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to Systems Biology

Formally, “the” behavior of a system depends on our choice of observables.
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Hierarchy of Biochemical Models

Stochastic model

Differential model

Discrete model

Boolean model

abstraction

Models for answering queries

The more abstract the better
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A Logical Paradigm for Systems Biology

                         Biochemical model  =   Transition system

                         Biological property   =   Temporal Logic formula

                         Biological validation =   Model-checking

[Lincoln et al. 02] [Chabrier Fages 03] [Bernot et al. 04] [Alon et al. 04] …
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A Logical Paradigm for Systems Biology

                         Biochemical model  =   Transition system

                         Biological property   =   Temporal Logic formula

                         Biological validation =   Model-checking

Biochemical Abstract Machine environment

Model:                          BIOCHAM                       Biological Properties:

- Boolean                    - simulation                     -  CTL

- Concentration           - query evaluation           -  LTL with constraints

- Stochastic                 - rule learning                  -  PCTL with constraints

(SBML)                       - parameter search 
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Plan of my talk

• Language of reaction rules for modeling biochemical systems
• Boolean semantics
• Differential semantics
• Stochastic semantics

• Temporal logic language for formalizing biological properties
• CTL
• LTL with constraints over the reals
• PCTL with constraints over integers

• Machine learning from temporal properties
• Searching parameter values
• Learning rules and model revision

• Conclusions and collaborations



François Fages WCB Nantes  2006

1. Language of Reaction Rules

Complexation     A + B => A-B               Cell cycle control model [Tyson 91]

Decomplexation A-B => A + B                k6*[Cdc2-Cyclin~{p1}] for    
                                                                   Cdc2-Cyclin~{p1} => Cdc2+Cyclin~{p1}

Phosphorylation A =[B]=> A~{p}             k8*[Cdc2] for Cdc2 => Cdc2~{p1}

Dephosphorylation A~{p} =[B]=> A     

 

Synthesis            _ =[B]=> A                   k1 for  _ => Cyclin. 

 
Degradation       A =[B]=> _                    k2*[Cyclin] for Cyclin => _.

Transport            A::L1 => A::L2
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BIOCHAM Semantics of a Rule Set  {ei  for Si => S’i}

1. Boolean Semantics: presence-absence of molecules

     Concurrent Transition System (asynchronous, non-deterministic)

     A reaction A+B=>C+D is translated into 4 transition rules considering 
the possible consumption of the reactants by the reaction:

                 A+BA+B+C+D           

                 A+B¬A+B +C+D 

                 A+BA+¬B+C+D

                 A+B¬A+¬B+C+D
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BIOCHAM Semantics of a Rule Set  {ei  for Si => S’i}

1. Boolean Semantics: presence-absence of molecules

     Concurrent Transition System (asynchronous, non-deterministic)

2. Concentration Semantics: number / volume

    Ordinary Differential Equations (deterministic)

    dxk/dt = ΣXi=1
n ri(xk) * ei  −ΣXj=1

n lj(xk) * ej

     where ri (resp. lj) is the stochiometric coefficient of xk in S’i (resp. Si) 
multiplied by the volume ratio of the location of xk.
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BIOCHAM Semantics of a Rule Set  {ei  for Si => S’i}

1. Boolean Semantics: presence-absence of molecules

     Concurrent Transition System (asynchronous, non-deterministic)

2. Concentration Semantics: number / volume

    Ordinary Differential Equations (deterministic)

3. Stochastic Semantics: number of molecules 
    Continuous time Markov chain the ei’s giving transition probabilities
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Example: Cell Cycle Control Model [Tyson 91]

k1 for                                     _ => Cyclin.

k2*[Cyclin] for                       Cyclin => _.

k7*[Cyclin~{p1}] for              Cyclin~{p1} => _.

k8*[Cdc2] for                        Cdc2 => Cdc2~{p1}.

k9*[Cdc2~{p1}] for                Cdc2~{p1} =>Cdc2.

k3*[Cyclin]*[Cdc2~{p1}] for  Cyclin+Cdc2~{p1} => Cdc2~{p1}-Cyclin~{p1}.

k4p*[Cdc2~{p1}-Cyclin~{p1}] for  Cdc2~{p1}-Cyclin~{p1} => Cdc2-Cyclin~{p1}.

k4*[Cdc2-Cyclin~{p1}]^2*[Cdc2~{p1}-Cyclin~{p1}] for

                                            Cdc2~{p1}-Cyclin~{p1} =[Cdc2-Cyclin~{p1}] => Cdc2-Cyclin~{p1}.

