
A Tabled Prolog Program for Solving Sokoban

Neng-Fa Zhou Agostino Dovier

Department of Computer and Information Science,
CUNY Brooklyn College & Graduate Center, USA

Department of Mathematics and Computer Science,
University of Udine, Italy

Pescara, September 2nd, 2011

Zhou and Dovier (CUNY and DIMI) Sokoban 1 / 31

Summary

1 Introduction

2 Sokoban as a Planning Problem

3 Tabling

4 Sokoban as a Prolog Program

5 Computational Results

6 Conclusions

Zhou and Dovier (CUNY and DIMI) Sokoban 2 / 31

Introduction

History

Sokoban is a type of transport puzzle invented by Hiroyuki
Imabayashi in 1980
Published by the Japanese company Thinking Rabbit, Inc. in
1982.
Sokoban means “warehouse-keeper” (magazziniere) in Japanese.
Thinking Rabbit joined Square Co., Ltd.

Zhou and Dovier (CUNY and DIMI) Sokoban 3 / 31

Introduction

Sokoban Rules
(from http://www.sokoban.jp/)

Zhou and Dovier (CUNY and DIMI) Sokoban 4 / 31

http://www.sokoban.jp/

Introduction

Sokoban @ work

Zhou and Dovier (CUNY and DIMI) Sokoban 5 / 31

Introduction

Macro-actions

The following sequence of 8 actions

is counted as a single (macro) action.

Zhou and Dovier (CUNY and DIMI) Sokoban 6 / 31

Introduction

Macro-actions

The following sequence of 8 actions

is counted as a single (macro) action.

Zhou and Dovier (CUNY and DIMI) Sokoban 6 / 31

Introduction

The genesis of this work

With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language B (and a
compiler in ASP) [ICLP07–MG65]

Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains
In the 2009 ASP competition we wrote with him some B domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).
Neng-Fa asked us to do the same for the 2011 competition.
This approach for Sokoban was un-successful, but this forced us
to look for another declarative approach.

Zhou and Dovier (CUNY and DIMI) Sokoban 7 / 31

Introduction

The genesis of this work

With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language B (and a
compiler in ASP) [ICLP07–MG65]
Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains

In the 2009 ASP competition we wrote with him some B domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).
Neng-Fa asked us to do the same for the 2011 competition.
This approach for Sokoban was un-successful, but this forced us
to look for another declarative approach.

Zhou and Dovier (CUNY and DIMI) Sokoban 7 / 31

Introduction

The genesis of this work

With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language B (and a
compiler in ASP) [ICLP07–MG65]
Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains
In the 2009 ASP competition we wrote with him some B domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).

Neng-Fa asked us to do the same for the 2011 competition.
This approach for Sokoban was un-successful, but this forced us
to look for another declarative approach.

Zhou and Dovier (CUNY and DIMI) Sokoban 7 / 31

Introduction

The genesis of this work

With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language B (and a
compiler in ASP) [ICLP07–MG65]
Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains
In the 2009 ASP competition we wrote with him some B domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).
Neng-Fa asked us to do the same for the 2011 competition.

This approach for Sokoban was un-successful, but this forced us
to look for another declarative approach.

Zhou and Dovier (CUNY and DIMI) Sokoban 7 / 31

Introduction

The genesis of this work

With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language B (and a
compiler in ASP) [ICLP07–MG65]
Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains
In the 2009 ASP competition we wrote with him some B domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).
Neng-Fa asked us to do the same for the 2011 competition.
This approach for Sokoban was un-successful, but this forced us
to look for another declarative approach.

Zhou and Dovier (CUNY and DIMI) Sokoban 7 / 31

Sokoban as a Planning Problem

Representation

location(1). ... location(17).

step(1,right,2). step(10,right,11). step(11,right,15).
step(2,left,1). step(11,left,10). step(15,left,11).
step(1,down,3). step(2,down,4).
step(3,up,1). step(4,up,2).
...

Zhou and Dovier (CUNY and DIMI) Sokoban 8 / 31

Sokoban as a Planning Problem

Representation

location(1). ... location(17).

step(1,right,2). step(10,right,11). step(11,right,15).
step(2,left,1). step(11,left,10). step(15,left,11).
step(1,down,3). step(2,down,4).
step(3,up,1). step(4,up,2).
...

