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Abstract

We prove that the maximal order type of the wqo of linear orders of finite Hausdorff
rank under embeddability is ϕ2(0), the first fixed point of the ε-function. We then
show that Fräıssé’s conjecture restricted to linear orders of finite Hausdorff rank is
provable in ACA

+
0 + “ϕ2(0) is well-ordered” and, over RCA0, implies ACA′

0 + “ϕ2(0)
is well-ordered”.

1 Introduction

Let LO be the class of countable linear orders. If L, L′ ∈ LO let L 4 L′ mean
that L is embeddable into L′, i.e. there exists an order preserving injective
map from L to L′. L ∼ L′ abbreviates L 4 L′ and L′ 4 L. In this case we say
that L and L′ are equimorphic. It is immediate that 4 is a quasi-order (i.e. a
reflexive and transitive binary relation) and that ∼ is an equivalence relation.

Fräıssé’s conjecture (FRA) is the statement that LO is well-quasi-ordered by
4, i.e. that there are neither infinite descending chains nor infinite antichains.
Roland Fräıssé formulated this conjecture in 1948 ([Fra48]). Richard Laver
([Lav71]) established FRA in 1971 by proving a stronger statement using Nash-
Williams’ notion of better-quasi-order ([NW68]). Laver’s Theorem states that
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LO is better-quasi-ordered by 4 (actually Laver proved even more, considering
σ-scattered linear orders with labels from a better-quasi-order). All known
proofs of Fräıssé’s conjecture (see e.g. [Sim85a] for a descriptive set-theoretic
one) actually establish Laver’s theorem.

It is easy to state FRA in the language of second order arithmetic, and it is a
longstanding open problem in reverse mathematics to establish its exact ax-
iomatic strength. ([Sim99] is the main reference for the reverse mathematics
program, and [Mar05] includes a survey on the reverse mathematics of prob-
lems related to well- and better-quasi-orders.) Laver’s proof can be carried out
within the strong system Π1

2-CA0, and Richard Shore ([Sho93]) proved that
FRA implies ATR0. Since FRA is a Π1

2 statement, standard model theoretic
arguments (see e.g. [Mar96, Corollary 1.10]) yield that FRA does not imply
Π1

1-CA0 (and, a fortiori, Π1
2-CA0) over ATR0. More recently the second au-

thor ([Mon06]) showed that FRA is equivalent (over RCA0 or slightly stronger
theories) to other statements about linear orders.

An easy observation is that to establish FRA it suffices to consider scattered
linear orders, i.e. linear orders L ∈ LO such that Q � L (all non-scattered
countable linear orders are equimorphic to Q). Scattered linear orders were
first studied by Hausdorff a century ago ([Hau08]), and his results lead to the
notion of Hausdorff rank.

Definition 1.1 For every ordinal α, Zα is the linear order with domain

{ f : α → Z | { β < α | f(β) 6= 0 } is finite }

ordered by f ⊏ g iff f(β) < g(β) for the largest β < α such that f(β) 6= g(β).

We say that a linear order L has Hausdorff rank less than α, and write
rkH(L) < α, if L embeds into a proper segment of Zα, or equivalently if
1 + L + 1 4 Zα. We say that L has finite Hausdorff rank if is has Haus-
dorff rank less than ω.

(See [Ros82, Chapter 5] for equivalent definitions of Zα and rkH . There are
slightly different definitions of Hausdorff rank in the literature, but they differ
by at most one.)

Hausdorff proved that rkH(L) exists (i.e. rkH(L) < α for some ordinal α) if
and only if L is scattered. Moreover if L is countable scattered then rkH(L)
is less than a countable ordinal. The reverse mathematics of the properties of
Hausdorff rank was studied by Clote in [Clo89].

If α is a countable ordinal let LOα = {L ∈ LO | rkH(L) < α }. We denote
by FRAα the statement that LOα is well-quasi-ordered by 4. Hence, FRAα

is the restriction of FRA to a subset of LO. Our long term goal is to obtain
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information on the strength of FRA by looking at the strength of various FRAα.
In this paper we carry out the first step in this project by studying FRAω, i.e.
Fräıssé’s conjecture for linear orders of finite Hausdorff rank.

A key ingredient for all known proofs of FRA is the notion of indecomposable
linear order.

Definition 1.2 A linear order L is indecomposable if whenever L = L1 +L2

then either L 4 L1 or L 4 L2. Let ILO (resp. ILOα) be the class of countable
indecomposable linear orders (resp. indecomposable linear orders of Hausdorff
rank less than α).

It follows from FRA that every countable scattered linear order is the finite
sum of indecomposable linear orders. The second author showed in [Mon06]
that the latter statement is indeed equivalent to FRA over RCA0.

We use signed trees ([Mon06,Mon07], see Section 2 below for the definition
and the basic properties of these objects) to study indecomposable scattered
linear orders. We denote by ST be the set of all signed trees. Using the appro-
priate notion of homomorphism between signed tree we define equimorphism
between signed trees. The key fact about ST is that signed trees represent
indecomposable countable linear orders in such a way that homomorphism
of signed trees is equivalent to embeddability of the corresponding linear or-
ders. Moreover for each indecomposable countable linear order L there exists
a signed tree representing a linear order equimorphic to L. (Indeed, in [Mon06]
the second author proved that, over RCA0, FRA is equivalent to the statement
that ST is well-quasi-ordered by homomorphism.) In this paper we exploit the
fact that indecomposable linear orders of finite Hausdorff rank are represented
by signed trees of finite height. Since each of these trees is equimorphic to a
finite signed tree, to study LOω we consider STω, the set of finite signed trees.

It is well-known that a quasi-order (Q,≤) is a well-quasi-order (wqo for short)
if and only if all its linear extensions are well-orders (see [CMS04] for an anal-
ysis of the logical strength of the equivalence between this and other charac-
terizations of wqo). Here a linear extension of (Q,≤) is a quasi-order ⊑ which
is linear (i.e. either q ⊑ r or r ⊑ q holds for every q, r ∈ Q), and satisfies
q ≤ r ⇒ q ⊑ r for all q, r ∈ Q. The linear extension is a well-order if it is
well-founded and in this case its order type is the unique ordinal α isomorphic
to it.

Definition 1.3 If (Q,≤) is a well-quasi-order the maximal order type of
(Q,≤) is

o(Q,≤) = sup{α | α is the order type of a linear extension of (Q,≤) }.

Whenever the quasi-order ≤ is clear from the context we write o(Q).
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De Jongh and Parikh ([JP77]) showed that the supremum in the definition of
maximal order type is actually a maximum, i.e. every well-quasi-order (Q,≤)
has a linear extension of order type o(Q). Schmidt continued the study of max-
imal order types in her Habilitationsschrift ([Sch79]). There, she computed the
maximal order type of the wqo investigated by Higman ([Hig52]), and gave up-
per bounds for the maximal order types of the wqo’s investigated by Kruskal
([Kru60]) and Nash-Williams ([NW65]). Harvey Friedman (see [Sim85b]) used
the maximal order type of the class of finite trees with embeddability preserv-
ing g.l.b.s to prove that Kruskal’s theorem cannot be proved in ATR0. Further
extensions of Friedman’s method were then used to show that Robertson and
Seymour’s celebrated result about graph minors is not provable in Π1

1-CA0

([FRS87]).

The starting point of our results is the computation of o(LOω, 4). Recall that
the Veblen functions give an ordinal notation system for ordinals below Γ0.
They are defined by letting ϕ0(α) = ωα and, for β > 0, ϕβ(α) = the α-th
common fixed point of all ϕγ with γ < β. In particular ϕ1 enumerates the
ε-numbers, i.e. the fixed points of the function β 7→ ωβ, and we will write εα

in place of ϕ1(α).

