
WQO AND BQO THEORY
IN SUBSYSTEMS OF SECOND ORDER ARITHMETIC

ALBERTO MARCONE

Abstract. We consider the reverse mathematics of wqo and bqo theory. We survey the literature
on the subject, which deals mainly with the more advanced results about wqos and bqos, and prove
some new results about the elementary properties of these combinatorial structures. We state
several open problems about the axiomatic strength of both elementary and advanced results.

A quasi-ordering (i.e. a reflexive and transitive binary relation) is awqo (well
quasi-ordering) if it contains no infinite descending chains and no infinite sets
of pairwise incomparable elements. This concept is very natural, and has
been introduced several times, as documented in [19]. The usual working
definition of wqo is obtained from the one given above with an application of
Ramsey’s theorem: a quasi-ordering� on the setQ is wqo if for every sequence
{xn | n ∈ N}of elements ofQ there existm < n such thatxm � xn. The notion
of bqo (better quasi-ordering) is a strengthening of wqo which was introduced
byNash-Williams in the 1960’s in a sequence of papers culminating in [30] and
[31]. This notion has proved to be very useful in showing that specific quasi-
orderings are indeed wqo. Moreover the property of being bqo is preserved
by a much wider class of operations than those that preserve the property
of being wqo, the general pattern being that when wqos are closed under a
finitary operation, bqos are closed under its infinitary generalization (see e.g.
Higman’s and Nash-Williams’ theorems in Section 2). [28] is a survey of wqo
and bqo theory, while [38] (see [6] for a simplification in that approach) and
[32] are alternative introductions to bqo theory. We postpone the precise (and
rather technical) definition of bqo to Section 1.
Wqo and bqo theory represents an area of combinatorics which has always
interested logicians. From the viewpoint of reverse mathematics ([42] is the
basic reference on the subject) one of the reasons for this interest stems from
the fact that these theories appear to use axioms that are within the realm of
second order arithmetic, yet aremuch stronger than those necessary to develop
other areas of ordinary mathematics (as defined in the introduction of [42]).
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In this paper we survey the known results about the provability of theorems
of wqo and bqo theory within subsystems of second order arithmetic, state
open problems and conjectures, and prove a few new results. The latter are
mainly about the most elementary part of the theory, i.e. deal with the various
equivalent definitions and with the basic closure properties of wqo and bqo.
We now list the subsystems of second order arithmetic we will use. Some of
them are those usually appearing in reverse mathematics: RCA0 is the weakest
theory and consists of the basic algebraic axioms for the natural numbers
together with the schemes of Σ01-induction and ∆

0
1-comprehension; WKL0 is

obtained by adding to RCA0 the compactness principle embodied in König’s
lemma for binary trees; ACA0 is stronger, and is obtained from RCA0 by
extending the comprehension scheme to arithmetical formulas; ATR0 further
extends ACA0 by allowing definitions by arithmetical transfinite recursion;
Π11-CA0 is the strongest system and is obtained by allowingΠ

1
1 formulas in the

comprehension scheme. Wewill alsomention the stronger subsystemΠ12-CA0,
where comprehension is extended toΠ12 formulas: this is a very strong system,
and no theorems of ordinary mathematics provable in second order arithmetic
are known to require Π12-CA0.
Other subsystems of second order arithmetic that are relevant to wqo theory
are obtained by adding to RCA0 certain combinatorial principles: we denote
these subsystems with the abbreviation used for the combinatorial principle.
RT22 is Ramsey’s theorem for pairs and two colors (i.e. the statement that
for every f : [N]2 → {0, 1} there exists A ∈ [N]� which is homogeneous
for f, i.e. such that f is constant on [A]2). [1] contains what is currently
known on RT22 and other instances of Ramsey’s theorem, including the well-
known fact that RT22 is properly stronger than RCA0, Hirst’s ([14]) result
thatWKL0 does not prove RT22, and Seetapun’s theorem ([36]) implying that
RT22 is properly weaker than ACA0 (this paper sparked the recent research on
Ramsey’s theorem for pairs). It is unknownwhetherRT22 provesWKL0. RT1<∞
is the infinite pigeonhole principle (i.e. the statement that for every k ∈ N and
every f : N → {0, . . . , k − 1} there exists A ∈ [N]� such that f is constant
on A), which can be viewed as Ramsey’s theorem for singletons. Hirst ([14])
proved that RT1<∞ is properly stronger than RCA0, independent ofWKL0, and
implied by RT22. It can also be shown that RT1<∞ is properly weaker than
RT22. Notice that the finite pigeonhole principle (i.e. the statement that for
every k ∈ N there is no one-to-one function from {0, . . . , k} to {0, . . . , k−1})
is provable in RCA0. For every fixed k ∈ N, RCA0 proves also the infinite
pigeonhole principle for k.
The limitations of the expressive power of second-order arithmetic force
us to consider only countable sets Q: this is not very restrictive because a
quasi-ordering is wqo (resp. bqo) if and only if each of its restrictions to a
countable subset of its domain is wqo (resp. bqo). In this paperQ will always
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denote a countable set; however we will consider also quasi-orderings defined
on uncountable sets (such asP(Q), sets of infinite sequences of elements ofQ,
and the set of all countable linear orderings) and statements about these (with
an appropriate quasi-ordering) being wqo or bqo are dealt with in a natural
way (see Definition 1.12 below).
We now explain the organization of the paper. In Section 1 we establish
our notation and terminology. Section 2 is a survey of the results from the
literature about the axiomatic strength of theorems of wqo and bqo theory.
In Section 3 we study whether weak systems suffices to establish that some
very simple (e.g. finite) specific quasi-orderings are bqo. Section 4 explores the
axiomatic strength of the equivalences between some of the various definitions
of wqo and bqo. Section 5 deals with the provability of some of the elementary
closure properties of wqo and bqo.

§1. Notation and terminology. Whenever we begin a definition, lemma or
theorem with the name of a subsystem of second order arithmetic between
parenthesis we mean that the definition is given, or the statement provable,
within that subsystem.
First we define wqo within RCA0:

Definition 1.1 (RCA0). Let � be a quasi-ordering on Q. � is wqo if for
every map f : N→ Q there exist m < n such that f(m) � f(n).
Definition 1.2. Let A be an infinite subset of N and f : A → Q. We say

that f is a good sequence (with respect to �) if there exist m, n ∈ A such that
m < n and f(m) � f(n); f is bad otherwise.
The following characterization of wqo is immediate:
Lemma 1.3 (RCA0). Let� be a quasi-ordering onQ. The following are equiv-

alent:
i) � is wqo;
ii) every sequence of elements of Q is good with respect to �.
To give the definition of bqo we need some terminology and notation for
sequences and sets (here we follow [26]). All the definitions are given in
RCA0. If s is a finite sequence we denote by lh s its length and, for every
i < lh s , by s(i) its (i + 1)-th element. Then we write this sequence as
s = 〈s(0), . . . , s(lh s − 1)〉. If s and t are finite sequences we write s � t if s
is an initial segment of t, i.e. if lh s ≤ lh t and ∀i < lh s s(i) = t(i). We write
s ⊆ t if the range of s is a subset of the range of t, i.e. if ∀i < lh s ∃j < lh t
s(i) = t(j). s � t and s ⊂ t have the obvious meanings. We write s�t for
the concatenation of s and t, i.e. the sequence u such that lh u = lh s + lh t,
u(i) = s(i) for every i < lh s , and u(lh s + i) = t(i) for every i < lh t. These
notations are extended to infinite sequences (i.e. functions with domain N) as
well.
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IfX ⊆ N is infinite we denote by [X ]<� the set of all finite subsets ofX . We
identify a subset of N with the unique sequence enumerating it in increasing
order, so that we can use the notation introduced above. If k ∈ N, [X ]k is
the subset of [X ]<� consisting of the sets with exactly k elements. Similarly
[X ]� stands for the collection of all infinite subsets ofX . Note that [X ]� does
not formally exist in second order arithmetic, and is only used in expressions
of the form Y ∈ [X ]� ; here again we identify Y with the unique sequence
enumerating it in increasing order (notice that in RCA0 an element of [X ]�

exists as a set if and only if it exists as an increasing sequence, so that this
identification is harmless). For X ∈ [N]� and m ≤ n let X [m, n] be the
finite set enumerated by 〈X (m), . . . , X (n − 1)〉, while X [m,∞] is the infinite
set X \ {X (0), . . . , X (m − 1)}; we write X [n] in place of X [0, n]. The same
notation applies also to finite sets.
The notion of the base of a set of finite sets is basic for defining blocks and
barriers and hence bqo. If B ⊆ [N]<� then base(B) is the set

{n | ∃s ∈ B ∃i < lh s s(i) = n}.

