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Abstract. We show that the quasi-order of continuous embeddability be-
tween finitely branching dendrites (a natural class of fairly simple compacta)
is Σ1

1-complete. We also show that embeddability between countable linear

orders with infinitely many colors is Σ1
1-complete.

1. Introduction

In [LR02] Louveau and Rosendal initiated the study of the complexity of Σ1
1 (i.e.

analytic) quasi-orders on Polish (i.e. separable and completely metrizable) spaces.
This study yields results about the complexity of the equivalence relation induced by
the quasi-order and thus contributes to the on-going study of analytic equivalence
relations. The equivalence relations obtained in this way are quite different from the
ones induced by a Polish group action (the literature about the latter is extensive,
see e.g. [BK96] and [Hjo00]).

Recall that a quasi-order is a reflexive and transitive binary relation (so that
equivalence relations and partial orders are particular kinds of quasi-orders). The
induced equivalence relation is obtained by declaring equivalent two elements if and
only if each of them precedes the other in the quasi-order.

Definition 1.1. If R and S are quasi-orders defined on Polish spaces X and Y
we say that S is Borel reducible to R, and write S ≤B R, if there exists a Borel
function f : Y → X such that

∀x, y ∈ Y (xSy ←→ f(x)Rf(y)).

A Σ1
1 quasi-order R is Σ1

1-complete if S ≤B R for any Σ1
1 quasi-order S.

If R is Σ1
1-complete it follows that the equivalence relation induced by R is Σ1

1-
complete among equivalence relations and hence immensely more complicated than
any equivalence relation induced by a Polish group action.

In [LR02] Louveau and Rosendal proved that several natural Σ1
1 quasi-orders are

Σ1
1-complete. Here we sharpen one of their results and, in doing so, we prove that

another quasi-order of some independent interest is also Σ1
1-complete (see Theorem

3.2).
Let I = [0, 1] so that I2 is the unit square. Any space homeomorphic to I is

called an arc. The space K(I2) of all compact subsets of I2 equipped with the
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Vietoris topology is a Polish space (a complete metric is the Hausdorff metric).
Let vc be the Σ1

1 quasi-order of continuous embeddability between compact metric
spaces. Louveau and Rosendal proved that vc is Σ1

1-complete on K(I2) (and hence
on K(In) for any n with 2 ≤ n ≤ ℵ0).

Recall that a continuum is a compact and connected metric space. The space
C(I2) of all continua contained in I2 is a closed subspace of K(I2), and hence is itself
Polish with respect to the Vietoris topology. Louveau and Rosendal’s proof actually
shows that vc is Σ1

1-complete on C(I2). We are interested in further restrictions of
vc.

Definition 1.2. A dendrite is a locally connected (also called Peano) continuum
which contains no subcontinuum homeomorphic to the circle S1.

Dendrites are an important class of continua, and the textbook [Nad92] devotes
a whole chapter to their study. Every dendrite is homeomorphic to a subset of I2

and dendrites are a Π0
3 (indeed Π0

3-complete) subset of C(I2) (see [CDM02] for a
proof of this and several other results about dendrites from the viewpoint of descrip-
tive set theory). The equivalence relation of homeomorphism between dendrites is
strictly simpler (in the sense of Borel reducibility) than the same equivalence re-
lation between arbitrary continua. Indeed the former is classifiable by countable
structures ([CDM02, §6]), while the latter is not ([Hjo00, §4.3]). Therefore it is
natural to ask whether mutual continuous embeddability is simpler on dendrites
than on arbitrary continua. We answer this question in the negative by showing
that even on a fairly small collection of dendrites vc is still Σ1

1-complete.

Definition 1.3. If X is a continuum and x ∈ X the order of x in X, denoted by
ord(x, X), is the smallest cardinal number κ such that there exists a neighborhood-
base for x in X consisting of open sets each with boundary of cardinality less than
or equal to κ.

A point x ∈ X is a branching point of X if ord(x,X) > 2.
A continuum X is finitely branching if ord(x,X) is finite for every x ∈ X.

