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Abstract. We study several natural classes and relations occurring in contin-
uum theory from the viewpoint of descriptive set theory and infinite combina-
torics. We provide useful characterizations for the relation of likeness among
dendrites and show that it is a bqo with countably many equivalence classes.
For dendrites with finitely many branch points the classes of homeomorphism
and quasi-homeomorphism coincide and the minimal quasi-homeomorphism
classes among dendrites with infinitely many branch points are identified. In
contrast, we prove that the relation of homeomorphism between dendrites
is S∞-universal. It is shown that the classes of trees and graphs are both
D2(Σ0

3)-complete, the class of dendrites is Π0
3-complete, the class of all con-

tinua homeomorphic to a graph or dendrite with finitely many branch points is
Π0

3-complete. We also show that if G is a nondegenerate finitely triangulable

continuum, then the class of G-like continua is Π0
2-complete.

1. Introduction

This paper is devoted to the study of classes of continua and relations between
continua from the viewpoint of descriptive set theory. The latter studies and classi-
fies “definable” subsets of Polish (i.e. separable and completely metrizable) spaces.
Our basic references are [Nad92] for continuum theory and [Kec95] for descriptive
set theory.

As in [Nad92], we will be concerned exclusively with continua that are metrizable,
i.e. with metric continua. Hence a continuum is a metric space which is compact
and connected. In particular every continuum is a Polish space. A continuum is
nondegenerate if it contains at least two (and hence uncountably many) points. A
subcontinuum is a continuum which is a subset of the space we are considering.

We start by explaining how descriptive set theory deals with (classes of) continua.
If X is a metrizable space, let K(X) be the space of all compact subsets of X
equipped with the Vietoris topology. Then, K(X) is metrizable and the operation
X 7→ K(X) preserves each of separability, complete metrizability and compactness
([Kec95, §4.F] or [Nad92, chapter IV]). In particular, if X is Polish, so is K(X).
Let C(X) consist of all elements of K(X) that are connected and nonempty, i.e. of
all subcontinua of X. C(X) is closed in K(X) and, therefore, it is a Polish (resp.
compact) space if X is Polish (resp. compact).

Denote by I the closed interval [0, 1]. Every compact metric space (and hence in
particular every continuum) is homeomorphic to a closed subset of the Hilbert cube
IN. Hence C(IN) is a compact Polish space containing a homeomorphic copy of every
continuum. Therefore, if P is a class of continua closed under homeomorphisms, it
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makes sense to identify P with the set (still denoted by P) of all subcontinua of IN

belonging to P. Now P is a subset of the Polish space C(IN) and can be studied
with the tools and techniques of descriptive set theory. In particular, one can try
to establish the position of P in the Borel and projective hierarchies. When this
succeeds, it sheds some light on the complexity of P and gives lower limits for the
complexity of any equivalent definition of the same class of continua.

We recall here some basic concepts from classical descriptive set theory (again,
we refer to [Kec95] for a complete treatment).

Let X be a metrizable space and denote by Σ0
1(X) the family of open subsets

of X. For 1 ≤ α < ω1 the classes Σ0
α(X) and Π0

α(X) of subsets of X are defined
by transfinite recursion: Π0

α(X) is the class of all complements of sets in Σ0
α(X),

while, for α ≥ 2, Σ0
α(X) is the family of countable unions

⋃
n∈NAn where An ∈

Π0
βn

(X) for some βn < α. This hierarchy (called the Borel hierarchy) is increasing
(Σ0

α(X) ∪Π0
α(X) ⊆ Σ0

β(X) ∩Π0
β(X) whenever α < β) and the union

B(X) =
⋃

1≤α<ω1

Σ0
α(X) =

⋃

1≤α<ω1

Π0
α(X)

is the σ-algebra of Borel subsets of X. Sets in Π0
2 are also called Gδ.

A measurable space is standard Borel if it is equipped with the σ-algebra of Borel
sets of a Polish topology. Any Borel subset of a Polish space with the σ-algebra of
its Borel subsets is standard Borel.

Let Σ1
1(X) be the family of analytic subsets of X (A ⊆ X is analytic if it is the

continuous image of a Polish space). For n ≥ 1 the classes Σ1
n(X) and Π1

n(X) of
subsets of X are defined by recursion: Π1

n(X) is the class of all complements of
sets in Σ1

n(X), while Σ1
n+1(X) is the family of continuous images of Π1

n sets. This
hierarchy (called the projective hierarchy) is also increasing.

Let Γ be a class of sets in Polish spaces and Γ̌ be its dual class, that is the family
of complements of elements of Γ. The class D2(Γ) is the family of sets of the form
A \B where A,B ∈ Γ. This is the same as the class of all intersections A∩B with
A ∈ Γ, B ∈ Γ̌. The dual class of D2(Γ) is the class Ď2(Γ) of all unions A∪B with
A ∈ Γ, B ∈ Γ̌. As the subscript 2 indicates, this notion can be further extended
(even in the transfinite), obtaining the difference hierarchy relative to Γ.

If X and Y are metrizable spaces, A ⊆ X, B ⊆ Y , say that A is Wadge reducible
to B (we write A ≤W B) if A = f−1(B) for some continuous function f : X → Y .
Notice that if e.g. B is Σ0

α and A ≤W B then A is also Σ0
α. Thus, proving that

A ≤W B for some A of known complexity yields a lower bound on the complexity
of B.

If Γ is a class of sets in Polish spaces (like the classes Σi
α and Πi

α introduced
above), Y is a Polish space and A ⊆ Y , say that A is Γ-hard if B ≤W A for any
B ∈ Γ(X) where X is a zero-dimensional Polish space. Say that A is Γ-complete
if, in addition, A ∈ Γ(Y ).

It turns out that, for any α, a set is Σ0
α-complete if and only if it is Σ0

α but
not Π0

α, and similarly interchanging Σ0
α and Π0

α. Analogously, a set is D2(Σ0
α)-

complete if and only if it is D2(Σ0
α) but not Ď2(Σ0

α).
In this paper we investigate from the viewpoint of the Borel and projective

hierarchies several natural classes of continua. Here are the definitions (we adhere
to the terminology of [Nad92]).
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Definition 1.1. An arc is a continuum homeomorphic to the closed interval I. If
A is an arc and h : I → A is a homeomorphism, the end points of A are h(0) and
h(1) (it is easy to see that the end points do not depend on the homeomorphism).

A graph is a continuum which can be written as the union of finitely many arcs
which pairwise intersect only in their end points (none, one or both).

A tree is a graph which contains no subcontinuum homeomorphic to the circle
S1.

A Peano continuum is a continuum which is locally connected or, equivalently,
which is the continuous image of I.

A dendrite is a Peano continuum which contains no subcontinuum homeomorphic
to the circle S1.

A continuum X is arcwise connected if for all x, y ∈ X with x 6= y there exists
an arc contained in X with end points x and y.

A continuum X is uniquely arcwise connected if for all x, y ∈ X with x 6= y there
exists a unique arc contained in X with end points x and y.

A continuum is indecomposable if it cannot be written as the union of two proper
subcontinua. Otherwise it is decomposable.

A continuum is irreducible between n points (n ≥ 2) if it contains a set of n
points which is not contained in any proper subcontinua. When n = 2 we say that
the continuum is irreducible.

A continuum is unicoherent if whenever it is written as the union of two subcon-
tinua, then their intersection is a continuum.

A continuum is hereditarily indecomposable if all its nondegenerate subcontinua
are indecomposable. Analogously we define hereditarily decomposable, hereditarily
irreducible and hereditarily unicoherent continua.

A continuum is a dendroid if it is arcwise connected and hereditarily unicoherent.
A continuum is a λ-dendroid if it is hereditarily decomposable and hereditarily

unicoherent.

Notice that every graph (and hence every tree) is a Peano continuum. Therefore,
trees are dendrites. Dendrites are uniquely arcwise connected. Since I is the
continuous image of every nondegenerate continuum, every Peano continuum has
this property.

We also investigate properties such as being homeomorphic to a given continuum.
In this case we are considering equivalence classes with respect to the equivalence
relation of homeomorphism on the space C(IN) and we exploit some results be-
longing to the rich subject of “Borel reducibility for equivalence relations” (see e.g.
[BK96], [Hjo00] and [Kec02]). Here we only give the basic definitions we will need.

If E and F are equivalence relations on the standard Borel spaces X and Y
respectively, a reduction of E to F is a function f : X → Y such that

∀x0, x1 ∈ X(x0 E x1 ⇐⇒ f(x0) F f(x1)).

If f is Borel this means that E is Borel reducible to F .
For L a countable relational language, let XL be the Polish space of (codes for) L-

structures with universe N (see [Kec95, §16.C]). If E is an equivalence relation on a
standard Borel space, E is classifiable by countable structures if it is Borel reducible
to isomorphism on XL for some L; it is S∞-universal if, in addition, isomorphism
on XL is Borel reducible to E for every L. If E is a S∞-universal equivalence
relation on a standard Borel space X, then for every Polish space in which X is
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embedded as a Borel subset there exists a perfect set of pairwise non-equivalent
elements.

Definition 1.2. If C is a continuum, let

H(C) =
{

X ∈ C(IN) | X is homeomorphic to C
}

.

If C is a nondegenerate continuum it is well-known that H(C) is dense in C(IN).

Theorem 1.3. H(C) is Borel for every continuum C. For every α < ω1, there
exists a continuum C such that H(C) is not Π0

α, i.e. C(IN) is partitioned into
homeomorphism classes of unbounded Borel complexity.

Proof. Each H(C) is Borel by a result proved in [RN65].
The homeomorphism relation on K(2N) is S∞-universal by a result in [CG01].

Theorem 4 of [FS89] (in that paper S∞-universality is called Borel completeness)
implies that this equivalence relation is Σ1

1-complete (and hence not Borel) as a
subset of K(2N)× K(2N). By a folklore result (see [BK96, Theorem 7.1.1]) homeo-
morphism classes in K(2N) have unbounded complexity in the Borel hierarchy.