RCA0 does not prove the existence of base(B) for arbitrary B ⊆ [N]<� ; indeed
we have

Lemma 1.4 (RCA0). The following are equivalent:

i) ACA0;
ii) for every set B ⊆ [N]<� , base(B) exists as a set.
Proof. It is obvious that i) implies ii). To prove the converse recall that

ACA0 is equivalent (overRCA0) to the statement that the range of any function
exists as a set. Given f : N→ N let B be

{〈2n, 2m + 1〉 | f(n) = m ∧ n ≤ m} ∪ {〈2m + 1, 2n〉 | f(n) = m ∧ n > m}.

By ii) base(B) exists as a set. Then {m | 2m + 1 ∈ base(B)} is a set which
coincides with the range of f. �
Lemma 1.4 does not affect the possibility of defining blocks and barriers
within RCA0: e.g. “base(B) is infinite” (which is condition (1) in the definition
of block below) can be expressed by ∀m ∃n > m ∃s ∈ B n ∈ s . (For barriers
see Lemma 1.6 below.)

Definition 1.5 (RCA0). A set B ⊆ [N]<� is a block if:
(1) base(B) is infinite;
(2) ∀X ∈ [base(B)]� ∃s ∈ B s � X ;
(3) ∀s, t ∈ B s �� t.
B is a barrier if it satisfies (1), (2) and

(3’) ∀s, t ∈ B s �⊂ t.
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RCA0 proves that if X ∈ [N]� then [X ]k is a barrier for every k > 0. Other,
more complex, examples of barriers are {s ∈ [N]<� | lh s = s(0) + 1} and
{s ∈ [N]<� | lh s = s(s(0)) + 1}.
It is immediate that every barrier is a block. Notice that if B is a block and

Y ∈ [base(B)]� then RCA0 proves that there exists a unique block B ′ ⊆ B
such that base(B ′) = Y , namely B ′ = {s ∈ B | s ⊂ Y}. Notice also that if B
is a barrier then B ′ is also a barrier and we say that B ′ is a subbarrier of B .
Lemma 1.6 (RCA0). If B is a barrier then base(B) exists as a set and B is

isomorphic to a barrier B ′ with base(B ′) = N.
Proof. If B is a barrier the equivalences

n ∈ base(B) ⇐⇒ ∃s ∈ B n ∈ s
⇐⇒ ∀t ∈ B (t(0) > n → ∃i < lh t 〈n〉�t[i ] ∈ B)

show that base(B) has a ∆01 definition.
Since base(B) is a set it can be enumerated in increasing order and using

this enumeration it is easy to define an isomorphic copy of B on N. �

Problem 1.7. Does RCA0 prove that if B is a block then base(B) exists as
a set?

Definition 1.8 (RCA0). Let s, t ∈ [N]<� : we write s � t if there exists
u ∈ [N]<� such that s � u and t � u[1, lh u].

Notice that 〈0, 3, 5〉 � 〈3, 5, 7, 8〉 � 〈5, 7, 8, 9〉 and 〈0, 3, 5〉 � 〈5, 7, 8, 9〉, so
that � is not transitive.
Definition 1.9 (RCA0). Let � be a quasi-ordering on Q, B be a block and

f : B → Q. We say that the map f is good with respect to � if there exist
s, t ∈ B such that s � t and f(s) � f(t). If f is not good then we say that it
is bad. f is perfect if for every s, t ∈ B such that s � t we have f(s) � f(t).
We can now give the definition of bqo:

Definition 1.10 (RCA0). Let � be a quasi-ordering on Q. � is bqo if for
every barrier B and every map f : B → Q, f is good with respect to �.

To understand the notion of bqo it may be helpful to make the following
observations, which lead to the alternative approach to bqo theory developed
in [38]. A block (in particular, a barrier) B represents an infinite partition of
[base(B)]� into clopen sets with respect to the usual topology of [base(B)]� .
Thus any subset of a block represents a clopen subset of [base(B)]� and any
map f : B → Q represents a continuous map F : [base(B)]� → Q where
Q has the discrete topology; f is good if for some X ∈ [base(B)]� we have
F (X ) � F (X [1,∞]).
Lemma 1.11 (RCA0). Every bqo is wqo.
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Proof. [N]1 is a barrier, and it suffices to notice that 〈n〉 � 〈m〉 if and only
if n < m. �
We conclude this section by defining the notion of bqo in the case of an
uncountable quasi-ordering (the definition of wqo is similar). In this case we
need to give a definition schema, since a quasi-ordering on an uncountable
structure is a formula satisfying the properties of reflexivity and transitivity.
To be definite, let us assume that �∗

∗ is a quasi-ordering defined on P(Q).

Definition 1.12 (RCA0). A sequence 〈Xs : s ∈ B〉 of elements of P(Q) in-
dexed by a barrier B is good if there exist s, t ∈ B such that s � t and
Xs �∗

∗ Xt . If every such sequence is good we say that �∗
∗ is bqo.

We will however use the notation f : B → P(Q) to denote what formally
is a sequence of elements indexed by B .

§2. Survey of known results. One of the main tools of wqo theory is the
minimal bad sequence lemma (apparently isolated for the first time in [29]).

Definition 2.1 (RCA0). Let � be a quasi-ordering on Q. A transitive bi-
nary relation<′ on Q is compatible with� if for every q0, q1 ∈ Q we have that
q0 <

′ q1 implies q0 � q1. We write q0 ≤′ q1 for q0 <′ q1 ∨ q0 = q1. In this
situation, if A,A′ ∈ [N]� , f : A → Q, and f′ : A′ → Q we write f ≤′ f′ if
A ⊆ A′ and ∀n ∈ A f(n) ≤′ f′(n); we write f <′ f′ if f ≤′ f′ and ∃n ∈ A
f(n) <′ f′(n). f is minimal bad with respect to <′ if it is bad with respect to
� and there is no f′ <′ f which is bad with respect to �.

Statement 2.2 (minimal bad sequence lemma). Let � be a quasi-ordering
on Q and <′ a well-founded relation which is compatible with �: if A ∈ [N]�
and f : A → Q is bad with respect to � then there exists f′ : A′ → Q such
that f′ ≤′ f and f′ is minimal bad with respect to <′.

The minimal bad sequence lemma has been analyzed by Simpson andMar-
cone:

Theorem 2.3 ([26]). Within RCA0, Π
1
1-CA0 is equivalent to the minimal bad

sequence lemma.

Two important theorems that can be proved using theminimal bad sequence
lemma are Higman’s theorem ([13]) and Kruskal’s theorem ([18]). The latter
establishes a conjecture of Vázsonyi from the 1930’s which was popularized
by Erdős.

Definition 2.4 (RCA0). If � is a quasi-ordering on Q we define a quasi-
ordering onQ<� , the set of finite sequences of elements ofQ, by setting s ≤ t
if and only if there exists an embedding of s into t, i.e. a strictly increasing
f : lh s → lh t such that s(i) � t(f(i)) for every i < lh s .
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Statement 2.5 (Higman’s theorem). If � is wqo on Q then ≤ is wqo on
Q<� .

Definition 2.6 (RCA0). If T is the set of all finite trees define a quasi-
ordering on T by setting T0 �T T1 if and only if there exists a homeomorphic
embedding of T0 in T1, i.e. an injective f : T0 → T1 such that f(s ∧ t) =
f(s) ∧ f(t) for every s, t ∈ T0 (here ∧ denotes greatest lower bound).
If � is a quasi-ordering on Q define a quasi-ordering on T Q, the set of
finite trees labelled with elements of Q, by setting (T0, �0) �T Q (T1, �1) if
and only if there exists a homeomorphic embedding f of T0 in T1 such that
�0(s) � �1(f(s)) for every s ∈ T0.

Statement 2.7 (Kruskal’s theorem). �T is wqo on T .

Statement 2.8 (generalized Kruskal’s theorem). If � is wqo on Q then
�T Q is wqo on T Q.

