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Abstract. Let ¹R be the preorder of embeddability between
countable linear orders colored with elements of Rado’s partial or-
der (a standard example of a wqo which is not a bqo). We show
that ¹R has fairly high complexity with respect to Borel reducibil-
ity (e.g. if P is a Borel preorder then P ≤B ¹R), although its exact
classification remains open.

1. Introduction

This note is a contribution to the study of the relations of embed-
dability for countable colored linear orderings from the point of view of
descriptive set theory. Fixing ω as the support of a countable linear or-
dering, we can consider the space LO of all linear orderings on ω. This
is a standard Borel space (actually a Polish space, see [Kec95]). For
our purposes, to color a linear order means assigning to each element of
the support an element from a fixed countable set C. A colored linear
ordering on ω is thus an element of LO×Cω, which is also a standard
Borel space.

If Q is a partial order on C we have a natural relation of embed-
dability ¹Q on LO × Cω defined by letting (v, ϕ) ¹Q (v′, ϕ′) if and
only if there exists g : ω → ω such that:

(1) ∀a, b ∈ ω (a v b ⇐⇒ g(a) v′ g(b));
(2) ∀a ∈ ω ϕ(a) Qϕ′(g(a)).

Then ¹Q is a Σ1
1 preorder which is not Borel and it can be studied in

the framework of Borel reducibility.
Given binary relations P and P ′ on standard Borel spaces X and

X ′ respectively, recall that P ≤B P ′ means that there exists a Borel
function f : X → X ′ such that xP y ⇐⇒ f(x) P ′ f(y). A Σ1

1 preorder
P ′ is called Σ1

1-complete if and only if P ≤B P ′ for any Σ1
1 preorder P .

For preorders of the form ¹Q it is known that:

• if Q is a bqo then, by Laver’s celebrated theorem ([Lav71]), ¹Q

is a bqo as well; in particular it is a wqo and the relation of
equality on ω is not reducible to ¹Q; thus in this case ¹Q is
quite far from being a Σ1

1-complete preorder;
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• if Q is not a wqo, then ¹Q is a Σ1
1-complete preorder (see

[Cam05], a partial result in this direction is in [MR04]).

These results leave unanswered the question of the complexity of the
relation ¹Q when Q is a wqo but not a bqo.

If α is a countable ordinal then a preorder Q is ωα-wqo if ¹Q re-
stricted to well-orders of order type strictly less than ωα is a wqo.
Therefore ω-wqo means wqo and a preorder is bqo if and only if it is
ωα-wqo for every α (details can be found e.g. in [Mar94]).

In this note we consider Rado’s partial order R defined on the set
D = { (n,m) ∈ ω2 | n < m } by

(n,m) R (n′,m′) ⇐⇒ (n = n′ ∧m ≤ m′) ∨m < n′.

R is wqo but it is not ω2-wqo. Moreover R embeds into every wqo
which is not ω2-wqo ([Rad54]). R is the best known example of a wqo
which is not bqo.

We will need witnesses for the fact that R is not ω2-wqo. Let ri ∈ Dω

be defined by letting ri(n) = (i, i + 1 + n) for each n ∈ ω. Note that if
i < i′, then ri and ri′ are incomparable under ¹R: indeed (i′, n) R (i,m)
does not hold for any n,m, while (i, i′) R (i′,m) does not hold for any
m. Therefore, for i 6= i′, we can fix γii′ ∈ ω such that ri(γii′) R ri′(m)
does not hold for any m.

In section 2 we show that for any Borel preorder P , the relation P ≤B

¹R holds (by the above observation the result extends to all¹Q where Q
is wqo but not ω2-wqo). This shows that ¹R is indeed a quite complex
preorder, though the question about its Σ1

1-completeness remains wide
open. The proof is an application of Rosendal’s construction of a cofinal
family of Borel preorders ([Ros05]). This involves comparing ¹R with
an ω1-chain of Borel preorders on standard Borel spaces obtained by
repeatedly applying a jump operation P 7→ P cf .

Rosendal ([Ros05]) showed that if P is a Borel preorder satisfying
a simple combinatorial condition, then P <B P cf . In section 3 we
compare ¹R with its jump (¹R)cf and show that ¹R ≡B (¹R)cf (that

is ¹R ≤B (¹R)cf ≤B ¹R), giving further evidence to the fact that ¹R

has high descriptive complexity.
In contrast with the latter property of ¹R, in section 4 we prove the

existence of a downward closed class of non-Borel preorders P such
that P <B P cf .