We now Borel (in fact continuously) reduce homeomorphism on non-singleton
compact subsets of 2N to homeomorphism on C(I2) (and a fortiori on C(IN)), which
implies that homeomorphism classes of continua have unbounded complexity in the
Borel hierarchy. To this end, view 2N as a subset of I × {0}, let p = (0, 1) and to
each K ∈ K(2N) associate the union of all straight segments joining any x ∈ K with
p (this is called the cone on K). Two compact subsets of 2N of cardinality at least
2 are homeomorphic if and only if their cones are homeomorphic. ¤

We point out that the argument in [Hjo00, §4.3] shows that the relation of
homeomorphism between continua is strictly more complicated than S∞-universal
ones (Hjorth actually mentions compacta, but his construction provides Peano con-
tinua). Corollary 8.6 and Theorem 8.7 compute the exact complexity of some
H(C)’s, Theorem 6.7 shows that homeomorphism on dendrites is S∞-universal,
while Corollary 6.8 sharpens the second part of Theorem 1.3.

An important tool in continuum theory is the relation of likeness. It naturally
leads to another equivalence relation, whose study is useful in obtaining our classi-
fication results.

Definition 1.4. If C is a class of continua and X is a continuum we say that X is
C-like if for every ε > 0 there exists Y ∈ C and a continuous map f : X → Y such
that f is onto and {x ∈ X | f(x) = y } has diameter less than ε for each y ∈ Y .
The map f is called an ε-map.

When C = {Y } we say that X is Y -like and write X ¹ Y . X ≺ Y means X ¹ Y
and Y � X. Two continua X and Y are quasi-homeomorphic if X ¹ Y and Y ¹ X.

It is immediate that ¹ is transitive and reflexive (but not antisymmetric), i.e.
a quasi-ordering, and hence the quasi-homeomorphism relation is an equivalence
relation. Since likeness is invariant under homeomorphism, quasi-homeomorphism
is coarser than homeomorphism.

Definition 1.5. If C is a continuum, let

Q(C) =
{

X ∈ C(IN) | X is quasi-homeomorphic to C
}

and

LC =
{

X ∈ C(IN) | X ¹ C
}

.

Similarly, when C is a class of continua, we write LC for the set of all C-like continua.
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Since LC ⊇ Q(C) ⊇ H(C), when C is nondegenerate both LC and Q(C) are
dense in C(IN).

We will use and extend the following results of Kato and Ye ([KY00]).

Theorem 1.6. If G is a graph then Q(G) = H(G).

Theorem 1.7. Let P be a Peano continuum and G be a graph. Then P ¹ G if and
only if P is a graph obtained from G by shrinking to points finitely many pairwise
disjoint subgraphs. In particular, if G is a tree then P is a tree as well.

Theorem 1.7 can be rephrased in terms of monotone maps.

Definition 1.8. A continuous map between continua is monotone if the preimage
of every point in the range is a continuum or, equivalently, the preimage of every
subcontinuum of the range is a continuum.

Hence Theorem 1.7 says that if P is a Peano continuum, G is a graph then
P ¹ G if and only if there exists a monotone map from G onto P such that only
finitely many preimages of points are nondegenerate. In turn this is equivalent to
the existence of a monotone map from G onto P . The last equivalence follows from
the fact G has only finitely many branch points and each branch point is of finite
order (see Definition 2.3).

We now explain the organization of the paper and announce our main results.
In Section 2, we introduce some notation and terminology about continua (mostly

taken from [Nad92], and we refer to this book for proofs and more details). The
reader can skip this section and refer back to it as needed.

In Section 3, we study the relation of likeness between dendrites. Since the
notion of likeness is very important in continuum theory, this is interesting for
its own sake, but the results of this section will also be instrumental in obtain-
ing classification results for important classes of continua in the following sections.
We characterize likeness between dendrites in Theorem 3.2, which improves Theo-
rem 1.7 and shows that to establish whether a dendrite is like another it suffices to
check likeness between their subtrees. We also extend Theorem 1.6 by showing in
Theorem 3.5 that for dendrites with finitely many branch points homeomorphism
and quasi-homeomorphism coincide. This does not hold for arbitrary dendrites
and in Theorem 3.7 the minimal (with respect to likeness) quasi-homeomorphism
classes among dendrites with infinitely many branch points are identified.

In Section 4, the characterization provided by Theorem 3.2 leads to combina-
torial results: we investigate the structure of the partial order of likeness among
dendrites, showing that it is bqo (in particular well-founded with no infinite an-
tichains) and proving in Theorem 4.7 that there are countably many classes of
quasi-homeomorphism among dendrites.

In Section 5 we show that the class of C-like continua is Π0
2-complete for any

nonempty collection C of nondegenerate dendrites or finitely triangulable continua
(and indeed of even more general continua). This allows the use of Baire Category
arguments to show e.g. that the pseudoarc is G-like for every nondegenerate finitely
triangulable continuum G.

In Section 6, we solve the classification problem for homeomorphism on dendrites,
by showing in Theorem 6.7 that it is S∞-universal. (In the same vein, Marcone
and Rosendal in [MR] proved that the equivalence relation of continuous mutual
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embeddability among dendrites is much more complicated than S∞-universal.) S∞-
universality actually holds already for one of the simplest quasi-homeomorphism
classes of dendrites which is not a homeomorphism class. Therefore, as soon as
dendrites are so complex that homeomorphism and quasi-homeomorphism do not
coincide, a single class of quasi-homeomorphic dendrites may contain uncountably
many classes of homeomorphism whose complexity lies arbitrarily high in the Borel
hierarchy; thus quasi-homeomorphism is much coarser than homeomorphism even
among dendrites.

Section 7 introduces some constructions which are basic in obtaining lower
bounds for the complexity of Borel subsets of C(IN) with the technique of Wadge
reduction.

Section 8 contains the classification results for many classes of continua (a few
more results of this kind, including Π1

1-completeness of hereditarily locally con-
nected continua, are proved in [DM03]). Though we state our results in C(IN),
they hold in C(In) for any n ≥ 2. The classes of Peano continua and dendrites are
Π0

3-complete, while those of graphs and trees are D2(Σ0
3)-complete. The latter re-

sults are interesting from a purely descriptive set-theoretic viewpoint as well, since
there are few known natural sets whose sharp classification involves the difference
hierarchy. We also show that the quasi-homeomorphism class of any nondegenerate
dendrite or graph is Π0

3-complete.

2. Notation and terminology

First of all for any metrizable space X (such as IN, or any continua) we fix a
compatible bounded metric d. Any A ⊆ X has a diameter with respect to d, which
we write diam(A). Using d we can define the Hausdorff metric dH on K(X), and
hence on C(X): dH is compatible with the Vietoris topology.

Definition 2.1. Let X be a continuum and X1, . . . , Xn be subcontinua of X. X
is the essential sum of the Xi’s (we write X =

⊕n
i=1 Xi) if X =

⋃n
i=1 Xi and

X 6= ⋃
i 6=j Xi for every j = 1, . . . , n.

Definition 2.2. If X is a continuum and x ∈ X the order of x in X, denoted by
ord(x, X), is the smallest cardinal number κ such that there exists a neighborhood-
base for x in X consisting of open sets each with boundary of cardinality less than
or equal to κ.

If G is a graph then every point of G has finite order in G. If D is a dendrite
then every point of D has order at most ℵ0 in D.

Definition 2.3. If X is a continuum, let B(X) = {x ∈ X | ord(x, X) > 2 } and
E(X) = {x ∈ X | ord(x,X) = 1 }. E(X) is the set of end points of X (when X
is an arc this definition coincide with the one given above) and B(X) is the set of
branch points of X.

If G is a graph then B(G) and E(G) are both finite. If D is a dendrite then
B(D) is countable, but E(D) can be uncountable.

Definition 2.4. A simple triod is a continuum homeomorphic to (I×{0})∪({1
2}×

I).
A comb is a tree T such that B(T ) ⊂ A ⊂ T for some arc A and ord(x, T ) = 3

for every x ∈ B(T ).
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Notice that arcs and simple triods are combs.
The following definition links our graphs (which are continua) with the objects

studied in graph theory.

Definition 2.5. Let G be a graph. A subdivision of G is a pair Σ = (N, E) where
N is a finite set of points (called nodes) of G and E = {A1, . . . , An} is a finite set
of subarcs (called edges) of G such that G =

⊕n
i=1 Ai, N is the set of all end points

of the elements of E and the elements of E pairwise intersect only in at most one
of their end points.

It is immediate that every graph has (infinitely many) subdivisions. If we look
at trees there is a canonical subdivision.

Definition 2.6. We denote by ΣT = (NT , ET ) the unique subdivision of the tree
T such that NT = E(T ) ∪B(T ).

Definition 2.7. Let G be a graph, Σ = (N,E) a subdivision of G and ε > 0. We
say that ε separates Σ if the following properties hold:

(1) each node of N is more than ε apart from each other node;
(2) each node of N is more than ε apart from each edge of E which it does not

belong to;
(3) any two disjoint edges of E are more than ε apart.

We note that for every graph G and every Σ, there is ε > 0 which separates Σ.

Definition 2.8. If C is a continuum an open free arc of C is any open subset of
C of the form A \ {x, y}, where A is a subarc with end points x and y.

Definition 2.9. If the continuum X is uniquely arcwise connected and x 6= y are
in X we denote the unique arc contained in X with end points x and y by AX

xy. It
is also convenient to define AX

xx = {x}.
The following theorem lists some basic facts about dendrites which we will use

frequently and at times implicitly.

Theorem 2.10. Let D be a dendrite. Then,
(1) every subcontinuum of D is a dendrite;
(2) if X is a subcontinuum of D, and C is a connected component of D \ X,

then C is open in D and C \ C has exactly one point;
(3) D is hereditarily unicoherent, i.e. if the intersection of two subcontinua of

D is nonempty, then it is a subcontinuum of D.

Definition 2.11. If D is a dendrite and X is a subcontinuum of D, for any x ∈ D
there exists a unique r(x) ∈ X which belongs to any AD

xy with y ∈ X. The function
r : D → X is continuous and is called the first point map for X. In addition, using
Theorem 2.10.2, it can be shown that this map is monotone.

Definition 2.12. If D is a dendrite and F is a finite subset of D of cardinality
at least 2 the smallest subtree of D containing F is

⋃
x,y∈F AD

xy, which is indeed a
tree.