Theorem 2.3 implies that the usual proofs of both Higman’s theorem and
the generalized Kruskal’s theorem can be carried out within Π11-CA0. On
the other hand, these theorems are Π12 statements and hence it follows from
standard model theoretic considerations (see e.g. [26, corollary 1.10]) that
neither of them impliesΠ11-CA0 over ATR0. The axiomatic status of these two
theorems is however quite different. Higman’s theorem is fairly weak:

Theorem 2.9. Within RCA0, ACA0 is equivalent to Higman’s theorem.
Sketch of the proof. Theproof ofHigman’s theoremwithinACA0 is based
on the technique of “reification” of wqos by well-orderings ([16, 34], see also
[17]), and follows from the results in Section 4 of [41] (see [5, theorem 3] for
details). ACA0 is used twice in this proof: first to show that every wqo admits
a reification by a well-ordering and then, since RCA0 proves that if Q has
a reification of order type α then Q<� has a reification of order type ��

α+1

([41, sublemma 4.8], which is Lemma 5.2 of [35]), to show that ��
α+1
is a

well-ordering when α is a well-ordering ([12], see [15]). RCA0 then shows that
if a quasi-order admits a reification by a well-ordering then it is wqo.
The reversal is proved in [5] (and implied, albeit withinRT22, by Lemma 5.10

below). �
The following theorem of Friedman’s shows that Kruskal’s theorem is much
stronger than Higman’s theorem:

Theorem 2.10 ([39]). Kruskal’s theorem (and, a fortiori, the generalized
Kruskal’s theorem) is not provable in ATR0.
Sketch of the proof. The proof proceeds by constructing a bijection ϕ

between T and a certain primitive recursive notation system for the ordinals
less than Γ0. Since ACA0 proves that T0 �T T1 implies ϕ(T0) ≤o ϕ(T1)
(where ≤o is the ordering on the ordinal notation system), ACA0 proves that
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Kruskal’s theorem implies thewell-ordering of the systemof ordinal notations.
Since Γ0 is the proof-theoretic ordinal of ATR0, it follows that ATR0 does not
prove Kruskal’s theorem. �
Therefore from the viewpoint of reverse mathematics Kruskal’s theorem
and its generalization are intermediate between the theorems equivalent to
ATR0 and those equivalent to Π

1
1-CA0.

Friedman proved another strengthening of Kruskal’s theorem (obtained by
adding a “gap condition” on the homeomorphic embedding) which is known
in the literature as the extended Kruskal’s theorem. Friedman himself ([39])
showed, generalizing the technique of Theorem 2.10 to larger ordinals, that
the extended Kruskal’s theorem is not provable in Π11-CA0, thus providing a
rare example of a theorem of ordinary mathematics provable within second
order arithmetic but not within Π11-CA0.
An even more striking (being a problem studied well before its axiomatic
analysis) instance of this phenomenon is providedby the graphminor theorem,
proved by Robertson and Seymour in a long series of papers (see [44, section
5] for an overview):

Definition 2.11 (RCA0). IfG is the set of all finite directed graphs (allowing
loops and multiple edges) define a quasi-ordering on G by setting G0 �m G1
if and only if G0 is isomorphic to a minor of G1.

Statement 2.12 (graph minor theorem). �m is wqo on G.

The proof of even special cases of the graph minor theorem (where �m is
restricted to some subset of G) uses iterated applications of the minimal bad
sequence lemma. This technique is not available in Π11-CA0 and this is no
accident, as the following theorem (again proved generalizing the technique
of Theorem 2.10 to larger ordinals) shows:

Theorem 2.13 ([10]). The graph minor theorem is not provable in Π11-CA0.

One may ask whether Higman’s theorem can be extended to infinite se-
quences. The answer is negative, as the following example due to Rado ([33],
see [28, p. 492]) shows: let R = [N]2 and define 〈i, j〉 �R 〈k, l〉 if and only
if either i = k and j ≤ l , or j < k. It is easy to see that �R is wqo, while
f : N → R� defined by f(n) = 〈〈n, n + 1〉 , 〈n, n + 2〉 , . . .〉 shows that �R is
not wqo on R�. Moreover Rado’s example is canonical, because if � is wqo
on Q then ≤ is wqo on Q� if and only if Q does not contain any copy of R
([33]; see [21] for a simpler proof).
It is clear that Rado’s example is not bqo: [N]2 is a barrier and the identity
map is bad with respect to �R. Starting from Rado’s example Nash-Williams
developed the idea of bqo and proved one of the first theorems of the subject
in [31] by generalizing Higman’s theorem:
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Definition 2.14 (RCA0). If � is a quasi-ordering on Q extend the quasi-
ordering ≤ defined on Q<� in Definition 2.4 to Q̃, the set of all countable
sequences of elements of Q (i.e. the set of all functions from a countable
well-ordering to Q).

Statement 2.15 (Nash-Williams’ theorem). If� is bqo onQ then≤ is bqo
on Q̃.

Notice that Q̃ is uncountable, and hence in the preceding statement we are
using Definition 1.12.
A weak version of Nash-Williams’ theorem turns out to play a role in the
axiomatic analysis:

Statement 2.16 (generalized Higman’s theorem). If � is bqo on Q then ≤
is bqo on Q<� .

The proofs of Nash-Williams’ theorem use a generalization of the minimal
bad sequence lemma known as the minimal bad array lemma (the maps of
Definition 1.9 are sometimes called arrays) or the forerunning technique (this
method was explicitly isolated and clarified in [22]).

Definition 2.17 (RCA0). Let�be aquasi-orderingonQ and<′ be compat-
ible with� in the sense of Definition 2.1. IfB andB ′ are barriers, f : B → Q,
andf′ : B ′ → Q wewritef ≤′ f′ if base(B) ⊆ base(B ′), and for every s ∈ B
there exists s ′ ∈ B ′ such that s ′ � s and f(s) ≤′ f′(s ′). We write f <′ f′ if
f ≤′ f′ and for some s ∈ B , s ′ ∈ B ′ with s ′ � s we have f(s) <′ f′(s ′). f
is minimal bad with respect to <′ if it is bad with respect to � and there is no
f′ <′ f which is bad with respect to �.

Statement 2.18 (minimal bad array lemma). Let� be a quasi-ordering on
Q and<′ a well-founded relation which is compatible with�. If B is a barrier
and f : B → Q is bad with respect to � then there exist a barrier B ′ and
f′ : B ′ → Q such that f′ ≤′ f and f′ is minimal bad with respect to <′.

The proof of the minimal bad array lemma appears to use very strong set-
existence axioms: a crude analysis shows that they can be carried out within
Π12-CA0.

Problem 2.19. What is the axiomatic strength of the minimal bad array
lemma? We conjecture that it is not provable within Π11-CA0.

To deal with Nash-Williams’ theorem in a system within the usual scope of
reverse mathematics the following milder generalization of the minimal bad
sequence lemma is useful: this is actually the first version of the minimal bad
array lemma proved for a specific quasi-ordering by Nash-Williams in [30],
and was used in [24] to obtain a fine analysis of Nash-Williams’ theorem.
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Definition 2.20 (RCA0). Let � be a quasi-ordering on Q and <′ be com-
patible with � in the sense of Definition 2.1. If B and B ′ are barriers,
f : B → Q, and f′ : B ′ → Q we write f ≤′

� f
′ if B ⊆ B ′ and ∀s ∈ B

f(s) ≤′ f′(s). We write f <′
� f

′ if f ≤′
� f

′ and ∃s ∈ B f(s) <′ f′(s). f is
locally minimal bad with respect to<′ if it is bad with respect to� and there is
no f′ <′

� f which is bad with respect to �.
Statement 2.21 (locally minimal bad array lemma). Let � be a quasi-or-
dering on Q and <′ a well-founded relation which is compatible with �: if B
is a barrier and f : B → Q is bad with respect to � then there exist a barrier
B ′ and f′ : B ′ → Q such that f′ ≤′

� f and f
′ is locally minimal bad with

respect to <′.

Theorem 2.22 ([26]). Within RCA0,Π
1
1-CA0 is equivalent to the locally min-

imal bad array lemma.
Sketch of the proof. The proof of the locally minimal bad array lemma

withinΠ11-CA0 is the generalization of the proof of the minimal bad sequence
lemma.
For the other direction, notice that if B ⊆ [N]1 then, modulo the obvious
identification of [N]1 and N, a map f : B → Q is locally minimal bad if and
only if it is minimal bad in the sense of Definition 2.1. Therefore the minimal
bad sequence lemma is a particular instance of the locally minimal bad array
lemma and, by Theorem 2.3, the locally minimal bad array lemma implies
Π11-CA0 within RCA0. �
The forward direction of Theorem 2.22 is one of the main tools in the proof
of:
Theorem 2.23 ([26]). Π11-CA0 proves Nash-Williams’ theorem.

In the proof of Theorem 2.23Π11 comprehension is used only in proving the
locally minimal bad array lemma, which is in turn used only to establish the
generalized Higman’s theorem; since all the remaining arguments go through
in ATR0 we obtain:
Theorem 2.24 ([26]). Within ATR0 Nash-Williams’ theorem and the gener-

alized Higman’s theorem are equivalent.
In [26] the following conjecture was stated:

Conjecture 2.25. ATR0 proves Nash-Williams’ theorem.

In [5] Clote claimed to have proved Conjecture 2.25, but his proof is incor-
rect, as Clote himself has acknowledged (personal communication). Conjec-
ture 2.25 is supported by the following theorem ([26]):

Theorem 2.26. ATR0 plus Nash-Williams’ theorem does not imply Π
1
1-CA0.