These notions provide the following presentation theorem for dendrites (see
[Nad92, Corollary 10.28]): each nondegenerate dendrite X can be written as X [1]∪⋃

n∈NAn, where X [1] = {x ∈ X | ord(x,X) = 1 } (this set may be uncountable),
each An is homeomorphic to I, and An∩

⋃
m<n Am consists of a single point, which

is one of the two end points of An.
The following lemma implies that the space of finitely branching dendrites is

a standard Borel space, i.e. Borel isomorphic to a Polish space (see [Kec95] for
details). It is clear that for the purpose of studying Borel reducibility we can
consider standard Borel spaces rather than Polish spaces.

Lemma 1.4. The set of finitely branching dendrites is a Borel subset of C(I2).

Proof. Let D ⊂ C(I2) be the (Borel) set of all dendrites. If X ∈ D there are
only countably many x ∈ X which are branching points of X (see [Nad92, The-
orem 10.23]). Moreover there exists Borel functions bn : D → I2 such that{

x ∈ I2 | x is a branching point of X
}

= { bn(X) | n ∈ N } for all X ∈ D (see the
proof of Lemma 6.5 in [CDM02]).

Since X ∈ C(I2) is a finitely branching dendrite if and only if X ∈ D and
∀n ∃k ord(bn(X), X) ≤ k, it suffices to show that the set{

(X,x) ∈ C(I2)× I2 | X ∈ D & ord(x,X) > k
}
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is Borel for every k ≥ 2. In [CDM02, Lemma 6.4] this is done for k = 2, and a
straightforward generalization of that proof yields the result for every k. ¤

We can now state the main result of the paper.

Main Theorem. The quasi-order vc restricted to finitely branching dendrites is
Σ1

1-complete.

We now explain the organization of the paper. In section 2 we fix our notation
and recall the results of [LR02] that we will use. In section 3 we give a combinatorial
example of a Σ1

1-complete quasi-order. This example, which involves colorings of
countable linear orders, is of independent interest and will be used in the proof of
the Main Theorem together with the technical result proved in section 4. The latter
deals with a special kind of order preserving maps from Q into itself. In section 5
we complete the proof of the Main Theorem.

2. Notation and previous results

We use N<N for the sets of all finite sequences of natural numbers; 2<N ⊂ N<N

consists of the sequences mentioning only 0 and 1. NN and 2N are the corresponding
sets of infinite sequences. If s ∈ N<N, |s| is its length and when i < |s|, s(i) is the
(i + 1)-th element of s; if n ≤ |s|, s¹n is the initial segment of s of length n. The
same notations apply also to infinite sequences. If s ∈ N<N and k ∈ N, sak is the
sequence obtained by adding k at the end of s. ∅ is the unique sequence of length
0. The relation of being an initial segment between sequences is denoted by ⊂.
We use ≤lex to denote lexicographic order on any sets of sequences whose elements
have a natural order, and in particular on N<N. In particular s ⊂ t implies s <lex t.

Definition 2.1. If s, t ∈ N<N we say that s is pointwise dominated by t, and write
s ≤pw t, to mean that |s| = |t| and s(i) ≤ t(i) for every i < |s|.
Definition 2.2. A function f : N<N → N<N is Lipschitz if it preserves both
extension and length, i.e. s ⊂ t −→ f(s) ⊂ f(t) and |f(s)| = |s|.
Definition 2.3. A tree on 2× N is a subset T of 2<N × N<N such that (u, s) ∈ T
implies |u| = |s| and (u¹n, s¹n) ∈ T for every n < |s|.

If T is such a tree and s ∈ N<N we let T (s) =
{

u ∈ 2<N | (u, s) ∈ T
}
.

Definition 2.4. A tree T on 2×N is normal if ∀s ∈ N<N T (s) 6= ∅ and T (s) ⊆ T (t)
whenever s ≤pw t. Let T be the set of all normal trees on 2× N.

T is a closed subset of 22<N×N<N
and hence a Polish space.

Definition 2.5. If T, S ∈ T let

T ≤max S ⇐⇒ ∃f : N<N → N<N Lipschitz ∀s ∈ N<N T (s) ⊆ S(f(s));

T R S ⇐⇒ ∃α, β ∈ NN ∀n T (α¹n) ⊆ S(β¹n).

