COLORING LINEAR ORDERS WITH RADO'S PARTIAL ORDER

RICCARDO CAMERLO AND ALBERTO MARCONE

ABSTRACT. Let \leq_{R} be the preorder of embeddability between countable linear orders colored with elements of Rado's partial order (a standard example of a woo which is not a boo). We show that \preceq_{R} has fairly high complexity with respect to Borel reducibility (e.g. if P is a Borel preorder then $P \leq_B \leq_{\mathsf{R}}$), although its exact classification remains open.

1. INTRODUCTION

This note is a contribution to the study of the relations of embeddability for countable colored linear orderings from the point of view of descriptive set theory. Fixing ω as the support of a countable linear ordering, we can consider the space LO of all linear orderings on ω . This is a standard Borel space (actually a Polish space, see [Kec95]). For our purposes, to color a linear order means assigning to each element of the support an element from a fixed countable set C. A colored linear ordering on ω is thus an element of $LO \times C^{\omega}$, which is also a standard Borel space.

If Q is a partial order on C we have a natural relation of embeddability \preceq_Q on $LO \times C^{\omega}$ defined by letting $(\sqsubseteq, \varphi) \preceq_Q (\sqsubseteq', \varphi')$ if and only if there exists $q: \omega \to \omega$ such that:

- (1) $\forall a, b \in \omega \ (a \sqsubseteq b \iff g(a) \sqsubseteq' g(b));$
- (2) $\forall a \in \omega \varphi(a) Q \varphi'(g(a)).$

Then \preceq_Q is a Σ_1^1 preorder which is not Borel and it can be studied in the framework of Borel reducibility.

Given binary relations P and P' on standard Borel spaces X and X' respectively, recall that $P \leq_B P'$ means that there exists a Borel function $f: X \to X'$ such that $x \stackrel{\frown}{P} y \iff f(x) P' f(y)$. A Σ^1_1 preorder P' is called Σ_1^1 -complete if and only if $P \leq_B P'$ for any Σ_1^1 preorder P. For preorders of the form \preceq_{O} it is known that:

• if Q is a bqo then, by Laver's celebrated theorem ([Lav71]), \leq_Q is a bqo as well; in particular it is a wqo and the relation of equality on ω is not reducible to \preceq_Q ; thus in this case \preceq_Q is quite far from being a Σ_1^1 -complete preorder;

²⁰⁰⁰ Mathematics Subject Classification. 03E15, 06A05.

Key words and phrases. Borel reducibility. Rado's partial order. Colored linear orders.

• if Q is not a wqo, then \preceq_Q is a Σ_1^1 -complete preorder (see [Cam05], a partial result in this direction is in [MR04]).

These results leave unanswered the question of the complexity of the relation \preceq_Q when Q is a wqo but not a bqo.

If α is a countable ordinal then a preorder Q is ω^{α} -wqo if \leq_Q restricted to well-orders of order type strictly less than ω^{α} is a wqo. Therefore ω -wqo means wqo and a preorder is bqo if and only if it is ω^{α} -wqo for every α (details can be found e.g. in [Mar94]).

In this note we consider Rado's partial order R defined on the set $D = \{ (n,m) \in \omega^2 \mid n < m \}$ by

$$(n,m) \mathsf{R}(n',m') \iff (n = n' \land m \le m') \lor m < n'.$$

R is wqo but it is not ω^2 -wqo. Moreover R embeds into every wqo which is not ω^2 -wqo ([Rad54]). R is the best known example of a wqo which is not bqo.

We will need witnesses for the fact that R is not ω^2 -wqo. Let $r_i \in D^{\omega}$ be defined by letting $r_i(n) = (i, i+1+n)$ for each $n \in \omega$. Note that if i < i', then r_i and $r_{i'}$ are incomparable under \leq_{R} : indeed $(i', n) \mathsf{R}(i, m)$ does not hold for any n, m, while $(i, i') \mathsf{R}(i', m)$ does not hold for any m. Therefore, for $i \neq i'$, we can fix $\gamma_{ii'} \in \omega$ such that $r_i(\gamma_{ii'}) \mathsf{R}(r_{i'}(m))$ does not hold for any m.

