by the communication parties.

24

Random numbers in cryptography

Statistical properties of the sequence are irrelevant if the attacker
can predict the next values, or compute past values.

Random numbers for cryptographic use must be unpredictable. Of
course, statistical features follow.

25

Pseudo-Random
Number Generators

How to Produce Random Numbers?

We saw a few different definitions of randomness.
A different question is: how to generate such numbers?

Turing machines — and our physical computers — are
deterministic objects.

How can a deterministic machine generate a random sequence?
Spoiler

It can't

27

Physical randomness

Real randomness exists in the physical world:

e Quantum physics is intrinsically random.

e By measuring (for example), the spin of superposed electrons,
one may extract a physically random sequence of bits.

e Another kind of physical randomness is thermodynamic noise.

28

Physical randomness

Hardware devices that exploit these sources exist, but:

e They are too slow.

e They cost too much.

29

Pseudo-random sequences

Definition
A pseudo-random number sequence is a sequence of numbers which
seems to have been generated randomly.

30

Pseudo-Random Number Generators

An algorithm to produce a pseudo-random sequence is called a
pseudo-random number generator.

Some common characteristics of PRNGs:
e Given an initial value, called seed, the algorithm produces a

pseudo-random sequence of numbers.

e The algorithm is of course deterministic: from the same seed
you obtain the same sequence, but the sequence by itself

looks random.

31

Pseudo-Random Number Generators

Some common characteristics of PRNGs:

e The sequence evolution depends on an internal state
e In simple PRNGs the internal state is only the current value of
the sequence.
e The internal state is finite so the sequence will eventually
repeat. The number of values before the sequence repeats is
called the period.

32

Probability Distribution

PRNGs usually produce integer sequences that appear to have
been drawn from a uniform distribution:

e Other distributions could be needed in an application
(e.g. normal, Poisson, etc. ..)

e A sample from a uniform distribution can be transformed into
a sample of other common distributions, e.g.:

e for the central limit theorem, summing any random variable
results in a normally-distributed variable.
e Y = —A71In(X) has exponential distribution with rate A

e Floating point values can be obtained from integers.

33

Good PRNGs

From a good (non-cryptographic) PRNG, we want:

e A long period.

e As much statistical similarity to a uniform distribution as
possible.

e Speed.

34

Linear Congruency Generators

We will now explore one of the simpler kind of PRNG.
Linear Congruency Generators (LCG), aka Lehmer generators:

e Simple and very easy to understand.

Very fast.

Usually is the implementation of the C rand() function.

Not so good randomness characteristics, but good enough for
a lot of cases

Easy to do it wrong.
Good example to show an important point:
Don't design a PRNG yourself.

35

Linear Congruency Generators

The sequence of a LCG is defined by the following recurrence:
Xpt1 = axp + ¢ (mod m)

Very general by itself:

e |ts entire behaviour depends on the three parameters:
e The modulus m
e The multiplier a
e The increment c
e Easy to do wrong (e.g. with a =2 and ¢ = 0 the sequence
does not seem random at all)

How to choose the parameters? We restrict ourself to the case
where ¢ = 0.

36

Choosing the parameters - modulus

Clearly the modulus is an upper bound to the sequence period.

e So suppose to have 32bits integers, could we use a modulus of
232 to cycle through all representable values?

e |t's not a good choice.

37

Choosing the parameters - modulus

Let d be a divisor of m and y, be the following sequence:
Yn =X, (mod d)
Consider the x, sequence.

Xp+1 = aXp + ¢+ km for some k
Yo+l = axnp + ¢+ km mod d
Yn+l = aXp+ C mod d
Yntr1 = a(yn — k'd) + ¢ (mod d
Y+l = a¥n+ € mod d

go (mod m) on both sides
d divides m

()
()
() because y, = x, + k'd
()

38

Choosing the parameters - modulus

So the residue modulo d of the sequence is a linear congruence
sequence.
Examples of why this is not good:

e The j less significant bits of every number in the sequence
form a subsequence that repeat every 2/ steps.

e If d is even, the sequence strictly alternates between even and
odd values.

Solution: to choose a prime modulus.

e 231 _ 1 is a common choice for sequences of 32bits integers

39

Choosing the parameters - multiplier

How to choose the multiplier?

We want to obtain the maximum period of m — 1.

In other words we need an a such that, for each

X € [0, m— 1], there exists an i such that:

a =x (mod m)

(Znm,) is a cyclic group. Such an element would be the
generator of this group.