In the sequel, we will freely use the operations of sum of colored
linear orders, and of multiplication of a colored linear order L by a
linear order L′, indicated by L · L′. Standard coding techniques allow
to represent the result as an element of LO × Cω in a Borel way.
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2. ¹R is above all Borel preorders

Definition 1. If P is a preorder on a standard Borel space X define
P cf on Xω by setting

~xP cf ~y ⇐⇒ ∀n ∈ ω ∃m ∈ ω xn P ym.

Remark 2. Notice that P0 ≤B P1 implies P0
cf ≤B P1

cf . Moreover
P ≤B P cf , as witnessed by the map x 7→ ~y where yn = x for every n.

A (colored) linear order L is right indecomposable if it is embeddable
in any of its final segments. For example each ri defined above is
right indecomposable. An ordinal is right indecomposable if and only
if it is additively indecomposable: in this case we adhere to standard
terminology and say that the ordinal is indecomposable.

Theorem 3. For any Borel preorder P on some standard Borel space,
the relation P ≤B ¹R holds.

Proof. Following Rosendal ([Ros05]) define preorders Pξ with domain
Xξ, for ξ ∈ ω1 as follows:

• X0 = ω and P0 is equality;
• given Pξ let Xξ+1 = Xξ

ω and Pξ+1 = Pξ
cf ;

• for ξ limit let Xξ =
∏

β<ξ Xβ and ~xPξ ~y ⇐⇒ ∀β < ξ xβ Pβ yβ.

Rosendal proved that this transfinite sequence is ≤B-cofinal among
Borel preorders. Therefore it suffices to show that ∀ξ < ω1 Pξ ≤B ¹R.

We prove by induction on ξ that there exist an indecomposable
countable ordinal αξ and a Borel reduction fξ of Pξ to ¹R whose values
are colored well-orders of order type αξ which are right indecomposable.

Basis step. Let α0 = ω and f0(i) = ri.
Successor step. Let ξ ∈ ω1 and assume fξ, αξ satisfy the induction

hypothesis. Set αξ+1 = αξ ·ω. Given ~x = (x0, x1, x2, . . .) ∈ Xξ+1, define

fξ+1(~x) =
∑

k

fξ(xnk
)

where (nk)k∈ω is an enumeration of ω where each natural number oc-
curs infinitely often. Each occurrence of fξ(xi) in this definition will
be called a segment of fξ+1(~x). Notice that fξ+1(~x) is a right indecom-
posable colored well-order of length αξ+1.

Suppose ~xPξ+1 ~y. For each n ∈ ω there exists m ∈ ω such that
fξ(xn) ¹R fξ(ym). Since each fξ(yi) occurs infinitely often in fξ+1(~y),
it follows that fξ+1(~x) ¹R fξ+1(~y).

Conversely, suppose g embeds fξ+1(~x) into fξ+1(~y). Since no segment
of fξ+1(~x) can be mapped by g cofinally into fξ+1(~y), a final segment of
each fξ(xi) must be embedded by g into some fξ(yj). Since by induction
hypothesis fξ(xi) is right indecomposable, we have fξ(xi) ¹R fξ(yj)
which implies xi Pξ yj. Thus ~xPξ+1 ~y.

Limit step. Let ξ be a limit ordinal. Suppose that, for each β < ξ, αβ

and fβ satisfy the induction hypothesis. Let ρ be an indecomposable
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countable ordinal larger than each αβ. Let {βn}n∈ω be an enumeration
of ξ with each element occurring infinitely often. Given ~x ∈ Xξ =∏

β<ξ Xβ, define

Fn(~x) = fβn(xβn) + rn+1(γn+1,n) + rn · ρ
(where rn+1(γn+1,n) denotes the colored linear order with a single

element colored by rn+1(γn+1,n)),

F (~x) =
∑

n

Fn(~x),

and finally

fξ(~x) = F (~x) · ω.

So each fξ(~x) is a right indecomposable colored well-order of length
αξ = ρ · ω2, which is an indecomposable countable ordinal.

Suppose ~xPξ ~y. Then Fn(~x) ¹R Fn(~y) for every n, so F (~x) ¹R F (~y)
and finally fξ(~x) ¹R fξ(~y).

Conversely, let g witness fξ(~x) ¹R fξ(~y). Then a final segment of
the first occurrence Φ of F (~x) in the definition of fξ(~x) is embedded
by g into some occurrence Ψ of F (~y) in fξ(~y). Let i ∈ ω be least such
that the occurrence of Fi(~x) in Φ is embedded by g into Ψ. So for each
j ≥ i a final segment of the occurrence of rj · ρ in Φ must be sent by
g cofinally into the corresponding occurrence in Ψ. As, for j > i, the
occurrence of rj+1(γj+1,j) in Fj(~x) just preceding the occurrence of rj ·ρ
cannot be sent by g to an element of the occurrence of rj · ρ in Fj(~y),
it follows that g embeds fβj

(xβj
) into fβj

(yβj
), witnessing xβj

Pβj
yβj

.
Since each β ∈ ξ occurs as βj for some j > i, it follows that ~xPξ ~y. ¤
Corollary 4. If Q is a countable wqo but not an ω2-wqo then, for all
Borel preorders P on standard Borel spaces, P ≤B ¹Q.