Zhou and Dovier (CUNY and DIMI) Sokoban 8 / 31

Sokoban as a Planning Problem

Representation

Zhou and Dovier (CUNY and DIMI) Sokoban 9 / 31

Sokoban as a Planning Problem

Encoding in B
Fluents

fluent(free(L)) :-
location(L).

fluent(box_in(L)) :-
location(L).

fluent(sokoban_in(L)) :-
location(L).

fluent(reachable(A)) :-
location(A).

Zhou and Dovier (CUNY and DIMI) Sokoban 10 / 31

Sokoban as a Planning Problem

Encoding in B
Fluents

fluent(free(L)) :-
location(L).

fluent(box_in(L)) :-
location(L).

fluent(sokoban_in(L)) :-
location(L).

fluent(reachable(A)) :-
location(A).

Zhou and Dovier (CUNY and DIMI) Sokoban 10 / 31

Sokoban as a Planning Problem

Representation

free(1). free(2). free(10). free(11). free(15).
free(3). free(7). free(8). free(12). free(16).
free(5). free(6). free(13). free(14). free(17).

box_in(9).

sokoban_in(4).

goal(box_in(3)).

Zhou and Dovier (CUNY and DIMI) Sokoban 11 / 31

Sokoban as a Planning Problem

Representation

free(1). free(2). free(10). free(11). free(15).
free(3). free(7). free(8). free(12). free(16).
free(5). free(6). free(13). free(14). free(17).

box_in(9).

sokoban_in(4).

goal(box_in(3)).

Zhou and Dovier (CUNY and DIMI) Sokoban 11 / 31

Sokoban as a Planning Problem

Input from ASP competition

top(col4row4,col4row3). top(col4row3,col4row2).
right(col4row2,col5row2). right(col5row2,col6row2).
....

box(col8row2). box(col3row4).
sokoban(col4row4).

solution(col3row2). solution(col2row2).

Zhou and Dovier (CUNY and DIMI) Sokoban 12 / 31

Sokoban as a Planning Problem

Input from ASP competition

top(col4row4,col4row3). top(col4row3,col4row2).
right(col4row2,col5row2). right(col5row2,col6row2).
....

box(col8row2). box(col3row4).
sokoban(col4row4).

solution(col3row2). solution(col2row2).

Zhou and Dovier (CUNY and DIMI) Sokoban 12 / 31

Sokoban as a Planning Problem

Input from ASP competition

top(col4row4,col4row3). top(col4row3,col4row2).
right(col4row2,col5row2). right(col5row2,col6row2).
....

box(col8row2). box(col3row4).
sokoban(col4row4).

solution(col3row2). solution(col2row2).

Zhou and Dovier (CUNY and DIMI) Sokoban 12 / 31

Sokoban as a Planning Problem

Encoding in B
Actions (help from Andrea Formisano)

action(push(From,D,To)) :-
location(From), location(To), neq(From,To),
direction(D), % D = left, right, up, down
step(_Sokoban,D,From),
straight_connection(From,To,D,_).

executable(push(From,D,To),[sokoban_in(S0),reachable(S1),
box_in(From) | Free_LIST]) :-

action(push(From,D,To)),
location(S0),location(S1),
step(S1,D,From),
straight_connection(From,To,D,[From|PATH]),
empty_path(PATH, Free_LIST).

empty_path([],[]).
empty_path([L|R],[free(L)|S]) :-

empty_path(R,S).

Zhou and Dovier (CUNY and DIMI) Sokoban 13 / 31

Sokoban as a Planning Problem

Encoding in B
Actions (help from Andrea Formisano)

action(push(From,D,To)) :-
location(From), location(To), neq(From,To),
direction(D), % D = left, right, up, down
step(_Sokoban,D,From),
straight_connection(From,To,D,_).

executable(push(From,D,To),[sokoban_in(S0),reachable(S1),
box_in(From) | Free_LIST]) :-

action(push(From,D,To)),
location(S0),location(S1),
step(S1,D,From),
straight_connection(From,To,D,[From|PATH]),
empty_path(PATH, Free_LIST).

empty_path([],[]).
empty_path([L|R],[free(L)|S]) :-

empty_path(R,S).

