A Tabled Prolog Program for Solving Sokoban J

Neng-Fa Zhou Agostino Dovier

Department of Computer and Information Science,
CUNY Brooklyn College & Graduate Center, USA

Department of Mathematics and Computer Science,
University of Udine, Italy

Pescara, September 2nd, 2011

Zhou and Dovier (CUNY and DIMI) Sokoban 1/31

-
Summary

o Introduction

e Sokoban as a Planning Problem
e Tabling

0 Sokoban as a Prolog Program
e Computational Results

e Conclusions

Zhou and Dovier (CUNY and DIMI) Sokoban 2/31

History

@ Sokoban is a type of transport puzzle invented by Hiroyuki
Imabayashiin 1980

@ Published by the Japanese company Thinking Rabbit, Inc. in
1982.

@ Sokoban means “warehouse-keeper” (magazziniere) in Japanese.
@ Thinking Rabbit joined Square Co., Ltd.

Zhou and Dovier (CUNY and DIMI) Sokoban 3/31

Introduction

Sokoban Rules
(from http://www.sokoban. jp/)

Zhou and Dovier (CUNY and DIMI) Sokoban

4/31

http://www.sokoban.jp/

Sokoban @ work

Zhou and Dovier (CUNY and DIMI) Sokoban 5/31

Macro-actions

The following sequence of 8 actions

Zhou and Dovier (CUNY and DIMI) Sokoban 6/31

Macro-actions

The following sequence of 8 actions

is counted as a single (macro) action.

Zhou and Dovier (CUNY and DIMI) Sokoban

The genesis of this work

@ With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language 5B (and a
compiler in ASP) [ICLP07-MG65]

Zhou and Dovier (CUNY and DIMI) Sokoban

7/31

The genesis of this work

@ With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language 5B (and a
compiler in ASP) [ICLP07-MG65]

@ Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains

Zhou and Dovier (CUNY and DIMI) Sokoban 7/31

The genesis of this work

@ With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language 5B (and a
compiler in ASP) [ICLP07-MG65]

@ Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains
@ In the 2009 ASP competition we wrote with him some 5 domains

that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).

Zhou and Dovier (CUNY and DIMI) Sokoban

7/31

The genesis of this work

@ With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language 5B (and a
compiler in ASP) [ICLP07-MG65]

@ Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains

@ In the 2009 ASP competition we wrote with him some 5 domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).

@ Neng-Fa asked us to do the same for the 2011 competition.

Zhou and Dovier (CUNY and DIMI) Sokoban 7/31

The genesis of this work

@ With Andrea Formisano and Enrico Pontelli we developed a
CLP(FD) solver for the action description language 5B (and a
compiler in ASP) [ICLP07-MG65]

@ Neng-Fa Zhou is the main developer (actually, the father) of
B-Prolog that includes a fast solver of constraints on finite domains

@ In the 2009 ASP competition we wrote with him some 5 domains
that, once interpreted with the B-Prolog solver behaved very well
(in particular peg-solitaire).

@ Neng-Fa asked us to do the same for the 2011 competition.

@ This approach for Sokoban was un-successful, but this forced us
to look for another declarative approach.

Zhou and Dovier (CUNY and DIMI) Sokoban 7/31

Sokoban as a Planning Problem

Representation

location(1l). ... location(1l7).

Zhou and Dovier (CUNY and DIMI) Sokoban 8/31

Sokoban as a Planning Problem

Representation

location(1l). ... location(1l7).

step(l,right,2). step
step (2,1eft,1). step
step (1, down, 3) . step
step (3,up,1) . step

10,right,11). step(ll,right,15).
11,1left,10). step (15, 1left,11).
2,down, 4) .

4,up, 2) .

o~ o~ o~ —~

Zhou and Dovier (CUNY and DIMI) Sokoban 8/31

Representation

Zhou and Dovier (CUNY and DIMI) Sokoban 9/31

Encoding in B

Fluents

fluent (free (L)) :-—
location (L) .

fluent (box_in (L)) :-
location (L) .

fluent (sokoban_in (L)) :-
location (L) .

Zhou and Dovier (CUNY and DIMI) Sokoban 10/31

Encoding in B

Fluents

fluent (free (L)) :-—
location (L) .

fluent (box_in (L)) :-
location (L) .

fluent (sokoban_in (L)) :-
location (L) .

fluent (reachable (A)) :-—
location (A7) .