In section 2 we show that for any Borel preorder P, the relation $P \leq_B \leq_{\mathsf{R}}$ holds (by the above observation the result extends to all \leq_Q where Q is wqo but not ω^2 -wqo). This shows that \leq_{R} is indeed a quite complex preorder, though the question about its Σ_1^1 -completeness remains wide open. The proof is an application of Rosendal's construction of a cofinal family of Borel preorders ([Ros05]). This involves comparing \leq_{R} with an ω_1 -chain of Borel preorders on standard Borel spaces obtained by repeatedly applying a jump operation $P \mapsto P^{\text{cf}}$.

Rosendal ([Ros05]) showed that if P is a Borel preorder satisfying a simple combinatorial condition, then $P <_B P^{cf}$. In section 3 we compare \leq_R with its jump $(\leq_R)^{cf}$ and show that $\leq_R \equiv_B (\leq_R)^{cf}$ (that is $\leq_R \leq_B (\leq_R)^{cf} \leq_B \leq_R$), giving further evidence to the fact that \leq_R has high descriptive complexity.

In contrast with the latter property of \leq_{R} , in section 4 we prove the existence of a downward closed class of non-Borel preorders P such that $P <_B P^{\text{cf}}$.

In the sequel, we will freely use the operations of sum of colored linear orders, and of multiplication of a colored linear order L by a linear order L', indicated by $L \cdot L'$. Standard coding techniques allow to represent the result as an element of $LO \times C^{\omega}$ in a Borel way.

2. \leq_{R} is above all Borel preorders

Definition 1. If P is a preorder on a standard Borel space X define $P^{\rm cf}$ on X^{ω} by setting

$$\vec{x} P^{\mathrm{cf}} \vec{y} \iff \forall n \in \omega \ \exists m \in \omega \ x_n P \ y_m.$$

Remark 2. Notice that $P_0 \leq_B P_1$ implies $P_0^{\text{cf}} \leq_B P_1^{\text{cf}}$. Moreover $P \leq_B P^{\text{cf}}$, as witnessed by the map $x \mapsto \vec{y}$ where $y_n = x$ for every n.

A (colored) linear order L is *right indecomposable* if it is embeddable in any of its final segments. For example each r_i defined above is right indecomposable. An ordinal is right indecomposable if and only if it is additively indecomposable: in this case we adhere to standard terminology and say that the ordinal is indecomposable.

Theorem 3. For any Borel preorder P on some standard Borel space, the relation $P \leq_B \preceq_{\mathsf{R}} holds$.

Proof. Following Rosendal ([Ros05]) define preorders P_{ξ} with domain X_{ξ} , for $\xi \in \omega_1$ as follows:

- $X_0 = \omega$ and P_0 is equality;

• given P_{ξ} let $X_{\xi+1} = X_{\xi}^{\omega}$ and $P_{\xi+1} = P_{\xi}^{\text{cf}}$; • for ξ limit let $X_{\xi} = \prod_{\beta < \xi} X_{\beta}$ and $\vec{x} P_{\xi} \vec{y} \iff \forall \beta < \xi \ x_{\beta} P_{\beta} y_{\beta}$.

Rosendal proved that this transfinite sequence is \leq_B -cofinal among Borel preorders. Therefore it suffices to show that $\forall \xi < \omega_1 P_{\xi} \leq_B \leq_{\mathbb{R}}$.

We prove by induction on ξ that there exist an indecomposable countable ordinal α_{ξ} and a Borel reduction f_{ξ} of P_{ξ} to \leq_{R} whose values are colored well-orders of order type α_{ξ} which are right indecomposable.

Basis step. Let $\alpha_0 = \omega$ and $f_0(i) = r_i$.

Successor step. Let $\xi \in \omega_1$ and assume f_{ξ} , α_{ξ} satisfy the induction hypothesis. Set $\alpha_{\xi+1} = \alpha_{\xi} \cdot \omega$. Given $\vec{x} = (x_0, x_1, x_2, \ldots) \in X_{\xi+1}$, define

$$f_{\xi+1}(\vec{x}) = \sum_k f_{\xi}(x_{n_k})$$

where $(n_k)_{k\in\omega}$ is an enumeration of ω where each natural number occurs infinitely often. Each occurrence of $f_{\xi}(x_i)$ in this definition will be called a segment of $f_{\xi+1}(\vec{x})$. Notice that $f_{\xi+1}(\vec{x})$ is a right indecomposable colored well-order of length $\alpha_{\xi+1}$.