Zhou and Dovier (CUNY and DIMI) Sokoban 13 / 31

Sokoban as a Planning Problem

Encoding in B
Actions Effects

causes(push(From,D,To), box_in(To) ,[]) :-
action(push(From,D,To)).

causes(push(From,D,To), neg(box_in(From)) ,[]) :-
action(push(From,D,To)).

causes(push(From,D,To),sokoban_in(S),[]) :-
action(push(From,D,To)),
location(S), step(S,D,To).

causes(push(From,D,To),free(S),[sokoban_in(S)]) :-
action(push(From,D,To)),
location(S), \+ step(S,D,To).

causes(push(From,D,To),free(From),[]) :-
action(push(From,D,To)),
\+ step(From,D,To).

Zhou and Dovier (CUNY and DIMI) Sokoban 14 / 31

Sokoban as a Planning Problem

Encoding in B
Basic Static Causal Laws

caused([free(L)],neg(box_in(L))) :- location(L).

caused([free(L)],neg(sokoban_in(L))) :- location(L).

caused([sokoban_in(L)],neg(free(L))) :- location(L).

caused([sokoban_in(L)],neg(box(L))) :- location(L).

caused([sokoban_in(L1)],neg(sokoban_in(L2))) :-
location(L1), location(L2), neq(L1,L2).

caused([box_in(L)],neg(free(L))) :- location(L).

caused([box_in(L)],neg(sokoban_in(L))) :- location(L).

Zhou and Dovier (CUNY and DIMI) Sokoban 15 / 31

Sokoban as a Planning Problem

Encoding in B
Static Causal Laws: reachability

caused([sokoban_in(A)],reachable(A)) :-
location(A).

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),
neq(B,C),
step(B,D,C),direction(D).

Zhou and Dovier (CUNY and DIMI) Sokoban 16 / 31

Sokoban as a Planning Problem

The results

This B encoding, compiled in ASP and run using clingo run rather
fast on the proposed examples.
We later discovered that the running time is comparable to that of
the direct ASP solution of the Sokoban (also run using clingo)

Unfortunately, the same did not holds for the CLP(FD) encoding
(even if speed was not the real problem) which was our overall
goal

Zhou and Dovier (CUNY and DIMI) Sokoban 17 / 31

Sokoban as a Planning Problem

The results

This B encoding, compiled in ASP and run using clingo run rather
fast on the proposed examples.
We later discovered that the running time is comparable to that of
the direct ASP solution of the Sokoban (also run using clingo)
Unfortunately, the same did not holds for the CLP(FD) encoding
(even if speed was not the real problem) which was our overall
goal

Zhou and Dovier (CUNY and DIMI) Sokoban 17 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

push(9,left,3) is forbidden (12 is not reachable from 4).

caused([sokoban_in(A)],reachable(A)) :-
location(A).

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),
neq(B,C),
step(B,D,C),direction(D).

Zhou and Dovier (CUNY and DIMI) Sokoban 18 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

push(9,left,3) is forbidden (12 is not reachable from 4).

caused([sokoban_in(A)],reachable(A)) :-
location(A).

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),
neq(B,C),
step(B,D,C),direction(D).

Zhou and Dovier (CUNY and DIMI) Sokoban 18 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

push(9,left,3) is forbidden (12 is not reachable from 4).

caused([sokoban_in(A)],reachable(A)) :-
location(A).

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),
neq(B,C),
step(B,D,C),direction(D).

Zhou and Dovier (CUNY and DIMI) Sokoban 18 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction(D).

reachable(11) ∧ free(12) → reachable(12).
reachable(12) ∧ free(11) → reachable(11).

reachable(11) and reachable(12) both true is a solution (of the
constraint).
This (loop) problem is correctly addressed by the ASP encoding.
A correct constraint encoding would introduce too many constraints
(making the CLP(FD) interpreter too slow).

Zhou and Dovier (CUNY and DIMI) Sokoban 19 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction(D).

reachable(11) ∧ free(12) → reachable(12).
reachable(12) ∧ free(11) → reachable(11).
reachable(11) and reachable(12) both true is a solution (of the
constraint).

This (loop) problem is correctly addressed by the ASP encoding.
A correct constraint encoding would introduce too many constraints
(making the CLP(FD) interpreter too slow).

Zhou and Dovier (CUNY and DIMI) Sokoban 19 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction(D).

reachable(11) ∧ free(12) → reachable(12).
reachable(12) ∧ free(11) → reachable(11).
reachable(11) and reachable(12) both true is a solution (of the
constraint).
This (loop) problem is correctly addressed by the ASP encoding.