Definition 2.13. If D is a dendrite an approximating sequence for D is a sequence
(Tn) of subtrees of D such that lim Tn = D (the limit being taken in the Vietoris
topology).
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Every nondegenerate dendrite has approximating sequences. Moreover, the fol-
lowing holds.

Theorem 2.14. Let X be a dendrite and (Tn) be an approximating sequence of X.
Let rn be the first point map for Tn. Then, (rn) converges uniformly to the identity
map on X. Moreover, if ε > 0, then for sufficiently large n, rn is an ε-map from
X onto Tn.

3. Likeness between dendrites

We are now going to characterize likeness on dendrites.

Lemma 3.1. Let X be a dendrite and let T ⊆ X be a tree. Then T ¹ X.

Proof. Let r : X → T be the first point map for T . Fix ε > 0 and let T =
⊕n

j=1 Aj ,
where the Aj ’s are arcs and two such arcs meet at most at an end point of both.
We may assume that diam(Aj) < ε

2 for each j. Let Xj = r−1(Aj). Then, Aj ⊆ Xj .
As r is monotone, Xj is a continuum and hence a dendrite. Since T =

⊕n
j=1 Aj ,

X =
⊕n

j=1 Xj . Since r is a first point map, we also have that Ai ∩ Aj 6= ∅ if and
only if Xi ∩Xj 6= ∅.

For every j, let fj be a continuous function from Aj onto Xj which is the identity
on the end points of Aj . Then,

⋃n
j=1 fj is an ε-map from T onto X. ¤

Theorem 3.2. Let X be a nondegenerate Peano continuum and Y be a nondegen-
erate dendrite. Then the following are equivalent:

(1) X ¹ Y ;
(2) X is a dendrite and T ¹ Y for each tree T ⊆ X;
(3) X is a dendrite and there exists an approximating sequence (Tn) for X such

that Tn ¹ Y for every n;
(4) X is a dendrite and for every tree T ⊆ X there exists a tree V ⊆ Y such

that T ¹ V ;
(5) X is a dendrite and for each tree T ⊆ X there exists a monotone map from

Y onto T .

Proof. (1) ⇒ (2) A Peano continuum is a dendrite if and only if it is tree-like
[Nad92, exercise 10.50]. Therefore Y is tree-like and, since X ¹ Y , so is X. Thus
X is a dendrite. If T ⊆ X is a tree then T ¹ X by Lemma 3.1, and hence T ¹ Y .

(2) ⇒ (3) Let (Tn) be an approximating sequence for X. By (2), Tn ¹ Y for
every n.

(3) ⇒ (1) Let ε > 0. We want to find an ε-map from X onto Y . By Theorem 2.14,
there is n such that rn : X → Tn, the first point map of Tn, is an ε-map. Let η > 0
be such that if M ⊆ Tn has diameter less than η, then diam(r−1

n (M)) < ε. Since,
Tn ¹ Y , there is an η-map f from Tn onto Y . Then, f ◦ rn : X → Y is the desired
ε-map.

(2) ⇒ (4) Let T ⊆ X be a tree and let ε > 0 separate ΣT . Let f be an ε-
map from T onto Y . Let V ⊆ Y be the smallest tree of Y containing f(NT ).
We claim that T ¹ V . Let J =

{
(p, q) ∈ NT ×NT | AT

pq ∈ ET

}
and notice that

V =
⋃

(p,q)∈J AY
f(p)f(q).
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Fix (p, q) ∈ J . First, note that AY
f(p)f(q) ⊆ f(AX

pq). If p ∈ E(T ) let Bpq = {f(p)},
while if p /∈ E(T ) let

Bpq =
⋃

(p,q′)∈J
q′ 6=q

AY
f(p)f(q) ∩AY

f(p)f(q′).

By Theorem 2.10.3 each AY
f(p)f(q) ∩ AY

f(p)f(q′) is an arc (possibly degenerate) con-
taining f(p), and hence Bpq is a subarc (possibly degenerate) of AY

f(p)f(q) containing
f(p). Similarly, if q ∈ E(T ) let Cpq = {f(q)}, while if q /∈ E(T ) let

Cpq =
⋃

(p′,q)∈J
p′ 6=p

AY
f(p)f(q) ∩AY

f(p′)f(q).

Then, Cpq is a subarc (possibly degenerate) of AY
f(p)f(q) containing f(q). From the

fact that T is a tree and ε separates ΣT , we get that Bpq ∩Cpq = ∅. Let p∗ be the
end point of Bpq different from f(p) if Bpq is nondegenerate or else p∗ = f(p) and
let q∗ be the end point of Cpq different from f(q) if Cpq is nondegenerate or else
q∗ = f(q). Note that Bpq = AY

f(p)p∗ and Cpq = AY
q∗f(q).

Fix δ > 0. We want to define a δ-map g from T onto V . This is done separately
on each AX

pq with (p, q) ∈ J (since (p, q) ∈ J implies (q, p) ∈ J , we consider only
one of the two pairs for every (p, q) ∈ J). Given (p, q) ∈ J let p̄, q̄ ∈ AX

pq be such
that:

• AX
pp̄ ∩AX

q̄q = ∅,
• diam(AX

pp̄) < δ
2 and diam(AX

q̄q) < δ
2 ,

• p̄ = p if and only if p∗ = f(p),
• q̄ = q if and only if q∗ = f(q).

Let g on AX
pq be a homeomorphism onto AY

f(p)f(q) such that g(AX
pp̄) = Bpq and

g(AX
q̄q) = Cpq (and consequently g(p) = f(p), g(q) = f(q) and g(AX

p̄q̄) = AY
p∗q∗). It

is straightforward to check that g is a δ-map.
(4) ⇒ (5) Fix a tree T ⊆ X and let V ⊆ Y be a tree such that T ¹ V . By

Theorem 1.7, there is a monotone map f from V onto T . Let r : Y → V be the
first point map of V . Then r is a monotone map. Hence, f ◦ r is a monotone map
from Y onto T .

(5) ⇒ (2) Let T ⊆ X be a tree and fix ε > 0. By hypothesis, there is a monotone
map ϕ from Y onto T .

Fix a subdivision Σ = (N,E) of T such that each element of E has diameter less
than ε

2 . For each p ∈ N pick p∗ ∈ ϕ−1(p). For every A = AT
pp′ ∈ E, there exists

ψA : A → ϕ−1(A) continuous and onto such that ψA(p) = p∗ and ψA(p′) = p′∗.
Hence ψ =

⋃
A∈ET

ψA is a function from T onto Y . It is straightforward to check
that ψ is an ε-map. ¤

Corollary 3.3. Let X and Y be dendrites and let (Tn) and (Vn) be approximating
sequences for X and Y respectively. Then

X ¹ Y ⇐⇒ ∀n ∃m Tn ¹ Vm.

Proof. Suppose X ¹ Y and fix n. By Theorem 3.2 there exists a subtree V ⊆ Y
such that Tn ¹ V . Let ε > 0 be less than the diameter of each edge of ΣV and m
be large enough so that every arc in Y \ Vm has diameter less than ε. Then Vm
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contains a homeomorphic copy of V . By Lemma 3.1 we have that V ¹ Vm, and
hence Tn ¹ Vm.

For the converse, suppose ∀n ∃m Tn ¹ Vm. Let T ⊆ X be a tree. Let ε > 0
be less than the diameter of each edge of ΣT . There exists n with the property
that any arc contained in X \Tn has diameter less than ε. Notice that Tn contains
a homeomorphic copy of T and hence by Lemma 3.1, T ¹ Tn. If m is such that
Tn ¹ Vm, we have T ¹ Vm. Therefore, X ¹ Y by Theorem 3.2. ¤

Lemma 3.4. Let T1 and T2 be trees and T1 ¹ T2. Then,

(1) |B(T1)| ≤ |B(T2)|, and
(2) if T1 and T2 have the same number of branch points, then T2 is the union of

a homeomorphic copy of T1 and finitely many arcs, each attached to some
branch point of this homeomorphic copy.

Proof. This follows from Theorem 1.7. ¤

Theorem 3.5. If D is a dendrite such that B(D) is finite then Q(D) = H(D).

Proof. If D is degenerate then the conclusion is obvious. Hence, let D be nonde-
generate and C ∈ Q(D). As D ¹ C, C is a nondegenerate Peano continuum. As
C ¹ D, C is a dendrite by Theorem 3.2. Let T ⊆ C be a tree which has as many
branch points as C. By Theorem 3.2.4, there is a tree V ⊆ D such that T ¹ V .
By Lemma 3.4.1, we have that |B(T )| ≤ |B(V )|. Hence, |B(C)| ≤ |B(D)|. A
symmetric argument gives us that |B(C)| = |B(D)|.

If k = max { ord(p,D) | p ∈ B(D) & ord(p,D) < ∞}, let T ⊆ C be a sub-
tree containing B(C) and such that ord(q, T ) = ord(q, C) when ord(q, C) < ∞,
ord(q, T ) > k when ord(q, C) is infinite. Using Lemma 3.4.2 and Theorem 3.2.4, we
have that | { q ∈ B(C) | ord(q, C) < ∞} | ≤ | { p ∈ B(D) | ord(p,D) < ∞} |, and
by symmetry that these cardinalities are the same.

Another application of Lemma 3.4.2 and Theorem 3.2.4 shows that C and D are
homeomorphic. ¤

Definition 3.6. Let the infinite comb C∞ and the infinite triod T∞ be the following
dendrites:

C∞ = (I × {0}) ∪
⋃

n∈N

({
1

n+2

}
×

[
0, 1

n+1

])
⊂ I2.

Let F∞ ⊂ I2 be a hairy point, i.e. a dendrite with one branch point p of order ℵ0

and end points we denote by a0, a1, . . .. For each n let bn ∈ AF∞
pan

\ {p, an} and let

T∞ = (F∞ × {0}) ∪
⋃

n∈N

(
{bn} ×

[
0, 1

n+1

])
⊂ I3.

The infinite comb consists of countably many teeth attached on an arc, with
length converging to 0 as we approach one of the end points (and nowhere else).
The infinite triod is obtained putting suitably together countably many simple
triods pairwise intersecting in the same end point p. Homeomorphic copies of C∞
and T∞ are portrayed in figure 1.

Theorem 3.7. Q(C∞) and Q(T∞) are the only two minimal classes under likeness
among dendrites with infinitely many branch points.

