COLORING LINEAR ORDERS
WITH RADO’S PARTIAL ORDER
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ABSTRACT. Let <g be the preorder of embeddability between
countable linear orders colored with elements of Rado’s partial or-
der (a standard example of a wqo which is not a bqo). We show
that <g has fairly high complexity with respect to Borel reducibil-
ity (e.g. if P is a Borel preorder then P <p =<g), although its exact
classification remains open.

1. INTRODUCTION

This note is a contribution to the study of the relations of embed-
dability for countable colored linear orderings from the point of view of
descriptive set theory. Fixing w as the support of a countable linear or-
dering, we can consider the space LO of all linear orderings on w. This
is a standard Borel space (actually a Polish space, see [Kec95]). For
our purposes, to color a linear order means assigning to each element of
the support an element from a fixed countable set C'. A colored linear
ordering on w is thus an element of LO x C“, which is also a standard
Borel space.

If @ is a partial order on C' we have a natural relation of embed-
dability <o on LO x C* defined by letting (C, ) <¢ (C',¢') if and
only if there exists g : w — w such that:

(1) Va,bew (aCb <= g(a) T’ g(b));

(2) Va € w p(a) Q ¢'(g(a)).
Then =g is a 3| preorder which is not Borel and it can be studied in
the framework of Borel reducibility.

Given binary relations P and P’ on standard Borel spaces X and
X' respectively, recall that P <p P’ means that there exists a Borel
function f : X — X'suchthat z Py <= f(z) P’ f(y). A X] preorder
P’ is called X}-complete if and only if P <p P’ for any X preorder P.

For preorders of the form < it is known that:

e if () is a bqo then, by Laver’s celebrated theorem ([Lav71]), =g
is a bqo as well; in particular it is a wqo and the relation of
equality on w is not reducible to <¢; thus in this case =<¢ is
quite far from being a ¥1-complete preorder;
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e if () is not a wqo, then =g is a Xj-complete preorder (see
[CamO05], a partial result in this direction is in [MRO04]).

These results leave unanswered the question of the complexity of the
relation <o when () is a wqo but not a bqo.

If o is a countable ordinal then a preorder @) is w®-wqo if < re-
stricted to well-orders of order type strictly less than w® is a wqo.
Therefore w-wqo means wqo and a preorder is bqo if and only if it is
w*wqo for every « (details can be found e.g. in [Mar94]).

In this note we consider Rado’s partial order R defined on the set
D={(n,m)€w?|n<m} by

(n,m)R(n',m") <= (mn=n"Am<m')vm<n'

R is wqo but it is not w?-wqo. Moreover R embeds into every wqo
which is not w?-wqo ([Radb4]). R is the best known example of a wqo
which is not bqo.

We will need witnesses for the fact that R is not w?-wqo. Let r; € D¥
be defined by letting r;(n) = (i, + 1 + n) for each n € w. Note that if
i < ', then r; and 1y are incomparable under <g: indeed (i',n) R (7, m)
does not hold for any n, m, while (7,7) R (', m) does not hold for any
m. Therefore, for i # 7', we can fix v;7 € w such that r;(v;) Rry(m)
does not hold for any m.

In section 2 we show that for any Borel preorder P, the relation P <p
=g holds (by the above observation the result extends to all =¢ where Q)
is wqo but not w?-wqo). This shows that <g is indeed a quite complex
preorder, though the question about its 3{-completeness remains wide
open. The proof is an application of Rosendal’s construction of a cofinal
family of Borel preorders ([Ros05]). This involves comparing <g with
an wi-chain of Borel preorders on standard Borel spaces obtained by
repeatedly applying a jump operation P — P,

Rosendal ([Ros05]) showed that if P is a Borel preorder satisfying
a simple combinatorial condition, then P <p P. In section 3 we
compare <g with its jump (=g)" and show that <g =5 (=r)" (that
is =g <p (jR)Cf <p =Rr), giving further evidence to the fact that <g
has high descriptive complexity.