It is straightforward that T ≤max S implies T R S. Notice that ≤max is a
quasi-order, while R lacks transitivity and is only a binary relation.

In our discussion of Borel reducibility it will be useful to use the following ex-
tension of the original notion.
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Definition 2.6. Let E ⊆ F and R ⊆ S be Σ1
1 binary relations on Polish spaces

X and Y respectively. We say that (E, F ) is Borel reducible to (R, S), and write
(E, F ) ≤B (R, S), if and only if there exists a Borel function f : X → Y such that
xEy −→ f(x)Rf(y) and ¬xFy −→ ¬f(x)Sf(y).

One sees easily that ≤B is a quasi-order and that, if we write simply E in place
of (E,F ) when E = F , it extends the notion of Borel reducibility defined at the
beginning of the paper.

In [LR02, Theorem 2.5] Louveau and Rosendal proved that ≤max is Σ1
1-complete,

but —as they noticed— their proof actually gives sharper results. The one we will
use is the following.

Theorem 2.7. Any Σ1
1 quasi-order S defined on a Polish space X is Borel reducible

to (≤max,R), i.e. there exists a Borel function f : X → T such that for any
x, y ∈ X

(1) if xSy then f(x) ≤max f(y);
(2) if f(x) R f(y) then xSy.

We will need the following fact about ≤max.

Lemma 2.8. If T, S ∈ T are such that T ≤max S then there exists g : N<N → N<N

which is both Lipschitz and ≤lex-preserving such that ∀s ∈ N<N T (s) ⊆ S(g(s)).

Proof. Suppose f : N<N → N<N is a Lipschitz function witnessing T ≤max S. Let
f∗ : N<N × N → N be such that f(san) = f(s)af∗(s, n) for every s ∈ N<N and
n ∈ N.

Define g∗ : N<N × N→ N by

g∗(s, n) = max {{ f∗(s,m) + 1 | m < n } , f∗(s, n)} ,

and let g be defined by g(∅) = ∅, g(san) = g(s)ag∗(s, n).
It is immediate that g preserves ≤lex and by induction it is straightforward to

show that f(s) ≤pw g(s) for every s ∈ N<N. Since S is normal and f is Lipschitz,
this implies that g is also a witness to T ≤max S. ¤

3. Coloring linear orders with infinitely many colors

Let LO be the set of all strict linear orders with domain N. LO can be viewed
as a closed subset of 2N

2
, and hence it is a Polish space.

Definition 3.1. Let NLO = LO× NN. If A = (LA, fA) and B = (LB , fB) are two
elements of NLO we define A ≤NLO B if and only if there exists ψ : N → N such
that

(i) aLAa′ implies ψ(a)LBψ(a′) for every a, a′ ∈ N;
(ii) fA(a) = fB(ψ(a)) for every a ∈ N.

An element of NLO can be viewed as a countable linear order whose elements are
colored with infinitely many colors. One such colored linear order is ≤NLO another
if there is an order-and-color-preserving map from the former into the latter. ≤NLO

is clearly a Σ1
1 quasi-order on the Polish space NLO.

After we proved the following Theorem we learned that Louveau previously ob-
tained the same result by different means.

Theorem 3.2. The quasi-order ≤NLO on NLO is Σ1
1-complete.
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Proof. By Theorem 2.7 it suffices to show that (≤max,R) ≤B≤NLO . To this end we
define AT = (LT , fT ) ∈ NLO for every T ∈ T . For notational convenience we think
of LT as a linear order on T (rather than N) and of fT as a function with domain
T and range the countable set 2<N. It is easy to transform such an object into a
full-fledged element of NLO. Let

(u, s)LT (v, t) ⇐⇒ s <lex t ∨ (s = t & u <lex v)

and fT (u, s) = u.
The function T → NLO, T 7→ AT , obtained by combining this definition with

the transformation hinted above, is continuous. To complete the proof we need to
show:

(1) if T ≤max S then AT ≤NLO AS ;
(2) if AT ≤NLO AS then T R S.
(1) Suppose T ≤max S and, by Lemma 2.8, let f : N<N → N<N be a Lipschitz

and ≤lex-preserving function such that ∀s ∈ N<N T (s) ⊆ S(f(s)). Let ψ : T → S
be defined by ψ(u, s) = (u, f(s)). It is immediate that ψ witnesses AT ≤NLO AS .