10



Figure 1. C∞ and T∞

Proof. By Theorem 3.2, T∞ � C∞ and C∞ � T∞. So it remains to prove that if D
is a dendrite with infinitely many branch points then either C∞ ¹ D or T∞ ¹ D.

If there exists a subarc of D containing infinitely many branch points of D, then
D contains a subcontinuum homeomorphic to C∞ and hence, by Theorem 3.2.2,
C∞ ¹ D. Otherwise we claim that D contains a subcontinuum homeomorphic to
T∞, which yields T∞ ¹ D.

To prove the claim notice that not all elements of B(D) can have finite order
(otherwise a König Lemma style argument yields an arc containing infinitely many
of them). Let p0 be such that ord(p0, D) = ℵ0. If B(D) intersects infinitely many
connected components of D \{p0} we are done. Otherwise there exists a connected
component Z0 of D \ {p0} containing an infinite subset of B(D). Note that Z0

is a dendrite and Z0 = Z0 ∪ {p0}. Repeating the argument, we can find p1 ∈ Z0

with ord(p1, Z0) = ℵ0 such that AD
p0p1

does not contain branching points of infinite
order but p0 and p1. If B(Z0) intersects infinitely many connected components of
Z0 \{p1} we are done; otherwise there exist a connected component Z1 of Z0 \{p1}
containing infinitely many points of B(Z0) and a point p2 ∈ Z1 of infinite order such
that no element of AD

p1p2
has infinite order except for p1 and p2. If iterating this

procedure we do not find any n such that B(Zn) intersects infinitely many connected
components of Zn \ {pn+1}, let D′ be the smallest subdendrite containing all pn’s.
Every branch point of D′ has finite order in D′ and we can apply a König Lemma
style argument to find an arc containing infinitely many branch points. ¤

Notice that we have in fact proved that any dendrite with infinitely many branch
points contains a homeomorphic copy of either C∞ or T∞.

Theorem 3.2 implies the following characterizations of the elements of Q(C∞)
and Q(T∞).

Corollary 3.8. If C is any continuum, then C ∈ Q(C∞) if and only if:
a. C is a dendrite;
b. B(C) is infinite;
c. there is an arc A ⊆ C such that B(C) ⊆ A.
In other words, dendrites with infinitely many branch points all belonging to a

subarc form a single class under quasi-homeomorphism.

Proof. If C ∈ Q(C∞) then C is a dendrite by the argument used in the proof of
Theorem 3.5. By Theorem 3.5 B(C) is infinite. If there is no subarc containing
B(C) then C contains a copy of the tree in figure 2. By Theorem 3.2.4 C � C∞.

If C is such that a–c hold then Theorem 3.2.4 easily implies that C ∈ Q(C∞). ¤

Corollary 3.9. If C is any continuum, then C ∈ Q(T∞) if and only if it is a den-
drite that is the union of a dendrite D homeomorphic to T∞ and at most countably
many (possibly none) arcs having one end point in the point of order ℵ0 of D.

11



Figure 2. The tree of the proof of Corollary 3.8

In other words, dendrites obtained with infinitely many simple triods and count-
ably many (possibly finitely many or none) arcs glued together at the unique point
of order ℵ0 form a single class under quasi-homeomorphism.

Proof. If C ∈ Q(T∞) then Theorem 3.2.4 implies that |A ∩ B(C)| ≤ 3 for any arc
A ⊆ C. Moreover there exists a unique p0 ∈ B(C) such that ord(p0, C) > 3, and
in fact ord(p0, C) = ℵ0. Since B(C) has to be infinite (otherwise Theorem 3.5
applies), we get the forward implication.

The reverse implication is immediate using Theorem 3.2.4. ¤

Corollaries 3.8 and 3.9 imply that Q(C∞) and Q(T∞) are classes of quasi-
homeomorphism which are not classes of homeomorphism. While it is obvious
that Q(T∞) contains only countably many homeomorphism classes (depending on
how many arcs appear in the construction described by Corollary 3.9), we will show
that Q(C∞) is quite different in this respect (Corollary 6.8).

4. Combinatorics of likeness among dendrites

We are now going to study the quasi-ordering of likeness among dendrites from a
combinatorial viewpoint. We start with trees and associate with every tree T a finite
partial order with a minimum element (the root) such that the set of predecessors
of each element is linearly ordered. In the literature about partial orders such an
object is called a finite rooted tree. To this end the finite set is NT . To define the
partial order we fix v ∈ NT and let x ≤ y ⇐⇒ x ∈ AT

vy. Let T̃ = (NT ,≤) and
notice that v is the root of this partial order.

The definition of T̃ obviously depends on the choice of v, but this will not
bother us. The first observation is that if T1 and T2 are trees such that T̃1 and T̃2

are isomorphic as partial orders, then T1 and T2 are homeomorphic continua. We
will obtain a similar implication where the hypothesis is weaker and the (weaker)
conclusion is T1 ¹ T2. The appropriate hypothesis is well-known in the theory of
partial orders (see e.g. [Mil85, p.490]). In the following definition x∧ y denotes the
greatest lower bound of x and y.

Definition 4.1. If T̃1 and T̃2 are finite rooted trees we say that T̃1 is homeomor-
phically embedded in T̃2, and write T̃1 v T̃2, if there exists an injective function
f : T̃1 → T̃2 such that for every x, y ∈ T̃1 we have f(x ∧ y) = f(x) ∧ f(y).

Lemma 4.2. If T1 and T2 are trees such that T̃1 v T̃2, then T2 contains a homeo-
morphic copy of T1.

Proof. Let f : T̃1 → T̃2 be a homeomorphic embedding. Let ≤1 and ≤2 be the
partial orders on T̃1 and T̃2 with roots v1 and v2 respectively. Let T ′ be the smallest
subtree of T2 containing the range of f . Since f is a homeomorphic embedding,
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NT ′ coincides with the range of f . Let r : T2 → T ′ be the first point map for T ′. If
f(v1) 6= r(v2) there exists u ∈ NT1 with r(v2) ∈ AT2

f(v1)f(u), against f(v1) ≤2 f(u).
Therefore f(v1) = r(v2).

Define the partial order ≤′ on NT ′ so that f(v1) (which belongs to NT ′) is
the root. Using again the fact that f is a homeomorphic embedding, we have
x ≤1 y ⇐⇒ f(x) ≤2 f(y) ⇐⇒ f(x) ≤′ f(y). Therefore

AT1
xy ∈ ET1 ⇐⇒ no element of NT1 is between x and y in ≤1

⇐⇒ no element of NT ′ is between f(x) and f(y) in ≤′

⇐⇒ AT ′
f(x)f(y) ∈ ET ′ .

This equivalence shows that T ′ and T1 are homeomorphic. ¤

Corollary 4.3. If T1 and T2 are trees such that T̃1 v T̃2, then T1 ¹ T2.

Proof. By Theorem 1.7 and Lemma 4.2. ¤

The relation v of homeomorphic embedding is a quasi-ordering on the class
of finite rooted trees. As such it has been extensively studied: Kruskal proved
that it is a well quasi-ordering (wqo), i.e. that it is well-founded and all sets of
pairwise incomparable elements (antichains) are finite. Laver improved this result
by showing that it is indeed a better quasi-ordering (bqo). Here we give a descriptive
set-theoretic definition of bqo, due to Simpson ([Sim85]). A survey of wqo and bqo
theory is [Mil85].

Definition 4.4. Let (Q,≤) be a quasi-ordering. Let [N]N be the set of all infinite
subsets of N, with the topology inherited from the Baire space NN. (Q,≤) is a bqo if,
endowing Q with the discrete topology, for every continuous function f : [N]N → Q
there exists X ∈ [N]N such that f(X) ≤ f(X \ {min X}).

It is immediate that if (Q,≤Q) and (Q′,≤Q′) are quasi-ordering, the latter is
a bqo and there exists f : Q → Q′ such that f(x) ≤Q′ f(y) implies x ≤Q y,
then (Q,≤Q) is also a bqo. This observation is used in the proofs of the following
corollaries.

Corollary 4.5. The relation ¹ is bqo on trees.

Proof. This follows immediately from Laver’s result and Corollary 4.3. ¤

Corollary 3.3 shows that ¹ on dendrites is understood by looking at ¹ on infinite
sequences of trees. It can be argued that bqo theory was born exactly to be able
to deal with this sort of infinitary operations.

Theorem 4.6. The relation ¹ is bqo on dendrites.

Proof. Define the following relation between infinite sequences of trees:

(Ti) ¹′ (T ′i ) ⇐⇒ ∀n ∃m Tn ¹ T ′m.

Since ¹ is bqo on trees, ¹′ is also bqo by a theorem of Nash-Williams’ (see e.g.
[Sim85, Corollary 9.20] or [Mil85, Theorem 2.22]).

By Corollary 3.3 if (Tn) and (Vn) are approximating sequences for dendrites X
and Y , then (Tn) ¹′ (Vn) implies X ¹ Y . ¤
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In particular Theorem 4.6 implies that ¹ on dendrites is well-founded and has
no infinite antichains.

Corollary 4.5 allows to compute the number of quasi-homeomorphism classes in
which dendrites are partitioned.

Theorem 4.7. There are countably many quasi-homeomorphism classes among
dendrites.

Proof. It is obvious that there are countably many quasi-homeomorphism classes
of trees. By Corollary 4.5 these are bqo under ¹ and by a theorem of Laver
([Lav71, Theorem 4.11]) there are countably many classes of infinite sequences of
trees under the equivalence relation induced by ¹′ (the relation defined in the proof
of Theorem 4.6). By Corollary 3.3 we obtain our statement. ¤

5. The complexity of being C-like

Before we can proceed to study the relation of homeomorphism on dendrites, we
need to establish some facts about the complexity of the family of C-like continua,
where C is any nonempty class of continua whose members satisfy a property we
are going to describe in Lemma 5.2. Besides being used in all subsequent sections,
these results are interesting on their own. They also allow the use of Baire category
arguments to prove some folklore facts in continuum theory.

Definition 5.1. A separable metric space X is an absolute retract if whenever
X is embedded as a closed subset of a separable metric space Y , there exists a
continuous function f : Y → X which is the identity on X.