Suppose $\vec{x} P_{\xi+1} \vec{y}$. For each $n \in \omega$ there exists $m \in \omega$ such that $f_{\xi}(x_n) \preceq_{\mathsf{R}} f_{\xi}(y_m)$. Since each $f_{\xi}(y_i)$ occurs infinitely often in $f_{\xi+1}(\vec{y})$, it follows that $f_{\xi+1}(\vec{x}) \preceq_{\mathsf{R}} f_{\xi+1}(\vec{y})$.

Conversely, suppose g embeds $f_{\xi+1}(\vec{x})$ into $f_{\xi+1}(\vec{y})$. Since no segment of $f_{\xi+1}(\vec{x})$ can be mapped by g cofinally into $f_{\xi+1}(\vec{y})$, a final segment of each $f_{\xi}(x_i)$ must be embedded by g into some $f_{\xi}(y_i)$. Since by induction hypothesis $f_{\xi}(x_i)$ is right indecomposable, we have $f_{\xi}(x_i) \preceq_{\mathsf{R}} f_{\xi}(y_j)$ which implies $x_i P_{\xi} y_j$. Thus $\vec{x} P_{\xi+1} \vec{y}$.

Limit step. Let ξ be a limit ordinal. Suppose that, for each $\beta < \xi$, α_{β} and f_{β} satisfy the induction hypothesis. Let ρ be an indecomposable countable ordinal larger than each α_{β} . Let $\{\beta_n\}_{n \in \omega}$ be an enumeration of ξ with each element occurring infinitely often. Given $\vec{x} \in X_{\xi} = \prod_{\beta < \xi} X_{\beta}$, define

$$F_{n}(\vec{x}) = f_{\beta_{n}}(x_{\beta_{n}}) + r_{n+1}(\gamma_{n+1,n}) + r_{n} \cdot \rho$$

(where $r_{n+1}(\gamma_{n+1,n})$ denotes the colored linear order with a single element colored by $r_{n+1}(\gamma_{n+1,n})$),

$$F(\vec{x}) = \sum_{n} F_n(\vec{x}),$$

and finally

$$f_{\xi}(\vec{x}) = F(\vec{x}) \cdot \omega.$$

So each $f_{\xi}(\vec{x})$ is a right indecomposable colored well-order of length $\alpha_{\xi} = \rho \cdot \omega^2$, which is an indecomposable countable ordinal.

Suppose $\vec{x} P_{\xi} \vec{y}$. Then $F_n(\vec{x}) \preceq_{\mathsf{R}} F_n(\vec{y})$ for every n, so $F(\vec{x}) \preceq_{\mathsf{R}} F(\vec{y})$ and finally $f_{\xi}(\vec{x}) \preceq_{\mathsf{R}} f_{\xi}(\vec{y})$.

Conversely, let g witness $f_{\xi}(\vec{x}) \preceq_{\mathsf{R}} f_{\xi}(\vec{y})$. Then a final segment of the first occurrence Φ of $F(\vec{x})$ in the definition of $f_{\xi}(\vec{x})$ is embedded by g into some occurrence Ψ of $F(\vec{y})$ in $f_{\xi}(\vec{y})$. Let $i \in \omega$ be least such that the occurrence of $F_i(\vec{x})$ in Φ is embedded by g into Ψ . So for each $j \geq i$ a final segment of the occurrence of $r_j \cdot \rho$ in Φ must be sent by g cofinally into the corresponding occurrence in Ψ . As, for j > i, the occurrence of $r_{j+1}(\gamma_{j+1,j})$ in $F_j(\vec{x})$ just preceding the occurrence of $r_j \cdot \rho$ cannot be sent by g to an element of the occurrence of $r_j \cdot \rho$ in $F_j(\vec{y})$, it follows that g embeds $f_{\beta_j}(x_{\beta_j})$ into $f_{\beta_j}(y_{\beta_j})$, witnessing $x_{\beta_j} P_{\beta_j} y_{\beta_j}$. Since each $\beta \in \xi$ occurs as β_j for some j > i, it follows that $\vec{x} P_{\xi} \vec{y}$. \Box

Corollary 4. If Q is a countable wqo but not an ω^2 -wqo then, for all Borel preorders P on standard Borel spaces, $P \leq_B \leq_Q$.