k5*[Cdc2-Cyclin~{p1}] for    Cdc2-Cyclin~{p1} => Cdc2~{p1}-Cyclin~{p1}.

k6*[Cdc2-Cyclin~{p1}] for    Cdc2-Cyclin~{p1} => Cdc2+Cyclin~{p1}.
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Interaction Graph
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Boolean Simulation
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Concentration Simulation
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2. Formalizing Biological Properties in Temporal Logics

Biological property = Temporal Logic Formula

Biological validation = Model-checking

Express properties in:
• Computation Tree Logic CTL for the boolean semantics

• Linear Time Logic with numerical constraints for the concentration semantics

• Probabilistic CTL with numerical constraints  for the stochastic semantics
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Computation Tree Logic CTL

Extension of propositional (or first-order) logic with operators for time and 
choices

Time

Non-determinism E, A

F,G,U EF

EU

AG

      

A (f1 U f2)E (f1 U f2)U

until

AG(f)EG(f)
¬ AF(¬ f)

G

globally

AF(f)EF(f)
¬ AG(¬ f)

F

finally

AX(f)EX(f)
¬ AX(¬ f)

X

next time

A

always

E

exists 

          Choice

Time
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Biological Properties formalized in CTL (1/3)

About reachability:
• Can the cell produce some protein P?  reachable(P)==EF(P) 
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Biological Properties formalized in CTL (1/3)

About reachability:
• Can the cell produce some protein P?  reachable(P)==EF(P) 
• Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 
• Can the cell always produce P?  AG(reachable(P)) 
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Biological Properties formalized in CTL (1/3)

About reachability:
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• Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 
• Can the cell always produce P?  AG(reachable(P)) 

About pathways:
• Can the cell reach a (partially described)  set of states s while passing 

by another set of states s2?      EF(s2^EFs)
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Biological Properties formalized in CTL (1/3)

About reachability:
• Can the cell produce some protein P?  reachable(P)==EF(P) 
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• Can the cell always produce P?  AG(reachable(P)) 
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• Is it possible to produce P without Q? E(¬Q U P)
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Biological Properties formalized in CTL (1/3)

About reachability:
• Can the cell produce some protein P?  reachable(P)==EF(P) 
• Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 
• Can the cell always produce P?  AG(reachable(P)) 

About pathways:
• Can the cell reach a (partially described)  set of states s while passing 

by another set of states s2?      EF(s2^EFs)
• Is it possible to produce P without Q? E(¬Q U P)
• Is (set of) state s2 a necessary checkpoint for reaching (set of) state s? 

  checkpoint(s2,s)== ¬E(¬s2U s)
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Biological Properties formalized in CTL (1/3)

About reachability:
• Can the cell produce some protein P?  reachable(P)==EF(P) 
• Can the cell produce P, Q and not R?  reachable(P^Q^¬R) 
• Can the cell always produce P?  AG(reachable(P)) 

About pathways:
• Can the cell reach a (partially described)  set of states s while passing 

by another set of states s2?      EF(s2^EFs)
• Is it possible to produce P without Q? E(¬Q U P)
• Is (set of) state s2 a necessary checkpoint for reaching (set of) state s? 

  checkpoint(s2,s)== ¬E(¬s2U s)
• Is s2 always a checkpoint for s? AG(¬s -> checkpoint(s2,s))
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Biological Properties formalized in CTL (2/3)

About stationarity:
• Is a (set of) state s a stable state? stable(s)== AG(s)
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Biological Properties formalized in CTL (2/3)

About stationarity:
• Is a (set of) state s a stable state? stable(s)== AG(s)
• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 
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Biological Properties formalized in CTL (2/3)

About stationarity:
• Is a (set of) state s a stable state? stable(s)== AG(s)
• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 
• Can the cell reach a stable state s? EF(stable(s)) not in LTL
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Biological Properties formalized in CTL (2/3)

About stationarity:
• Is a (set of) state s a stable state? stable(s)== AG(s)
• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 
• Can the cell reach a stable state s? EF(stable(s)) not in LTL
• Must the cell reach a stable state s? AG(stable(s))
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Biological Properties formalized in CTL (2/3)

About stationarity:
• Is a (set of) state s a stable state? stable(s)== AG(s)
• Is s a steady state (with possibility of escaping) ? steady(s)==EG(s) 
• Can the cell reach a stable state s? EF(stable(s)) not in LTL
• Must the cell reach a stable state s? AG(stable(s))
• What are the stable states? Not expressible in CTL. Needs to combine 