Sketch of the proof. By Theorem 2.24 it suffices to show that the gener-
alized Higman’s theorem does not imply Π11-CA0 within ATR0. Since “being
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bqo” is Π12 and no better ([24, 25]), the generalized Higman’s theorem is a
Π13 statement and we cannot directly apply the model theoretic considerations
mentioned before Theorem 2.9. However the proof of the generalized Hig-
man’s theorem within Π11-CA0 actually yields a slightly stronger result, which
is a Π12 statement; this suffices to complete the proof. �
A natural way of proving Conjecture 2.25 is extending the ordinal analysis
used in the proof of the forward direction of Theorem 2.9 to the generalized
Higman’s theorem (actually to the Π12 statement mentioned in the sketch of
the proof of Theorem 2.26): this has eluded all attempts to date. Another, so
far unfruitful as well, approach consists in establishing within ATR0 a weaker
version of the locally minimal bad array lemma which suffices to prove the
generalized Higman’s theorem. In this version the well-foundedness of <′ is
replaced by the stronger property that for each q ∈ Q the set {q′ ∈ Q | q′ <′ q}
is finite. (The proof of Theorem 2.3 does not show that this version of the
locally minimal bad array lemma implies Π11-CA0.)
One of the most famous achievements of bqo theory is Laver’s proof ([20])
of Fraı̈ssé’s conjecture ([7]). Laver actually proved a stronger result and we
keep the two statements distinct.

Definition 2.27 (RCA0). If L is the set of countable linear orderings define
a quasi-ordering on L by setting L0 �L L1 if and only if there exists an order-
preserving embedding of L0 in L1, i.e. an injective f : L0 → L1 such that
x <L0 y implies f(x) <L1 f(y) for every x, y ∈ L0.
If � is a quasi-ordering on Q define a quasi-ordering on LQ, the set of

countable linear orderings labelled with elements ofQ, by setting (L0, �0) �LQ
(L1, �1) if and only if there exists an order-preserving embedding f of L0 in
L1 such that �0(x) � �1(f(x)) for every x ∈ L0.
Statement 2.28 (Fraı̈ssé’s conjecture). �L is wqo on L.
Statement 2.29 (Laver’s theorem). If � is bqo on Q then �LQ is bqo on

LQ.
Notice that (using the bqo with a single element and Lemma 1.11) Laver’s
theorem easily implies Fraı̈ssé’s conjecture. It is also immediate that Laver’s
theorem implies Nash-Williams’ theorem.
The known proofs of Fraı̈ssé’s conjecture actually establish Laver’s theorem

and in particular that �L is bqo on L. These proofs use the minimal bad
array lemma and can be carried out inΠ12-CA0 (using the results of [4] for the
analysis of linear orderings). Since Fraı̈ssé’s conjecture is a Π12 statement the
usual considerations yield:

Theorem 2.30. ATR0 plus Fraı̈ssé’s conjecture does not imply Π
1
1-CA0.

Therefore the following conjecture is plausible:

Conjecture 2.31 ([42]). ATR0 proves Fraı̈ssé’s conjecture.
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An interesting step towards establishing Conjecture 2.31 would be the anal-
ogous of Theorem 2.23, i.e. a proof of Fraı̈ssé’s conjecture within Π11-CA0.
To refute Conjecture 2.31 one could assign ordinals to linear orderings in a
way similar to the proof of Theorem 2.10; however this does not appear to be
feasible, since linear orderings lack the structure which is present in trees.
So far we have only considered upper bounds (i.e. provability results or
conjectures) for the main theorems of bqo theory. An important lower bound
is due to Shore ([37]):

Theorem 2.32 (RCA0). The statement “every infinite sequence of countable
well-orderings contains two distinct elements which are comparable with respect
to �L” implies ATR0.

The statement contained in Theorem 2.32 implies both Nash-Williams’
theorem and Fraı̈ssé’s conjecture, and hence each of Nash-Williams’ theorem,
Fraı̈ssé’s conjecture andLaver’s theorem impliesATR0 withinRCA0. Therefore
Conjectures 2.25 and 2.31 are actually conjectures about equivalences with
ATR0.
Other theorems of wqo and bqo theory could be investigated within subsys-
tems of second order arithmetic: some of them are listed in [42, pp. 407–410]
and [11], while a more recent result is the main theorem of [43].

§3. Specific quasi-orderings. In the following discussion of finite quasi-
orderings we use standard set-theoretic notation and identify p ∈ N with the
set {0, 1, . . . , p − 1}. It is obvious that if a map from a barrier to a set is
good with respect to the quasi-ordering which makes the elements pairwise
incomparable then it is good with respect to any quasi-ordering on that set.
Thus we always consider p equipped with the quasi-ordering which makes the
elements pairwise incomparable.

RCA0 easily proves that all well-orderings and all finite quasi-orderings are
wqo (indeed for the latter fact the finite pigeonhole principle suffices). The
situation with the stronger property of bqo is more delicate. In fact, the
straightforward proof that 2 is bqo uses the so-called barrier theorem, which
by Theorem 4.9 below is equivalent to ATR0. On the other hand, a reversal to
a theory T weaker (not necessarily properly) than ATR0 of a statement of the
form “ifQ is bqo thenΦ(Q) is bqo” (see e.g. Problem 5.7 andConjecture 5.18)
is likely to require the construction of a quasi-ordering Q which is proved to
be bqo in a theory properly weaker than T. Thus it appears to be worthwhile
to find out which specific quasi-orderings can be shown to be bqo in theories
properly weaker than ATR0.

Lemma 3.1 (RCA0). Every well-ordering is a bqo.

Proof. Let Q be well-ordered by �, B be a barrier and f : B → Q. For
every i let si ∈ B be such that si � base(B)[i,∞]; then si � si+1 for every i .
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Since Q is a well-ordering there exists i such that f(si) � f(si+1), and hence
f is good. �

ATR0 proves the clopen Ramsey’s theorem for two colors, and hence for any
p ∈ N, it proves that p is bqo. When p = 2 this result can be improved:
Lemma 3.2 (RCA0). 2 is bqo.
Proof. We reason within RCA0. Let B be a barrier. Pick s ∈ B , n ∈
base(B), and t ∈ B such that, if k = lh s , we have s(k − 1) < n < t(0).
Since B is a barrier there exist s0 = s, . . . , sk, sk+1 = t ∈ B such that
si � s[i, k]� 〈n〉�t for i < k and sk � 〈n〉�t. Clearly si � si+1 for every
i ≤ k. Similarly there exist s ′0 = s, . . . , s ′k = t ∈ B such that for i < k we have
s ′i � s[i, k]�t. Therefore s ′i � s ′i+1 for every i < k.
Towards a contradiction suppose that f : B → 2 is bad, so that whenever
u � v we havef(u) �= f(v) and hencef(u) = 1−f(v). If k is even we have

f(s0) = f(sk) �= f(sk+1) so that f(t) �= f(s) and
f(s ′0) = f(s

′
k) so that f(t) = f(s).

A similar contradiction is reached if k is odd. �
Theorem 5.11 below shows that if a theory T containing RCA0 proves that

3 is bqo then for any p ∈ N, T proves that p is bqo. Therefore the following
problem is rather important:

Problem 3.3. Does any subsystem properly weaker than ATR0 prove that
3 is bqo?

In attempting to answer affirmatively the question of Problem 3.3 we will
now prove some partial results. Recall that every [N]k is a barrier.
Let us write E∗(k;p) for an exponential stack of k − 1 2’s with p placed on
top. The recursive definition, which can be given in RCA0, is E∗(1;p) = p,
E∗(k+1;p) = 2E∗(k;p). Easy inductionswithinRCA0 prove that E∗(k+1;p) =
E∗(k; 2p) and p < p′ → E∗(k;p) < E∗(k;p′) hold. The statement of the next
lemma is essentially due to Friedman ([8]), although our notation is slightly
different from his.
Lemma 3.4 (RCA0). Letk, p > 0. For every functionf : [E∗(k;p+1)]k → p
there exist x0 < x1 < · · · < xk < E∗(k;p + 1) such that f(x0, . . . , xk−1) =
f(x1, . . . , xk).

Proof. The proof is by Π01-induction ([42, corollary II.3.10]) on k. When
k = 1 the statement is just an application of the finite pigeonhole principle,
since E∗(1;p + 1) = p + 1.
For the induction step let us fix a bijection � : P(p) → 2p between the
subsets of p and 2p. Given a function f : [E∗(k + 1;p + 1)]k+1 → p define
g : [E∗(k + 1;p + 1)]k → 2p by
g(x0, . . . xk−1) = �({f(x0, . . . , xk−1, y) | xk−1 < y < E∗(k + 1;p + 1)}).
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Since E∗(k+1;p+1) = E∗(k; 2p+1) ≥ E∗(k; 2p+1) the induction hypothesis
implies the existence of x0 < x1 < · · · < xk < E∗(k + 1;p + 1) such that
g(x0, . . . , xk−1) = g(x1, . . . , xk). Sincef(x0, . . . , xk) ∈ �−1(g(x0, . . . , xk−1))
= �−1(g(x1, . . . , xk)) there exists xk+1 such that xk < xk+1 < E∗(k+1;p+1)
and f(x0, . . . , xk) = f(x1, . . . , xk, xk+1). �
Lemma 3.4 immediately implies the following:

Theorem 3.5 (RCA0). Let k, p > 0. Every map f : [N]k → p is good.
Using the terminology of [24, 27], Theorem 3.7 says that RCA0 suffices
to prove that any finite quasi-ordering is �k-wqo for every finite k. The
next theorem deals with the provability (using the same terminology) of “3 is
��-wqo”.