Using finite signed trees in Section 3 we prove:

Theorem 1.4 o(LOω, 4) = ϕ2(0), i.e. the least fixed point of the ε function.

Up to and including Section 3 the paper does not deal with subsystems of
second order arithmetic and can be read also by those interested only in wqo
theory.

In Section 4 we introduce the subsystems of second order arithmetic we will
need and in particular ACA

+
0 and ACA′

0. ACA
+
0 consists of RCA0 plus the

statement “for every X, X(ω) (the arithmetic jump of X) exists” (see [Sho06]
for recent results about ACA

+
0 ). ACA

+
0 is strictly weaker than ATR0 and the

ordinal ϕ2(0) mentioned in Theorem 1.4 is precisely the proof-theoretic ordinal
of ACA

+
0 ([Rat91]). This implies that ACA

+
0 does not prove that ϕ2(0) is a well-

order. In Section 4 we make the latter statement precise by introducing, in
RCA0, an ordinal notation system for ordinals below ϕ2(0). ACA′

0 consists of
RCA0 plus the statement “for every X and k, X(k) exists”. ACA′

0 is strictly
weaker than ACA

+
0 and strictly stronger than ACA0.

Formalizing the proof of Theorem 1.4 in Section 5 we obtain:

Theorem 1.5 ACA
+
0 + “ϕ2(0) is well-ordered” proves FRAω.

In Section 6, building on ideas from [Sho93,Sho06], we obtain a lower bound
for the complexity of FRAω.

4



Theorem 1.6 RCA0 proves that FRAω implies ACA′
0 + “ϕ2(0) is well-ordered”.

There is still a gap between the upper and lower bounds since ACA
+
0 + “ϕ2(0)

is well-ordered” is strictly stronger than ACA′
0 + “ϕ2(0) is well-ordered”, as

the ω-model consisting of all arithmetic sets is a model of the latter theory
but not of the former.

2 Signed trees

Let us start by establishing our notation for finite sequences and trees.

Definition 2.1 We denote by X<ω the set of finite sequences of elements of
a set X. We use ∅ to denote the empty sequence. Let x ∈ X and σ, τ ∈ X<ω:
〈x〉 is the sequence of length 1 with sole element x; |σ| is the length of σ and
for i < |σ|, σ(i) is the i-th element of σ; σ ⊆ τ means that σ is an initial
segment of τ and σ ⊂ τ that σ is a proper initial segment of τ ; σ⌢τ is the
sequence of length |σ|+ |τ | obtained by concatenating σ and τ ; σ ∗ x and x ∗ σ
abbreviate σ⌢〈x〉 and 〈x〉⌢σ respectively.

Definition 2.2 A nonempty set T ⊆ X<ω is a tree if σ ∈ T and τ ⊂ σ imply
τ ∈ T . We often refer to members of a tree as nodes and to ∅ (which belongs
to every tree) as the root. A subtree of T is a set of the form { τ ∈ X<ω |
σ⌢τ ∈ T } for some σ ∈ T ; when σ = 〈x〉 we have an immediate subtree of
T and we use Tx to denote it.

A child of the node σ of the tree T is a node of T of the form σ ∗ x. A leaf of
T is a node of T with no children. Let L(T ) = { σ | σ is a leaf of T }.

A tree T is well-founded if there is no infinite sequence σ0 ⊂ σ1 ⊂ . . . of ele-
ments of T . When T is well-founded we can define ht(σ, T ) = sup{ ht(σ ∗ n, T ) + 1 |
σ ∗ n ∈ T } for every σ ∈ T . The height of T is ht(T ) = ht(∅, T ).

We can now introduce signed trees, which are our main tool in the study of
indecomposable linear orders.

Definition 2.3 A signed tree is a pair (T, sT ) where T ⊆ ω<ω is a well-
founded tree and sT : T → {+,−}.

Let ST be the set of all signed trees and STω = { (T, sT ) ∈ ST | T is finite }.

If (T, sT ) ∈ ST and 〈n〉 ∈ T let sTn
: Tn → {+,−} be defined by sTn

(τ) =
sT (n ∗ τ). Obviously (Tn, sTn

) ∈ ST.

Definition 2.4 If (T, sT ), (T ′, sT ′) ∈ ST a map f : T → T ′ is a homomor-
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phism if

• σ ⊂ τ implies f(σ) ⊂ f(τ) for every σ, τ ∈ T ;
• sT ′(f(σ)) = sT (σ) for every σ ∈ T .

Note that f is not required to be one-to-one and that f(σ) ⊂ f(τ) might occur
even when σ 6⊂ τ . If there exists a homomorphism from (T, sT ) to (T ′, sT ′) we
write (T, sT ) 4 (T ′, sT ′). (T, sT ) and (T ′, sT ′) are equimorphic (and we write
(T, sT ) ∼ (T ′, sT ′)) if (T, sT ) 4 (T ′, sT ′) and (T ′, sT ′) 4 (T, sT ).

Lemma 2.5 Let (T, sT ), (T ′, sT ′) ∈ ST be such that sT (∅) = sT ′(∅). If for all
n with 〈n〉 ∈ T there exists m such that 〈m〉 ∈ T ′ and (Tn, sTn

) 4 (T ′
m, sT ′

m
)

then (T, sT ) 4 (T ′, sT ′).

PROOF. Immediate from the definition of homomorphism. 2

Lemma 2.6 For every (T, sT ) ∈ ST with ht(T ) < ω there exists (T ′, sT ′) ∈
STω such that (T, sT ) ∼ (T ′, sT ′).

PROOF. Easy induction on ht(T ), using Lemma 2.5. 2

The following definition, which was introduced in [Mon06] and [Mon07], con-
nects signed trees with indecomposable linear orders. Here and elsewhere ω∗

denotes ω with the reverse order. Hence
∑

k∈ω∗ Lk is · · · + L2 + L1 + L0.

Definition 2.7 To each (T, sT ) ∈ ST we associate a countable linear order
lin(T, sT ) as follows (the definition is by recursion on the height of the tree):

• if T = {∅} and sT (∅) = + let lin(T, sT ) = ω;
• if T = {∅} and sT (∅) = − let lin(T, sT ) = ω∗;
• if T 6= {∅} and sT (∅) = + let

lin(T, sT ) =
∑

k∈ω


 ∑

n∈{0,...,k}:〈n〉∈T

lin(Tn, sTn
)


 ;

• if T 6= {∅} and sT (∅) = − let

lin(T, sT ) =
∑

k∈ω∗


 ∑

n∈{0,...,k}:〈n〉∈T

lin(Tn, sTn
)


 .

Lemma 2.8 ([Mon06]) For each (T, sT ), (T ′, sT ′) ∈ ST we have

(a) lin(T, sT ) is a countable scattered indecomposable linear order;
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(b) (T, sT ) 4 (T ′, sT ′) if and only if lin(T, sT ) 4 lin(T ′, sT ′), and in partic-
ular (T, sT ) ∼ (T ′, sT ′) if and only if lin(T, sT ) ∼ lin(T ′, sT ′);

(c) rkH(lin(T, sT )) and ht(T ) differ by at most one.

Moreover each countable scattered indecomposable linear order different from
1 is equimorphic to lin(T, sT ) for some (T, sT ) ∈ ST.

Corollary 2.9 o(ILO, 4) = o(ST, 4) and o(ILOα, 4) = o(STα, 4) whenever
α is a limit ordinal. In particular o(ILOω, 4) = o(STω, 4).