CTL with search
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Biological Properties formalized in CTL (3/3)

About oscillations:
• Can the system exhibit a cyclic behavior w.r.t. the presence of P ? 
oscil(P)== EG((P ⇒ EF ¬P) ^ (¬P ⇒ EF P))

    (necessary but not sufficient condition without strong fairness)
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Biological Properties formalized in CTL (3/3)

About oscillations:
• Can the system exhibit a cyclic behavior w.r.t. the presence of P ? 
oscil(P)== EG((P ⇒ EF ¬P) ^ (¬P ⇒ EF P))

    (necessary but not sufficient condition, needs CTL*)
• Can the system loops between states s and s2 ? 

  loop(P,Q)== EG((s ⇒ EF s2) ^ (s2 ⇒ EF s))
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Examples of Properties in the Cell Cycle Model 

reachable(Cdc2~{p1})

reachable(Cyclin)

reachable(Cyclin~{p1})

reachable(Cdc2-Cyclin~{p1})

reachable(Cdc2~{p1}-Cyclin~{p1})

oscil(Cdc2)

oscil(Cdc2~{p1})

oscil(Cdc2~{p1}-Cyclin~{p1})

oscil(Cyclin)

AG((!(Cdc2-Cyclin~{p1}))->checkpoint(Cdc2~{p1}-Cyclin~{p1},Cdc2-
Cyclin~{p1}))

…

Automatically checked / generated by model-checking techniques (NuSMV BDD)
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Mammalian Cell Cycle Control Map [Kohn 99]
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Transcription of Kohn’s Map

_ =[ E2F13-DP12-gE2 ]=> cycA.
...
cycB =[ APC~{p1} ]=>_.
cdk1~{p1,p2,p3} + cycA => cdk1~{p1,p2,p3}-cycA.
cdk1~{p1,p2,p3} + cycB => cdk1~{p1,p2,p3}-cycB.
...
cdk1~{p1,p3}-cycA =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycA.
cdk1~{p1,p3}-cycB =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycB.
cdk1~{p2,p3}-cycA =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycA.
cdk1~{p2,p3}-cycB =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycB.
...
cdk1~{p1,p2,p3} =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}.
cdk1~{p1,p2,p3}-cycA =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycA.
cdk1~{p1,p2,p3}-cycB =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycB.

165 proteins and genes, 500 variables, 800 rules
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Cell Cycle Model-Checking (with BDD NuSMV)
biocham: check_reachable(cdk46~{p1,p2}-cycD~{p1}).
   Ei(EF(cdk46~{p1,p2}-cycD~{p1})) is true
biocham: check_checkpoint(cdc25C~{p1,p2}, cdk1~{p1,p3}-cycB).
   Ai(!(E(!(cdc25C~{p1,p2}) U cdk1~{p1,p3}-cycB))) is true
biocham: nusmv(Ai(AG(!(cdk1~{p1,p2,p3}-cycB) -> checkpoint(Wee1, cdk1~{p1,p2,p3}-cycB))))).
   Ai(AG(!(cdk1~{p1,p2,p3}-cycB)->!(E(!(Wee1) U cdk1~{p1,p2,p3}-cycB)))) is false
biocham: why.
-- Loop starts here
    cycB-cdk1~{p1,p2,p3} is present
    cdk7 is present
    cycH is present
    cdk1 is present
    Myt1 is present
    cdc25C~{p1} is present
rule_114 cycB-cdk1~{p1,p2,p3}=[cdc25C~{p1}]=>cycB-cdk1~{p2,p3}.
    cycB-cdk1~{p2,p3} is present
    cycB-cdk1~{p1,p2,p3} is absent
rule_74 cycB-cdk1~{p2,p3}=[Myt1]=>cycB-cdk1~{p1,p2,p3}.
    cycB-cdk1~{p2,p3} is absent
    cycB-cdk1~{p1,p2,p3} is present
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Mammalian Cell Cycle Control Benchmark

500 variables, 2500 states.