Proof. By Rado's Theorem R embeds into Q and from this it follows easily that $\leq_{\mathsf{R}} \leq_B \leq_Q$.

3. A closure property for \leq_{R}

The goal of this section is proving the following result:

Theorem 5. $(\preceq_{\mathsf{R}})^{\mathrm{cf}} \equiv_B \preceq_{\mathsf{R}}$.

The proof of Theorem 5 uses the following definition and a couple of lemmas.

Definition 6. If Q is a partial order on a countable set C of colors, define \preceq_Q^* on $LO \times C^{\omega}$ by $L \preceq_Q^* L'$ if and only if $L \cdot \omega \preceq_Q L' \cdot \omega$.

Remark 7. For any Q the map $L \mapsto L \cdot \omega$ witnesses that $\preceq_Q^* \leq_B \preceq_Q$.

Moreover it is easy to check that $L \preceq_Q^* L'$ is equivalent to the existence of $k \in \omega$ such that $L \preceq_Q L' \cdot k$.

Lemma 8. If Q is a partial order on a countable set then we have $(\preceq_Q^*)^{\text{cf}} \leq_B \leq_Q$.

Proof. Fix a sequence $(n_k)_{k\in\omega}$ enumerating each natural number infinitely many times and use the map $\vec{L} \mapsto \sum_{k\in\omega} (L_{n_k} \cdot \omega)$.

Lemma 9. Let P be any preorder on $LO \times D^{\omega}$ such that $\preceq_{\mathsf{R}} \subseteq P \subseteq \preceq_{\mathsf{R}}^*$. Then $\preceq_{\mathsf{R}} \leq_B P$. In particular $\preceq_{\mathsf{R}} \leq_B \preceq_{\mathsf{R}}^*$ and thus (by Remark 7) $\preceq_{\mathsf{R}} \equiv_B \preceq_{\mathsf{R}}^*$.

Proof. Given $L \in LO \times D^{\omega}$ let $L^{(i)}$ be the colored linear order obtained from L by replacing each color (n, m) with (2(i+1)n+1, 2(i+1)m+1)(the underlying linear order is unchanged). Notice that $L^{(i)} \preceq_{\mathsf{R}} M^{(i)}$ if and only if $L \preceq_{\mathsf{R}} M$.

To show that $\leq_{\mathsf{R}} \leq_{B} P$ we use the map $L \mapsto F(L)$ where

$$F(L) = \sum_{i \in \omega} (L^{(i)} + r_{2i} \cdot \mathbb{Q}).$$

It is immediate that if $L \preceq_{\mathsf{R}} M$ then $F(L) \preceq_{\mathsf{R}} F(M)$ and hence F(L) P F(M).

Now assume that F(L) P F(M), which implies $F(L) \preceq_{\mathsf{R}}^* F(M)$, so that for some $k \in \omega$ we have $F(L) \preceq_{\mathsf{R}} F(M) \cdot k$ via some g. We need to show that $L \preceq_{\mathsf{R}} M$. There are two cases:

• First suppose that for some i, j we have $r_{2i} \cdot \mathbb{Q} \leq_{\mathsf{R}} M^{(j)}$ via a function p = p(n,q) (the domain of $r_{2i} \cdot \mathbb{Q}$ is $\omega \times \mathbb{Q}$, and (n,q) has color (2i, 2i + n + 1)). In this case we claim that $N \leq_{\mathsf{R}} M^{(j)}$ for any *D*-colored countable linear ordering *N*.

To prove the claim fix N and an order preserving map h: $N \to \mathbb{Q}$ (here we are looking at N as a linear order). For any $a \in N$ let $(\varphi(a), \psi(a))$ the label assigned by N to a. Define f: $N \to M^{(j)}$ order preserving by $f(a) = p(\psi(a), h(a))$. Since $M^{(j)}$ does not use any label of the form (2i, k), the first component of the label of f(a) is greater than $2i + \psi(a) + 1 > \psi(a)$. Therefore f witnesses $N \preceq_{\mathsf{R}} M^{(j)}$ and the claim is proved.

Then for any $N \in LO \times D^{\omega}$ we have $N^{(j)} \preceq_{\mathsf{R}} M^{(j)}$, and hence $N \preceq_{\mathsf{R}} M$. In particular $L \preceq_{\mathsf{R}} M$.