If mis prime any element is a generator:
e Any element a’ with smaller period would generate a subgroup.
e 7, has a prime number of elements.

e Lagrange theorem: for any subgroup G < Z,,
|G| divides |Z,| (which is m). %

40

Statistical performance

So with a prime modulus, any multiplier reaches maximum period.

e This does not mean any multiplier has good performance.

e Extensively searching for the statistically best multiplier is
feasible for 32bits values.

e Park and Miller suggest this sequence:
Xnt1 = T°Xp (mod P 1)

e This is the minimum standard suggested by Park and Miller,
but it has a lot of limitations.

41

k-distribution of LGCs

Theorem (Marsaglia '68)

All k-tuples of consecutive values of a LGC sequence with modulus

m lay on parallel (k — 1)-planes, and the number of those planes is
always less than /k!m.

Depending on the application, this can be a bad thing.

e For example, the number of planes of triples of consecutive
values is 2344, for m = 231 — 1.

e This could be or not acceptable in a period of 2 billion
elements.

e Increasing the modulus and keeping only the most significant
bits can result in a k-distributed sequence.

42

Linear Congruency Generators - Recap

LCGs could be good when the result of our computation does not
depend on the good statistical properties of the sequence, e.g.:

e randomized visual effects

e cheap randomized algorithms
(used in non-sensible contexts)

There are much better alternatives.

43

Mersenne Twister

The Mersenne Twister is one of the most used modern PRNGs.

e Called this way because its period is always a Mersenne prime
number.

e Huge period, e.g. 219937 — 1 for the MT19937 variant.

e Great statistical performance: k-distributed up to kK = 623.

e Very fast on modern architectures (with SIMD instructions).

44

Mersenne Twister

It still has statistical defects:

e The evolution of the state is not very chaotic: a seed with a
lot of zeroes can result in a long initial subsequence with bad
statistical characteristics.

e Even more recent improvements exist.

45

Use of Mersenne Twister in Practice

Most programming languages provide a ready implementation of
Mersenne Twister in standard or commonly available libraries.

Examples:

e std::mt19937 in C+-+11.

e math3.random.MersenneTwister in Java Apache
Commons Math.

e System.Random.Mersenne in Haskell.

In C, the rand() function is deprecated, don't use it. Find a ready
MT implementation instead.

46

Requirements for a cryptographic PRNG

A pseudo-random sequence is cryptographically strong if it satisfies
these requirements:
Next bit test

Given an initial subsequence, there is no polynomial algorithm that
can predict the next element with a success probability of more than
50%.

Forward security

Given the knowledge of the internal state of the generator, no poly-
nomial algorithm can compute the previous elements of the se-
quence.

47

Blum Blum Shub algorithm

Blum Blum Shub is a common cryptographically strong PRNG.
It's the sequence of bits z; produced as:

Xpi1 = x> (mod m)

Zi = Xj (mod 2)

e z; is the least significant bit of x;.

e Similar to LCG, but the recurrence is guadratic, and we
extract a single bit of the entire state.

e Proved to be secure if factorization is hard.

48

Predictability of the seed

A good PRNG is not enough: what if the attacker could predict
the seed?

e The predictability of the entire sequence depends on the seed.
e How to choose the seed? We should choose it at random.

e Ops...

49

Collecting physical entropy

The solution is to collect real randomness from the physical world:

e Any source of unpredictable events

e Common and easy ones:
keystrokes, mouse clicks, interrupt from peripheral devices,
content of network packets, sequence of syscalls from user
processes, time, etc...

e Real randomness:

quantistic phenomena, thermodinamic noise, etc...

50

Collecting physical entropy

The Operating System usually provides a facility to access physical
entropy (e.g. /dev/urandom on Linux)

e Common entropy sources are usually sufficient, but can be not

enough.

e Strong entropy generators are available. The hardware is not

cheap, though.

51

Collecting physical entropy

Physical entropy is not a replacement for PRNGs.

e Physical entropy is a rare resource and its extraction is slow.

e User code should use it to choose a seed and use the seed to

feed a cryptographic PRNG.
e Useful only for cryptography. No need for a physical seed for

other applications.

e e.g. scientific simulations could even require to be able to
reproduce the exact result by reusing the same known seed.

52

Collecting physical entropy

A single source is not enough. How to have enough entropy?

e The Operating System handles a entropy pool.

e All the different entropy sources are combined into a high
entropy buffer

e e.g. data is compressed and XORed together.

53

What we learned:

e Definition of randomness is not easy

e Linear Congruency Generators

e Current state-of-the-art (almost): Mersenne Twister
e Why cryptographic random numbers are different

e Requirements for a cryptographic PRNG

e Collecting physical entropy is required to have an
unpredictable seed

54

Questions?

55

	What is Randomness?
	Pseudo-RandomNumber Generators
	Linear Congruency Generators
	Overview of Mersenne Twister
	Cryptographic PRNGs