BIOCHAM NuSMV model-checker time in sec. [Chabrier et al. TCS 04]

31.8EG ( (CycA ⇒ EF ¬ CycA) ∧ 

         (¬ CycA ⇒ EF CycA))

Oscillation

2.2¬EF (¬ Cdc25~{Nterm} 

          U Cdk1~{Thr161}-CycB)

Checkpoint

for mitosis complex

1.7EF PCNA-CycDReachability G1

1.9EF CycDReachability G1

2EF CycEReachability G1

29compiling

Time: Query:Initial state G2
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Quantitative Properties in LTL with Constraints

• Constraints over concentrations and derivatives as FOL formulae over 
the reals:

• [M] > 0.2
• [M]+[P] > [Q]
• d([M])/dt < 0



François Fages WCB Nantes  2006

Quantitative Properties in LTL with Constraints

• Constraints over concentrations and derivatives as FOL formulae over 
the reals:

• [M] > 0.2
• [M]+[P] > [Q]
• d([M])/dt < 0

• Linear Time Logic LTL operators for time X, F, U, G
• F([M]>0.2)
• FG([M]>0.2)
• F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))
• oscil(M,n) defined as at least n alternances of sign of the derivative
• Period(A,75)= ∃ t ∃v F(T = t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0) 

                         & F(T = t + 75 & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)))
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How to Evaluate a Constraint LTL Formula ?

• Consider the ODE’s of the concentration semantics dX/dt = f(X)
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How to Evaluate a Constraint LTL Formula ?

• Consider the ODE’s of the concentration semantics dX/dt = f(X)

• Numerical integration methods produce a (clever) discretization of time 
(adaptive step size Runge-Kutta or Rosenbrock method for stiff syst.)

• The trace is a linear Kripke structure:
           (t0,X0,dX0/dt), (t1,X1,dX1/dt), …, (tn,Xn,dXn/dt).

    over concentrations and their derivatives at discrete time points

• Evaluate the formula on that Kripke structure with a model checking alg.
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Simulation-Based Constraint LTL Model Checking

Hypothesis 1: the initial state is completely known

Hypothesis 2: the formula can be checked over a finite period of time [0,T]

4. Run the numerical integration from 0 to T                                             
producing values at a finite sequence of time points

5. Iteratively label the time points with the sub-formulae of φ that are true:

     Add φ to the time points where a FOL formula φ is true,

     Add F φ (X φ) to the (immediate) previous time points labeled by φ,
     Add φ1 U φ2 to the predecessor time points of φ2 while they satisfy φ1,
     (Add G φ  to the states satisfying φ until T)

Model checker and numerical integration methods implemented in Prolog
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3. Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            oscil(Cdc2-Cyclin~{p1},3),150).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            oscil(Cdc2-Cyclin~{p1},3),150).

First values found :

parameter(k3,10).

parameter(k4,70).
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Learning Parameters from Temporal Properties

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :

parameter(k3,10).

parameter(k4,120).
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Learning Parameters from LTL Specification

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,

                                            period(Cdc2-Cyclin~{p1},35), 150).

First values found:

parameter(k3,10). 

parameter(k4,280).
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Leloup and Goldbeter (1999)

MPF preMPF

Wee1

Wee1P

Cdc25

Cdc25P
APC

APC

....

....

........

Cell cycle

Linking the Cell and Circadian Cycles through Wee1

BMAL1/CLOCK

PER/CRY

Circadian cycle

Wee1 mRNA
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PCN

Wee1m

Wee1 MPF

BN

Cdc25
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entrainment
entrainment

Condition on Wee1/Cdc25 for the Entrainment in Period
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4. Learning Rules from Temporal Properties

Given 
• a BIOCHAM model (background knowledge)
• a set of properties formalized in temporal logic

learn
• revisions of the reaction model, i.e. rules to delete and rules to add 

such that the revised model satisfies the properties
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Model Revision from Temporal Properties

• Background knowledge T: BIOCHAM model 
• reaction rule language: complexation, phosphorylation, …

• Examples φ: biological properties formalized in temporal logic language
• Reachability
• Checkpoints
• Stable states
• Oscillations

• Bias R: Reaction rule patterns or parameter ranges
• Kind of rules to add or delete

Find a revision T’ of T such that T’ |= φ
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Positive and Negative CTL Formulae

Def. An ECTL (positive) formula is a CTL formula with no occurrence of A 
(nor negative occurrence of E).

Def. An ACTL (negative) formula is a CTL formula with no occurrence of E 
(nor negative occurrence of A).

Let K = (S,R,L) and K’ = (S,R’,L) be two Kripke structures such that R⊂R’

Proposition For any ECTL formula φ, if K’ |  ≠φ then K |  ≠φ. 