(2) Suppose ψ witnesses AT ≤NLO AS . Since u = fT (u, s) = fS(ψ(u, s)) for every
(u, s) ∈ T , we have ψ(u, s) = (u, ϕ(u, s)) for some function ϕ : T → N<N which is
length preserving and such that ϕ(u, s) ≤lex ϕ(v, t) whenever (u, s), (v, t) ∈ T are
such that (u, s)LT (v, t).

We define inductively α, β ∈ NN so that at stage n we have already defined
α¹(n + 1) and β¹n satisfying the following conditions:

(a) ϕ(u, t) ⊃ β¹n for every t ⊃ α¹(n + 1) and u ∈ T (t);
(b) for some v ∈ T ((α¹n)a(α(n) + 1)) we have ϕ(v, (α¹n)a(α(n) + 1)) ⊃ β¹n;
(c) T (α¹n) ⊆ S(β¹n).

Obviously this suffices to show that T R S.
We start with α(0) = 0 and notice that (a)–(c) are trivially satisfied (T (∅) = {∅}

for any T ∈ T ).
Now suppose α¹(n + 1) and β¹n have been defined and satisfy (a)–(c): we need

to define α(n+1) and β(n). By (b) let v ∈ T ((α¹n)a(α(n)+1)) and j ∈ N be such
that ϕ(v, (α¹n)a(α(n) + 1)) = (β¹n)aj.

Now by the properties of ϕ and by (a), for every k ∈ N and u ∈ T ((α¹(n+1))ak)
we have β¹n ⊂ ϕ(u, (α¹(n+1))ak) ≤lex (β¹n)aj and hence ϕ(u, (α¹(n+1))ak)(n) ≤
j. Using again the properties of ϕ, this implies that for some k and j′ ≤ j we
have ϕ(u, (α¹(n + 1))ak)(n) = ϕ(u, (α¹(n + 1))a(k + 1))(n) = j′ for every u ∈
T ((α¹(n + 1))ak). Let α(n + 1) = k and β(n) = j′ for such k and j′.

(a) and (b) follow immediately from the properties of ϕ. To prove (c) fix v ∈
T (α¹(n + 1)) and let u ∈ T (α¹(n + 2)) be arbitrary (recall that T (s) 6= ∅ for every
s ∈ N<N, because T is normal); then by the above β¹n ⊂ ϕ(v, α¹(n + 1)) ≤lex

ϕ(u, α¹(n + 2)) and β¹(n + 1) ⊂ ϕ(u, α¹(n + 2)) which imply ϕ(v, α¹(n + 1)) ≤pw

β¹(n+1). Since v ∈ S(ϕ(v, α¹(n+1))) and S is normal we have also v ∈ S(β¹(n+1)),
as needed. ¤

Laver’s proof ([Lav71]) of Fräıssé’s conjecture implies that if in Definition 3.1
we allow only finitely many colors then the resulting quasi-order is a bqo, and
hence very far from being Σ1

1-complete (indeed it is well-founded and contains
no infinite antichains, so that neither ≥ on N nor an infinite quasi-order with all
elements incomparable are reducible to it). Therefore ≤NLO is one of the simplest
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quasi-orders on NLO which is not bqo and Theorem 3.2 shows that it is indeed as
complicated as it can be, namely Σ1

1-complete.

4. Dense order preserving functions

Definition 4.1. Suppose that D and E are countable dense linear orderings. A
function f : D → E is dense order preserving if it is order preserving and satisfies
the following condition:

∀q1, q2 ∈ D ∀r1, r2 ∈ E (f(q1) < r1 < r2 < f(q2) −→ ∃q ∈ D(r1 < f(q) < r2)).

The above condition can be restated by saying that f(D) is a dense subset of
the least interval within E containing its range (notice that this is stronger than
requiring the range of f to be a dense linear order).