Zhou and Dovier (CUNY and DIMI) Sokoban 10/31

Sokoban as a Planning Problem

Representation

free(l). free(2). free(1l0). free(ll). free(l5).
free(3). free (7). free(8). free(12). free(lo).
free(5). free(6). free(l3). free(l4). free(l7).

box_in(9) .

sokoban_in (4) .

Zhou and Dovier (CUNY and DIMI) Sokoban 11/31

Sokoban as a Planning Problem

Representation

free(l). free(2). free(1l0). free(ll). free(l5).
free(3). free (7). free(8). free(12). free(lo).
free(5). free(6). free(l3). free(l4). free(l7).

box_in(9) .

sokoban_in (4) .
goal (box_in(3)) .

Zhou and Dovier (CUNY and DIMI) Sokoban 11/31

Input from ASP competition

top(coldrowd,coldrow3) . top(coldrow3,coldrow2) .
right (col4row2,col5row2). right (col5row2,colé6row?) .

Zhou and Dovier (CUNY and DIMI) Sokoban 12/31

Input from ASP competition

top(coldrowd,coldrow3) . top(coldrow3,coldrow2) .
right (col4row2,col5row2). right (col5row2,colé6row?) .

box (col8row2) . box(col3rowd) .
sokoban (coldrowd) .

Zhou and Dovier (CUNY and DIMI) Sokoban 12/31

Input from ASP competition

top(coldrowd,coldrow3) . top(coldrow3,coldrow2) .
right (col4row2,col5row2). right (col5row2,colé6row?) .

box (col8row2) . box(col3rowd) .
sokoban (coldrowd) .

solution(col3row2). solution(col2row?2).

Zhou and Dovier (CUNY and DIMI) Sokoban 12/31

Encoding in B

Actions (help from Andrea Formisano)

action (push (From,D,To)) :-
location (From), location(To), neqg(From,To),
direction(D), % D = left, right, up, down
step (_Sokoban,D,From),
straight_connection (From, To,D,_) .

Zhou and Dovier (CUNY and DIMI) Sokoban 13/31

Encoding in B

Actions (help from Andrea Formisano)

action (push (From,D,To)) :-
location (From), location(To), neqg(From,To),
direction(D), % D = left, right, up, down
step (_Sokoban,D,From),
straight_connection (From, To,D,_) .

executable (push (From, D, To), [sokoban_in (S0), reachable(S1),
box_in(From) | Free_LIST]) :-—
action(push(From,D, To)),
location(S0), location(S1),
step(S1,D,From),
straight_connection (From, To,D, [From|PATH]),
empty_path (PATH, Free_LIST).

empty_path ([],[]).
empty_path([L|R], [free (L) |S]) :-
empty_path (R, S) .

Zhou and Dovier (CUNY and DIMI) Sokoban 13/31

Encoding in B

Actions Effects

causes (push (From,D, To), box_in(To) ,[]) :—
action (push(From,D, To)) .

causes (push (From,D, To), neg(box_in(From)) ,[]) :-—
action (push (From, D, To)) .

causes (push (From, D, To), sokoban_in (3), []) :—
action (push(From,D, To)),
location(S), step(S,D,To).

causes (push (From, D, To), free(S), [sokoban_in(S)]) :-
action (push (From,D, To)),
location(S), \+ step(S,D,To).

causes (push (From,D, To) , free (From), []) :-
action (push (From, D, To)),
\+ step(From,D, To) .

Zhou and Dovier (CUNY and DIMI) Sokoban 14/31

Encoding in B

Basic Static Causal Laws

caused ([free (L)],neg(box_in(L))) :—- location(L).

caused([free (L)],neg(sokoban_in(L))) :- location(L).
caused ([sokoban_in (L)],neg(free(L))) :— location(L).
caused ([sokoban_in (L)],neg(box(L))) :- location(L).

caused ([sokoban_in (L1l)],neg(sokoban_in(L2))) :-
location(Ll), location(L2), neqg(Ll,L2).

caused ([box_in (L)],neg(free(L))) :—- location(L).

caused ([box_in (L)], neg(sokoban_in(L))) :— location(L).