Proof. By Rado’s Theorem R embeds into Q and from this it follows
easily that ¹R ≤B ¹Q. ¤

3. A closure property for ¹R

The goal of this section is proving the following result:

Theorem 5. (¹R)cf ≡B ¹R.

The proof of Theorem 5 uses the following definition and a couple of
lemmas.

Definition 6. If Q is a partial order on a countable set C of colors,
define ¹∗Q on LO × Cω by L ¹∗Q L′ if and only if L · ω ¹Q L′ · ω.

Remark 7. For any Q the map L 7→ L · ω witnesses that ¹∗Q ≤B ¹Q.
Moreover it is easy to check that L ¹∗Q L′ is equivalent to the exis-

tence of k ∈ ω such that L ¹Q L′ · k.
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Lemma 8. If Q is a partial order on a countable set then we have
(¹∗Q)cf ≤B ¹Q.

Proof. Fix a sequence (nk)k∈ω enumerating each natural number infin-

itely many times and use the map ~L 7→ ∑
k∈ω(Lnk

· ω). ¤
Lemma 9. Let P be any preorder on LO×Dω such that ¹R ⊆ P ⊆ ¹∗R.
Then ¹R ≤B P . In particular ¹R ≤B ¹∗R and thus (by Remark 7)
¹R ≡B ¹∗R.

Proof. Given L ∈ LO×Dω let L(i) be the colored linear order obtained
from L by replacing each color (n,m) with (2(i+1)n+1, 2(i+1)m+1)
(the underlying linear order is unchanged). Notice that L(i) ¹R M (i) if
and only if L ¹R M .

To show that ¹R ≤B P we use the map L 7→ F (L) where

F (L) =
∑
i∈ω

(L(i) + r2i ·Q).

It is immediate that if L ¹R M then F (L) ¹R F (M) and hence
F (L) P F (M).

Now assume that F (L) P F (M), which implies F (L) ¹∗R F (M), so
that for some k ∈ ω we have F (L) ¹R F (M) · k via some g. We need
to show that L ¹R M . There are two cases:

• First suppose that for some i, j we have r2i · Q ¹R M (j) via a
function p = p(n, q) (the domain of r2i ·Q is ω ×Q, and (n, q)
has color (2i, 2i+n+1)). In this case we claim that N ¹R M (j)

for any D-colored countable linear ordering N .
To prove the claim fix N and an order preserving map h :

N → Q (here we are looking at N as a linear order). For any
a ∈ N let (ϕ(a), ψ(a)) the label assigned by N to a. Define f :
N → M (j) order preserving by f(a) = p(ψ(a), h(a)). Since M (j)

does not use any label of the form (2i, k), the first component of
the label of f(a) is greater than 2i+ψ(a)+1 > ψ(a). Therefore
f witnesses N ¹R M (j) and the claim is proved.

Then for any N ∈ LO×Dω we have N (j) ¹R M (j), and hence
N ¹R M . In particular L ¹R M .

• Now assume that r2i · Q �R M (j) for all i and j. As g maps
F (L) into F (M) · k, for some `, g maps∑

i≥`

(L(i) + r2i ·Q)

into a single copy of F (M). Since r2i ·Q �R r2j ·Q when i 6= j
(because r2i(γ2i,2j) is a color used by r2i ·Q), g maps each r2i ·Q
for i ≥ ` into the copy of r2i ·Q appearing in F (M). Therefore
g maps L(`+1) into r2` ·Q+ M (`+1) + r2`+2 ·Q. Since the colors
used by L(`+1) have second component greater than 2` + 2, g
cannot map any element of L(`+1) into either r2` ·Q or r2`+2 ·Q.
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Therefore (the restriction of) g witnesses L(`+1) ¹R M (`+1), and
hence we have also L ¹R M . ¤

Proof of Theorem 5. We have

¹R ≤B (¹R)cf by Remark 2

≤B (¹∗R)cf by Lemma 9 and Remark 2

≤B ¹R by Lemma 8. ¤

4. A class of non-Borel P ’s such that P <B P cf

The cofinal sequence (Pξ) of section 2 is built using the operation
P 7→ P cf at successor steps, allowing to obtain Borel preorders of
increasing complexity. Here we build a ≤B-downward closed class of
non-Borel preorders P ’s such that P <B P cf .