PROOF. Lemma 2.8 implies that lin is an isomorphism between (ST, 4) and
(ILO \ {1}, 4) viewed as partial orders (i.e. considered up to equimorphism).
Thus o(ILO) = 1 + o(ST) = o(ST) since o(ST) is infinite. Since lin maps
STα onto ILOα \ {1} for all limit ordinals α, the same argument works for
o(STα). 2

3 The ordinal of (LOω, 4)

In this section we prove Theorem 1.4, i.e. o(LOω, 4) = ϕ2(0). Our idea is to
compute o(ILOω) using Corollary 2.9: therefore we concentrate on o(STω). We
will prove in Propositions 3.5 and 3.12 the two inequalities needed to establish
o(STω) = ϕ2(0). This yields o(LOω) ≥ o(ILOω) = ϕ2(0). We will later use the
fact that every countable linear order is the finite sum of indecomposable
linear orders to show that o(LOω) ≤ ϕ2(0).

We begin by proving or recalling some general facts about the function o.
We start by making explicit a widely used technique (implicit in [JP77] and
[Sch79]) for computing an upper bound for the maximal order type of a wqo.

Definition 3.1 Let (Q,≤) and (Q′,≤′) be quasi-orders. The function F :
Q′ → Q embeds (Q′,≤′) in (Q,≤), and we write F : (Q′,≤′) →֒ (Q,≤), if

∀q, r ∈ Q′(F (q) ≤ F (r) ⇒ q ≤′ r).

We write (Q′,≤′) →֒ (Q,≤) (or Q′ →֒ Q when the binary relations are under-
stood) if there exists a such function F .

Lemma 3.2 Let (Q,≤) be a well-quasi-order and (Q′,≤′) be a quasi-order.
If Q′ →֒ Q then (Q′,≤′) is a well-quasi-order and o(Q′) ≤ o(Q).

PROOF. Let F witness Q′ →֒ Q and denote the range of F by Q̃. Obviously
o(Q̃) ≤ o(Q).
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Let ⊑′ be any linear extension of (Q′,≤′). Define a binary relation ⊑ on Q̃ by
setting, for q, r ∈ Q′,

F (q) ⊑ F (r) ⇐⇒ q ⊑′ r.

This definition is well-posed because F (q) = F (q′) implies q ⊑′ q′ ⊑′ q.

It is straightforward to check that ⊑ is a linear extension of (Q̃,≤) and hence
(since Q is a well-quasi-order) is a well-order. Hence (Q′,⊑′) is a well-order.
This suffices to show that (Q′,≤′) is a well-quasi-order.

Moreover the order types of (Q′,⊑′) and (Q̃,⊑) are the same. Since the latter
is not greater than o(Q̃) and ⊑′ is arbitrary we have o(Q′) ≤ o(Q̃) ≤ o(Q). 2

Definition 3.3 If (Q,≤) is a quasi-order and r ∈ Q let Q�r = { q ∈ Q |

q � r }.

Lemma 3.4 Let (Q,≤) be a well-quasi-order and suppose that Q̂ ⊆ Q is
cofinal (i.e. ∀q ∈ Q ∃r ∈ Q̂ q ≤ r). Then

o(Q) = sup{ o(Q�r) + 1 | r ∈ Q̂ }.

PROOF. This is essentially Lemma 2.6 of [JP77]. 2

3.1 The lower bound

Proposition 3.5 o(STω) ≥ ϕ2(0).

PROOF. By Lemma 3.2 it suffices to define a function F : ϕ2(0) → STω

witnessing ϕ2(0) →֒ STω.

We define F (α) by recursion on α. For notational convenience let ε−1 = ω−1 =
0 and let F (−1) be the signed tree consisting only of the root labeled +. Now,
for every α < ϕ2(0) there exists a unique β < α such that εβ ≤ α < εβ+1. If
α = εβ + δ, we can write δ in Cantor normal form as ωγ0 + · · · + ωγk−1 with
the convention that if δ = 0 we have k = 1 and γ0 = −1, while if δ > 0 then
γi 6= −1 for every i < k. We thus have

α = εβ + ωγ0 + · · · + ωγk−1

with k > 0, β < α, and α > γ0 ≥ · · · ≥ γk−1. We can assume that F (β),
F (γ0), . . . , F (γk−1) are already defined.

Let n = ht(F (β))+3, m0 = n+ht(F (γ0))+2, and mi = mi−1+ht(F (γi))+1 for
0 < i < k. Then F (α) is the following signed tree. (A sample F (α) with k = 2
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Fig. 1. A sample F (α) with k = 2.

is depicted in Figure 1.) The root of F (α) is labeled +, and has k children, all
labeled +. The i-th child of the root has two children, both labeled +: one of
them is the starting point of a linear branch of mi nodes all labeled + (i.e. it
has a single child, which has a single child, etc. for mi times). The other child
of the i-th child of the root has two children, one labeled − and the other
labeled +. The node labeled − has a single child, which is the root of a copy
of F (β). The node labeled + is the starting point of a linear branch of n nodes
all labeled + and the last node of this branch is the root of a copy of F (γi).

Notice that for every α the root of F (α) is labeled +. It is easy to show
inductively that if a node labeled − appears in F (α) then it has a single child
which is the root of a copy of some F (ξ) with εξ ≤ α. Notice also that if
α 6= −1 then F (α) has at least one node labeled −.

Now we prove by induction on α that if α, α′ < ϕ2(0) are such that F (α) 4

F (α′) then α ≤ α′. Fix α, α′ and a homomorphism f witnessing F (α) 4 F (α′).
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We can write

α = εβ + ωγ0 + · · ·+ ωγk−1 and

α′ = εβ′ + ωγ′

0 + · · ·+ ωγ′

k′−1

as above, with δ = ωγ0 + · · ·+ωγk−1 and δ′ = ωγ′

0 + · · ·+ωγ′

k′−1. Let also n, m0,
. . . , mk−1, n′, m′

0, . . . , m′
k′−1 be defined as above for each of the two ordinals.

The nodes in F (α′) labeled − are the one immediately above the root of F (β ′),
and nodes in the interior of F (β ′) or of some F (γ′

i) with i < k′. Since the node
in F (α) immediately above the root of one of the copies of F (β) is mapped by
f to one of these nodes, the restriction of f to any copy of F (β) shows that
either (1) F (β) 4 F (β ′), or (2) F (β) ≺ F (β ′), or (3) F (β) ≺ F (γ′

i). In case
(1), by induction hypothesis, we have β ≤ β ′. Case (2) yields immediately
β < β ′. In case (3) we have F (β) ≤ F (ξ) for some ξ with εξ ≤ γ′

i: since
γ′

i ≤ γ′
0 < α′ < εβ′+1 we have ξ ≤ β ′. Moreover, by induction hypothesis,

β ≤ ξ and hence εβ ≤ εξ ≤ εβ′.

Thus in every case we have β ≤ β ′: if β < β ′ we are done because α < εβ+1 ≤
εβ′ ≤ α′. We now assume β = β ′ and hence also n = n′. We need to show that
δ ≤ δ′. If δ = 0 this is obvious. Hence we may assume γ0 6= −1.

Since the root of the copy of F (γ0) in F (α) has height n + 2 = ht(F (β)) + 5,
this node is not mapped by f to a node in a copy of F (β ′) = F (β) in F (α′).
Since F (γ0) has nodes labeled −, f does not map F (γ0) into one of the linear
branches of F (α′) where all nodes are labeled +. Thus there exists j0 < k′

such that the restriction of f to F (γ0) witnesses F (γ0) 4 F (γ′
j0

). By induction
hypothesis, γ0 ≤ γ′

j0
≤ γ′

0. If at least one of the inequalities is strict then
γ0 < γ′

0 and hence δ < δ′. Thus we assume γ0 = γ′
0 and therefore m0 = m′

0.