Zhou and Dovier (CUNY and DIMI) Sokoban 15/31

Encoding in B

Static Causal Laws: reachability

caused ([sokoban_in(A)], reachable(A)) :-—
location (A) .

caused ([reachable (B), free(C)], reachable(C)) :-
location(B), location (C),
neq(B,C),
step(B,D,C),direction (D) .

Zhou and Dovier (CUNY and DIMI) Sokoban 16 /31

The results

@ This B encoding, compiled in ASP and run using clingo run rather
fast on the proposed examples.

@ We later discovered that the running time is comparable to that of
the direct ASP solution of the Sokoban (also run using clingo)

Zhou and Dovier (CUNY and DIMI) Sokoban 17 /31

The results

@ This B encoding, compiled in ASP and run using clingo run rather
fast on the proposed examples.

@ We later discovered that the running time is comparable to that of
the direct ASP solution of the Sokoban (also run using clingo)

@ Unfortunately, the same did not holds for the CLP(FD) encoding
(even if speed was not the real problem) which was our overall
goal

Zhou and Dovier (CUNY and DIMI) Sokoban 17 /31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

push (9, left, 3) is forbidden (12 is not reachable from 4).

caused ([sokoban_in (A)], reachable(dA)) :-
location (A) .

caused([reachable (B), free(C)], reachable(C)) :-
location (B), location(C),
neq(B,C),
step(B,D,C),direction (D).

Zhou and Dovier (CUNY and DIMI) Sokoban 18/31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

push (9, left, 3) is forbidden (12 is not reachable from 4).

caused ([sokoban_in (A)], reachable(dA)) :-
location (A) .

caused([reachable (B), free(C)], reachable(C)) :-
location (B), location(C),
neq(B,C),
step(B,D,C),direction (D).

Zhou and Dovier (CUNY and DIMI) Sokoban 18/31

Sokoban as a Planning Problem

Static Causal Laws as a (simple) constraint

push (9, left, 3) is forbidden (12 is not reachable from 4).

caused ([sokoban_in (A)], reachable(dA)) :-
location (A) .

caused([reachable (B), free(C)], reachable(C)) :-
location (B), location(C),
neq(B,C),
step(B,D,C),direction (D).

Zhou and Dovier (CUNY and DIMI) Sokoban 18/31

Static Causal Laws as a (simple) constraint

caused([reachable (B), free(C)], reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction (D).

reachable (11) A free(l2) — reachable(12).
reachable (12) A free(ll) — reachable(11).

Zhou and Dovier (CUNY and DIMI) Sokoban 19/31

Static Causal Laws as a (simple) constraint

caused([reachable (B), free(C)], reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction (D).

reachable (11) A free(l2) — reachable(12).
reachable (12) A free(ll) — reachable(11).
reachable (11) and reachable (12) both true is a solution (of the
constraint).

Zhou and Dovier (CUNY and DIMI) Sokoban 19/31

Static Causal Laws as a (simple) constraint

caused([reachable (B), free(C)], reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction (D).

reachable (11) A free(l2) — reachable(12).
reachable (12) A free(ll) — reachable(11).
reachable (11) and reachable (12) both true is a solution (of the

constraint).
This (loop) problem is correctly addressed by the ASP encoding.

Zhou and Dovier (CUNY and DIMI) Sokoban 19/31

Static Causal Laws as a (simple) constraint

caused([reachable (B), free(C)], reachable(C)) :-
location(B),location(C),neq(B,C),
step(B,D,C),direction (D).

reachable (11) A free(l2) — reachable(12).
reachable (12) A free(ll) — reachable(11).

reachable (11) and reachable (12) both true is a solution (of the

constraint).

This (loop) problem is correctly addressed by the ASP encoding.
A correct constraint encoding would introduce too many constraints

(making the CLP(FD) interpreter too slow).