A correct constraint encoding would introduce too many constraints
(making the CLP(FD) interpreter too slow).

Zhou and Dovier (CUNY and DIMI) Sokoban 19 / 31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

caused([reachable(B),free(C)],reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction(D).

reachable(11) ∧ free(12) → reachable(12).
reachable(12) ∧ free(11) → reachable(11).
reachable(11) and reachable(12) both true is a solution (of the
constraint).
This (loop) problem is correctly addressed by the ASP encoding.
A correct constraint encoding would introduce too many constraints
(making the CLP(FD) interpreter too slow).
Zhou and Dovier (CUNY and DIMI) Sokoban 19 / 31

Sokoban as a Planning Problem

A solution (in BMV)

Add the multivalued fluent occupation(L) with three values: 0
for free, 1 for sokoban, and 2 for a box
For each location L, let L1, . . . ,LNL be the neighbor locations of L.
M is a “big” number
Post the constraints:
occupation(L) = 1 → reachable(L) = 0
occupation(L) = 2 → reachable(L) = M

reachable(L) = min{reachable(L1) + 1, . . . ,
reachable(LNL) + 1,M}

Zhou and Dovier (CUNY and DIMI) Sokoban 20 / 31

Sokoban as a Planning Problem

A solution

reachable(4) = 0
reachable(2) = reachable(3) =
reachable(6) = reachable(7) = 1
reachable(1) = reachable(5) = reachable(8) = 2
reachable(9) = reachable(10) = · · · = reachable(17) = 20

Unfortunately, this solution generates slow code.

Zhou and Dovier (CUNY and DIMI) Sokoban 21 / 31

Sokoban as a Planning Problem

A solution

reachable(4) = 0
reachable(2) = reachable(3) =
reachable(6) = reachable(7) = 1
reachable(1) = reachable(5) = reachable(8) = 2
reachable(9) = reachable(10) = · · · = reachable(17) = 20

Unfortunately, this solution generates slow code.

Zhou and Dovier (CUNY and DIMI) Sokoban 21 / 31

Tabling

Tabling

Tabling has become a well-known and useful feature of many
Prolog systems.
The idea of tabling is to memorize answers to tabled subgoals and
use the answers to resolve subsequent variant or subsumed
subgoals.
This idea resembles the dynamic programming idea of reusing
solutions to overlapping sub-problems.

B-Prolog is a tabled Prolog system based on linear tabling, allows
variant subgoals to share answers, and uses the local (lazy)
strategy to return answers.

Zhou and Dovier (CUNY and DIMI) Sokoban 22 / 31

Tabling

Tabling

Tabling has become a well-known and useful feature of many
Prolog systems.
The idea of tabling is to memorize answers to tabled subgoals and
use the answers to resolve subsequent variant or subsumed
subgoals.
This idea resembles the dynamic programming idea of reusing
solutions to overlapping sub-problems.
B-Prolog is a tabled Prolog system based on linear tabling, allows
variant subgoals to share answers, and uses the local (lazy)
strategy to return answers.

Zhou and Dovier (CUNY and DIMI) Sokoban 22 / 31

Tabling

Tabling in B-Prolog
Fibonacci numbers

:-table fib/2.
fib(0, 1).
fib(1, 1).
fib(N, F):-

N>1, N1 is N-1, N2 is N-2,
fib(N1, F1), fib(N2, F2),
F is F1+F2.

Without tabling, the subgoal fib(N,X) would spawn 2N

subgoals, many of which are variants.
With tabling, the time complexity drops to linear since the same
variant subgoal is resolved only once.

Zhou and Dovier (CUNY and DIMI) Sokoban 23 / 31

Tabling

Tabling in B-Prolog
Fibonacci numbers

:-table fib/2.
fib(0, 1).
fib(1, 1).
fib(N, F):-

N>1, N1 is N-1, N2 is N-2,
fib(N1, F1), fib(N2, F2),
F is F1+F2.

Without tabling, the subgoal fib(N,X) would spawn 2N

subgoals, many of which are variants.

With tabling, the time complexity drops to linear since the same
variant subgoal is resolved only once.

Zhou and Dovier (CUNY and DIMI) Sokoban 23 / 31

Tabling

Tabling in B-Prolog
Fibonacci numbers

:-table fib/2.
fib(0, 1).
fib(1, 1).
fib(N, F):-

N>1, N1 is N-1, N2 is N-2,
fib(N1, F1), fib(N2, F2),
F is F1+F2.