In contrast with the latter property of <g, in section 4 we prove the
existence of a downward closed class of non-Borel preorders P such
that P <p P

In the sequel, we will freely use the operations of sum of colored
linear orders, and of multiplication of a colored linear order L by a
linear order L', indicated by L - L’. Standard coding techniques allow

to represent the result as an element of LO x C* in a Borel way.
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2. <gr IS ABOVE ALL BOREL PREORDERS

Definition 1. If P is a preorder on a standard Borel space X define
P on X“ by setting

TPV <= VYnecwImecwz, Pyn,.

Remark 2. Notice that Py <p P; implies POCf <z P, Moreover
P <p P, as witnessed by the map = — ¢ where y,, = z for every n.

A (colored) linear order L is right indecomposable if it is embeddable
in any of its final segments. For example each r; defined above is
right indecomposable. An ordinal is right indecomposable if and only
if it is additively indecomposable: in this case we adhere to standard
terminology and say that the ordinal is indecomposable.

Theorem 3. For any Borel preorder P on some standard Borel space,
the relation P <p <r holds.

Proof. Following Rosendal ([Ros05]) define preorders Py with domain
Xe, for £ € w; as follows:

e Xy =w and F) is equality;

o given P let Xy = X¢¥ and Pryy = Png;

e for ¢ limit let Xg = H3<§Xﬂ and fpgg — VG < 19 Jfﬁpﬁyg.
Rosendal proved that this transfinite sequence is <pg-cofinal among
Borel preorders. Therefore it suffices to show that V¢ < w; Pr <p =r.

We prove by induction on ¢ that there exist an indecomposable
countable ordinal ¢ and a Borel reduction f¢ of P: to <gr whose values
are colored well-orders of order type a which are right indecomposable.

Basis step. Let ag = w and fy(i) = 7.

Successor step. Let { € w; and assume f¢, a¢ satisfy the induction
hypothesis. Set agp1 = ag-w. Given & = (zo, 1, %2, ...) € Xeyq, define

fer1 (%) = Z fe(@n,)

where (ny)rew 1S an enumeration of w where each natural number oc-
curs infinitely often. Each occurrence of fe(z;) in this definition will
be called a segment of fey1(Z). Notice that fei;(Z) is a right indecom-
posable colored well-order of length o ;.

Suppose T Pri;y. For each n € w there exists m € w such that
fe(zn) =R fe(ym). Since each fe(y;) occurs infinitely often in fey1(7),
it follows that fei1(Z) <r fes1(9).

Conversely, suppose g embeds fey1(Z) into fey1(¥). Since no segment
of fe41(Z) can be mapped by g cofinally into fei1(¥), a final segment of
each fe¢(x;) must be embedded by g into some f¢(y;). Since by induction
hypothesis fe(x;) is right indecomposable, we have fe(z;) =<r fe(y;)
which implies x; P¢y;. Thus & Peyq ¥.

Limit step. Let £ be a limit ordinal. Suppose that, for each 8 < ¢, ag

and fg satisfy the induction hypothesis. Let p be an indecomposable
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countable ordinal larger than each ag. Let {3, }new be an enumeration
of ¢ with each element occurring infinitely often. Given 7 € X, =
[15-c Xp, define

Fn(f) = fﬁn (xﬁn) + Tnt1 (7n+1,n) + T p

(where 7,41 (7Vn+1,,) denotes the colored linear order with a single
element colored by 741 (Ynt1.0)),

F(#) = Y F(@).

and finally

fe(T) = F(7) - w.
So each f¢(Z) is a right indecomposable colored well-order of length
ae = p-w?, which is an indecomposable countable ordinal.

Suppose 7 P . Then F,(Z) =g F,(¥) for every n, so F(Z) =g F(¥)
and finally f¢(Z) =r fe(¥)-

Conversely, let g witness fe(Z) <r fe(¥). Then a final segment of
the first occurrence ® of F(Z) in the definition of f¢(Z) is embedded
by g into some occurrence ¥ of F(y) in fe(y). Let ¢ € w be least such
that the occurrence of F;(Z) in ® is embedded by g into ¥. So for each
J > ¢ a final segment of the occurrence of 7; - p in ® must be sent by
g cofinally into the corresponding occurrence in V. As, for j > 4, the
occurrence of rj11(y;j41,;) in F;(Z) just preceding the occurrence of r; - p
cannot be sent by g to an element of the occurrence of r; - p in F;(),
it follows that g embeds fs (73,) into fs,(ys,;), witnessing x5, Ps; yg,.
Since each 3 € £ occurs as 3; for some j > i, it follows that © Pey. O

Corollary 4. If Q is a countable wgo but not an w?-wqo then, for all
Borel preorders P on standard Borel spaces, P <p <.