Proposition For any ACTL formula φ, if K |  ≠φ then K’ |  ≠φ.
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Model Revision Algorithm

General idea of constraint programming: replace a generate-and-test 
algorithm by a constrain-and-generate algorithm.

Anticipate whether one has to add or remove a rule?

• Positive ECTL formula: if false, remains false after removing a rule
• EF(φ) where φ is a boolean formula (pure state description)
• Oscil(φ)

• Negative ACTL formula: if false, remains false after adding a rule
• AG(φ) where φ is a boolean formula, 
• Checkpoint(a,b): ¬E(¬aUb)
• Remove a rule on the path given by the model checker (why command)

• Unclassified CTL formulae
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Model Revision Algorithm Steps

Initial state: <(0, 0, 0), (E,U,A), R>

E transition: <(E,U,A), (E∪{e},U,A), R>  <(E∪{e},U,A), (E,U,A),R> if R |= e

E’ transition: <(E,U,A), (E ∪{e},U,A), R>  <(E ∪{e},U,A), (E,U,A),R ∪ {r}> 

                     if R |  e and ≠ ∀ f ∈{e} ∪ E ∪ U ∪ A, K ∪ {r} |= f
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Model Revision Algorithm Steps

Initial state: <(0, 0, 0), (E,U,A), R>
E transition: <(E,U,A), (E∪{e},U,A), R>  <(E∪{e},U,A), (E,U,A),R> if R |= e
E’ transition: <(E,U,A), (E ∪{e},U,A), R>  <(E ∪{e},U,A), (E,U,A),R ∪ {r}> 
                     if R |  e and ≠ ∀ f ∈{e} ∪ E ∪ U ∪ A, K ∪ {r} |= f
U transition: <(E,U,A), (0,U ∪{u},A), R >  <(E,U ∪ {u},A), (0,U,A),R> if R |= u
U’ transition: <(E,U,A), (0,U ∪{u},A), R >  <(E,U ∪{u},A), (0,U,A),R ∪ {r}> 
                     if R| u and ≠ ∀ f ∈ {u} ∪ E ∪ U ∪ A, R ∪ {r} |= f
U” transition: <(E,U,A), (0,U ∪ {u},A), R ∪ Re >  <(E,U ∪{u},A),(0,U,A), R>
                      if K, si| u and ≠ ∀ f ∈{u} ∪ E ∪ U ∪ A, R |= f
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Model Revision Algorithm Steps

Initial state: <(0, 0, 0), (E,U,A), R>

E transition: <(E,U,A), (E∪{e},U,A), R>  <(E∪{e},U,A), (E,U,A),R> if R |= e

E’ transition: <(E,U,A), (E ∪{e},U,A), R>  <(E ∪{e},U,A), (E,U,A),R ∪ {r}> 

                     if R |  e and ≠ ∀ f ∈{e} ∪ E ∪ U ∪ A, K ∪ {r} |= f

U transition: <(E,U,A), (0,U ∪{u},A), R >  <(E,U ∪ {u},A), (0,U,A),R> if R |= u

U’ transition: <(E,U,A), (0,U ∪{u},A), R >  <(E,U ∪{u},A), (0,U,A),R ∪ {r}> 

                     if R| u and ≠ ∀ f ∈ {u} ∪ E ∪ U ∪ A, R ∪ {r} |= f

U” transition: <(E,U,A), (0,U ∪ {u},A), R ∪ Re >  <(E,U ∪{u},A),(0,U,A), R>

                      if K, si| u and ≠ ∀ f ∈{u} ∪ E ∪ U ∪ A, R |= f

A transition: <(E,U,A), (0, 0,A ∪{a}), R >  <(E,U,A ∪{a}), (Ep,Up,A),R> if R |= a

A’ transition: <(E∪Ep,U∪Up,A),(0,0,A∪{a}), R∪Re><(E,U,A∪{a}),(Ep,Up,A),R> 
if R|  a, ≠ ∀ f ∈{u} [ E ∪ U ∪ A, R |= f and Ep ∪ Up is the set of formulae no 
longer satisfied after the deletion of the rules in Re.
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Termination and Correctness

Proposition The model revision algorithm terminates. 

Proposition If the terminal configuration is of the form <(E,U,A),(0,0,0),R> 
then the model R satisfies the initial CTL specification.

Proof The termination of the algorithm is proved by considering the lexicographic

ordering over the couple < a, n > where a is the number of unsatisfied

ACTL formulae, and n is the number of unsatisfied ECTL and UCTL formulae.