Repeating the same argument we obtain j1 < k′ such that F (γ1) 4 F (γ′
j1

)
and hence γ1 ≤ γ′

j1
. The linear branch with all nodes labeled + which is in

the same immediate subtree of F (α) as F (γ1) has a node of height m1 + 1 =
m0 + ht(F (γ0)) + 2: this node cannot be mapped into the first immediate
subtree of F (α′), and this implies j1 > 0. If either γ1 < γ′

j1
or γ′

j1
> γ′

1 then
δ < δ′ follows immediately, and otherwise we iterate the argument. If we have
to iterate the argument k times, then k ≤ k′ and γi = γ′

i for every i < k,
which implies δ ≤ δ′. 2

3.2 The upper bound

There are various ways of proving upper bounds for maximal order type for
some well-quasi-orders. We choose one that can be carried out in RCA0, but
we will not worry about subsystems of second order arithmetic until the next
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section. The general format for this type of proof was used by Simpson in
[Sim88] and by Rathjen and Weiermann in [RW93]. The main tool is the
notion of reification of a quasi-order by an ordinal.

Definition 3.6 Let (Q,≤) be a quasi-order. We say that a finite sequence
〈q0, . . . , qk〉 ∈ Q<ω is bad if ∀i < j qi � qj. We define Bad(Q) ⊆ Q<ω to be the
tree of finite bad sequences from Q.

Notice that if q ∗ σ ∈ Bad(Q) then σ(i) ∈ Q�q for all i < |σ|, so that σ ∈
Bad(Q�q).

Note that Q is wqo if and only if Bad(Q) is a well-founded tree. The re-
sults of de Jongh and Parikh ([JP77]) imply that if Q is a wqo, then o(Q) =
ht(Bad(Q)).

Definition 3.7 Let (Q,≤) be a quasi-order. A reification of (Q,≤) by α is a
map G : Bad(Q) → α + 1 such that σ ⊂ τ ⇒ G(σ) > G(τ).

Lemma 3.8 If there exists a reification of (Q,≤) by α, then (Q,≤) is a wqo
and o(Q) ≤ α.

We now define some operations on quasi-orders which preserve wqo. Some of
these operations are well-known. See [JP77] and [Sch79] for more results and
proofs.

Disjoint union If (Q1,≤1) and (Q2,≤2) are quasi-orders with Q1 ∩ Q2 = ∅
we denote by Q1 ⊔ Q2 the quasi-order on Q1 ∪ Q2 with no comparabilities
between elements of Q1 and Q2.

Finite parts If (Q,≤) is a quasi-order, let Pf (Q) be the set of finite subsets
of Q with quasi-order defined by

X ≤′ Y ⇐⇒ ∀x ∈ X ∃y ∈ Y x ≤ y.

Finite sequences Let Q<ω be the set of finite sequences of elements of Q
with quasi-order ≤′ defined by

〈x0, . . . , xn−1〉 ≤
′ 〈y0, . . . , ym−1〉 ⇐⇒

∃f : n → m strictly increasing ∀i < n xi ≤ yf(i).

Finite trees with leaves labeled by Q Let T (Q) be the set of pairs (T, lT )
where T is a nonempty finite tree and lT : L(T ) → Q (recall that L(T ) is
the set of the leaves of T ).

The notion of homomorphism between elements of T (Q) is an adaption
of the notion of homomorphism between signed trees (definition 2.4): if
(T, lT ), (T ′, lT ′) ∈ T (Q) a map f : T → T ′ is a homomorphism if
• σ ⊂ τ implies f(σ) ⊂ f(τ) for every σ, τ ∈ T ;
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• if σ ∈ L(T ) then f(σ) ∈ L(T ′) and lT (σ) ≤ lT ′(f(σ)).
If there exists a homomorphism from (T, lT ) to (T ′, lT ′) we write (T, lT ) 4

(T ′, lT ′).

The maximal order types of the wqo’s obtained applying some of these op-
erations has already been computed. We use Hessenberg’s natural sum and
exponential towers.

Recall that given ordinals written in Cantor normal form α = ωα0 +· · ·+ωαn−1

and β = ωβ0 + · · ·+ ωβm−1, Hessenberg’s natural sum of ordinals is defined by

α ⊕ β = ωγ0 + ωγ1 + · · · + ωγn+m−1 ,

where γ0, . . . , γn+m−1 are such that γ0 ≥ γ1 ≥ · · · ≥ γn+m−1, and there exists
a partition {{a0, . . . , an−1}, {b0, . . . , bm−1}} of {0, . . . , n + m − 1} such that
γai

= αi and γbi
= βi. Hessenberg’s natural sum is commutative and α + β ≤

α ⊕ β.

Let ωi(α) denote an exponential tower of i ω’s with α on top: ω0(α) = α and
ωi+1(α) = ωωi(α).

Lemma 3.9 ([JP77]) Let (Q,≤), (Q1,≤1) and (Q2,≤2) be well-quasi-orders.

(1) If Q1 ∩ Q2 = ∅ then Q1 ⊔ Q2 is a well-quasi-order and o(Q1 ⊔ Q2) =
o(Q1) ⊕ o(Q2).

(2) (Q<ω,≤′) is a well-quasi-order and o(Q<ω) ≤ ω2(o(Q) + 1) = ωωo(Q)+1
.

It is not hard to see that Pf(Q) →֒ Q<ω, and therefore Pf (Q) is a wqo. If
(Q,≤) is a well-quasi-order it follows from well-known facts in wqo theory
(e.g. Kruskal’s Theorem) that (T (Q), 4) is also wqo.

To prove that o(STω) ≤ ϕ2(0), we simultaneously prove upper bounds for the
maximal order type of various well-quasi-orders.

Definition 3.10 Let W be the smallest set of all quasi-orders such that:

(1) 1 = {0} ∈ W;
(2) Q, P ∈ W ⇒ P ⊔ Q ∈ W;
(3) Q ∈ W ⇒ Pf(Q) ∈ W;
(4) Q ∈ W ⇒ T (Q) ∈ W.

Let F : W → ϕ2(0) be defined by

(1) F (1) = 1;
(2) F (P ⊔ Q) = F (P ) ⊕ F (Q);
(3) F (Pf(Q)) = ωF (Q);

12



(4) F (T (Q)) = εF (Q).

Lemma 3.11 For every Q ∈ W, o(Q) ≤ F (Q).

PROOF. By Lemma 3.8, for each Q ∈ W, it suffices to define a reification
GQ : Bad(Q) → F (Q) + 1 of Q. The idea used in the definition of GQ is
the following. On the empty sequence, we define GQ(∅) = F (Q). Now, if
σ ∈ Bad(Q) is not empty, we have to define GQ(σ) < F (Q). Suppose that
σ = q ∗ τ where q ∈ Q and τ ∈ Bad(Q�q). The plan is to embed Q�q into
some member of W, and use recursion. So, to each q ∈ Q ∈ W we assign a
partial order HQ,q ∈ W and an embedding

hQ,q : Q�q →֒ HQ,q.

The assignment of partial order has to satisfy F (HQ,q) < F (Q) so that, using
recursion on |σ|, we can define

GQ(q ∗ τ) = GHQ,q
(hQ,q(τ)),

where hQ,q(〈q0, . . . , qk−1〉) = 〈hQ,q(q0), . . . , hQ,q(qk−1)〉 ∈ Bad(HQ,q). An easy
induction on |σ| shows that if γ ⊂ σ, then GQ(γ) > GQ(σ).

All is left is to define HQ,q and hQ,q for each q ∈ Q ∈ W. The definition is by
recursion on how many operations are needed to build Q ∈ W. At the same
time we will prove by induction that F (HQ,q) < F (Q).