Definition 3.6 (RCA0). Let k > 0. A barrier B is an (��, k)-barrier if

∀s ∈ B (s(0) = min(base(B))→ lh s ≤ k).

The barrier {s ∈ [N]<� | lh s = s(1) + 1} is not (��, k) for any k, but all
barriers of order type ≤ �� (in the sense of [24, 27]) are (��, k) for some k.
Theorem 3.7. Let ϕ(k) be the statement “if B is an (��, k)-barrier then
every f : B → 3 is good”.
1) RCA0 proves ϕ(1);
2) RCA0 proves ϕ(2);
3) RT22 proves ϕ(3);
4) for every k ∈ N, ACA0 proves ϕ(k);
5) ACA0 plus “for every X and n, the nth Turing jump of X exists” (this
system is usually called ACA′

0) proves ∀k ϕ(k).
Proof. By Lemma 1.6 we may assume throughout the proof that the bar-
riers we deal with have base N.
To prove 1) letB be an (��, 1)-barrier and observe that 〈0〉 ∈ B and 〈0〉 � s

for any other s ∈ B . If f : B → 3 is bad we may assume that f(〈0〉) = 2:
thus for all s ∈ B with s �= 〈0〉 we must have f(s) = 0 or f(s) = 1. Since
B ′ = B \ {〈0〉} is a subbarrier of B , we have a bad map f � B ′ : B ′ → 2,
contradicting Lemma 3.2.
The proofs of 2), 3), 4) and 5) differ only in the use of different versions
of Ramsey’s theorem. Fix k > 1, an (��, k)-barrier B and let f : B → 3 be
bad. Define g : [N \ {0}]k−1 → 3 by setting g(s) = f(〈0〉�s ′) where s ′ � s is
such that 〈0〉�s ′ ∈ B (such an s ′ exists because B is an (��, k)-barrier). We
apply Ramsey’s theorem to g: RCA0 proves the infinite pigeonhole principle
for three colors which suffices when k = 2; RT22 proves Ramsey’s theorem
for pairs and three colors which is used when k = 3; for any k ∈ N, ACA0
proves Ramsey’s theorem for (k − 1)-tuples, while ACA′

0 proves that for every
k Ramsey’s theorem for (k − 1)-tuples holds ([11]). In any case there exists
Y ∈ [N \ {0}]� such that g � [Y ]k−1 is constant, say equal to 2. Let B ′ be the
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subbarrier of B with base(B ′) = Y : we claim that the bad map f � B ′ has
range 2, contradicting again Lemma 3.2.
To prove the claim let s ∈ B ′: we have s(0) > 0 and hence (by condition

(3’) in the definition of barrier) there exists s ′ � s , such that t = 〈0〉�s ′ ∈ B .
Then f(t) = 2 by the homogeneity of Y with respect to g; since t � s we
have f(s) ∈ {0, 1}, as claimed. �
Remark 3.8. The proof of 5) of Theorem 3.7 can be generalized arguing by

induction and obtaining for every p ∈ N a proof within ACA′
0 of the following

statement: “if B is a barrier and there exists h : base(B) → N such that
∀s ∈ B ∀n ∈ base(B) (s(0) = n → lh s ≤ h(n)), then every f : B → p is
good”.

Remark 3.9. Theorems 3.5 and 3.7 should not be viewed as steps toward
an inductive proof of “3 is bqo” in a system weaker than ATR0: in fact it is
known that ATR0 is necessary for any comparability between ordinals to hold
(Theorem 2.32 is the strongest result along these lines, but see also [9] and
[42, theorem V.6.8]). These theorems are best understood as limitations on
the sort of statement that can lead to a negative answer to the question of
Problem 3.3. Notice however that the statement of Theorem 3.5 is Π11 and
hence, by model theoretic arguments similar to the ones used in Section 2 with
respect to Π11-CA0 (using the results of Section VIII.4 of [42]), cannot imply
ATR0 over, say, the system of Σ

1
1 dependent choice. On the other hand each of

the statements appearing in Theorem 3.7 is Π12 and could have implied ATR0.

§4. Equivalent definitions of wqo and bqo. The definitions of wqo and bqo
of Section 1 are equivalent to many other statements about quasi-orderings
(in [28]Milner lists seven equivalent characterizations of wqo). In this section
we investigate which axioms are needed to prove some of these equivalences.
One of the alternative definitions of wqo is a strengthening requiring that
every sequence of elements of Q contains an increasing subsequence.
Lemma 4.1 (RT22). Let � be wqo on Q. For every f : N → Q there exists

A ∈ [N]� such that for every n,m ∈ A with n < m, f(n) � f(m).
Proof. Define h : [N]2 → {0, 1} by h(〈n,m〉) = 0 if and only if f(n) �

f(m) (since 〈n,m〉 represents a set we have n < m). By RT22 there exists
a set A which is homogeneous for h and, since Q is wqo, we must have
h � [A]2 = {0}. �
Lemma 4.2 (RCA0). The statement of Lemma 4.1 implies RT1<∞.
Proof. Let f : N → {0, . . . , k − 1}. Since k is wqo, by the statement of
Lemma 4.1 there exists an infinite set on which f is constant, i.e. we have
RT1<∞. �
Conjecture 4.3. Within RCA0, the statement of Lemma 4.1 is equivalent

to RT22.
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We now consider the intuitive definition of wqo we gave at the beginning of
the paper:
Lemma 4.4 (RCA0). Let � be a wqo on Q. With respect to � there are no

infinite descending chains and no infinite sets of pairwise incomparable elements
in Q.
Proof. If f : N → Q is an infinite descending chain or a one-to-one

enumeration of an infinite set of pairwise incomparable elements then for all
m < n we have f(m) � f(n), contradicting the definition of wqo. �
Lemma 4.5 (RT22). Let� be a quasi-ordering onQ without infinite descending

chains and infinite sets of pairwise incomparable elements. Then for every
f : N → Q there exists A ∈ [N]� such that for every n,m ∈ A with n < m,
f(n) � f(m), and hence Q is wqo.
Proof. Let f : N→ Q: define g : [N]2 → {0, 1, 2} by setting

g(〈n,m〉) =



0 if f(n) � f(m),
1 if f(m) ≺ f(n),
2 otherwise.

By RT22 there exists an infinite set A ⊆ N which is homogeneous for g. Since
Q is has no infinite descending sequence, g cannot have value 1 on A. If g has
value 2 onA thenf � A is one-to-one: RCA0 proves that the range of a one-to-
one function always contains an infinite set and hence there exists an infinite
set of pairwise incomparable elements in Q, contradicting our hypothesis.
Thus g has value 0 on A and f(m) � f(n) for all m, n ∈ A with m < n. �
Lemma 4.5 was first noticed by Simpson (personal communication).

Conjecture 4.6. Within RCA0, the statement “every quasi-ordering with-
out infinite descending chains and infinite sets of pairwise incomparable ele-
ments is wqo” is equivalent to RT22.

Another notion which is equivalent to wqo is the finite basis property:

Definition 4.7. A quasi-ordering� onQ has the finite basis property if for
every X ⊆ Q there exists a finite set Y ⊆ X such that ∀x ∈ X ∃y ∈ Y y � x.
The following lemma is essentially Lemma 3.2 of [41], although in that
paper Simpson considers the finite basis property for sequences rather than
sets.
Lemma 4.8 (RCA0). A quasi-ordering is wqo if and only if it has the finite

basis property.
Proof. Let Q be wqo with respect to � and X ⊆ Q. If X is finite take

Y = X , otherwise let f : N → Q be an enumeration of X . Let A = {n |
∀m < n f(m) � f(n)}. Since f(m) � f(n) for every m, n ∈ A with m < n,
if A is infinite then f � A is a bad sequence, contradicting our hypothesis.
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Hence Y = {f(n) | n ∈ A} ⊆ X is finite. For every x ∈ X let n be least such
that f(n) � x; then n ∈ A and therefore ∀x ∈ X ∃y ∈ Y y � x.
Let Q have the finite base property with respect to � and let f : N → Q.