Proof. By Rado’s Theorem R embeds into () and from this it follows
easily that <g <p =q. O
3. A CLOSURE PROPERTY FOR =g

The goal of this section is proving the following result:
Theorem 5. (jR)Cf =5 <g.

The proof of Theorem 5 uses the following definition and a couple of
lemmas.

Definition 6. If () is a partial order on a countable set C' of colors,
define <3, on LO x C¥ by L =5, L' if and only if L - w =g L' - w.

Remark 7. For any () the map L — L - w witnesses that -_<22 <B =2¢.
Moreover it is easy to check that L jzg L' is equivalent to the exis-

tence of k € w such that L <¢ L' - k.
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Lemma 8. If Q) is a partial order on a countable set then we have
(25)" <5 =0

Q
Proof. Fix a sequence (ny)re, enumerating each natural number infin-
itely many times and use the map L — >, (Ln, -w). O

Lemma 9. Let P be any preorder on LO x D“ such that <g C P C <g.
Then =g <p P. In particular <g <p =<k and thus (by Remark 7)
=r =B =k

Proof. Given L € LO x D* let L be the colored linear order obtained
from L by replacing each color (n,m) with (2(i4+1)n+1,2(i+1)m+1)
(the underlying linear order is unchanged). Notice that L") <g M© if
and only if L <g M.

To show that <g <p P we use the map L — F(L) where

F(L) =) (LY 47y - Q).
IS
It is immediate that if L <g M then F(L) <g F(M) and hence
F(L) P F(M).
Now assume that F'(L) P F'(M), which implies F(L) < F(M), so
that for some k € w we have F(L) <gr F(M) - k via some g. We need
to show that L <g M. There are two cases:

e First suppose that for some 4, j we have ry; - Q <g M) via a
function p = p(n, q) (the domain of ry; - Q is w x Q, and (n, q)
has color (2i,2i+n+1)). In this case we claim that N <g M)
for any D-colored countable linear ordering N.

To prove the claim fix N and an order preserving map h :
N — Q (here we are looking at N as a linear order). For any
a € N let (p(a),¥(a)) the label assigned by N to a. Define f :
N — MU order preserving by f(a) = p(1/(a), h(a)). Since M)
does not use any label of the form (2, k), the first component of
the label of f(a) is greater than 2i+1(a)+1 > 1 (a). Therefore
f witnesses N <g M) and the claim is proved.

Then for any N € LO x D we have N¥) <z M) and hence
N =g M. In particular L <g M.

e Now assume that 79 - Q Ag MU for all i and j. As g maps
F(L) into F(M) - k, for some ¢, g maps

Z(L(i) + 72 - Q)

i>l
into a single copy of F'(M). Since 79 - Q Ag r2j - Q when i # j
(because ra;(72:25) is a color used by 79; - Q), g maps each ry; - Q
for ¢ > ¢ into the copy of ry; - Q appearing in F'(M). Therefore
g maps LY into ryp - Q + MY 4 19,5 - Q. Since the colors
used by LU+ have second component greater than 2¢ + 2, g

cannot map any element of LD into either 790 - Q or ropra - Q.
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Therefore (the restriction of) ¢ witnesses LU <g M+ and
hence we have also L <g M. O

Proof of Theorem 5. We have
<r <5 (Zr)" by Remark 2

<p (=54 by Lemma 9 and Remark 2
<B =R by Lemma 8. [

4. A CLASS OF NON-BOREL P’S SUCH THAT P <p P

The cofinal sequence (P) of section 2 is built using the operation
P — P at successor steps, allowing to obtain Borel preorders of
increasing complexity. Here we build a <g-downward closed class of
non-Borel preorders P’s such that P <p P°.