(1) Case Q = 1 = {0}: In this case we skip the definition of HQ,q and hQ,q

and directly define GQ. G1(∅) = 1, G1(〈0〉) = 0.
(2) Case Q = P0 ⊔ P1: First consider q ∈ P0. Let

HQ,q = HP0,q ⊔ P1

and hQ,q(r) = hP0,q(r) ∈ HP0,q if r ∈ P0�q
and hQ,q(r) = r if r ∈ P1. Note

that

F (HQ,q) = F (HP0,q) ⊕ F (P1) < F (P0) ⊕ F (P1) = F (Q).

If q ∈ P1, we define HQ,q and hQ,q analogously.
(3) Case Q = Pf (P ): Consider q = {q0, . . . , qk−1} ⊆ Q. Let

HQ,q =
⊔

i<k

Pf (HP,qi
).

Given r = {r0, . . . , rl−1} ∈ Q�q, there exists i < k such that ∀j < l qi �
rj. Consider the least such i. Then let hQ,q(r) = {hP,qi

(r0), . . . , hP,qi
(rl−1)} ∈
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Pf (HP,qi
). Note that

F (HQ,q) =
⊕

i<k

ωF (HP,qi
) < ωF (P ) = F (Q).

(4) Case Q = T (P ): We need the following auxiliary operation. Let (J,≤) be
a quasi-order. For every k ∈ ω let Tk(J) = { (T, lT ) ∈ T (J) | ht(T ) ≤ k }.

Let { qn | n ∈ ω } ⊆ P be such that ∀q ∈ P ∃n q ≤ qn. Let (Tn, ln) ∈
Tn(P ) consist of a single branch of n nodes with the last node splitting
into n + 1 leaves labeled q0, . . . , qn. Let

Sn = { (T, lT ) ∈ T (P ) | (Tn, ln) 64 (T, lT ) }.

For each n we define Hn ∈ W with F (Hn) < F (Q) and hn : Sn →֒ Hn.
Before defining Hn and hn let us show how to use them to complete

the proof. Notice that the set { (Tn, ln) | n ∈ ω } is cofinal in T (P ). In
fact given (T, lT ) ∈ T (P ) pick n so large that ht(T ) ≤ n and the finite
range of lT is a subset of

⋃
i≤n{ q ∈ P | q ≤ qi }: then (T, lT ) 4 (Tn, ln).

Therefore, for every q ∈ Q, there exists a least n such that Q�q ⊆ Sn, so
it suffices to let HQ,q = Hn and hQ,q = hn ↾ Q�q, the restriction of hn to
Q�q.

To construct Hn let us start from

Ĥn = Tn(P ⊔
⊔

i≤n

T (P�qi
)).

Consider (T, lT ) ∈ Sn. Notice that if σ ∈ T is such that |σ| = n and σ /∈
L(T ) then there exists i ≤ n such that ∀τ ∈ L(T ) (τ ⊃ σ ⇒ qi � lT (τ)),

i.e. lT (τ) ∈ P�qi
. Now let T̂ = { τ ∈ T | |τ | ≤ n } so that ht(T̂ ) ≤ n.

Define also lT̂ : L(T̂ ) → P ⊔
⊔

i<n T (P�qi
) by

lT̂ (σ) =





lT (σ), if |σ| < n;

the subtree of (T, lT ) rooted at σ, if |σ| = n.

In the first case σ ∈ L(T ) and lT̂ (σ) ∈ P , while in the second case
lT̂ (σ) ∈ T (P�qi

) for some i ≤ n by the observation above.

Set ĥn(T, lT ) = (T̂ , lT̂ ). It is not hard to check that ĥn : Sn →֒ Ĥn.

Since Ĥn /∈ W, we have to modify our construction a bit. Let J =
P ⊔

⊔
i≤n T (HP,qi

) ∈ W and j : P ⊔
⊔

i≤n T (P�qi
) →֒ J be the map

defined in the obvious way using the hP,qi
’s. We can then extend j to

j : Ĥn →֒ Tn(J).
Define f : Tn(J) → J ∪ Pf (Tn−1(J)) as follows:

f(T, lT ) =





lT (∅) if T = {∅};

{ (Tn, lTn
) | 〈n〉 ∈ T } otherwise.
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Checking that f witnesses Tn(J) →֒ J ⊔ Pf(Tn−1(J)) is straightforward.
Iterating n times f we obtain

fn : Tn(J) →֒ J ⊔ Pf (J ⊔ Pf(. . . (J ⊔ Pf (J)) . . . )

Let
Hn = J ⊔ Pf(J ⊔ Pf (. . . (J ⊔ Pf(J)) . . . )

and hn = fn ◦ j ◦ ĥn : Sn →֒ Hn.
Since F (Q) = εF (P ) is closed under ⊕ and F (HP,qi

) < F (P ), we have
F (J) = F (P ) ⊕

⊕
i≤n εF (HP,qi

) < εF (P ). Since F (Q) is also closed under
exponentiation with base ω, we obtain F (HQ,q) < F (Q). 2

Proposition 3.12 o(STω) ≤ ϕ2(0).

PROOF. We employ the same technique of the proof of Lemma 3.11: we keep
the same notation and define, for q ∈ Q = STω, HQ,q ∈ W with F (HQ,q) <
ϕ2(0) and hQ,q : Q�q →֒ HQ,q. As in the preceding proof this yields a reification
of STω by ϕ2(0), and by Lemma 3.8 the proof is complete.

For every n let (Tn, sn), (Tn, ŝn) ∈ STω be defined as follows: Tn consists of a
single branch of n + 1 nodes; sn labels the nodes of Tn with even length +,
and the nodes with odd length −; ŝn acts dually, labeling nodes of Tn with
even length −, and nodes with odd length +. Let ST

n
ω = { (T, sT ) ∈ STω |

(Tn, sn) 64 (T, sT ) } and similarly ŜT
n
ω = { (T, sT ) ∈ STω | (Tn, ŝn) 64 (T, sT ) }.

It is obvious that o(ST
n
ω) = o(ŜT

n
ω).

The set { (Tn, sn) | n ∈ ω } is cofinal in STω: if ht(T ) = k then (T, sT ) 4

(T2k+1, s2k+1). Therefore, for every q = (T, sT ) ∈ STω there exists n such that

Q�q ⊆ ST
n
ω.

For every n we define Hn ∈ W with F (Hn) < ϕ2(0) and hn : Sn →֒ Hn. Once
this is done the proof is completed exactly as in Case (4) of the previous proof.

When n = 0 notice that an element of ST
0
ω is a tree with all nodes labeled −.

Therefore ST
0
ω is order isomorphic to T (1) ∈ W. Thus we can set H0 = T (1)

(so that F (H0) = ε1 < ϕ2(0)) and let h0 be the order isomorphism mentioned
above.

Fix (T, sT ) ∈ ST
n+1
ω . Since (Tn, sn) 64 (T, sT ), T does not contain a sequence

σ0 ⊂ σ1 ⊂ · · · ⊂ σn with sT (σi) = + for even i, and sT (σi) = − for odd
i. Therefore if σ0 is such that sT (σ0) = + the subtree of (T, sT ) rooted at

σ0 belongs to ŜT
n
ω (because it contains no sequence σ1 ⊂ σ2 ⊂ · · · ⊂ σn

with sT (σi) = + for even i, and sT (σi) = − for odd i). Let UT = { σ ∈ T |
∀τ ⊂ σ sT (τ) = −}. UT is a tree and if σ ∈ L(UT ) then σ ∈ L(T ) or sT (σ) = +.
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Let lT (σ) be the subtrees of (T, sT ) rooted at σ. By the observation above

lT (σ) ∈ ŜT
n
ω when sT (σ) = +. When sT (σ) = − then σ ∈ L(T ) and lT (σ) is

the tree consisting of the root labeled −: if n > 0 we have lT (σ) ∈ ŜT
n
ω also

in this case, while when n = 0 we identify this tree with the lone element of
1. Therefore lT : L(UT ) → ŜT

n
ω when n > 0 and lT : L(UT ) → 1 ⊔ ŜT

n
ω when

n = 0.