The following two facts will be used in the proof of the next lemma.
Borsuk Extension Theorem ([vM89, Theorem 1.5.2]) asserts that if X is an

absolute retract, C is a closed subset of the separable metric space Y and f : C → X
is continuous, then there exists a continuous function f ′ : Y → X which extends f .

Suppose that F1, F2, . . . , Fn are closed subsets of a compact metric space X.
Then there exist open sets U1, . . . , Un with Ui ⊇ Fi such that for any set J ⊆
{1, 2, . . . , n}, ⋂

i∈J Fi 6= ∅ if and only if
⋂

i∈J Ui 6= ∅.
Lemma 5.2. Let C be a continuum. Suppose that for each δ > 0 there exist finitely
many subcontinua A1, . . . , Am ⊆ C such that the following hold:

(1)
⊕m

i=1 Ai = C;
(2) diam(Ai) < δ for each i = 1, . . . , m;
(3) for each J ⊆ {1, . . . , m}, if

⋂
i∈J Ai 6= ∅, then

⋂
i∈J Ai is an absolute retract

(in particular, each Ai is an absolute retract).
Then, for every ε > 0 the set

U =
{

M ∈ C(IN) | there is an ε-map from M onto C
}

is open in C(IN).

Proof. When C is degenerate we have that U is
{

M ∈ C(IN) | diam(M) < ε
}
,

which is open. Therefore, we may assume that C is nondegenerate. Let M ∈ U and
fix an ε-map f from M onto C. Since f is an ε-map there exists η such that for all
B ⊆ C with diam(B) < η we have diam(f−1(B)) < ε. Applying the hypothesis on
C to δ = η

2 , there exist subcontinua A1, . . . , Am ⊆ C (we may assume m ≥ 2) such
that (1)–(3) above hold. Observe that our choice of δ implies that
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(4) if J ⊆ {1, . . . ,m} and
⋂

i∈J Ai 6= ∅, then diam(f−1(
⋃

i∈J Ai)) < ε.
Let J be the collection of all J ⊆ {1, . . . ,m} such that

⋂
i∈J Ai 6= ∅. Since C =⊕m

i=1 Ai, we may choose nonempty open sets Oi ⊆ Ai, 1 ≤ i ≤ m, such that
Oj ∩ Ai = ∅ for all j 6= i. Note that this implies that sufficiently small open sets
containing f−1(Ai), 1 ≤ i ≤ m, separate f−1(Ai) and f−1(Oj) for i 6= j. Using
the remark before the lemma, this fact, and (4), we may obtain a sequence of open
sets (in IN) V1, . . . , Vm such that:

(i) for all 1 ≤ i ≤ m, f−1(Ai) ⊆ Vi,
(ii) for all J ∈ J , diam(

⋃
i∈J Vi) < ε,

(iii) if J ⊆ {1, . . . ,m} then
⋂

i∈J Vi 6= ∅ if and only if J ∈ J , and
(iv) if Ui = Vi \ (

⋃
j 6=i Vj) then Ui ∩ f−1(Ai) 6= ∅.

Let V J =
⋂

i∈J Vi and AJ =
⋂

i∈J Ai for J ∈ J .
We will show that the open set

O =

{
N ∈ C(IN) | N ⊆

n⋃

i=1

Vi & ∀i N ∩ Ui 6= ∅
}

is included in U . Since M ∈ O this proves that U is open.
Let N ∈ O and notice that, since m ≥ 2, N is nondegenerate. We will define by

steps an ε-map g :
⋃n

i=1 Vi → C such that g(N) = C, thereby showing that N ∈ U .
To begin with, by the Boundary Bumping Theorem ([Nad92, Corollary 5.5]),

for each i there exists a nondegenerate continuum Ni ⊆ N ∩ Ui. Since the Ui’s
are pairwise disjoint, so are the Ni’s. Since absolute retracts are locally connected
([vM89, exercise 1.5.3]), every Ai is a Peano continuum and hence the continuous
image of any nondegenerate continuum. We can thus define g on Ni so that g(Ni) =
Ai. Notice that at this first stage we already made sure that g(N) = C.

The extension of g to a continuous function on all of
⋃m

i=1 Vi is done by induction.
For each 1 ≤ i ≤ m, let Ji be the set of J ∈ J such that |J | = i. Let k be the
largest integer such that Jk is nonempty. Note that J` is nonempty for all 1 ≤ ` ≤ k
and that k > 1 since m > 1. For each J ∈ Jk, let g be a continuous function from
V J into AJ . We note that g is well-defined at this stage because if J, J ′ ∈ Jk and
J 6= J ′, then V J ∩ V J′ = ∅ by our choice of k and (iii). At stage k − 1 for every
J ∈ Jk−1 define g on V J so that g is an extension of the existing g defined at stage
k and f(V J) ⊆ AJ . This is possible by the Borsuk Extension Theorem and (iii).
Notice that if J 6= J ′ with both in Jk−1 and V J ∩V J ′ 6= ∅, then by (iii) J ∪J ′ ∈ Jk

and g has already been defined on V J∪J ′ = V J ∩ V J ′ at stage k. Hence, g is well
defined at stage k − 1. Repeating this process we reach the first stage without
conflicts with the definition of g on the Ni’s. At the first stage, we make sure the
definition of g on the Vi’s agrees with the definition of g on the previous V J ’s as
well as the Ni’s. The resulting function g is well defined on all of

⋃m
i=1 Vi.

Finally, let us see that g is indeed an ε-map. Let p ∈ C. Let J be the set of all i’s
such that p ∈ Ai, so that J ∈ J . By construction, we have that g−1(p) ⊆ ⋃

i∈J Vi.
By (ii), we have that diam(g−1(p)) < ε. ¤

There are various classes of continua satisfying the hypotheses of Lemma 5.2:
for example, dendrites, finitely triangulable continua (a topological space is finitely
triangulable if it is homeomorphic to the geometric realization of a finite simplicial
complex, and these spaces include n-cells and n-spheres) and the Hilbert cube IN.

15



Theorem 5.3. Let C be a nonempty class of continua satisfying the hypothesis of
Lemma 5.2. The set LC of C-like continua is Π0

2. Moreover if C contains at least
one nondegenerate continuum and there exists a nondegenerate continuum which
does not belong to LC, then LC is Π0

2-complete.

Proof. The first assertion is immediate from the definition of C-like continuum and
Lemma 5.2. The second assertion follows from the Baire Category Theorem because
a dense set with dense complement cannot be both Π0

2 and Σ0
2. ¤

Corollary 5.4. (1) If C is a nondegenerate finitely triangulable continuum or
a nondegenerate dendrite, then LC is Π0

2-complete;
(2) the set of graph-like continua is Π0

2-complete;
(3) the set of tree-like continua is Π0

2-complete;
(4) more in general, for any class C of continua of bounded dimension satisfying

the hypothesis of Lemma 5.2 and containing a nondegenerate continuum, LC
is Π0

2-complete.

Proof. This follows immediately from Theorem 5.3. To prove (4) we use the fact
that if every continuum in C has dimension ≤ n then every C-like continuum has
dimension ≤ n (see [Ale28]). ¤

We next use the Baire Category Theorem to prove some folklore facts in con-
tinuum theory. Recall that a pseudoarc is a hereditarily indecomposable arc-like
continuum and a pseudocircle is a planar circle-like hereditarily indecomposable
continuum which separates the plane. Also, recall that pseudoarcs and pseudocir-
cles are unique up to homeomorphism.

Corollary 5.5. Let G be a nondegenerate finitely triangulable continuum. Then,
the pseudoarc is G-like. More generally this holds if G is a nondegenerate continuum
satisfying the hypotheses of Lemma 5.2.

Proof. The collection P of pseudoarcs is comeager in C(IN) ([Bin51]). LG is dense
and Gδ by Corollary 5.4 and hence comeager. By the Baire Category Theorem
P ∩ LG 6= ∅ and hence the pseudoarc is G-like. ¤
Corollary 5.6. Let G be a graph which contains a homeomorphic copy of S1.
Then, the pseudocircle is G-like.

Proof. Let A be a closed annulus in the plane which separates the origin from
(1, 1). Let M be the collection of all subcontinua of A which separate the origin
from (1, 1). Then, M is a closed subset of C(A) and hence a compact set itself.

Let H1 be the collection of those continua in M which are G-like. By Corol-
lary 5.4, we know that H1 is Gδ. By a slight modification of the argument that
the collection of arcs is dense in C(A), we can obtain that the set of continua in M
homeomorphic to G is dense in M. Hence, H1 is comeager in M. Similarly, H2,
the collection of those continua in M which are circle-like, is comeager in M.

Recall that the collection of hereditarily indecomposable continua is a Gδ subset
of C(IN). Using the fact that the collection of continua in M homeomorphic to
S1 is dense in M, we can approximate any continuum in M, by a pseudocircle
in M. Hence, H3, the collection of hereditarily indecomposable continua in M, is
comeager in M.

Now, let M ∈ H1 ∩ H2 ∩ H3. Since M ∈ H2 ∩ H3, M is a pseudocircle. Since
M ∈ H1, M is G-like. ¤
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6. Complexity of the homeomorphism relation

For some classes of continua (like dendrites with a finite number of branch points
— see Theorem 3.5) the homeomorphism and the quasi-homeomorphism classes
coincide. This will allow to find the complexity of some homeomorphism class of
continua computing in fact the complexity of the class of quasi-homeomorphism
(Theorems 8.5 and 8.7). Corollaries 3.8 and 3.9 show that this argument fails
when one considers the infinite triod and the infinite comb, which are the minimal
dendrites with infinitely many branch points (Theorem 3.7).

Despite their similar position with respect to the quasi-ordering of likeness, the
structure of homeomorphism on Q(C∞) and Q(T∞) is very different. Indeed,
as already noticed in Section 3, Q(T∞) is partitioned in countably many home-
omorphism classes (in particular, homeomorphism on Q(T∞) is Borel reducible to
equality on N). In contrast, we will now show that the quotient of Q(C∞) under
homeomorphism has very high definable cardinality, namely the relation of homeo-
morphism on Q(C∞) is S∞-universal. In doing this we show that homeomorphism
on the class of all dendrites is S∞-universal as well.