Notice that if f is not one-to-one then any pair of numbers m < n for
which f(m) = f(n) witnesses that f is good. Therefore, let us suppose
that f is one-to-one. Define a strictly increasing g : N → N by setting
g(0) = 0 and letting g(i + 1) be the least n > g(i) such that f(n) > f(g(i))
(here the elements of Q are compared according to the usual order of N).
Since f ◦ g is strictly increasing (with respect to the usual order of N) the
set X = {x ∈ Q | ∃i x = f(g(i))} exists within RCA0. By the finite basis
property there exists a finite Y ⊆ X such that ∀x ∈ X ∃y ∈ Y y � x. Let

j = max{i | f(g(i)) ∈ Y}+ 1.
Sincef(g(j)) ∈ X there exists y ∈ Y such that y � f(g(j)). By definition of
j we have y = f(g(i)) for some i < j and, since g(i) < g(j), f is good. �
We now turn to alternative characterizations of bqo. The equivalence
between i) and ii) in the next theorem was conjectured by Clote in [3]. iii) is
the analogue for bqo of the statement of Lemma 4.1.
Theorem 4.9 (RCA0). The following are equivalent:
i) ATR0;
ii) the “barrier theorem”: if B is a barrier and f : B → {0, 1} then there
exists a subbarrier B ′ ⊆ B such that f � B ′ is constant;

iii) if Q is bqo with respect to � then for every barrier B and every map
f : B → Q there exists a subbarrier B ′ ⊆ B such that f � B ′ is perfect.

Proof. i) implies ii) follows easily from the fact thatATR0 proves the clopen
Ramsey’s theorem (see [26, theorem 2.13] for details).
For ii) implies iii) see the proof of Lemma 2.15 in [26]: the proof goes
through in RCA0 except where ii) is used.
To prove that iii) implies ii) view {0, 1} = 2 as in Section 3. By Lemma 3.2
this is a bqo and a perfect map f : B ′ → 2 must be constant, so that ii) is a
special case of iii).
To prove that ii) implies i) first of all notice that the proof of LemmaV.9.5 of
[42] (showing that the clopenRamsey’s theorem impliesACA0)works verbatim
assuming the barrier theorem. Thus we can work within ACA0. We will work
out some details of the proof (due to Jockusch) of Theorem V.9.6 of [42]; this
theorem states that the clopen Ramsey’s theorem implies ATR0 over ACA0.
We will actually show that the same proof works assuming the (apparently
weaker) barrier theorem.
Arguing as in that proofwe suppose {T ik | k ∈ N} are, for i = 0, 1, sequences

of trees with the property that for every k at least one of T 0k and T
1
k has no

path: our goal is to prove the existence of a set Z such that if T 1k has a path
then k ∈ Z, while if T 0k has a path then k /∈ Z.
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As in [42], for a tree T and X ∈ [N]� , X majorizes T means that T has a
path g such that g(n) ≤ X (n) for every n. Similarly, s ∈ [N]<� majorizes T
if there exists � ∈ T with lh � = lh s such that �(n) ≤ s(n) for every n < lh s .
Using König’s lemma (which is provable within ACA0) it is easy to show that
for every W ∈ [N]� and every k there exists m such that W [m] does not
majorize at least one of T 0k and T

1
k .

For any W ∈ [N]� let mW be the least m such that W [1, m] does not
majorize at least one of T 0k and T

1
k for every k ≤ W (0). Now let nW be the

least n such that W [mW ,mW + n] does not majorize at least one of T 0k and
T 1k for every k ≤W (0).
At this stage in [42] one defines a clopen subset P ⊆ [N]� by declaring that

W ∈ P if and only if for all k ≤W (0) we have
W [1, mW ] majorizes T 1k ←→W [mW ,mW + nW ] majorizes T 1k .

This suffices for applying the clopenRamsey’s theorem, but to use the barrier
theorem we need to go deeper into the details and show that this clopen set
can be coded by a barrier.
Let B = {W [mW + nW ] | W ∈ [N]�}. This definition is perspicuous but

not arithmetical. To check that B can be defined within ACA0 (actually RCA0
suffices here) notice that s ∈ B if and only if there existms, ns < lh s such that
a) lh s = ms + ns ;
b) s[1, ms ] does not majorize at least one of T 0k and T

1
k and s[ms,ms + ns ]

does not majorize at least one of T 0k and T
1
k for all k ≤ s(0);

c) for all m′ < ms there exists k ≤ s(0) such that s[1, m′] majorizes both
T 0k and T

1
k ;

d) for all n′ < ns there exists k ≤ s(0) such that s[ms,ms + n′] majorizes
both T 0k and T

1
k .

For each s ∈ B let us fix such ms , ns .

Claim 1. B is a barrier.

Proof of claim. Conditions (1) and (2) of the definition of barrier are
immediate, so we are left with checking (3’). Notice that if s, t ∈ [N]<� are
such that s ⊂ t then lh s < lh t and s(i) ≥ t(i) for every i < lh s ; therefore if
t[lh s] majorizes a tree so does s .
Suppose now, towards a contradiction, that s, t ∈ B are such that s ⊂ t.
Then s(0) ≥ t(0) and s[1, lh s] ⊂ t[1, lh t]: the latter condition implies that
either s[1, ms ] ⊂ t[1, mt ] or s[ms,ms + ns ] ⊂ t[mt,mt + nt ]. In the first case
ms < mt and s[1, ms ] does not majorize at least one of T 0k and T

1
k for all

k ≤ s(0). Since t(0) ≤ s(0) the above observation implies that t[1, ms ] does
not majorize at least one of T 0k and T

1
k for all k ≤ t(0), contradicting the

minimality of mt . The second case contradicts analogously the minimality
of nt . �
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Letf : B → {0, 1} be defined so thatf(s) = 1 if and only if for all k ≤ s(0)
we have

s[1, ms ] majorizes T 1k ←→ s[ms,ms + ns ] majorizes T 1k .
Then the clopen P defined in [42] is exactly

{W ∈ [N]� | ∃s ∈ B (s �W ∧ f(s) = 1)}.
The barrier theorem implies that there exists a subbarrier B ′ such that f � B ′

is constant. If we let U = base(B ′) then either [U ]� ⊆ P or [U ]� ∩ P = ∅
and we can follow the proof in [42], showing that the second alternative is
impossible and defining the set Z we are seeking. �

§5. Closure of wqo and bqo under elementary operations. We start the
study of elementary operations on quasi-orderings by considering two quasi-
orderings that can be defined on the power set P(Q) of a quasi-ordering Q.
(For a thorough study of these quasi-orderings from the viewpoint of the fine
analysis of bqos see [27].)

Definition 5.1 (RCA0). Let � be a quasi-ordering on Q. If X,Y ⊆ P(Q)
let

X �∃
∀ Y ⇐⇒ ∀x ∈ X ∃y ∈ Y x � y and

X �∀
∃ Y ⇐⇒ ∀y ∈ Y ∃x ∈ X x � y.

≡∃
∀ and ≡∀

∃ will denote the equivalence relations induced by the two quasi-
orderings.

We will also consider �∃
∀ and �∀

∃ restricted to Pf (Q), the set of all finite
subsets of Q.
If � is bqo on Q then �∃

∀ and �∀
∃ are both bqo on P(Q), and if � is wqo

on Q then �∃
∀ is wqo on Pf (Q) (as we will show). On the other hand Rado’s

example described in Section 2 shows that�wqo onQ does not imply�∀
∃ wqo

on Pf (Q) (consider the bad sequence defined by f(n) = {〈m, n〉 | m < n}).
The following well-known construction will be useful in our study of �∃

∀
and �∀

∃.

Definition 5.2 (RCA0). If B is a block let B2 = {s ∪ t | s, t ∈ B ∧ s � t}.
The main properties of B2 are provable within RCA0 and are collected in
the following lemma:
Lemma 5.3 (RCA0). Let B be a block.
a) B2 is a block;
b) for every t ∈ B2 there exist unique �0(t), �1(t) ∈ B such that �0(t) � �1(t)
and t = �0(t) ∪ �1(t);

c) if t, t′ ∈ B2 and t � t′ then �1(t) = �0(t′);
d) if B is a barrier then B2 is a barrier.
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Theorem 5.4. Let� be a quasi-ordering onQ and let�∗
∗ be either�∃

∀ or�∀
∃.