If we set fn(T, sT ) = (UT , lT ) we have a function fn : ST
n+1
ω → T (ŜT

n
ω) or

fn : ST
n+1
ω → T (1 ⊔ ŜT

n
ω), depending on whether n > 0 or not. It is easy to

check that fn witnesses ST
n+1
ω →֒ T (ŜT

n
ω) (or ST

n+1
ω →֒ T (1 ⊔ ŜT

n
ω)). Then

f0 ◦ · · · ◦ fn : ST
n+1
ω →֒ Qn.

where Qn = T (T (T (. . . (1 ⊔ T (1)) . . . ))) with n + 1 occurrences of T . Since
Qn ∈ W and F (Qn) = εε...ε1+1 < ϕ2(0) the proof is complete. 2

3.3 Maximal order type of LOω

We are now ready to prove Theorem 1.4 that says that o(LOω, 4) = ϕ2(0).
Since o(STω) = o(ILOω) ≤ o(LOω), by Proposition 3.5 we have that o(LOω, 4) ≥
ϕ2(0). The other inequality requires the following observation.

Let Ln = Zn · ω. Note that for every L ∈ LOω, there exists n such that
L 4 Ln. Therefore o(LOω) = supn o((LOω)�Ln

). Every L ∈ (LOω)�Ln
can be

decomposed as a finite sum of indecomposable linear orders, say J0 + · · ·+Jk.
Since Ln is indecomposable, we have that for every i ≤ k, Ji ∈ (ILOω)�Ln

.

This gives us an embedding (LOω)�Ln
→֒ ((ILOω)�Ln

)<ω. Since o((ILOω)�Ln
) <

ϕ2(0), we have that o(((ILOω)�Ln
)<ω) < ϕ2(0). It follows that o((LOω)�Ln

) <
ϕ2(0) and hence o(LOω, 4) ≤ ϕ2(0).

4 Subsystems of second order arithmetic

We refer the reader to [Sim99] for background information on subsystems of
second order arithmetic. From now on, when we write the name of a subsys-
tems of second order arithmetic in parenthesis at the beginning of a definition
or of a theorem, it means that the definition or the theorem is being carried
out in that system.

Recall that RCA0 is the basis system: it consists of axioms stating that the
natural numbers form an ordered semi-ring, plus the axiom schemes of Σ0

1-
induction and ∆0

1-comprehension.
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Definition 4.1 (RCA0) We say that X = Y ′ if ∀e(e ∈ X ⇐⇒ {e}Y (e) ↓),
where {e}Y is the e-th Turing functional with oracle Y .

We say that X = Y (k) if X = 〈X0, . . . , Xk〉, X0 = Y and for every n < k,
Xn+1 = (Xn)′. We say that X = Y (ω) if X = 〈X0, . . .〉, X0 = Y and for every
n, Xn+1 = (Xn)′.

Recall that ACA0 (the system obtained by adding arithmetic comprehension
to RCA0) is equivalent to RCA0 plus the statement ∀Y ∃X X = Y ′.

Definition 4.2 ACA′
0 is RCA0 plus the statement ∀Y ∀k ∃X X = Y (k). ACA

+
0

is RCA0 plus the statement ∀Y ∃X X = Y (ω).

As in the proof of [Mon06, Lemma 3.4] we define Hausdorff rank using powers
of Z. Since we are interested only in finite Hausdorff rank we do not need any
transfinite recursion.

Remark 4.3 (RCA0) A linear order L has finite Hausdorff rank if L 4 Zn

for some n.

The proof-theoretic ordinals of ACA0, ACA′
0 and ACA

+
0 are ε0, εω and ϕ2(0)

respectively. Since ACA0 is conservative over Peano Arithmetic the first result
follows from Gentzen’s analysis of that theory. The result for ACA′

0 is due orig-
inally to Jäger (unpublished notes) and a proof appears in [McA85]; recently
Michael Rathjen gave a new proof sketch: details will appear in the forthcom-
ing Ph.d. thesis of Bahareh Afshari at the University of Leeds. The computa-
tion of the proof-theoretic ordinal of ACA

+
0 is due to Rathjen ([Rat91]).

In particular, the consistency of ACA
+
0 is equivalent to the statement saying

that ϕ2(0) is well-ordered, and hence this statement cannot be proved in ACA
+
0 .

To make this statement more precise, we now explain how “ϕ2(0) is well-
ordered” is expressed within RCA0.

Let us introduce a system of notations for the ordinals below ϕ2(0). The idea
is to formalize the way of writing an ordinal α < ϕ2(0) used in the proof of
Proposition 3.5: with the convention ε−1 = ω−1 = 0 we have

α = εβ + ωγ0 + · · · + ωγk−1

with k > 0, β < α < εβ+1, and α > γ0 ≥ · · · ≥ γk−1. We can then write β,
and γ0, . . . , γk−1 the same way, and this process will eventually stop when α
is written in normal form.

The formal definition is the following.

Definition 4.4 (RCA0) Let L be the language consisting of the constant −1,
the unary operations ω(·) and ε(·), and the binary operation (·) + (·).
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We simultaneously define a set of terms Φ of L and an order on Φ as follows:

• −1 ∈ Φ and −1 ≤ t for every t ∈ Φ;
• εt +ωt0 + · · ·+ωtk−1 ∈ Φ whenever k > 0, t, t0, . . . , tk−1 ∈ Φ, and εt +ω−1 ≥

t0 ≥ · · · ≥ tk−1. If ti = −1 then we require k = 1 and i = 0;
•

εt′ + ωt′0 + · · · + ω
t′
k′−1 ≤ εt + ωt0 + · · ·+ ωtk−1

if and only if either t′ < t or t′ = t and (either there exists i such that
t′i 6= ti, and for the first such i, t′i < ti, or t′i = ti for every i < k′ and
k′ ≤ k).

Notice that the order (Φ,≤) is primitive recursive. When we write a term in
Φ, we are thinking of an ordinal below ϕ2(0). Conversely, as in Proposition
3.5 we can prove informally that for every ordinal below ϕ2(0) there is a term
representing it. It is straightforward to show informally that the order relation
between elements of Φ is isomorphic to ϕ2(0).

The relationships between Φ and ϕ2(0) mentioned above cannot even be stated
in RCA0, because ϕ2(0) does not exist in the language of second order arith-
metic. When we refer to the statement “ϕ2(0) is well-ordered” in the language
of second order arithmetic, we are actually saying “(Φ,≤) is well-ordered”. In
terms of reverse mathematics, RCA0 suffices to show that (Φ,≤) is a linear
order. It is much harder to prove that is a well-order (as noticed above, ACA

+
0

does not suffice).

Within RCA0 it is straightforward to define the set STω and the notion of
homomorphism between finite signed trees. We can also define ST, LOω and
ILOω, but notice that these are classes and not sets. Within RCA0 we also
define the function lin and prove the following Lemma ([Mon06, Proposition
2.13]), showing that Lemma 2.8.b is provable in ACA0.

Lemma 4.5 (ACA0) Let T, T ′ ∈ ST. Then

T 4 T ′ ⇐⇒ lin(T ) 4 lin(T ′).