With a straightforward modification of a construction for equivalence
relations due to John Clemens ([Cle01, §3.3]) we define two analytic
preorders Pg and Pg. These preorders have the property that P <p Pg
and P <p P{ if and only if P is a Borel preorder.

We further show the following: suppose P is an analytic non-Borel
preorder such that there exist equivalence relations E, F' on standard
Borel spaces with P <p (E x Pg) ® (F x P§); then we have P <p P.

Let B C w* be the set of codes for Borel preorders on w®”. B is Hi by
[Kec95, Theorem 35.5] and the fact that the set of codes for reflexive
and transitive Borel relations is II;. Fixing a coanalytic rank on B,
for each o € wy let B, € B be the Borel set of elements of rank less
than a. Let S € 3j((w*)?), S" € II;((w®)?) be such that, for z € B,
(z,91,y2) is in S if and only if it is in S” if and only if y; is related to
Yo in the preorder coded by z. Define on (w*)? the analytic non-Borel
preorders Pg, P¢ by:

(21,y1) Ps (22,42) <= 21 =22 A (21 ¢ BV (21,y1,%2) € 5),
(z1,41) Pg (22,92) <= (21 ¢ BA 2 ¢ B)V
vV (Zl =23 N\ (2171/17?/2) € S)

Notice that when 2y, 20 € B each of (21,41) Ps (22, y2) and (z1, y1) P§ (22, y2)
is equivalent to

21 =2 N (21,91, y2) € 5,

which is coanalytic. Therefore for each « the restrictions of Py and P§
to B, X w¥ are coanalytic and thus Borel.

Proposition 10. For any preorder P on a standard Borel space, P s
Borel if and only if P <p Ps and P <p P%.

Proof. The proof is a straightforward adaptation of the argument given

by Clemens for equivalence relations.
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For the forward implication we can assume that P is defined on w*;
let z be one of its codes. Then x +— (z, z) witnesses both P <p Pg and
P <p P%.

Conversely, if P <pg Pg all P-equivalence classes are Borel, because
this is the case with Pg. If P <p P¢ let f witness this. Let A =
Y4B x w*). The complement of A is either empty or is a single
equivalence class of P; hence A is Borel. Consequently, f(A) is analytic
and its projection onto the first coordinate must be included in some
B,. As noticed above, the restriction of P¢ to the Borel set B, x w*
is Borel. So the restriction of P to A is Borel reducible to a Borel
relation, and thus is itself Borel. It follows that P too is Borel. O

Theorem 11. Let P be a non-Borel preorder and E, F be arbitrary
equivalence relations on standard Borel spaces. Then P <5 (E x
Ps) @ (F x Pg).

Proof. Notice that P is directed. This implies that the image of any
reduction of P to (E x Pg)® (F x P§) is included in some [e] g x (w*)?
or in some [f]r X (w*)?, and therefore we have a reduction of P to
either Pg or Pg.

First assume f is a Borel reduction of P to P4. Let 7 : (w
be the projection on the first coordinate. Using again the fact that P¢f
is directed we have either that 7 f(Z) ¢ B for all & or that there exists
z € B such that 7f(%) = 2 for all Z. In the first case ¥ P ¢ for all
Z,7. In the second case P! Borel reduces to the Borel preorder coded
by z. Since P, and thus P, is not Borel, in either case we reach a
contradiction.

A similar argument shows that P %« p Ps and completes the proof.

O

w>2 W

Corollary 12. If P is a non-Borel preorder such that P <p (E X Pg)®

(F' x P§) for some equivalence relations E, F' on standard Borel spaces,
s cf

then P <g P, In particular Ps < Pst and P, <p P}
Proof. Immediate by Remark 2 and Theorem 11. U

Corollary 13. Let E and F be arbitrary equivalence relations on stan-
dard Borel spaces. Then =g £p (E X Ps) ® (F x P§).

Proof. By Theorem 5 and Corollary 12. Il
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