Notice that the composition of two dense order preserving functions is dense
order preserving.

Our interest in dense order preserving functions on the rationals is explained by
the following fact.

Proposition 4.2. A function f : Q→ Q is dense order preserving if and only if it
is the restriction to Q of a continuous order preserving embedding g : R→ R such
that g(Q) ⊆ Q.

Proof. The if part is immediate. For the only if part, given f : Q→ Q dense order
preserving define g by g(x) = sup { f(q) | q ≤ x }. Notice that g extends f , is order
preserving and hence one-to-one, and that the range of g has no gaps and hence is
an open interval in R. Therefore g is continuous. ¤

Definition 4.3. Given a set C and a countable dense linear order D we use the
set-theoretical notation CD to denote the set of all functions c : D → C, i.e. of all
colorings of D with colors from C. We quasi-order CD by c1 ≤dop c2 if and only
if there exists f : D → D dense order preserving such that c1(q) = c2(f(q)) for all
q ∈ D. If J1, J2 ⊆ D are intervals the definition of c1¹J1 ≤dop c2¹J2 is obvious.

Theorem 4.4. If |C| ≥ 3 there exists a sequence (cn)n∈N of elements of CQ such
that whenever n < m we have cn¹J 6≤dop cm for any unbounded interval J ⊆ Q.

Proof. Fix C0 ⊆ C such that |C0| = 3. For every n, let Cn+1 = { a ⊂ Cn | |a| = 2 },
so that |Cn| = 3 for every n.

For every n we will consider the set Qn+1 of all sequences of n+1 rationals with
lexicographic order. This linear order is order isomorphic to the usual order on Q,
and we fix an order isomorphism ϕn : Q→ Qn+1 (obviously both ϕn and its inverse
ϕn

−1 are dense order preserving). If q̄ ∈ Qi with i ≤ n we let

Jn
q̄ =

{
r̄ ∈ Qn+1 | q̄ ⊂ r̄

}
.

Notice that Jn
q̄ is an interval within Qn+1, and can be viewed as Qn+1−i. Moreover

Jn
q̄ ∩ Jn

p̄ = ∅ for every p̄ ∈ Qi with p̄ 6= q̄.
Fix n: to define cn we inductively define ci

n : Qn+1−i → Ci, for i = n, . . . , 0.
We start by requiring that cn

n : Q → Cn is such that for every a ∈ Cn the set
{ q ∈ Q | cn

n(q) = a } is dense in Q. If we have defined ci+1
n : Qn−i → Ci+1, we

define ci
n so that the following two conditions are satisfied:

• ci
n(r̄) ∈ ci+1

n (r̄¹n− i) for every r̄ ∈ Qn+1−i;
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• for any q̄ ∈ Qn−i and a ∈ ci+1
n (q̄) the set

{
r̄ ∈ Jn−i

q̄ | ci
n(r̄) = a

}
is dense

in Jn−i
q̄ .

Eventually we obtain c0
n : Qn+1 → C0 and let cn = c0

n ◦ϕn, so that indeed cn ∈ CQ.
A straightforward induction shows that for every i ≤ n and every unbounded

interval J ⊆ Qn+1−i we have ci
n ≤dop ci

n¹J . Thus for every unbounded interval
J ⊆ Q we have cn ≤dop cn¹J . Therefore if m > n to show that cn¹J 6≤dop cm it
suffices to show that cn 6≤dop cm.

Fix n and m with n < m and suppose, towards a contradiction, that there exists
f : Q → Q dense order preserving such that cn(q) = cm(f(q)) for all q ∈ Q. For
i = 0, . . . , n we define fi : Qn+1−i → Qm+1−i dense order preserving such that
ci
n(q̄) = ci

m(fi(q̄)) for every q̄ ∈ Qn+1−i. We start by letting f0 = ϕm ◦ f ◦ϕn
−1: it

is straightforward to check that f0 has the required properties.
Now suppose we have fi for some i < n. Given q̄ ∈ Qn−i we define fi+1(q̄) to be

the unique r̄ ∈ Qm−i such that fi(Jn−i
q̄ ) ⊆ Jm−i

r̄ . To show that fi+1 is well-defined
we need to show that for every q̄ ∈ Qn−i there exists such an r̄ (which is obviously
unique).