A solution (in BMY)

@ Add the multivalued fluent occupation (L) with three values: 0
for free, 1 for sokoban, and 2 for a box

@ For each location L, let L4, ..., Ly, be the neighbor locations of L.
@ M is a “big” number

@ Post the constraints:
occupation(L) =1
occupation(L) =2

reachable(L)

reachable(L) =0

reachable(L) =M

min{reachable(Ly)+1,...,
reachable(Ly,)+ 1, M}

4

Zhou and Dovier (CUNY and DIMI) Sokoban 20 /31

Sokoban as a Planning Problem

A solution
reachable(4) =0
reachable(2) = reachable(3) =
reachable(6) = reachable(7) =1
reachable(1) = reachable(b) = reachable(8) =2
reachable(9) = reachable(10) =--- = reachable(17) = 20

Zhou and Dovier (CUNY and DIMI) Sokoban 21/31

Sokoban as a Planning Problem

A solution
reachable(4) =0
reachable(2) = reachable(3) =
reachable(6) = reachable(7) =1
reachable(1) = reachable(b) = reachable(8) =2

reachable(9) = reachable(10) = - - = reachable(17) =20
Unfortunately, this solution generates slow code.

Zhou and Dovier (CUNY and DIMI) Sokoban 21/31

Tabling

@ Tabling has become a well-known and useful feature of many
Prolog systems.

@ The idea of tabling is to memorize answers to tabled subgoals and
use the answers to resolve subsequent variant or subsumed
subgoals.

@ This idea resembles the dynamic programming idea of reusing
solutions to overlapping sub-problems.

Zhou and Dovier (CUNY and DIMI) Sokoban 22 /31

Tabling

@ Tabling has become a well-known and useful feature of many
Prolog systems.

@ The idea of tabling is to memorize answers to tabled subgoals and
use the answers to resolve subsequent variant or subsumed
subgoals.

@ This idea resembles the dynamic programming idea of reusing
solutions to overlapping sub-problems.

@ B-Prolog is a tabled Prolog system based on linear tabling, allows
variant subgoals to share answers, and uses the local (lazy)
strategy to return answers.

Zhou and Dovier (CUNY and DIMI) Sokoban 22 /31

Tabling in B-Prolog

Fibonacci numbers

:—table fib/2.

fib (0, 1).

fib (1, 1).

fib (N, F):-
N>1, N1 is N-1, N2 is N-2,
fib (N1, F1), fib (N2, F2),
F is F1+F2.

Zhou and Dovier (CUNY and DIMI) Sokoban 23 /31

Tabling in B-Prolog

Fibonacci numbers

:—table fib/2.

fib (0, 1).

fib (1, 1).

fib (N, F):-
N>1, N1 is N-1, N2 is N-2,
fib (N1, F1), fib (N2, F2),
F is F1+F2.

@ Without tabling, the subgoal £ib (N, X) would spawn 2N
subgoals, many of which are variants.

Zhou and Dovier (CUNY and DIMI) Sokoban 23 /31

Tabling in B-Prolog

Fibonacci numbers

:—table fib/2.

fib (0, 1).

fib (1, 1).

fib (N, F):-
N>1, N1 is N-1, N2 is N-2,
fib (N1, F1), fib (N2, F2),
F is F1+F2.

@ Without tabling, the subgoal £ib (N, X) would spawn 2N
subgoals, many of which are variants.

@ With tabling, the time complexity drops to linear since the same
variant subgoal is resolved only once.

Zhou and Dovier (CUNY and DIMI) Sokoban 23 /31

Tabling in B-Prolog

Modes

@ B-Prolog allows Mode-directed tabling
:—table p(M1,...,Mn) :C.
@ C (optional), the cardinality limit, bounds the number of answers to
be tabled for p,
@ Each mi is a mode:

@ + (input — usually ground)
o - (output — usually a variable)
@ min or max (optimized — output)

@ Only one argument in a tabled predicate can have the mode min
Oor max.

Zhou and Dovier (CUNY and DIMI) Sokoban 24 /31

Tabling in B-Prolog

Shortest path (sp) in a weighted directed graph X Wy

:—table sp(+,+,—,min) .

sp (X, Y, [(X,Y)],W) :-
edge(X Y, W) .

sp (X, Y, [(X,2) |Path], W) :-
edge(X Z,Wl),
sp(Z,Y,Path,w2),
W is W1+W2.

The predicate sp (X, Y, Path, W) states that Path is a path from X to
Yy with the smallest weight w.

Zhou and Dovier (CUNY and DIMI) Sokoban 25/31

Tabling in B-Prolog

Shortest path (sp) in a weighted directed graph X Wy

:—table sp(+,+,—,min) .

sp(X, Y, [(X,Y)],W) :-
edge(X Y, W) .

sp (X, Y, [(X,2) |Path], W) :-
edge(X Z,Wl),

sp(Z,Y,Path,w2),
W is W1+W2.