When we say within RCA0 that a quasi-order (Q,≤) is wqo we mean that
there exists no infinite bad sequences (i.e. for every f : ω → Q there exist
i < j with f(i) ≤ f(j)): in [CMS04] it is proved that in RCA0 this implies,
but is not equivalent to, the statement that (Q,≤) has no infinite descending
chains and antichains. When we deal with a quasi-order which is a class some
simple coding formalizes the same definition within RCA0, yielding statements
of FRA and FRAω in RCA0.
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5 Upper bound for FRAω

In this section we prove Theorem 1.5, i.e. that ACA
+
0 together with the state-

ment “ϕ2(0) is well-ordered” suffices to prove FRAω.

Proposition 5.1 (RCA0) The following are equivalent:

(i) STω is well-quasi-ordered by 4;
(ii) ϕ2(0) is well-ordered.

PROOF. The proof consists of formalizing in RCA0 the proofs of Section 3.

For the implication (i)⇒(ii), we need to look at the proof of Proposition 3.5.
There we defined a function F : ϕ2(0) → STω witnessing ϕ2(0) →֒ STω. The
definition of F and the proof that it satisfies the required properties are by
∆0

0-recursion and ∆0
0-induction on the length of the normal form of the ordinal

notations below ϕ2(0) and hence they can be easily be carried out in RCA0.
Then, if we had an infinite descending sequence in ϕ2(0), we could map it
through F and get an infinite bad sequence in STω.

For the implication (ii)⇒(i), we first need to look at the proof of Lemma 3.11.
We can easily name all the partial orders that are in W. So, in RCA0 we can
work with W as a set, by using a set of names for its elements. Then, we can
think of F : W → ϕ2(0) as a second order object which is defined by recursion.
The definition of HQ,q and hQ,q is computably uniform in q ∈ Q ∈ W and is
done by recursion on the number of operations needed to define Q ∈ W (i.e. on
the complexity of the name for Q). GQ(σ) is also computably uniform in Q ∈
W and is defined by recursion on |σ|. By induction on number of operations
needed to define Q ∈ W we can prove that for every q ∈ Q ∈ W we have
F (HQ,q) < F (Q). Then, in RCA0, we can prove that σ ⊂ τ ⇒ GQ(σ) > GQ(τ).
Therefore, for all Q ∈ W, if F (Q) is well-ordered Bad(Q) is well-founded and
hence Q is well-quasi-ordered.

The argument applies also to STω (proof of Proposition 3.12) and shows that
if ϕ2(0) is well-ordered then STω is well-quasi-ordered. 2

Lemma 5.2 (ACA
+
0 ) Given a sequence {Li | i ∈ ω } of linear orders of finite

rank, there is a sequence { 〈Ti,1, . . . , Ti,ki
〉 | i ∈ ω } of finite sequences of finite

signed trees such that for every i

Li ∼ lin(Ti,1) + · · ·+ lin(Ti,ki
).

19



PROOF. In [Mon06, Lemma 3.4] it is proved that if STα is well-quasi-
ordered, then every computable linear order L of rank α is equimorphic to a
finite sum of linear orders of the form lin(T ) and of rank ≤ α via an equimor-
phism computable in 0(2(α+1)2).

When α < ω, RCA0 proves that STα is well-quasi-ordered just because it is
finite. Noting that the proof of Lemma 3.4 in [Mon06] is uniform, we obtain
that given a computable sequence {Li | i ∈ ω } of linear orders of finite rank
there is a sequence { 〈Ti,1, . . . , Ti,ki

〉 | i ∈ ω } computable in 0(ω) which satisfies
the statement of the Lemma.

If the sequence we are given is not computable, it suffices to relativize the
proof, and ACA

+
0 suffices. 2

Proposition 5.3 (ACA
+
0 ) If STω is well-quasi-ordered by 4 then FRAω holds.

PROOF. Consider an infinite sequence {Li | i ∈ ω } of linear orders of finite
rank; we want to show it is not a bad sequence. By Lemma 5.2 there exists a
sequence { 〈Ti,1, . . . , Ti,ki

〉 | i ∈ ω } of members of STω
<ω such that for every i

Li ∼ lin(Ti,1) + · · ·+ lin(Ti,ki
).

By Higman’s theorem, which is provable in ACA0 ([Sim88,Clo90,Mar05]), we
have that STω

<ω is well-quasi-ordered by 4. Therefore, there exists i < j such
that 〈Ti,1, . . . , Ti,ki

〉 4 〈Tj,1, . . . , Tj,kj
〉. By Lemma 4.5 we have

Li ∼ lin(Ti,1) + · · ·+ lin(Ti,ki
) 4 lin(Tj,1) + · · · + lin(Tj,kj

) ∼ Lj .

Thus {Li | i ∈ ω } is not a bad sequence. 2

Propositions 5.1 and 5.3 obviously imply Theorem 1.5.

6 Lower bound for FRAω

In this section we prove Theorem 1.6, i.e. that RCA0+FRA implies ACA
′
0 plus

the statement “ϕ2(0) is well-ordered”.

We start by noticing that some of the intermediate steps in Shore’s proof
([Sho93]) that FRA implies ATR0 show that RCA0⊢ FRAω ⇒ ACA0. Indeed
the proofs of [Sho93, Theorem 3.1] (establishing that RCA0 ⊢ FRA ⇒ Σ0

2-
induction) and of [Sho93, Theorem 1.1] (showing that RCA0 + Σ0

2-induction
⊢ FRA ⇒ ACA0) make use only of linear orders (actually, well-orders) of finite
Hausdorff rank. We thus have:
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Proposition 6.1 (RCA0) FRAω implies ACA0.

We will now build on Shore’s ideas to prove the following Proposition.

Proposition 6.2 (ACA0) FRAω implies ACA′
0.

PROOF. Fix k. We want to show that 0(k) exists. By relativizing the proof
as usual, we will get that for every Y , Y (k) exists.

First, for each n ≤ k, we construct a sequence of linear orders {Aj,n | j ∈ ω },
such that, if 0(n) exists and h : Aj,n → Al,n is an embedding for some j < l,
then h computes 0(n+1). Unfortunately, this induction step is not enough to
prove ACA′

0 as Σ1
1-induction would be required. So we will do the following.

For each j we define

Aj =
∑

n≤k

(ω∗ + ω + Aj,n).

Then, we will show that if we have an embedding Aj 4 Al for some j < l,
we can recover embeddings hn : Aj,n → Al,n for each n ≤ k. We use these
embeddings together to define a sequence of sets X0, X1, . . . , Xk. Then, using
arithmetic induction on n ≤ k, we show that for every n, Xn+1 ≥T (Xn)′, and
thus 〈X0, . . . , Xk〉 witnesses the existence of 0(k).

The idea of the construction is as follows. We want to define {Aj,n | j ∈ ω }
such that any embedding hn : Aj,n → Al,n for j < l produces a function that
dominates the set of true stages for the enumeration of 0(n+1) from 0(n). (Recall
that t is a true stage for f : ω → ω if ∀s > t f(s) > f(t). As noticed in [Sho93],
RCA0 suffices to prove that for any one-to-one f there exists infinitely many
true stages, while RCA0 + Σ0

2-induction proves that for any one-to-one f and
any i there exist the i-th true stage for f .) Let ti be the i-th true stage for the
enumeration of 0(n+1) from 0(n). Given j, we will let An,j,tj+i

be isomorphic to
ωn+1 + 1 and, for s not of the form tj+i, Aj,n,s be isomorphic to ωn · p + 1 for
some p ∈ ω. Then, we define

Aj,n =
∑

s

Aj,n,s.