1) ACA0 proves that if Q is bqo with respect to � then P(Q) is bqo with
respect to �∗

∗;
2) RCA0 proves that if Q is bqo with respect to � then Pf (Q) is bqo with
respect to �∗

∗.
Proof. We first deal with both statements when �∗

∗ is �∃
∀. Assume that

P(Q) is not bqo with respect to �∃
∀ and let f : B → P(Q) be bad, where

B is a barrier. We define a bad g : B2 → Q. To this end if t ∈ B2 let
Xt = {q ∈ f(�0(t)) | ∀y ∈ f(�1(t)) q � y}: in general arithmetical compre-
hension is needed to prove the existence of Xt , but if the range of f consists
of finite sets RCA0 suffices. Xt �= ∅ because f(�0(t)) �∃

∀ f(�1(t)), which
is a consequence of the badness of f. Now let g(t) be the minimum (with
respect to the usual ordering of N) of Xt . g is bad with respect to�: indeed if
t, t′ ∈ B2 are such that t � t′ we have �1(t) = �0(t′) and hence g(t) � g(t′).
Thus Q is not bqo.
The proofs when �∗

∗ is �∀
∃ are similar. Given f : B → P(Q) bad with re-

spect to �∀
∃, for every t ∈ B2 let Yt = {q ∈ f(�1(t)) | ∀x ∈ f(�0(t)) x � q}.

The existence of Yt requires ACA0, but RCA0 suffices if the range of f is con-
tained in Pf (Q). Yt �= ∅ because f is bad and we can define g : B2 → Q by
letting g(t) be the minimum of Yt . Arguing as above we can prove that g is
bad with respect to �. �
For �∀

∃ Theorem 5.4.1 can be improved:

Lemma 5.5 (RCA0). If Q is wqo then for every X ∈ P(Q) there exists Y ∈
Pf (Q) such that Y ≡∀

∃ X . Moreover this can be proved uniformly, i.e. if {Xk |
k ∈ N} is a sequence of elements of P(Q) there exists a sequence {Yk | k ∈ N}
of elements of Pf (Q) such that Yk ≡∀

∃ Xk for every k.
Proof. The first statement follows immediately from Lemma 4.8: indeed
if Y ⊆ X then X �∀

∃ Y , and ∀x ∈ X ∃y ∈ Y y � x means X �∀
∃ Y .

Moreover it is clear that the proof of that lemma is uniform, since each Xk
can be enumerated in increasing order. �
Lemma 5.5 and Theorem 5.4.2 yield:

Theorem 5.6 (RCA0). If Q is bqo then P(Q) is bqo with respect to �∀
∃.

Theorem 5.6 shows that an (admittedly fairly weak) infinitary closure prop-
erty of bqo can be established within a weak subsystem of second order arith-
metic. This contrasts sharply with the results mentioned in Section 2, and in
particular with Theorem 2.32 and its consequences.
An interesting phenomenon can be noticed by considering the two finitary
operations that associate to a quasi-ordering Q respectively Pf (Q) quasi-
ordered by �∀

∃ and Q
<� quasi-ordered by embeddability. As noticed above

the former operation does not preserve the notion of wqo, while Higman’s
theorem states that the latter does: this state of affairs suggests that the
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former operation is more complex than the latter. The former operation does
preserve the notion of bqo and by Theorem 5.4.2 this is provable inRCA0. The
generalized Higman’s theorem shows that the latter operation also preserves
the notion of bqo. By Theorem 2.9 Higman’s theorem is equivalent to ACA0
and by Theorem 2.32 the generalized Higman’s theorem implies ATR0. Thus
from an axiomatic viewpoint the latter operation appears to be much more
complex than the former.

Problem 5.7. What is the axiomatic strength of “if Q is bqo then P(Q) is
bqo with respect to �∃

∀”?

To complete the study of �∃
∀ we will use the product quasi-ordering:

Definition 5.8 (RCA0). If Q1 and Q2 are quasi-ordered by �1 and �2 re-
spectively, thenQ1×Q2 is quasi-ordered by the product quasi-ordering defined
by

(x1, x2) �× (y1, y2) ⇐⇒ x1 �1 y1 ∧ x2 �2 y2.
Lemma 5.9 (RT22). If Q1 and Q2 are wqo with respect to �1 and �2 then

Q1 ×Q2 is wqo with respect to the product quasi-ordering.
Proof. Let f : N→ Q1×Q2 and suppose f(n) = (f1(n), f2(n)) for every
n. Since Q1 is wqo with respect to �1 by Lemma 4.1 there exists A ∈ [N]�
such that for every n,m ∈ A with n < m, f1(n) � f1(m). Since Q2 is wqo
with respect to �1 the sequence f2 � A is good and there exists m, n ∈ A with
m < n such that f2(m) �2 f2(n). Therefore f(m) �× f(n). �
Theorem 5.10 (RT22). The following are equivalent:
i) ACA0;
ii) if Q is wqo then Pf (Q) is wqo with respect to �∃

∀;
Proof. i) implies ii) follows easily from Theorem 2.9, because Higman’s
theorem implies ii).
To prove that ii) implies i) we will use the fact that ACA0 is equivalent

over RCA0 (and a fortiori over RT22) to the statement “for every well-ordering
L the linear ordering 2L is a well-ordering” ([12, p. 299], see [15, theorem
2.6] for a direct proof). Here, if � is a linear ordering on L, 2L consists of
all finite sequences 〈�0, . . . , �k−1〉 such that �i ∈ L and �i+1 ≺ �i , ordered
lexicographically with respect to �.
We reason within RT22. Let L be well ordered by �; in particular L is wqo.

Denote by � the quasi-ordering consisting of N with the usual ordering (it
is obviously wqo). Define Q = L × � with the product ordering �×. By
Lemma 5.9, RT22 proves thatQ is wqo, and hence ii) implies that Pf (Q) is wqo
with respect to �∃

∀.
Now let g : N → 2L be such that g(n) = 〈�n0 , . . . , �nk(n)−1〉. We need to
show that g is not strictly descending. Define f : N → Pf (Q) by f(n) =
{(�ni , i) | i < k(n)}. There exist m < n such that f(m) �∃

∀ f(n). Therefore
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for each i < k(m) there exists j < k(n) such that �mi � �nj and i ≤ j: this
implies that �mi � �ni . Therefore 〈�m0 , . . . , �mk(m)−1〉 precedes 〈�

n
0 , . . . , �

n
k(n)−1〉 in

the lexicographic ordering. �
In [5, theorem 3] Clote claims to prove within RCA0 the implication ii) =⇒

i) of Theorem 5.10, but his proof works only for a finer quasi-ordering on
P(Q). In his quasi-ordering, X precedes Y if there exists a one-to-one map
h : X → Y such that x � h(x) for every x ∈ X .
As an application of the results about the quasi-orderings on P(Q), we can
prove (using the terminology of Section 3):

Theorem 5.11. Let T be a subsystem of second order arithmetic containing
RCA0 and suppose that T proves that 3 is bqo. Then for any p > 0 “p is bqo” is
a theorem of T.

Proof. The proof is by induction on p, the base case being provided by the
hypothesis (since p = 1 is trivial and p = 2 follows from Lemma 3.2).
The first inductive step (leading from p = 3 to p = 4) is nontrivial. We

argue within T and notice that P(3) quasi-ordered by �∀
∃ contains the quasi-

orderingQ1 represented by the connected graph of Fig. 1 (where e.g.A = {0}
and a = {1, 2}). By Theorem 5.6 (and the hypothesis) Q1 is bqo. Applying
again Theorem 5.6 we have that P(Q1) is bqo with respect to �∀

∃. The
elements {A,B,C}, {A,B, c}, {A, b, C}, and {a, B,C} of P(Q1) are pairwise
incomparable with respect to �∀

∃, and hence it follows that 4 is bqo.
The following inductive steps are obtained by observing that when p ≥ 4

there are sets (e.g. [p]2) of more than p elements of P(p) which are pairwise
incomparable with respect to �∀

∃, so that Theorem 5.6 yields the desired
conclusion. �
We will now show that even basic closure properties of bqo need fairly
strong set-existence axioms. One such operation is product (Definition 5.8),
while others are sum and disjoint union:

Definition 5.12 (RCA0). Let Q1 and Q2 be quasi-ordered by �1 and �2
respectively. We may assume that Q1 ∩ Q2 = ∅ (or replace each Qi by its
isomorphic copy on Qi × {i}). The set Q1 ∪Q2 is denoted either by Q1 +Q2
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or by Q1 ·∪ Q2 and quasi-ordered respectively by the sum quasi-ordering and
the disjoint union quasi-ordering defined by

x �+ y ⇐⇒ (x ∈ Q1 ∧ y ∈ Q2) ∨ ∃i < 2 (x, y ∈ Qi ∧ x �i y);
x � ·∪ y ⇐⇒ ∃i < 2 (x, y ∈ Qi ∧ x �i y).

The following lemma is an easy consequence of the infinite pigeonhole
principle for two colors:

Lemma 5.13 (RCA0). If Q1 and Q2 are wqo then Q1 + Q2 and Q1 ·∪ Q2 are
wqo with respect to the sum and disjoint union quasi-orderings.

RCA0 proves also that the sum preserves bqo:

Lemma 5.14 (RCA0). If Q1 and Q2 are bqo then Q1 +Q2 is bqo with respect
to the sum quasi-ordering.