Fix q̄ ∈ Qn−i and suppose that r̄, s̄ ∈ Qm−i are such that fi(Jn−i
q̄ ) intersects both

Jm−i
r̄ and Jm−i

s̄ . Since fi is dense order preserving, there are intervals J, J ′ ⊆ Jn−i
q̄

such that fi(J) ⊆ Jm−i
r̄ and fi(J ′) ⊆ Jm−i

s̄ . Using again the fact that fi is dense
order preserving we may assume that ci+1

m (r̄) 6= ci+1
m (s̄) and hence at most one of

these elements of Ci+1 coincides with ci+1
n (q̄). Suppose that ci+1

n (q̄) 6= ci+1
m (r̄) and

let a be the unique element of Ci which belongs to ci+1
n (q̄) but not to ci+1

m (r̄). For
all t̄ ∈ J we have ci

n(t̄) 6= a; this contradicts the fact that
{

t̄ ∈ Jn−i
q̄ | ci

n(t̄) = a
}

is
dense in Jn−i

q̄ .
To check that fi+1 is order preserving it suffices to show that it is one-to-one:

here the argument is similar to the one used to show that fi+1 is well-defined, and
we leave it to the reader.

To show that fi+1 is dense suppose fi+1(q̄1) <lex r̄1 <lex r̄2 <lex fi+1(q̄2). For
j = 1, 2 pick s̄j ∈ Jn−i

q̄j
and t̄j ∈ Jm−i

r̄j
, so that fi(s̄1) <lex t̄1 <lex t̄2 <lex fi(s̄2).

By induction hypothesis there exists ū ∈ Qn+1−i with t̄1 <lex fi(ū) <lex t̄2. Then
r̄1 ≤lex fi+1(ū¹n− i) ≤lex r̄2.

Eventually we obtain fn : Q → Qm+1−n dense order preserving and such that
cn
n(q) = cn

m(fn(q)) for every q ∈ Q. Let r̄ ∈ Qm−n be such that Jm−n
r̄ intersects the

range of fn. Since fn is dense order preserving there exists an interval J ⊆ Q such
that fn(J) ⊆ Jm−n

r̄ . Since cn+1
m (r̄) ∈ Cn+1 there exists a ∈ Cn \ cn+1

m (r̄): cn
m(t̄) 6= a

for every t̄ ∈ Jm−n
r̄ and hence cn

n(q) 6= a for every q ∈ J . This contradicts the fact
that { q ∈ Q | cn

n(q) = a } is dense in Q. ¤

The sequence (cn)n∈N constructed in the proof of Theorem 4.4 is actually de-
scending (i.e. we have also cm ≤dop cn whenever n < m). Therefore ≤dop is not
well-founded on CQ when |C| ≥ 3. However we will not need this fact and we leave
its proof to the reader.

There is another approach to the preceding result which was suggested to us
by the referee. It shortcuts our explicit construction by using a sharpening of the
classification result by Friedman and Stanley on countable linear orders ([FS89]).
A careful inspection of the construction by Friedman and Stanley leads to the
following observation about the linear orders obtained there: whenever two of them
are not isomorphic, each of them is not isomorphic to any interval of the other. In
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D0 D1 D2

p0 p1 p2

Figure 1. D0, D1, and D2

particular there exists an infinite sequence of linear orders each not isomorphic to
any interval of the others.

Using this observation here is a sketch of the proof suggested by the referee:
suppose C = {blue, red}, and we wish to construct an infinite antichain in CQ

with respect to ≤dop. Given a countable linear order (L,<L) let (L∗, <∗L) be the
lexicographical product of L with 2 = {0, 1} equipped with the natural ordering.
(This means doubling each point of L.) Partition Q into disjoint open intervals
ordered as (L∗, <∗L) and color the points in the intervals corresponding to L× {0}
blue and the points in the intervals corresponding to L× {1} red. Let cL : Q→ C
be the coloring obtained in this fashion. Now we can prove that if cL ≤dop cL′ for
two linear orders (L,<L) and (L′, <L′), we have that (L,<L) is isomorphic to an
interval of (L′, <L′). Thus the above observation about Friedman and Stanley’s
proof immediately yields an infinite antichain with respect to ≤dop.

