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Modeling Biological Systems with Stochastic Process
Algebras

Pros

Simple Language

Compositionality

Cons

Hard to encode
general information

Lacking
computational
extensibility

Constraints... why not?
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Concurrent Constraint Programming

Constraint Store
In this process algebra, the main object are constraints , which are
formulae over an interpreted first order language (i.e. X = 10,
Y > X − 3).

Constraints can be added to a "pot", called the constraint store, but can
never be removed.

Agents
Agents can perform two basic operations on this
store:

Add a constraint (tell ask)

Ask if a certain relation is entailed by the
current configuration (ask instruction)

Syntax of CCP

Program = Decl.A

D = ε | Decl.Decl | p(x) : −A

A = 0
| tell(c).A
| ask(c1).A1 + ask(c2).A2
| A1 ‖ A2 | ∃x A | p(x)
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Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC) is a direct graph with edges
labeled by a real number, called the rate of the transition (representing the
speed or the frequency at which the transition occurs).

In each state, we select the next state
according to a probability distribution
obtained normalizing rates (from S to S1

with prob. r1
r1+r2

).

The time spent in a state is given by an
exponentially distributed random variable,
with rate given by the sum of outgoing
transitions from the actual node (r1 + r2).
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Syntax of sCCP

Syntax of Stochastic CCP

Program = D.A

D = ε | D.D | p(x) : −A

π = tellλ(c) | askλ(c)
M = π.A | π.A.p(y) | M + M

A = 0 | tell∞(c).A | ∃xA | M | (A ‖ A)

Stochastic Rates
Each basic instruction (tell, ask, procedure call) has a rate
attached to it. Rates are functions from the constraint store C to
positive reals: λ : C −→ R+.
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sCCP soup

Operational Semantics
There are two transition relations, one instantaneous (finite
and confluent) and one stochastic.

Traces are sequences of events with variable time delays
among them.

Implementation
We have an interpreter
written in Prolog, using the
CLP engine of SICStus to
manage the constraint
store.

Efficiency issues.

Stream Variables
Quantities varying over
time can be represented in
sCCP as unbounded lists.

Hereafter: special meaning
of X = X + 1.
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General Principles

Measurable Entities ↔ Stream Variables

Logical Entities ↔ Processes
(Control Variables)

Interactions ↔ Processes



Theory Bio-Modeling

Biochemical Arrows to sCCP processes

R1 + . . . + Rn →k P1 + . . . + Pm

reaction(k, [R1, . . . , Rn ], [P1, . . . , Pm ]) : −
askrMA(k,R1,...,Rn)

�Vn
i=1(Ri > 0)

�
.�

‖n
i=i tell∞(Ri = Ri − 1) ‖m

j=1 tell∞(Pj = Pj + 1)
�
.

reaction(k, [R1, . . . , Rn ], [P1, . . . , Pm ])

R1 + . . . + Rn 

k1
k2

P1 + . . . + Pm
reaction(k1, [R1, . . . , Rn ], [P1, . . . , Pm ]) ‖
reaction(k2, [P1, . . . , Pm ], [R1, . . . , Rn ])

S 7→E
K ,V0

P

mm_reaction(K , V0, S, P) : −
askrMM (K ,V0,S)(S > 0).

(tell∞(S = S − 1) ‖ tell∞(P = P + 1)) .
mm_reaction(K , V0, S, P)

S 7→E
K ,V0,h P

hill_reaction(K , V0, h, S, P) : −
askrHill (K ,V0,h,S)(S > 0).