Though later we shall study in more detail the descriptive complexity of some
classes of continua, we already need to prove here two such results (later it will be
shown that these computations are sharp).

Lemma 6.1. The classes of Peano continua and of dendrites are Π0
3.

Proof. Let X ∈ C(IN). Then (see [Nad92, Theorem 8.4]) X is Peano if and only if
for each ε > 0, X is the union of finitely many subcontinua of diameter less than
ε. This means

∀ε > 0 ∃n ∃(X0, . . . , Xn) ∈ C(IN)n+1(∀i ≤ n diam(Xi) ≤ ε &
n⋃

i=0

Xi = X).

Therefore the class of Peano continua is Π0
3.

Dendrites are exactly the Peano continua which are tree-like (see [Nad92, exercise
10.50]). The computation just completed and Corollary 5.4 imply that the class of
dendrites is Π0

3. ¤
From now on let P ⊂ C(IN) be the class of Peano continua and D ⊂ C(IN) be

the class of dendrites.

Lemma 6.2. If D is a nondegenerate dendrite then the class Q(D) is Π0
3.

Proof. By Theorem 4.7 there are only countably many quasi-homeomorphism classes
containing dendrites; thus there exists a countable set of dendrites {Dn | n ∈ N }
such that ∀n Dn ≺ D and ∀D′ ≺ D ∃n Q(D′) = Q(Dn). Since it is obvious that

Q(D) = (P ∩ LD) \
⋃

n∈N
LDn ,

by Lemma 6.1 and Corollary 5.4 Q(D) is Π0
3. ¤

Definition 6.3. Let

BD =
{

(X, x) ∈ C(IN)× IN | X ∈ D & x ∈ B(X)
}

;

ED =
{

(X, x) ∈ C(IN)× IN | X ∈ D & x ∈ E(X)
}

.

Lemma 6.4. BD and ED are Borel subsets of C(IN)× IN.
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Proof. Let X ∈ C(IN) and x ∈ IN.
We have that (X, x) ∈ BD if and only if x ∈ X, X ∈ D and there exist x1, x2, x3 ∈

X \ {x} such that for every L ∈ C(IN) with L ⊆ X we have

(x1 ∈ L & x2 ∈ L) ∨ (x1 ∈ L & x3 ∈ L) ∨ (x2 ∈ L & x3 ∈ L) =⇒ x ∈ L.

Therefore BD is Σ1
1. On the other hand, (X, x) ∈ BD if and only if x ∈ X, X ∈ D

and there exists ε > 0 such that for every K ∈ K(IN) with x /∈ K and K ⊆ X we
have

∀y ∈ IN(y ∈ X & d(y, x) ≥ ε =⇒ y ∈ K) =⇒ |K ∩X \K| > 2.

Since the maps K(IN)2 → K(IN), (L,L′) 7→ L \ L′ and (L,L′) 7→ L ∩ L′ are Borel
(see [Kur68]), and the compact sets of cardinality greater than 2 form a Borel subset
of K(IN), this shows that BD is also Π1

1. By Souslin’s Theorem, BD is Borel.
To see that ED is Σ1

1, notice that (X, x) ∈ ED if and only if x ∈ X, X ∈ D and
for all ε > 0 there exists K ∈ K(IN) with x /∈ K and K ⊆ X such that

∀y ∈ IN(y ∈ X & d(x, y) ≥ ε =⇒ y ∈ K) & |K ∩X \K| = 1.

On the other hand, (X, x) ∈ ED if and only if x ∈ X, X ∈ D and for every
x1, x2 ∈ X \ {x} we have

∃L ∈ C(IN)(x1, x2 ∈ L & L ⊆ X & x /∈ L).

Therefore ED is Π1
1 too, and hence Borel. ¤

Lemma 6.5. The relation of homeomorphism on dendrites is classifiable by count-
able structures.

Proof. Let D∞ ⊆ C(IN) be the class of dendrites in IN having infinitely many
branch points. Since there are countably many homeomorphism classes of dendrites
with finitely many branch points, by Lemma 6.1 and Theorem 1.3, D∞ is Borel.
Moreover, adding countably many Borel classes does not harm classifiability by
countable structures of an equivalence relation, so it is enough to prove that the
relation of homeomorphism on D∞ is classifiable by countable structures.

Let B∞ = BD ∩ (D∞ × IN). By Lemma 6.4, B∞ is a Borel subset of C(IN)× IN.
Moreover, for every X ∈ D∞, the section

{
x ∈ IN | (X,x) ∈ B∞ }

is countably
infinite. By a consequence of Lusin-Novikov Uniformization Theorem (see [Kec95,
Exercise 18.15]), there exist a sequence of Borel functions D∞ → IN, (bn) such that:

• {
x ∈ IN | (X, x) ∈ B }

= { bn(X) | n ∈ N } for all X ∈ D∞;
• bn(X) 6= bm(X) for all X ∈ D∞ and n 6= m.

Branch points (and their relative position) do not encode all the information
needed to characterize the homeomorphism class of X ∈ D∞: to this end we need
to have information also about maximal open free arcs of X.

Let T ⊆ C(IN)2 be the set of all pairs (X, A) such that X ∈ D∞ and A is the
closure of a maximal open free arc of X. We want to show that T is Borel. To this
end notice that a subarc A of X ∈ D∞ is the closure of a maximal open free arc of
X if and only if A does not contain any branch points of X except possibly as end
points and either

- one end point of A is an end point of X while the other end point of A
belongs to B(X), or

- both end points of A belong to B(X).
18



Let X, A ∈ C(IN). Then (X, A) ∈ T if and only if the following properties hold:

• A ⊆ X, A is an arc and X ∈ D∞;
• (A, bn(X)) ∈ ED whenever bn(X) ∈ A;
• either

- X \A ∈ C(IN) and ∀ε > 0 ∃n d(bn(X), A) < ε, or
- there exists δ > 0 such that for all ε > 0 there exist n and m satisfying

d(bn(X), bm(X)) > δ, d(bn(X), A) < ε and d(bm(X), A) < ε.

By Lemma 6.4, T is indeed Borel.
For every X ∈ D∞ the maximal open free arcs of X are pairwise disjoint and

hence each nonempty section of T is countable. For 0 ≤ i ≤ ℵ0 let

Di
∞ =

{
X ∈ D∞ |

∣∣{A ∈ C(IN) | (X,A) ∈ T }∣∣ = i
}

be the set of all the elements of D∞ having exactly i maximal open free arcs. Using
again [Kec95, Exercise 18.15] Di

∞ is Borel for each i and there exist sequences (hi
n :

n < i) of Borel functions Di
∞ → C(IN) that enumerate injectively the nonempty

sections of T .
Note that each Di

∞ is closed under homeomorphism. Moreover, the disjoint sum
of a countable collection of equivalence relations classifiable by countable structures
is still classifiable by countable structures. So, to conclude the proof, it will be
enough to show that, for 0 ≤ i ≤ ℵ0, the relation of homeomorphism on Di

∞ is
classifiable by countable structures. To this aim we shall define a countable first
order language L and a Borel function Φi : Di

∞ → XL such that, for all X, X ′ ∈ Di
∞,

X and X ′ are homeomorphic if and only if Φi(X) and Φi(X ′) are isomorphic. We
will explicitly do this for i = ℵ0 and leave the other similar cases to the reader. To
simplify the notation we will use Φ and hn instead of Φℵ0 and hℵ0

n .
We need one more ingredient for describing the construction of the structures

Φ(X). Let A be the set of all (X, K, K ′,K ′′) ∈ C(IN)4 such that

X ∈ D & K,K ′, K ′′ ⊆ X & ∀x ∈ K ∀x′ ∈ K ′ ∀x′′ ∈ K ′′ x′ ∈ AX
xx′′ .

To see that A is Borel notice that in this formula x′ ∈ AX
xx′′ can be replaced by

∀L ∈ C(IN)(L ⊆ X & x ∈ L & x′′ ∈ L =⇒ x′ ∈ L).

Let L = {P, R} be the language with P a unary relation symbol and R a ternary
relation symbol (actually P could be dispensed with, since P will be definable from
R within each Φ(X)). If M is a L-structure on N, denote by PM and RM the
interpretations of P and R in M , so that PM ⊆ N and RM ⊆ N3.

Given X ∈ Dℵ0∞ , we build a L-structure Φ(X) whose universe is essentially
{ {bn(X)} | n ∈ N }∪{hn(X) | n ∈ N }, with P identifying { {bn(X)} | n ∈ N } and
R describing how the continua are mutually located within X. To define precisely
Φ(X) we need to specify PΦ(X) and RΦ(X). To ease the description of Φ(X), let
q2n(X) = {bn(X)} and q2n+1(X) = hn(X) for each n.

Given X ∈ Dℵ0∞ , let

• PΦ(X) = {m | m is even };
• RΦ(X) = { (m,m′,m′′) | (X, qm(X), qm′(X), qm′′(X)) ∈ A}.

Φ(X) is a L-structure and, since the qm’s and A are Borel, the function Φ is Borel.
We now want to show that X and X ′ are homeomorphic continua if and only if
Φ(X) and Φ(X ′) are isomorphic L-structures, for every X,X ′ ∈ Dℵ0∞ .
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Let X and X ′ be homeomorphic via a homeomorphism ϕ : X → X ′. Define
ψ : N→ N by

• ψ(2m) = 2m′ if and only if ϕ(bm(X)) = bm′(X ′),
• ψ(2m + 1) = 2m′ + 1 if and only if ϕ maps hm(X) onto hm′(X ′),

The function ψ is an isomorphism between Φ(X) and Φ(X ′).
Conversely, assume ψ : N → N is an isomorphism between Φ(X) and Φ(X ′).

Since ψ preserves P , n and ψ(n) have the same parity. In order to define a homeo-
morphism ϕ : X → X ′ we first take care of the branch points of X and X ′ setting
ϕ(bn(X)) = bn′(X ′) for each n, where n′ = ψ(2n)

2 .

Claim. The function ϕ so far defined is uniformly continuous on B(X).