Without tabling, the subgoal fib(N,X) would spawn 2N

subgoals, many of which are variants.
With tabling, the time complexity drops to linear since the same
variant subgoal is resolved only once.

Zhou and Dovier (CUNY and DIMI) Sokoban 23 / 31

Tabling

Tabling in B-Prolog
Modes

B-Prolog allows Mode-directed tabling

:-table p(M1,...,Mn):C.

C (optional), the cardinality limit, bounds the number of answers to
be tabled for p,
Each Mi is a mode:

+ (input −→ usually ground)
- (output −→ usually a variable)
min or max (optimized −→ output)

Only one argument in a tabled predicate can have the mode min
or max.

Zhou and Dovier (CUNY and DIMI) Sokoban 24 / 31

Tabling

Tabling in B-Prolog
Shortest path (sp) in a weighted directed graph X W−→ Y

:-table sp(+,+,-,min).
sp(X,Y,[(X,Y)],W) :-

edge(X,Y,W).
sp(X,Y,[(X,Z)|Path],W) :-

edge(X,Z,W1),
sp(Z,Y,Path,W2),
W is W1+W2.

The predicate sp(X,Y,Path,W) states that Path is a path from X to
Y with the smallest weight W.

For each pair of nodes, only one (shortest) answer is tabled!

Zhou and Dovier (CUNY and DIMI) Sokoban 25 / 31

Tabling

Tabling in B-Prolog
Shortest path (sp) in a weighted directed graph X W−→ Y

:-table sp(+,+,-,min).
sp(X,Y,[(X,Y)],W) :-

edge(X,Y,W).
sp(X,Y,[(X,Z)|Path],W) :-

edge(X,Z,W1),
sp(Z,Y,Path,W2),
W is W1+W2.

The predicate sp(X,Y,Path,W) states that Path is a path from X to
Y with the smallest weight W.
For each pair of nodes, only one (shortest) answer is tabled!

Zhou and Dovier (CUNY and DIMI) Sokoban 25 / 31

Sokoban as a Prolog Program

The Sokoban program

Neng-Fa’s implementation of the Sokoban program is based on
the just seen tabled definition of shortest path
The overall code is very short and simple (as one might expect
from Prolog programming)
A little (actually very little) domain knowledge is added

Zhou and Dovier (CUNY and DIMI) Sokoban 26 / 31

Sokoban as a Prolog Program

The Sokoban program

:-table plan_sokoban(+,+,-,min).
plan_sokoban(_SokobanLoc,BoxLocs,Plan,Len):-

goal_reached(BoxLocs),!, Plan=[],Len=0.
plan_sokoban(SokobanLoc,BoxLocs,

[push(BoxLoc,Dir,DestLoc)|Plan],Len):-
select(BoxLoc,BoxLocs,BoxLocs1),
step(PrevNeibLoc,Dir,BoxLoc),
\+ member(PrevNeibLoc,BoxLocs1),
step(BoxLoc,Dir,NextNeibLoc),
good_dest(NextNeibLoc,BoxLocs1),
reachable_by_sokoban(SokobanLoc,PrevNeibLoc,BoxLocs),
choose_dest(BoxLoc,NextNeibLoc,Dir,

DestLoc,NewSokobanLoc,BoxLocs1),
insert_ordered(DestLoc,BoxLocs1,NewBoxLocs),
plan_sokoban(NewSokobanLoc,NewBoxLocs,Plan,Len1),
Len is Len1+1.

Zhou and Dovier (CUNY and DIMI) Sokoban 27 / 31

Sokoban as a Prolog Program

The Sokoban program

:-table reachable_by_sokoban/3.
reachable_by_sokoban(Loc,Loc,_BoxLocs).
reachable_by_sokoban(Loc1,Loc2,BoxLocs):-

step(Loc1,_,Loc3),
\+ member(Loc3,BoxLocs),
reachable_by_sokoban(Loc3,Loc2,BoxLocs).

choose_dest(Loc,NextLoc,_Dir,Dest,NewSokobanLoc,_BoxLocs):-
Dest=NextLoc, NewSokobanLoc=BoxLoc.

choose_dest(Loc,NextLoc,Dir,Dest,NewSokobanLoc,BoxLocs):-
step(NextLoc,Dir,NextNextLoc),
good_dest(NextNextLoc,BoxLocs),
choose_dest(NextLoc,NextNextLoc,Dir,

Dest,NewSokobanLoc,BoxLocs).