(tell∞(S = S − h) ‖ tell∞(P = P + h)) .
Hill _reaction(K , V0, h, S, P)

where rMA(k, X1, . . . , Xn) = k · X1 · · · Xn ; rMM (K , V0, S) =
V0S

S + K
; rHill (k, V0, h, S) =

V0Sh

Sh + K h
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A simple reaction: H + Cl � HCl

We have two reaction agents. The reagents and the products
are stream variables of the constraint store (put down in the
environment). Independent on the number of molecules.

reaction(100, [H, CL], [HCL]) ‖ reaction(10, [HCL], [H, CL])
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Another reaction: Na + Cl � Na+ + Cl−

reaction(100, [NA, CL], [NA+, CL−]) ‖ reaction(10, [NA+, CL−], [NA, CL])
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Enzymatic reaction

S + E 
k1
k−1

ES →k2 P + E

Mass Action Kinetics
enz_reaction(k1, k−1, k2, S, E, ES, P) :-

reaction(k1, [S, E ], [ES]) ‖
reaction(k−1, [ES], [E, S]) ‖
reaction(k2, [ES], [E, P])

Mass Action Equations
d [ES]

dt = k1[S][E ] − k2[ES] − k−1[ES]
d [E ]
dt = −k1[S][E ] + k2[ES] + k−1[ES]

d [S]
dt = −k1[S][E ]

d [P]
dt = k2[ES]

Michaelis-Menten Equations
d [P]
dt =

V0S
S+K

V0 = k2[E0]

K =
k2+k−1

k1

Michaelis-Menten Kinetics

mm_reaction

 
k2 + k−1

k1
, k2 · E, S, P

!
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MAP-Kinase cascade

enz_reaction(ka, kd , kr , KKK , E1, KKKE1, KKKS) ‖ enz_reaction(ka, kd , kr , KKKS, E2, KKKSE2, KKK ) ‖
enz_reaction(ka, kd , kr , KK , KKKS, KKKKKS, KKP) ‖ enz_reaction(ka, kd , kr , KKP, KKP1, KKPKKP1, KK ) ‖

enz_reaction(ka, kd , kr , KKP, KKKS, KKPKKKS, KKPP) ‖ enz_reaction(ka, kd , kr , KP, KP1, KPKP1, K ) ‖
enz_reaction(ka, kd , kr , K , KKPP, KKKPP, KP) ‖ enz_reaction(ka, kd , kr , KKPP, KKP1, KKPPKKP1, KKP) ‖

enz_reaction(ka, kd , kr , KP, KKPP, KPKKPP, KPP) ‖ enz_reaction(ka, kd , kr , KPP, KP1, KPPKP1, KP)
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The gene machine
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The instruction set

null_gate(kp, X) : −
tellkp (X = X + 1).null_gate(kp, X)

pos_gate(kp, ke, kf , X , Y ) : −
tellkp (X = X + 1).pos_gate(kp, ke, kf , X , Y )

+askr(ke,Y )(true).tellke (X = X + 1).pos_gate(kp, ke, kf , X , Y )

neg_gate(kp, ki , kd , X , Y ) : −
tellkp (X = X + 1).neg_gate(kp, ki , kd , X , Y )

+askr(ki ,Y )(true).askkd
(true).neg_gate(kp, ki , kd , X , Y )

where r(k, Y ) = k · Y .

L. Cardelli, A. Phillips, 2005.
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Repressilator

neg_gate(0.1, 1, 0.0001, A, C) ‖
reaction(0.0001, [A], []) ‖

neg_gate(0.1, 1, 0.0001, B, A) ‖
reaction(0.0001, [B], []) ‖

neg_gate(0.1, 1, 0.0001, C, B) ‖
reaction(0.0001, [C], [])
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Circadian Clock
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Circadian Clock

pos_gate(αA, α′A, γA, θA, MA, A) ‖ pos_gate(αR , α′R , γR , θR , MR , A) ‖
reaction(βA, [MA], [A]) ‖ reaction(δMA, [MA], []) ‖
reaction(βR , [MR ], [R]) ‖ reaction(δMR , [MR ], []) ‖

reaction(γC , [A, R], [AR]) ‖ reaction(δA, [AR], [R]) ‖
reaction(δA, [A], []) ‖ reaction(δR , [R], [])
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Conclusions

We have introduced a stochastic version of CCP, with
functional rates.

We showed that sCCP may be used for modeling
biological systems, defining libraries for biochemical
reactions and gene regulatory networks.

We showed that non-constant rates allow to use more
complex chemical kinetics than mass action one.
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The End

THANKS FOR THE ATTENTION!

QUESTIONS?
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