Proof of claim. If this were not the case there exists ε > 0 such that for all δ > 0
there exists x, y ∈ B(X) with d(x, y) < δ and d(ϕ(x), ϕ(y)) > ε. Hence there
are two sequences (xk) and (yk) in B(X) which converge to the same point in X
and such that (ϕ(xk)) and (ϕ(yk)) converge to distinct points x′, y′ ∈ X ′. Then
AX′

x′y′ either contains some hn(X) or infinitely many branch points. If m′
k and

n′k are the representatives of {ϕ(xk)} and {ϕ(yk)} in Φ(X ′), then either for some
j /∈ PΦ(X′) eventually we have (m′

k, j, n′k) ∈ RΦ(X′), or for some distinct j and j′

eventually we have both (m′
k, j, n′k) ∈ RΦ(X′) and (m′

k, j′, n′k) ∈ RΦ(X′). On the
other hand, if mk = ψ−1(m′

k) and nk = ψ−1(n′k), neither there exists j /∈ PΦ(X)

such that eventually (mk, j, nk) ∈ RΦ(X) nor there exist distinct j and j′ such that
eventually (mk, j, nk) ∈ RΦ(X) and (mk, j′, nk) ∈ RΦ(X). This contradicts ψ being
an isomorphism. ¤

Therefore ϕ can be extended to a continuous function on B(X) and applying
the claim to ψ−1 as well, we have that ϕ is a homeomorphism between B(X) and
B(X ′).

For each n, we will define ϕ on hn(X) to be a homeomorphism onto hn′(X ′)
where n′ = ψ(2n+1)−1

2 . Notice that at least one end point of hn(X) belongs to
B(X) while the other end point of hn(X) can be either in B(X) or in E(X). Since
ψ preserves R the same situation holds for hn′(X ′). So define ϕ on hn(X) as a
homeomorphism onto hn′(X ′) extending the definition already given on B(X).

The fact that ϕ : X → X ′ is a homeomorphism follows using again that ψ is an
isomorphism. ¤

Lemma 6.6. The isomorphism relation for countable linear orderings Borel reduces
to the homeomorphism relation on Q(C∞).

Proof. Let L be the language with a single binary relation symbol and LO ⊆ XL be
the Polish subspace of countable linear orderings. We will define a continuous func-
tion F : LO → C(I × [−1, 1]), reducing isomorphism of countable total orderings to
homeomorphism of subcontinua of I × [−1, 1], so that F (α) is quasi-homeomorphic
to C∞ for every α ∈ LO.

Let K = (I ×{0})∪ ({1
4}× [− 1

4 , 1]) and fix an enumeration { qn | n ∈ N } of the
rationals of the open interval ( 1

2 , 3
4 ). If α ∈ LO, the continuum F (α) will be obtained

by adding to K vertical segments of the form {qn}× [0, 1
h ] where (n, h) ranges in a

suitable subset of N2, dependent on α (see figure 3, where the thicker lines represent
K). Note that Corollary 3.8 guarantees that F (α) is quasi-homeomorphic to C∞.
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Figure 3. The construction of the proof of Lemma 6.6

Fix α ∈ LO. We define by recursion α∗ : N → N. Let n ∈ N and suppose α∗(i)
has been defined for every i < n. Then α∗(n) is the least m ∈ N such that the n+1-
tuple of rationals (qα∗(0), qα∗(1), . . . , qα∗(n−1), qm) is ordered within I as the n + 1-
tuple (0, 1, . . . , n− 1, n) is ordered according to α. Then Qα =

{
qα∗(n) | n ∈ N

}
is

order isomorphic to α. Moreover, if J is a nonempty interval of ( 1
2 , 3

4 ) disjoint from
Qα then either there are no elements of Qα at the left of J or there is a biggest
one; similarly, either there is no member of Qα at the right of J or there is a least
one.

We let
F (α) = K ∪

⋃

n∈N
({qα∗(n)} × [0, 1

n+1 ]).

It is immediate to check that F is continuous.
Assume that α, β ∈ LO are isomorphic and let ϕ : N → N be an order isomor-

phism from α to β. This induces an order isomorphism ψ : Qα → Qβ defined by
ψ(qα∗(n)) = qβ∗(ϕ(n)). By the above observation on open intervals disjoint from
Qα, ψ can be extended to an order isomorphism (so a homeomorphism) ψ′ : I → I
which is the identity on [0, 1

4 ]. Since ψ′ matches branch points of F (α) with branch
points of F (β) and obviously ψ′( 1

4 ) = 1
4 , we can extend ψ′ to a homeomorphism

between F (α) and F (β).
Conversely, any homeomorphism χ between F (α) and F (β) matches branch

points and preserves their ordering on the arc containing all of them. As ( 1
4 , 0)

is the unique point of order 4 in both F (α) and F (β), and there are no branch
points to its left, χ( 1

4 , 0) = ( 1
4 , 0) and χ respects the orientation of I. Therefore the

restriction of χ to Qα is an order isomorphism between Qα and Qβ . Hence α and
β are isomorphic total orderings. ¤

Theorem 6.7. The relations of homeomorphism on dendrites and on Q(C∞) are
both S∞-universal.

Proof. By Lemmas 6.5 and 6.6 and the result of Friedman and Stanley ([FS89])
that isomorphism for countable total orderings is S∞-universal. ¤

Theorem 6.7 solves the classification problem for homeomorphism on some par-
ticular classes of compact metric spaces. As already mentioned, homeomorphism
on compact subsets of the Cantor space shares the same complexity, while homeo-
morphism on Peano continua is strictly more complicated.

Corollary 6.8. Q(C∞) contains a perfect set of pairwise non-homeomorphic con-
tinua. Moreover, for every α < ω1 there exists a continuum C ∈ Q(C∞) such
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Figure 4. The construction of the proof of Lemma 7.1

that H(C) is not Π0
α, i.e. Q(C∞) is partitioned into homeomorphism classes of

unbounded Borel complexity.

Proof. By Theorem 6.7 and the argument of the proof of the second half of Theo-
rem 1.3. ¤

7. Constructions for hardness

We recall a few sets which will be useful (for details see [Kec95, §23.A]). They
are subsets of the Cantor space 2N, sometimes viewed as 2N×N or (2N×N)2. The
quantifier ∀∞n means “for all but finitely many n’s”, i.e. ∃M ∀n > M .

Q2 =
{

α ∈ 2N | ∀∞n α(n) = 0
}

is Σ0
2-complete;

P3 =
{

α ∈ 2N×N | ∀m ∀∞n α(m,n) = 0
}

is Π0
3-complete;

S∗3 =
{

α ∈ 2N×N | ∀∞m ∃n α(m,n) = 0
}

is Σ0
3-complete.

The last two facts imply that P3 × S∗3 ⊂ (2N×N)2 is D2(Σ0
3)-complete.

The following notation will be useful in our constructions: when p, q ∈ Rn for
some n, pq denotes the straight segment joining p and q.

Lemma 7.1. Let X be homeomorphic to I2 and x and y be distinct points on the
boundary of X. There exists a continuous function F ′ : 2N → C(X) such that

1. F ′(α) intersects the boundary of X in the set {x, y} for every α ∈ 2N;
2. if α ∈ Q2 then F ′(α) is an arc with end points x and y;
3. if α /∈ Q2 then F ′(α) is not a Peano continuum.

Proof. We can assume X = [−1, 1]2, x = (1, 0) and y = (0, 1). For every n let
pn = ( 1

n+1 , 0), qn = ( 1
n+2 , 1

2 ) and define F ′n(0) = pnpn+1 and F ′n(1) = pnqn∪qnpn+1.
Let also p∞ = (0, 0).

If α ∈ 2N let
F ′(α) = p∞y ∪

⋃

n∈N
F ′n(α(n))

(see figure 4). To check that F ′ : 2N → C(X) is continuous notice that if α(n) =
β(n) for every n < m then dH(F ′(α), F ′(β)) < 1

m .
The first property of F ′ is immediate from the definition. The second property

is checked by noticing that if α ∈ Q2 then {p∞} ∪
⋃

n∈N F ′n(α(n)) is an arc with
end points x and p∞ which intersects p∞y only in p∞. To check the third property
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Figure 5. The construction of the proof of Lemma 7.2

notice that if α /∈ Q2 then F ′(α) is not locally connected at every point of the lower
half of p∞y. ¤

Lemma 7.1 can be applied repeatedly, yielding the following sharper result.

Lemma 7.2. Let X be homeomorphic to I2 and x and y be distinct points on the
boundary of X. There exists a continuous function F : 2N×N → C(X) such that

1. F (α) intersects the boundary of X in the set {x, y} for every α ∈ 2N×N;
2. if α ∈ P3 then F (α) is an arc with end points x and y;
3. if α /∈ P3 then F (α) is not a Peano continuum.

Proof. We can assume X = [0, 1]×[−1, 1], x = (1, 0) and y = (0, 0). For every m let
Xm = [ 1

2m+2 , 1
2m+1 ]× [0, 1

m+1 ], xm = ( 1
2m+1 , 0) and ym = ( 1

2m+2 , 0) (see figure 5).
Let F ′m : 2N → C(Xm) be the continuous function provided by Lemma 7.1 with
respect to xm and ym.

If α ∈ 2N×N let αm ∈ 2N be defined by αm(n) = α(m,n) and define

F (α) = {y} ∪
⋃

m∈N
(F ′m(αm) ∪ ymxm+1) .

To check that F : 2N×N → C(X) is continuous notice that if dH(F ′m(αm), F ′m(βm)) <
1
M for every m < M then dH(F (α), F (β)) < 1

M .
The first property of F is immediate from the definition. The second property

is checked by noticing that if α ∈ P3 then each F ′m(αm) is an arc with end points
xm and ym contained in Xm. To check the third property notice that if α /∈ P3

then F ′m(αm) is not locally connected for some m; by the choice of the Xm’s, F (α)
is also not locally connected. ¤

Lemma 7.2 immediately yields a hardness result for a wide range of classes of
Peano continua.

Theorem 7.3. Any class of Peano continua which is closed under homeomorphism
and contains a continuum which has an open free arc is Π0

3-hard.

Proof. Let P ∈ C(IN) be a Peano continuum which contains an open free arc A.
Fix distinct points x and y belonging to A and let B ⊂ A be the arc with end
points x and y. Let P ′ = P \B.