Zhou and Dovier (CUNY and DIMI) Sokoban 28 / 31

Sokoban as a Prolog Program

The Sokoban program
Domain Knowledge

good_dest(Loc,BoxLocs):-
\+ member(Loc,BoxLocs),
(corner(Loc)->storage(Loc);true),
foreach(BoxLoc in BoxLocs, \+ stuck(BoxLoc,Loc)).

:-table stuck/2.
stuck(X,Y):- (right(X,Y);right(Y,X)),

(\+ storage(X); \+ storage(Y)),
(\+ top(X,_), \+ top(Y,_);
\+ top(_,X), \+ top(_,Y)),!.

stuck(X,Y):- (top(X,Y);top(Y,X)),
(\+ storage(X); \+ storage(Y)),
(\+ right(X,_), \+ rights(Y,_);
\+ right(_,X), \+ right(_,Y)),!.

Two boxes constitute a deadlock if they are next to each other and both
adjacent to a wall, unless both their locations are storage squares.
Zhou and Dovier (CUNY and DIMI) Sokoban 29 / 31

Computational Results

Competition results
CPU time, seconds

Instance BPSolver Clasp
1-sokoban-optimization-0-0.asp 0.58 0.06
13-sokoban-optimization-0-0.asp 0.06 0.74
18-sokoban-optimization-0-0.asp 0.00 9.80
20-sokoban-optimization-0-0.asp 33.57 13.24
24-sokoban-optimization-0-0.asp 2.66 3.52
27-sokoban-optimization-0-0.asp 0.78 1.16
29-sokoban-optimization-0-0.asp 0.78 2.92
33-sokoban-optimization-0-0.asp 1.96 26.74
37-sokoban-optimization-0-0.asp 0.38 8.52
4-sokoban-optimization-0-0.asp Mem Out 0.62
43-sokoban-optimization-0-0.asp Mem Out 35.67
45-sokoban-optimization-0-0.asp Mem Out 9.30
47-sokoban-optimization-0-0.asp Mem Out 18.66
5-sokoban-optimization-0-0.asp 0.00 0.16
9-sokoban-optimization-0-0.asp 0.00 2.12

Zhou and Dovier (CUNY and DIMI) Sokoban 30 / 31

Conclusions

Conclusions

We have played with the Sokoban
game using several Logic
Programming tools

It was funny
Direct ASP (or B translated to ASP)
works
B interpreted by CLP(FD) does not
work correctly (but we are now
developing and exploiting a special
reachability global constraint)
Tabled B-Prolog works (even if there
are still some memory problems to
cope with)
Adding knowledge, of course, helps

Zhou and Dovier (CUNY and DIMI) Sokoban 31 / 31

Conclusions

Conclusions

We have played with the Sokoban
game using several Logic
Programming tools
It was funny

Direct ASP (or B translated to ASP)
works
B interpreted by CLP(FD) does not
work correctly (but we are now
developing and exploiting a special
reachability global constraint)
Tabled B-Prolog works (even if there
are still some memory problems to
cope with)
Adding knowledge, of course, helps

Zhou and Dovier (CUNY and DIMI) Sokoban 31 / 31

Conclusions

Conclusions

We have played with the Sokoban
game using several Logic
Programming tools
It was funny
Direct ASP (or B translated to ASP)
works
B interpreted by CLP(FD) does not
work correctly (but we are now
developing and exploiting a special
reachability global constraint)

Tabled B-Prolog works (even if there
are still some memory problems to
cope with)
Adding knowledge, of course, helps

Zhou and Dovier (CUNY and DIMI) Sokoban 31 / 31

Conclusions

Conclusions

We have played with the Sokoban
game using several Logic
Programming tools
It was funny
Direct ASP (or B translated to ASP)
works
B interpreted by CLP(FD) does not
work correctly (but we are now
developing and exploiting a special
reachability global constraint)
Tabled B-Prolog works (even if there
are still some memory problems to
cope with)
Adding knowledge, of course, helps

Zhou and Dovier (CUNY and DIMI) Sokoban 31 / 31

	Introduction
	Sokoban as a Planning Problem
	Tabling
	Sokoban as a Prolog Program
	Computational Results
	Conclusions