5. Continuous embeddability between dendrites

We want to translate the combinatorial results of the previous sections into
results about finitely branching dendrites. Our first goal is to mirror Theorem 4.4
on vc restricted to finitely branching dendrites. To this end we need three finitely
branching dendrites to play the role of the elements of C0.

Definition 5.1. Let D0, D1 and D2 be the finitely branching dendrites portrayed
in figure 1. For i = 0, 1, 2 let pi ∈ Di be the distinguished point marked in the same
figure.

D0 and D2 are actually homeomorphic, but the following incomparability holds.

Proposition 5.2. If i 6= j there is no continuous embedding g : Di → Dj such that
g(pi) = pj.

Proof. This is immediate once noticed that for any such continuous embedding g
and any x ∈ Di we must have ord(x,Di) ≤ ord(g(x), Dj). ¤
Definition 5.3. Let (qk) be a one-to-one enumeration of the rational numbers of
the open interval (0, 1) and ϕ : Q ∩ (0, 1) → Q be a order isomorphism.

For every i = 0, 1, 2 and k let Dk
i ⊆ I2 be a homeomorphic copy of Di of diameter

< 2−k, with the homeomorphism mapping pi to pk = (qk, 0). We may assume that
Dk

i ∩ (I × {0}) = {pk} and that Dk
i ∩Dk′

j = ∅ whenever k 6= k′.
For every n let cn be the function of Theorem 4.4 and define

Xn = (I × {0}) ∪
⋃

k∈N
Dk

cn(ϕ(qk)).
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It is clear that Xn is a finitely branching dendrite. Theorem 4.4 translates to
the following fact.

Lemma 5.4. If n < m, Xn ∩ ([x, 1]× I) 6vc Xm for any x ∈ [0, 1).

Proof. Suppose that x ∈ [0, 1) and that g : Xn ∩ ([x, 1]× I) → Xm is a continuous
embedding. Then g maps branching points into branching points, and must map
the arc [x, 1] × {0}, which has a dense subset of branching points, into I × {0},
the only arc contained in Xm with this property. Moreover the rational points
of (x, 1) × {0} are mapped into the rational points of I × {0} and Proposition 5.2
implies that g maps a point with Di attached to a point with the same Di attached.

Hence, restricting ourselves to the first coordinate and using ϕ to transfer ev-
erything into Q, we obtain a function f : J → Q such that cn(q) = cm(f(q)) for
every q ∈ J , where J is some final segment of Q. Since f is the restriction of a
continuous embedding of the reals to Q, Property 4.2 implies that if f is increasing
then it is dense order preserving, contradicting Theorem 4.4. If f is decreasing
we can observe that Theorem 4.4 holds also if we allow functions which are order
reversing, since the cn’s have been defined in a symmetric way with respect to the
order. ¤

We now build an antichain of finitely branching dendrites with respect to vc.

Definition 5.5. For any k and i ∈ {0, 1} let Ai
k be an arc of length < 2−k with

(i, 0) as one of its end points. We may assume that Ai
k ∩Xn = {(i, 0)} for every n

and that Ai
k ∩Ai

k′ = {(i, 0)} whenever k 6= k′, while A0
k ∩A1

k′ = ∅ for any k, k′. Let

Yn = Xn ∪
⋃

k<n+4

A0
k ∪

⋃

k<n+5

A1
k.

The base of Yn is the arc I × {0}.
It is clear that Yn is a finitely branching dendrite and that (0, 0) and (1, 0) have

order respectively n + 5 and n + 6 in Yn. Moreover n + 6 is the maximal order of a
point in Yn, since all other points have order at most 4.

Lemma 5.6. If n 6= m, Yn ∩ ([x, 1]× I) 6vc Ym for any x ∈ [0, 1).