• Now assume that $r_{2i} \cdot \mathbb{Q} \not\leq_R M^{(j)}$ for all *i* and *j*. As *g* maps F(L) into $F(M) \cdot k$, for some ℓ , *g* maps

$$\sum_{i \ge \ell} (L^{(i)} + r_{2i} \cdot \mathbb{Q})$$

into a single copy of F(M). Since $r_{2i} \cdot \mathbb{Q} \not\preceq_R r_{2j} \cdot \mathbb{Q}$ when $i \neq j$ (because $r_{2i}(\gamma_{2i,2j})$ is a color used by $r_{2i} \cdot \mathbb{Q}$), g maps each $r_{2i} \cdot \mathbb{Q}$ for $i \geq \ell$ into the copy of $r_{2i} \cdot \mathbb{Q}$ appearing in F(M). Therefore g maps $L^{(\ell+1)}$ into $r_{2\ell} \cdot \mathbb{Q} + M^{(\ell+1)} + r_{2\ell+2} \cdot \mathbb{Q}$. Since the colors used by $L^{(\ell+1)}$ have second component greater than $2\ell + 2$, gcannot map any element of $L^{(\ell+1)}$ into either $r_{2\ell} \cdot \mathbb{Q}$ or $r_{2\ell+2} \cdot \mathbb{Q}$. Therefore (the restriction of) g witnesses $L^{(\ell+1)} \preceq_{\mathsf{R}} M^{(\ell+1)}$, and hence we have also $L \preceq_{\mathsf{R}} M$.

Proof of Theorem 5. We have

4. A class of non-Borel P's such that $P <_B P^{cf}$

The cofinal sequence (P_{ξ}) of section 2 is built using the operation $P \mapsto P^{cf}$ at successor steps, allowing to obtain Borel preorders of increasing complexity. Here we build a \leq_B -downward closed class of non-Borel preorders P's such that $P <_B P^{cf}$.

With a straightforward modification of a construction for equivalence relations due to John Clemens ([Cle01, §3.3]) we define two analytic preorders P_S and P'_S . These preorders have the property that $P \leq_B P_S$ and $P \leq_B P'_S$ if and only if P is a Borel preorder.

We further show the following: suppose P is an analytic non-Borel preorder such that there exist equivalence relations E, F on standard Borel spaces with $P \leq_B (E \times P_S) \oplus (F \times P'_S)$; then we have $P <_B P^{cf}$.

Let $B \subseteq \omega^{\omega}$ be the set of codes for Borel preorders on ω^{ω} . B is Π_1^1 by [Kec95, Theorem 35.5] and the fact that the set of codes for reflexive and transitive Borel relations is Π_1^1 . Fixing a coanalytic rank on B, for each $\alpha \in \omega_1$ let $B_{\alpha} \subseteq B$ be the Borel set of elements of rank less than α . Let $S \in \Sigma_1^1((\omega^{\omega})^3)$, $S' \in \Pi_1^1((\omega^{\omega})^3)$ be such that, for $z \in B$, (z, y_1, y_2) is in S if and only if it is in S' if and only if y_1 is related to y_2 in the preorder coded by z. Define on $(\omega^{\omega})^2$ the analytic non-Borel preorders P_S , P'_S by:

$$(z_1, y_1) P_S(z_2, y_2) \iff z_1 = z_2 \land (z_1 \notin B \lor (z_1, y_1, y_2) \in S),$$

$$(z_1, y_1) P'_S(z_2, y_2) \iff (z_1 \notin B \land z_2 \notin B) \lor$$

$$\lor (z_1 = z_2 \land (z_1, y_1, y_2) \in S).$$

Notice that when $z_1, z_2 \in B$ each of $(z_1, y_1) P_S(z_2, y_2)$ and $(z_1, y_1) P'_S(z_2, y_2)$ is equivalent to

$$z_1 = z_2 \land (z_1, y_1, y_2) \in S',$$

which is coanalytic. Therefore for each α the restrictions of P_S and P'_S to $B_{\alpha} \times \omega^{\omega}$ are coanalytic and thus Borel.

Proposition 10. For any preorder P on a standard Borel space, P is Borel if and only if $P \leq_B P_S$ and $P \leq_B P'_S$.