Working in ACA0, we have to be careful in defining the linear orders Aj,n,s.
We will use sequences of linear orders {LΣ

n,e | n ∈ ω } and {LΠ
n,e | n ∈ ω } (the

main idea for this construction is taken from a similar construction in [Sho06,
Section 5]): the reader should keep in mind that we would like to have, for
every n, e ∈ ω,

LΣ
n,e

∼=





ωn+1 if e ∈ 0(n+1)

ωn if e /∈ 0(n+1)
(6.1)

21



and

LΠ
n,e

∼=





ωn · p for some p ∈ ω, p > 0 if e ∈ 0(n+1)

ωn+1 if e /∈ 0(n+1).
(6.2)

For each n denote by Ωn+1 the natural presentation of the linear order of
order type ωn+1 consisting of the ordered n-tuples of natural numbers ordered
antilexicographically. LΣ

n,e and LΠ
n,e will be subsets of Ωn+1 under this order.

Since ACA0 proves that Ωn+1 is a well-order for each n, we have that LΣ
n,e and

LΠ
n,e are well-orders.

We define LΣ
n,e and LΠ

n,e by recursion on n. Recall the existence of a computable
function f such that for all n ∈ ω

(a) for all e ∈ ω, e ∈ 0(n+1) if and only if there exists x such that f(n, e, x) /∈
0(n);

(b) for all e, x, y ∈ ω, if x < y and f(n, e, x) /∈ 0(n) then f(n, e, y) /∈ 0(n).

The function f can be defined in RCA0, and for each n, if 0(n) exists then RCA0

proves (a) and (b) above (here, since 0(n+1) might not exist, e ∈ 0(n+1) is to

be understood as an abbreviation for {e}0(n)
(e) ↓).

Let LΣ
0,e (resp. LΠ

0,e) be the set {0} ∪ { s | {e}s(e) ↓ } (resp. {0} ∪ { s |
{e}s(e) ↑ }), which is indeed a subset of Ω1. If we have already defined LΣ

n,e

and LΠ
n,e for every e, let

LΣ
n+1,e = { (~y, x) ∈ Ωn+2 | ~y ∈ LΠ

n,f(n,e,x) } and

LΠ
n+1,e = { (~y, x) ∈ Ωn+2 | ~y ∈ LΣ

n,f(n,e,x) },

so that the order types of LΣ
n+1,e and LΠ

n+1,e are respectively

∑

x∈ω

LΠ
n,f(n,e,x) and

∑

x∈ω

LΣ
n,f(n,e,x).

Claim 6.2.1 For every n, e ∈ ω, rkH(LΣ
n,e) ≤ n + 1 and rkH(LΠ

n,e) ≤ n + 1.

PROOF. This is obvious, since LΣ
n,e 4 Ωn+1 4 Zn+1 and the same for

LΠ
n,e. 2

Claim 6.2.2 Let m ∈ ω be such that 0(m) exists. Then for every n ≤ m and
e ∈ ω (6.1) and (6.2) hold.

PROOF. Fix m and assume 0(m) exists. We use induction on n ≤ m to
prove an apparently stronger statement: for every e, LΣ

n,e (resp. LΠ
n,e) satisfies
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(6.1) (resp. (6.2)) with an isomorphism computable in 0(n). This statement is
arithmetical, so we have enough induction in ACA0 to carry out the proof.

The base and the induction steps are both straightforward using that f satisfies
(a) and (b). 2

When we do not know that 0(n) exists, we know very little about the order type
of LΣ

n,e and LΠ
n,e. However, as noticed above, we do know they are well-ordered.

Now we are ready to formally define sequentially the orders Aj,n,s, Aj,n and
Aj . Notice that “s is a true stage for f and there are at least j − 1 true
stages for f smaller than s” is a Π0

1 formula. Hence there exists a computable
function g such that for each n, s, j, g(n, j, s) /∈ 0(n+1) if and only if s is the
(j + i)-th true stage for the enumeration of 0(n+1) from 0(n), for some i. Define
Aj,n,s = LΠ

n,g(n,j,s) + 1. We may assume that the domains of the Aj,n,s’s are
pairwise disjoint and denote by mj,n,s the first element of Aj,n,s.

As announced let Aj,n =
∑

s Aj,n,s and Aj =
∑

n≤k(ω
∗ + ω + Aj,n). By Claim

6.2.1 we have rkH(Aj,n) ≤ n + 2 and hence rkH(Aj) ≤ k + 3 for every j. Let
πj,n : Aj,n → ω be the function which assigns to every z ∈ Aj,n the unique s
such that z ∈ Aj,n,s.

By FRAω there exists j < l and an embedding h : Aj → Al. For n ≤ k let hn

be the restriction of h to Aj,n

Claim 6.2.3 For each n ≤ k, hn maps Aj,n into Al,n.

PROOF. For every j we have ω∗ ·(k+1) 4 Aj , while the fact that each LΠ
n,e is

well-ordered implies that the Aj,n’s are well-ordered and hence ω∗·(k+2) 64 Aj .
In other words, both Aj and Al contain exactly k + 1 copies of ω∗.

Thus, for each n ≤ k, an initial segment of the copy of ω∗ in Aj immediately
preceding ω + Aj,n is mapped by h coinitially to the copy of ω∗ in Al which
precedes immediately ω+Al,n. Therefore the copy of ω immediately preceding
Aj,n is mapped to ω∗+ω+Al,n, and this implies that hn maps Aj,n into Al,n. 2

Claim 6.2.4 Suppose 0(n) exists. If j < l and hn : Aj,n → Al,n is an embed-
ding, then 0(n+1) ≤T hn ⊕ 0(n).

PROOF. Recursively in hn we define k : ω → ω by setting k(0) = tj and
k(x + 1) = πl,n(hn(mj,n,k(x))).

We prove by induction that k(x) ≥ tj+x for every x ∈ ω. The case x = 0 is
trivial. Assuming k(x) ≥ tj+x notice that ωn+1 · (x+1) embeds into the initial
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segment of Aj,n bounded by mj,n,k(x), and hence also into the initial segment
of Al,n bounded by hn(mj,n,k(x)). This implies that tl+x ≤ πl,n(hn(mj,n,k(x))) =
k(x+1). Since j < l we have tj+x+1 ≤ tl+x and the induction step is complete.

Hence x ∈ 0(n+1) if and only if it appears among the first k(x) elements of the
enumeration of 0(n+1) from 0(n). Thus 0(n+1) ≤T hn ⊕ 0(n). 2

Let X0 = ∅, and, for n < k, Xn+1 = hn ⊕ Xn. Using the previous claim, we
can prove by arithmetic induction on n, that for every n ≤ k there exist an
index en such that {en}

Xn = 0(n). Therefore 〈{e0}
X0 , . . . , {ek}

Xk〉 witnesses
the existence of 0(k). 2

Remark 6.3 Proposition 6.2 cannot be strengthened by replacing ACA′
0 with

ACA
+
0 . In fact FRAω holds in the ω-model consisting of all arithmetic sets,

where ACA
+
0 fails. The reason is that if we are given a sequence {Ln : n ∈ ω}

of arithmetic linear orders of finite Hausdorff rank, then the exists i < j such
that Li 4 Lj. At first, we do not know that this embedding is in the model
of arithmetic sets. But it follows from the proofs of [Mon06, Lemmas 3.4 and
2.5] that, if there is an embedding between two linear orders of finite Hausdorff
rank, then the embedding is arithmetic in the linear orders and hence belongs
to the model.

Proposition 6.4 (ACA0) FRAω implies that STω is well-quasi-ordered by 4.

PROOF. Consider an infinite sequence { (Ti, sTi
) | i ∈ ω } of elements of STω;

we want to show that it is not a bad sequence. The sequence { lin(Ti, sTi
) |

i ∈ ω } is a sequence in LOω. By FRAω, there exists i < j such that lin(Ti, sTi
) 4

lin(Tj , sTj
). By Lemma 4.5, we have (Ti, sTi

) 4 (Tj , sTj
). 2

Propositions 6.1, 6.2, 6.4, and 5.1 imply Theorem 1.6.
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