Proof. Let B be a barrier and suppose towards a contradiction that f :
B → Q1 +Q2 is bad. If f(s) ∈ Q2 for all s ∈ B then f : B → Q2 is bad, and
this contradicts Q2 bqo.
Hence we may assume that f(s) ∈ Q1 for some s ∈ B . Fix such s and let

B ′ = {t ∈ B | t(0) > s(lh s − 1)};

B ′ is a subbarrier ofB . If t ∈ B ′, arguing as in the proof of Lemma 3.2, we can
find s0 = s, s1, . . . , slh s = t ∈ B such that si � si+1 for every i < lh s . Since f
is bad, by induction we can prove that f(si) ∈ Q1 for every i ≤ lh s , and in
particular f(t) ∈ Q1. Hence f � B ′ : B ′ → Q1 is bad, and this contradicts
Q1 bqo. �

Remark 5.15. Combining Lemmas 3.2 and 5.14 we obtain that for every
finite quasi-ordering Q with the property that every element is incomparable
to at most one other element, RCA0 proves that Q is bqo.

The closure of bqos with respect to other operations require more than
RCA0:

Lemma 5.16 (RCA0). The following are equivalent:

i) if Q1 and Q2 are bqo then Q1 × Q2 is bqo with respect to the product
quasi-ordering;

ii) if Q1 and Q2 are bqo then Q1 ·∪Q2 is bqo with respect to the disjoint union
quasi-ordering;

iii) if Q is bqo with respect to the quasi-orderings �1 and �2 then Q is bqo
with respect to the quasi-ordering �1 ∩ �2.

Proof. To prove that i) implies ii) assume Q1 and Q2 are disjoint bqos and
for i = 0, 1 letQ′

i be the quasi-ordering consisting of a single elementmi /∈ Qi
(which is obviously a bqo). By Lemma 5.14, Qi +Q′

i is bqo.
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Given f : B → Q1 ·∪Q2, where B is a barrier, define g : B → (Q1 +Q′
1)×

(Q2 +Q′
2) as follows:

g(s) =

{
(f(s), m2) if f(s) ∈ Q1,
(m1, f(s)) if f(s) ∈ Q2.

By i) (Q1+Q′
1)×(Q2+Q′

2) is bqowith respect to the product quasi-ordering
and hence there exist s, t ∈ B such that s � t and g(s) �× g(t). If f(s) ∈ Q1
and f(t) ∈ Q2 then m2 �+ f(t), which is impossible, and similarly we rule
out f(s) ∈ Q2 and f(t) ∈ Q1. Therefore f(s), f(t) ∈ Qi for some i , and
clearly f(s) �i f(t): thus f(s) � ·∪ f(t), and f is good.
To prove that ii) implies i) assume Q1 ∩ Q2 = ∅, let B be a barrier and

f : B → Q1 × Q2. Let f1 : B → Q1 and f2 : B → Q2, be such that
f(s) = (f1(s), f2(s)) for every s ∈ B . Define g : B → Pf (Q1 ·∪ Q2) by
g(s) = {f1(s), f2(s)}. By ii)Q1 ·∪Q2 is bqo with respect to the disjoint union
quasi-ordering and hence, by Theorem 5.4.2, Pf (Q1 ·∪Q2) is bqo under either
of the quasi-orderings �∃

∀ and �∀
∃ induced by � ·∪. Hence there exist s, t ∈ B

such that s � t and g(s) �∀
∃ g(t). It is immediate that f1(s) �1 f1(t) and

f2(s) �2 f2(t) hold, so that f(s) �× f(t). Therefore f is good.
To prove that i) implies iii) let B be a barrier and f : B → Q. Define
g : B → Q×Q by g(s) = (f(s), f(s)). By i) the cartesian product of (Q,�1)
and (Q,�2) is bqo and there exist s, t ∈ B with s � t and g(s) �× g(t). This
means that f(s) �1 f(t) and f(s) �2 f(t), so that f is good with respect to
�1 ∩ �2.
To prove that iii) implies i), on the set Q1 × Q2 define two quasi-orderings

by setting (x, y) �∗
1 (x

′, y′) if and only if x �1 x′, and (x, y) �∗
2 (x

′, y′) if
and only if y �2 y′. It is easy to show that Q1 × Q2 is bqo with respect to
both �∗

1 and �∗
2 . Since the product quasi-ordering of �1 and �2 coincides

with �∗
1 ∩ �∗

2 , we are done. �
Lemma 5.17 (RCA0). Each of the equivalent clauses of Lemma 5.16 implies

ACA0.

Proof. Obviously it suffices to show that i) impliesACA0. RCA0 proves that
every well-ordering is bqo (Lemma 3.1), and that Q bqo implies Pf (Q) bqo,
and hence wqo, with respect to �∃

∀ (Theorem 5.4.2 and Lemma 1.11). Using
these facts, the proof of ii) implies i) in Theorem 5.10 can be translated into a
proof within RCA0 that the closure of bqos under cartesian products implies
ACA0. �
Actually the proof of Lemma 5.17 shows that the statement “the product
of a well-ordering and � is bqo” already implies ACA0. The obvious proof of
any of i), ii), and iii) of Lemma 5.16 uses the barrier theorem, and hence each
of these statements is provable in ATR0.
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Conjecture 5.18. The statements contained in Lemma 5.16 are equivalent
to ATR0.

Remark 5.19. Notice that RCA0 plus either i) or ii) of Lemma 5.16 implies
that 3 is bqo. Therefore, either directly or by Theorem 5.11, for any p this
theory proves “p is bqo”.
On the other hand, if T contains RCA0 and does not prove “3 is bqo” then

T does not prove the statements of Lemma 5.16. Therefore if the answer to
Problem 3.3 is negative then Conjecture 5.18 holds.

What about the corresponding question forwqo? InLemma5.13we noticed
that wqos are closed both with respect to sums and disjoint unions. On the
other hand the proof of the equivalence between i) and iii) of Lemma 5.16
translates to the wqo case and yields:

Lemma 5.20 (RCA0). The following are equivalent:

i) if Q1 and Q2 are wqo then Q1 × Q2 is wqo with respect to the product
quasi-ordering;

ii) if Q is wqo with respect to the quasi-orderings �1 and �2 then Q is wqo
with respect to the quasi-ordering �1 ∩ �2.

By Lemma 5.9, i) and ii) of Lemma 5.20 are provable in RT22.
It may be worthwhile to see why the proof of ii) implies i) of Lemma 5.16
does not translate to the wqo case: if we use �∀

∃ then it is false that Q1 ·∪ Q2
wqo impliesPf (Q1 ·∪Q2) wqo, while if we use�∃

∀ then the proof requires ACA0
by Theorem 5.10.

Problem 5.21. What is the axiomatic strength of i) and ii) of Lemma 5.20?

Remark 5.22. It follows from [16] that if Q1 and Q2 are wqo and admit
reifications of order type resp. α1 and α2 then Q1 × Q2 admits a reification
of order type α1 ⊗ α2 (where ⊗ denotes natural product of ordinals). Since
RCA0 proves that the product of two well-orderings is a well-ordering one
could hope to prove i) of Lemma 5.20 within RCA0, by using the technique
described in the sketch of the proof of Theorem 2.9. However this is not
straightforward since it is not clear that RCA0 proves that each wqo admits
a reification. Moreover the natural product of ordinals is based on Cantor’s
normal form theorem, which is equivalent to ATR0 ([15]).

Special instances of the closure of wqos under product have been studied
by Simpson ([41]):

Theorem 5.23. RCA0 proves each of the following:

1. The product of two copies of � is wqo with respect to the product quasi-
ordering.
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2. The following are equivalent:
i) �� is well-ordered;
ii) for every k ∈ N the product of k copies of � is wqo with respect to the
(obvious generalization of the) product quasi-ordering.

Since �� is the proof theoretic ordinal of RCA0, it follows that RCA0 does
not prove the statement of ii) above.
Note added July 31, 2003. Some of the open problems listed in this paper
have been addressed in the paper Reverse mathematics and the equivalence
of definitions for well and better quasi-orders [2] by Peter Cholak, Alberto
Marcone and Reed Solomon, to appear in The Journal of Symbolic Logic.
This paper studies in detail the strength of the implications between different
definitions of wqo and bqo.
In particular, Problem 1.7 is answered affirmatively, some results relevant
to Conjectures 4.3 and 4.6 (whose truth depends in part on the as yet quite
unclear relationship between a consequence ofRT22 and fullRT22) are obtained,
and Problem 5.21 is partially answered by showing thatWKL0 does not suffice
to prove the statements under consideration.
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[39] , Nonprovability of certain combinatorial properties of finite trees, Harvey Fried-

man’s research on the foundations of mathematics (L. A. Harrington, M. D. Morley, A. Ščedrov,
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