Proof. The proof is a straightforward adaptation of the argument given by Clemens for equivalence relations.

For the forward implication we can assume that P is defined on ω^{ω} ; let z be one of its codes. Then $x \mapsto (z, x)$ witnesses both $P \leq_B P_S$ and $P \leq_B P'_S$.

Conversely, if $P \leq_B P_S$ all *P*-equivalence classes are Borel, because this is the case with P_S . If $P \leq_B P'_S$ let f witness this. Let $A = f^{-1}(B \times \omega^{\omega})$. The complement of A is either empty or is a single equivalence class of P; hence A is Borel. Consequently, f(A) is analytic and its projection onto the first coordinate must be included in some B_{α} . As noticed above, the restriction of P'_S to the Borel set $B_{\alpha} \times \omega^{\omega}$ is Borel. So the restriction of P to A is Borel reducible to a Borel relation, and thus is itself Borel. It follows that P too is Borel. \Box

Theorem 11. Let P be a non-Borel preorder and E, F be arbitrary equivalence relations on standard Borel spaces. Then $P^{cf} \not\leq_B (E \times P_S) \oplus (F \times P'_S)$.

Proof. Notice that P^{cf} is directed. This implies that the image of any reduction of P^{cf} to $(E \times P_S) \oplus (F \times P'_S)$ is included in some $[e]_E \times (\omega^{\omega})^2$ or in some $[f]_F \times (\omega^{\omega})^2$, and therefore we have a reduction of P^{cf} to either P_S or P'_S .

First assume f is a Borel reduction of P^{cf} to P'_S . Let $\pi : (\omega^{\omega})^2 \to \omega^{\omega}$ be the projection on the first coordinate. Using again the fact that P^{cf} is directed we have either that $\pi f(\vec{x}) \notin B$ for all \vec{x} or that there exists $z \in B$ such that $\pi f(\vec{x}) = z$ for all \vec{x} . In the first case $\vec{x} P^{cf} \vec{y}$ for all \vec{x}, \vec{y} . In the second case P^{cf} Borel reduces to the Borel preorder coded by z. Since P, and thus P^{cf} , is not Borel, in either case we reach a contradiction.

A similar argument shows that $P^{cf} \not\leq_B P_S$ and completes the proof.

Corollary 12. If *P* is a non-Borel preorder such that $P \leq_B (E \times P_S) \oplus (F \times P'_S)$ for some equivalence relations *E*, *F* on standard Borel spaces, then $P <_B P^{\text{cf}}$. In particular $P_S <_B P_S^{\text{cf}}$ and $P'_S <_B P'_S^{\text{cf}}$.

Proof. Immediate by Remark 2 and Theorem 11.

Corollary 13. Let E and F be arbitrary equivalence relations on standard Borel spaces. Then $\leq_{\mathsf{R}} \notin_{B} (E \times P_{S}) \oplus (F \times P'_{S})$.

Proof. By Theorem 5 and Corollary 12.

References

- [Cam05] Riccardo Camerlo. Universality of embeddability relations for coloured total orders. Order, 22(3):289–300, 2005.
- [Cle01] John D. Clemens. Descriptive set theory, equivalence relations, and classification problems in analysis. PhD thesis, UC Berkeley, 2001.
- [Kec95] Alexander S. Kechris. Classical descriptive set theory. Number 156 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

- [Lav71] Richard Laver. On Fraïssé's order type conjecture. Ann. of Math. (2), 93:89–111, 1971.
- [Mar94] Alberto Marcone. Foundations of bqo theory. Trans. Am. Math. Soc., 345(2):641–660, 1994.
- [MR04] Alberto Marcone and Christian Rosendal. The complexity of continuous embeddability between dendrites. J. Symbolic Logic, 69(3):663–673, 2004.
- [Rad54] Richard Rado. Partial well-ordering of sets of vectors. Mathematika, Lond., 1:89–95, 1954.
- [Ros05] Christian Rosendal. Cofinal families of Borel equivalence relations and quasiorders. J. Symb. Log., 70(4):1325–1340, 2005.

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino — Italy

E-mail address: camerlo@calvino.polito.it

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DI UDINE, VIA DELLE SCIENZE 208, 33100 UDINE — ITALY

 $E\text{-}mail \ address: \verb+marcone@dimi.uniud.it+$