Each transition strictly decreases either a, or lets a unchanged and strictly

decreases n. 

The correction of the algorithm comes from the fact that each transition

maintains only true formulae in the satisfied set, and preserves the complete

CTL specification in the union of the satisfied set and the untreated set.
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Incompleteness

Two reasons:

3) The satisfaction of ECTL and UCTL formula is searched by adding 
only one rule to the model (transition E’ and U’)

5) The Kripke structure associated to a Biocham set of rules adds loops 
on terminal states. Hence adding or removing a rule may have an 
opposite deletion or addition of the loops.
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Cell Cycle Kinetic Model [Tyson 91]
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Generation of True CTL Properties
Ei(EF(Cdc2)).
Ei(EF(!(Cdc2))).
Ai(AG(Cdc2->EF(!(Cdc2))&(!(Cdc2)->EF(Cdc2)))).
Ei(EF(Cdc2~{p1})).
Ei(EF(!(Cdc2~{p1}))).
Ai(AG(Cdc2~{p1}->EF(!(Cdc2~{p1}))&(!(Cdc2~{p1})->EF(Cdc2~{p1})))).
Ai(AG(!(Cdc2~{p1})->!(E(!(Cdc2) U Cdc2~{p1})))).
Ei(EF(Cyclin)).
Ei(EF(!(Cyclin))).
Ai(AG(Cyclin->EF(!(Cyclin))&(!(Cyclin)->EF(Cyclin)))).
Ei(EF(Cdc2-Cyclin~{p1,p2})).
Ei(EF(!(Cdc2-Cyclin~{p1,p2}))).
Ai(AG(Cdc2-Cyclin~{p1,p2}->EF(!(Cdc2-Cyclin~{p1,p2}))&(!(Cdc2-Cyclin~{p1,p2})->E
F(Cdc2-Cyclin~{p1,p2})))).
Ei(EF(Cdc2-Cyclin~{p1})).
Ei(EF(!(Cdc2-Cyclin~{p1}))).
Ai(AG(Cdc2-Cyclin~{p1}->EF(!(Cdc2-Cyclin~{p1}))&(!(Cdc2-Cyclin~{p1})->EF(Cdc2-Cyclin~{p1})))).
Ai(AG(!(Cdc2-Cyclin~{p1})->!(E(!(Cdc2-Cyclin~{p1,p2}) U Cdc2-Cyclin~{p1})))).
Ei(EF(Cyclin~{p1})).
Ei(EF(!(Cyclin~{p1}))).
Ai(AG(Cyclin~{p1}->EF(!(Cyclin~{p1}))&(!(Cyclin~{p1})->EF(Cyclin~{p1})))).
Ai(AG(!(Cyclin~{p1})->!(E(!(Cdc2-Cyclin~{p1}) U Cyclin~{p1})))).
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Model Revision

biocham: delete_rules(Cdc2 => Cdc2~{p1}).

biocham: check_all.

First formula not satisfied

Ei(EF(Cdc2-Cyclin~{p1}))
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Model Revision

biocham: revise_model.

Rules to delete:

Rules to add:

Cdc2 => Cdc2~{p1}.

biocham: learn_one_addition.

(1) Cdc2 => Cdc2~{p1}.

(2) Cdc2 =[Cdc2]> Cdc2~{p1}.

(3) Cdc2 =[Cyclin]> Cdc2~{p1}.
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Conclusions

• Temporal logic with constraints is powerful enough to express both 
qualitative and quantitative biological properties of systems

• Three levels of abstraction implemented in BIOCHAM :

Boolean semantics      CTL formulas (rule learning)

Differential semantics  LTL with constraints over reals (parameter search)

Stochastic semantics   Probabilistic CTL with integer constraints (inefficient)

• Learning from entailment in temporal logic (by model checking)

Theory revision H(M) |= e
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Collaborations

STREP APrIL2 : Applications of probabilistic inductive logic programming

Luc de Raedt, Univ. Freiburg, Stephen Muggleton, IC London,…
•  Learning in a probabilistic logic setting

NoE REWERSE : semantic web, François Bry, Münich, Rolf Backofen,
• Connecting Biocham to gene and protein ontologies

STREP TEMPO : Cancer chronotherapies, INSERM Villejuif, Francis Lévi
• Coupled models of cell cycle, circadian cycle, cytotoxic drugs. 

INRA Tours : FSH signalling, Eric Reiter