Proof. If n < m this follows immediately from Lemma 5.4, since it is clear that
Xn ∩ ([x, 1]× I) 6vc Ym for any x ∈ [0, 1).

If n > m observe that Yn ∩ ([x, 1]× I) contains a point of order n + 6, while the
point of maximal order in Ym has order m + 6. ¤

Lemma 5.7. Every homeomorphism of Yn into itself maps is the identity on (0, 0)
and (1, 0).

Proof. This is immediate taking into account the order of the points. ¤

The proof of the Main Theorem uses the Yn’s to mimic the colors of section 3.

Proof of Main Theorem. By Theorem 3.2 it suffices to Borel reduce ≤NLO to vc on
finitely branching dendrites.

Let Q′ ⊂ I be discrete in the relative topology and order isomorphic to Q (e.g.
embed Q×3 with ≤lex into Q and let Q′ be the image of Q×{1}). For every q ∈ Q′

let εq > 0 be such that 0 < q − εq, q + εq < 1 and (q − εq, q + 2εq) ∩Q′ = {q}. Let
Iq = [q, q + εq].
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If A = (LA, fA) ∈ NLO we can define in a continuous way a function gA : N→ Q′

such that aLAa′ if and only if gA(a) < gA(a′).
Let ZA be the union of I ×{0} and of a homeomorphic copy of YfA(a) contained

in IgA(a)× [0, 2−a] with base IgA(a)×{0} and (gA(a), 0) corresponding to (0, 0), for
each a ∈ N. Notice that ZA is a finitely branching dendrite.

The function A 7→ ZA is continuous and we need to show that A ≤NLO B is
equivalent to ZA vc ZB for every A, B ∈ NLO.

If A ≤NLO B with A = (LA, fA) and B = (LB , fB) let ψ : N → N be a witness.
To define a continuous embedding F : ZA → ZB notice that since fA(a) = fB(ψ(a))
for every a ∈ N there is a homeomorphism between the homeomorphic copy of YfA(a)

contained in IgA(a) × [0, 2−a] and the homeomorphic copy of YfB(ψ(a)) contained
in IgB(ψ(a)) × [0, 2−ψ(a)]. Let F contain the union of all these automorphisms
(which have disjoint domains and disjoint ranges). By Lemma 5.7, F (gA(a), 0) =
(gB(ψ(a)), 0) for every a ∈ N. So far F has been defined on ZA except on some
subarcs of I × {0} and possibly in (0, 0) and (1, 0). The complement in ZB of the
range of the function F defined so far contains (by the choice of εq) corresponding
subarcs of I × {0}. Therefore F can be extended to the whole of ZA.

Now suppose ZA vc ZB and let F be the continuous embedding. It is immediate
that F maps I × {0} into itself, so that F (x, 0) = (h(x), 0) for some continuous
embedding h : I → I.

We claim that h is order preserving. If this were not the case we should have
h(x) > h(x′) whenever x < x′. Since (gA(a) + εgA(a), 0) is the limit from the
left of branching points, while (gB(b) + εgB(b), 0) is not the limit from the right of
branching points, we have h(gA(a)+εgA(a)) 6= gB(b)+εgB(b) for any a, b ∈ N. Hence
for any a ∈ N we must have h(gA(a)+ εgA(a)) = gB(b) for some b ∈ N. This implies
(again by looking at the order of the branching points) that fA(a) < fB(b). Since
F continuously embeds a final piece of XfA(a) into XfB(b) we contradict Lemma 5.4
and the proof of the claim is complete.

Thus h is order preserving and if a ∈ N Lemmas 5.6 and 5.7 imply that h(gA(a)+
εgA(a)) = gB(b) + εgA(b) for some b ∈ N such that fA(a) = fB(b). Let ψ(a) = b.
The function ψ shows that A ≤NLO B. ¤

Camerlo, Darji and Marcone in [CDM02] studied homeomorphism on the class
of dendrites which have all branching points contained in an arc. This class arises
naturally from the study of the likeness relation among dendrites (see [CDM02])
and it is natural to ask the following question.

Question 5.8. Is vc restricted to dendrites which have all branching points con-
tained in an arc Σ1

1-complete?
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