Since A is open in P there exists X homeomorphic to I2 such that X ∩ P =
B and x and y are the only points of B which lie on the boundary of X. Let
F : 2N×N → C(X) be the function of Lemma 7.2 with respect to x and y. Define
F̄ : 2N×N → C(IN) by F̄ (α) = P ′ ∪ F (α).
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Figure 6. The construction of the proof of Lemma 7.4

Since dH(F̄ (α), F̄ (β)) ≤ dH(F (α), F (β)) the function F̄ is continuous. Moreover
it is immediate that

α ∈ P3 ⇐⇒ F̄ (α) is homeomorphic to P

⇐⇒ F̄ (α) ∈ P.

If C is any class of Peano continua satisfying the hypothesis of the theorem pick
P ∈ C with an open free arc, and apply the construction above. We have

α ∈ P3 ⇐⇒ F̄ (α) ∈ C
and C is Π0

3-hard. ¤
Another useful construction is contained in the next lemma.

Lemma 7.4. Let X be homeomorphic to I2 and x and y be distinct points on the
boundary of X. There exists a continuous function G : 2N → C(X) such that

1. G(α) intersects the boundary of X in the set {x, y} for every α ∈ 2N;
2. if ∀n α(n) = 1 then G(α) is a simple triod such that x and y are two of its

end points;
3. if ∃n α(n) = 0 then G(α) is an arc with end points x and y.

Proof. We can assume X = [−1, 1]2, x = (1, 0) and y = (0, 1). Let z = (0,− 1
2 )

and, for every n, pn = ( 1
n+1 , 0) and qn = ( 1

n+1 ,− 1
2 ).

If α ∈ 2N let Aα = {n | ∀m < n α(m) = 1 }. If ∃n α(n) = 0 let M = max Aα +1
and Eα = pMqM . If ∀n α(n) = 1 let Eα = ∅. Define G by

G(α) = yz ∪ Eα ∪
⋃

n∈Aα

pnpn+1 ∪
⋃

n/∈Aα

qnqn+1

(see figure 6). To check that G : 2N → C(X) is continuous notice that if α(n) = β(n)
for every n < m then dH(G(α), G(β)) < 1

m .
The three properties G must satisfy are easily checked. ¤
Combining lemmas 7.1 and 7.4 we obtain the following result.

Theorem 7.5. Any class of graphs which contains all combs is D2(Σ0
3)-hard.

Proof. Let X = [0, 1] × [−1, 1] and, for every m, Xm = [ 1
2m+2 , 1

2m+1 ] × [0, 1
m+1 ],

xm = ( 1
2m+1 , 0) and ym = ( 1

2m+2 , 0) as in the proof of Lemma 7.2 (see again
figure 5).
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When m is even let F ′m : 2N → C(Xm) be the continuous function provided by
Lemma 7.1 with respect to xm and ym. When m is odd let Gm : 2N → C(Xm) be
the continuous function provided by Lemma 7.4 with respect to xm and ym.

If (α, β) ∈ (2N×N)2 let αm, βm ∈ 2N be defined as in the proof of Lemma 7.2.
Define F̄ : (2N×N)2 → C(X) by

F̄ (α, β) = {(0, 0)} ∪
⋃

m∈N
(F ′2m(αm) ∪ y2mx2m+1 ∪G2m+1(βm) ∪ y2m+1x2m+2) .

The continuity of F̄ is proved as in the proof of Lemma 7.2.
If α /∈ P3 then F̄ (α, β) is not a Peano continuum (and thus not a graph) be-

cause some F ′2m(αm) is not a Peano continuum. If β /∈ S∗3 then infinitely many
G2m+1(βm)’s are simple triods, so that F̄ (α, β) has infinitely many branching points
and hence is not a graph. If (α, β) ∈ P3 × S∗3 then each F ′2m(αm) is an arc and all
but finitely many G2m+1(βm)’s are arcs, so that F̄ (α, β) is a comb (the number of
branching points is the number of m’s such that ∀n β(m,n) = 1).

Therefore

(α, β) ∈ P3 × S∗3 ⇐⇒ F̄ (α, β) is a comb

⇐⇒ F̄ (α, β) is a graph

and this completes the proof of the theorem. ¤

8. Classification of classes of continua

For the sake of completeness, we begin with a list of some Π0
2-complete classes of

continua. For some of them the classification is already known, for others it follows
from simple computations.

Theorem 8.1. The following classes of continua are Π0
2-complete:

(1) pseudoarcs;
(2) indecomposable continua;
(3) hereditarily indecomposable continua;
(4) irreducible continua between n points (n ≥ 2);
(5) hereditarily irreducible continua;
(6) unicoherent continua;
(7) hereditarily unicoherent continua.

Proof. Once we show that each class is Π0
2, its completeness follows from the Baire

Category Theorem since it is dense with dense complement. The proof that a class
is Π0

2 is a simple check on its definition or one of its equivalent characterizations.

(1) See [Nad92, exercise 12.70].
(2) See [Nad92, exercise 1.17].
(3) See [Nad92, exercise 1.23].
(4) A theorem of Sorgenfrey ([Sor46]) states that a continuum X is irreducible

about n points (n ≥ 2) if and only if, whenever X =
⊕n

i=0 Xi, there exists
j ≤ n such that

⋃
i 6=j Xi is not connected.

(5) Follows immediately from (4).
(6) A continuum X ⊆ IN is unicoherent if and only if

∀A,B ∈ C(IN)(A,B ⊆ X & A ∪B = X =⇒ A ∩B ∈ C(IN)).
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Since intersection is a Baire class 1 function on K(IN) (see [Kur68]), this formula
defines a Π0

2 set.
(7) Follows immediately from (6).

¤
We now list classifications of projective classes of continua that are already known

or follow immediately from already known constructions.

Theorem 8.2. (1) The class of arcwise connected continua is Π1
2-complete;

(2) the class of hereditarily decomposable continua is Π1
1-complete;

(3) the class of continua that do not contain any hereditarily indecomposable
subcontinuum is Π1

1-complete;
(4) the class of λ-dendroids is Π1

1-complete.

Proof. (1) This is due to Ajtai and Becker (see [Kec95, Theorem 37.11]).
(2) This is proved in [Dar00].
(3) To see that the class under consideration is Π1

1 it suffices to check the definition,
applying Theorem 8.1.3. Π1

1-hardness can be proved with the construction of
[Dar00].

(4) The class of λ-dendroids is Π1
1 by Theorem 8.1.7 and (2). Π1

1-hardness is proved
again by the construction of [Dar00].

¤
From Theorem 7.3 and Lemma 6.1 we have the following (for the class of

Peano continua this was first obtained by Kuratowski ([Kur31]) and Mazurkiewicz
([Maz31])).

Theorem 8.3. The classes P of Peano continua and D of dendrites are Π0
3-

complete.

Theorem 8.4. Each of the classes of graphs and trees is D2(Σ0
3)-complete.

Proof. Both classes are D2(Σ0
3)-hard by Theorem 7.5.

It is obvious that there are countably many classes of homeomorphism of graphs.
Let {Gn | n ∈ N } be a set of graphs intersecting each homeomorphism class of
graphs. By Theorem 1.7 the class of graphs is

P ∩
⋃

n∈N
LGn .

Theorem 8.3 and Corollary 5.4 imply that the class of graphs is D2(Σ0
3).

The proof that the class of trees is D2(Σ0
3) is analogous, starting with a countable

set of trees intersecting each homeomorphism class of trees. ¤
By combining the results of Sections 3 and 7 we can now show that the classifi-

cation of the complexity of classes of quasi-homeomorphism of dendrites obtained
in Lemma 6.2 is sharp.

Theorem 8.5. If D is a nondegenerate dendrite then the class Q(D) is Π0
3-

complete.

Proof. Q(D) is Π0
3 by Lemma 6.2.

Since not all nondegenerate dendrites contain an open free arc, Theorem 7.3
cannot be applied directly. However we now show that every quasi-homeomorphism
class of dendrites has an element with an open free arc and hence is Π0

3-hard.
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Given D fix p ∈ E(D) and set D′ = D ∪ A where A is an arc with p as one of
its end points and A∩D = {p}. Clearly D′ contains an open free arc and D ¹ D′.
Since any subtree of D′ is homeomorphic to a subtree of D, Theorem 3.2.4 shows
that D′ ¹ D. Therefore D′ ∈ Q(D). ¤

Corollary 8.6. If D is a dendrite with finitely many branch points, then the class
H(D) is Π0

3-complete.

Proof. By Theorems 3.5 and 8.5. ¤

Corollary 6.8 shows that Corollary 8.6 cannot be extended to arbitrary dendrites.
The technique of the proof of Lemma 6.2 applies also to graphs.

Theorem 8.7. If G is a graph then the class Q(G) = H(G) is Π0
3-complete.

Proof. The two classes coincide by Theorem 1.6 and are Π0
3-hard by Theorem 7.3.

Since there are only countably many classes of homeomorphism of graphs, there
exists a countable set of graphs {Gn | n ∈ N } such that ∀n Gn ≺ G and ∀G′ ≺
G ∃n H(G′) = H(Gn). We have again

Q(G) = (P ∩ LG) \
⋃

n∈N
LGn

and Theorem 8.3 and Corollary 5.4 imply that Q(G) is Π0
3. ¤

In particular, each of the homeomorphism classes of the arc (this already follows
from [Kur31] and [Maz31]), the simple triod and the circle is Π0

3-complete.

Theorem 8.8. The classes of uniquely arcwise connected continua and of dendroids
are Π1

1-complete.

Proof. Let R be the set of (C,A, x, y) ∈ C(IN)2 × (IN)2 such that A ⊆ C is an arc
with end points x and y. Then a continuum C is uniquely arcwise connected if and
only if

∀x, y ∈ IN(x, y ∈ C & x 6= y =⇒ ∃!A ∈ C(IN) (C, A, x, y) ∈ R).

A straightforward computation using Corollary 8.6 shows that R is Π0
3 and hence

(by a well-known result of descriptive set theory, see [Kec95, Theorem 18.11]) the
class of uniquely arcwise connected continua is Π1

1. A continuum is a dendroid
if and only if it is hereditarily unicoherent and uniquely arcwise connected. By
Theorem 8.1.7 and the first part of the theorem the class of dendroids is Π1

1.
The construction of [Dar00] shows that both classes are Π1

1-hard. ¤
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