With a straightforward modification of a construction for equivalence
relations due to John Clemens ([Cle01, §3.3]) we define two analytic
preorders PS and P ′

S. These preorders have the property that P ≤B PS

and P ≤B P ′
S if and only if P is a Borel preorder.

We further show the following: suppose P is an analytic non-Borel
preorder such that there exist equivalence relations E, F on standard
Borel spaces with P ≤B (E×PS)⊕ (F ×P ′

S); then we have P <B P cf .
Let B ⊆ ωω be the set of codes for Borel preorders on ωω. B is Π1

1 by
[Kec95, Theorem 35.5] and the fact that the set of codes for reflexive
and transitive Borel relations is Π1

1. Fixing a coanalytic rank on B,
for each α ∈ ω1 let Bα ⊆ B be the Borel set of elements of rank less
than α. Let S ∈ Σ1

1((ω
ω)3), S ′ ∈ Π1

1((ω
ω)3) be such that, for z ∈ B,

(z, y1, y2) is in S if and only if it is in S ′ if and only if y1 is related to
y2 in the preorder coded by z. Define on (ωω)2 the analytic non-Borel
preorders PS, P ′

S by:

(z1, y1) PS (z2, y2) ⇐⇒ z1 = z2 ∧ (z1 /∈ B ∨ (z1, y1, y2) ∈ S),

(z1, y1) P ′
S (z2, y2) ⇐⇒ (z1 /∈ B ∧ z2 /∈ B)∨

∨ (z1 = z2 ∧ (z1, y1, y2) ∈ S).

Notice that when z1, z2 ∈ B each of (z1, y1) PS (z2, y2) and (z1, y1) P ′
S (z2, y2)

is equivalent to

z1 = z2 ∧ (z1, y1, y2) ∈ S ′,

which is coanalytic. Therefore for each α the restrictions of PS and P ′
S

to Bα × ωω are coanalytic and thus Borel.

Proposition 10. For any preorder P on a standard Borel space, P is
Borel if and only if P ≤B PS and P ≤B P ′

S.

Proof. The proof is a straightforward adaptation of the argument given
by Clemens for equivalence relations.
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For the forward implication we can assume that P is defined on ωω;
let z be one of its codes. Then x 7→ (z, x) witnesses both P ≤B PS and
P ≤B P ′

S.
Conversely, if P ≤B PS all P -equivalence classes are Borel, because

this is the case with PS. If P ≤B P ′
S let f witness this. Let A =

f−1(B × ωω). The complement of A is either empty or is a single
equivalence class of P ; hence A is Borel. Consequently, f(A) is analytic
and its projection onto the first coordinate must be included in some
Bα. As noticed above, the restriction of P ′

S to the Borel set Bα × ωω

is Borel. So the restriction of P to A is Borel reducible to a Borel
relation, and thus is itself Borel. It follows that P too is Borel. ¤

Theorem 11. Let P be a non-Borel preorder and E, F be arbitrary
equivalence relations on standard Borel spaces. Then P cf �B (E ×
PS)⊕ (F × P ′

S).

Proof. Notice that P cf is directed. This implies that the image of any
reduction of P cf to (E×PS)⊕(F ×P ′

S) is included in some [e]E×(ωω)2

or in some [f ]F × (ωω)2, and therefore we have a reduction of P cf to
either PS or P ′

S.
First assume f is a Borel reduction of P cf to P ′

S. Let π : (ωω)2 → ωω

be the projection on the first coordinate. Using again the fact that P cf

is directed we have either that πf(~x) /∈ B for all ~x or that there exists
z ∈ B such that πf(~x) = z for all ~x. In the first case ~xP cf ~y for all
~x, ~y. In the second case P cf Borel reduces to the Borel preorder coded
by z. Since P , and thus P cf , is not Borel, in either case we reach a
contradiction.

A similar argument shows that P cf �B PS and completes the proof.
¤

Corollary 12. If P is a non-Borel preorder such that P ≤B (E×PS)⊕
(F ×P ′

S) for some equivalence relations E, F on standard Borel spaces,

then P <B P cf . In particular PS <B PS
cf and P ′

S <B P ′
S

cf .

Proof. Immediate by Remark 2 and Theorem 11. ¤

Corollary 13. Let E and F be arbitrary equivalence relations on stan-
dard Borel spaces. Then ¹R �B (E × PS)⊕ (F × P ′

S).

Proof. By Theorem 5 and Corollary 12. ¤
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