The predicate sp (X, Y, Path, W) states that Path is a path from X to
Yy with the smallest weight w.

For each pair of nodes, only one (shortest) answer is tabled!

Zhou and Dovier (CUNY and DIMI) Sokoban 25/31

The Sokoban program

@ Neng-Fa’s implementation of the Sokoban program is based on
the just seen tabled definition of shortest path

@ The overall code is very short and simple (as one might expect
from Prolog programming)

@ A little (actually very little) domain knowledge is added

Zhou and Dovier (CUNY and DIMI) Sokoban 26 /31

The Sokoban program

:—table plan_sokoban(+,+,—,min) .
plan_sokoban (_SokobanLoc, BoxLocs,Plan, Len) :—
goal_reached (BoxLocs), !, Plan=[],Len=0.
plan_sokoban (SokobanLoc,BoxLocs,
[push (BoxLoc,Dir,DestLoc) |Plan],Len) : -
select (BoxLoc,BoxLocs, BoxLocsl),
step (PrevNeibLoc,Dir, BoxLoc),
\+ member (PrevNeiblLoc, BoxLocsl),
step (BoxLoc,Dir, NextNeibLoc),
good_dest (NextNeibLoc, BoxLocsl),
reachable_by_sokoban (SokobanLoc,PrevNeibLoc, BoxLocs),
choose_dest (BoxLoc, NextNeiblLoc,Dir,

DestLoc, NewSokobanLoc, BoxLocsl),
insert_ordered (DestLoc, BoxLocsl, NewBoxLocs),
plan_sokoban (NewSokobanLoc, NewBoxLocs,Plan, Lenl),
Len is Lenl+1.

Zhou and Dovier (CUNY and DIMI) Sokoban 27 /31

The Sokoban program

:—table reachable_by_sokoban/3.
reachable_by_sokoban (Loc, Loc, _BoxLocs) .
reachable_by_sokoban (Locl, Loc2,BoxLocs) :—
step (Locl,_,Loc3),
\+ member (Loc3, BoxLocs),
reachable_by_sokoban (Loc3, Loc2,BoxLocs) .

choose_dest (Loc, NextLoc,_Dir,Dest,NewSokobanLoc,_BoxLocs) : -
Dest=NextLoc, NewSokobanLoc=BoxLoc.
choose_dest (Loc, NextLoc,Dir,Dest, NewSokobanLoc, BoxLocs) : —
step (NextLoc,Dir, NextNextLoc),
good_dest (NextNextLoc,BoxLocs),
choose_dest (NextLoc, NextNextLoc,Dir,
Dest, NewSokobanLoc, BoxLocs) .

Zhou and Dovier (CUNY and DIMI) Sokoban 28 /31

The Sokoban program

Domain Knowledge

good_dest (Loc, BoxLocs) : —
\+ member (Loc, BoxLocs),
(corner (Loc) ->storage (Loc) ;true),
foreach (BoxLoc in BoxLocs, \+ stuck (BoxLoc,Loc)) .
:—table stuck/2.
stuck (X,Y) :—= (right (X,Y);right(Y,X)),
(\+ storage (X); \+ storage(Y)),
(\+ top(X,_), \+ top(Y,_);
\+ top(_,X), \+ top(_,Y)),!'.
stuck (X,Y) :—= (top(X,Y);top(Y,X)),
(\+ storage (X); \+ storage(Y)),
(\+ right(X,_), \+ rights(Y,_);
\+ right(_,X), \+ right(_,Y)),!.

Two boxes constitute a deadlock if they are next to each other and both
adjacent to a wall, unless both their locations are storage squares.

Zhou and Dovier (CUNY and DIMI) Sokoban 29 /31

Competition results

CPU time, seconds

Instance BPSolver | Clasp
1-sokoban-optimization-0-0.asp 0.58 0.06
13-sokoban-optimization-0-0.asp 0.06 | 0.74
18-sokoban-optimization-0-0.asp 0.00 | 9.80
20-sokoban-optimization-0-0.asp 33.57 | 13.24
24-sokoban-optimization-0-0.asp 266 | 3.52
27-sokoban-optimization-0-0.asp 0.78 1.16
29-sokoban-optimization-0-0.asp 0.78 | 2.92
33-sokoban-optimization-0-0.asp 1.96 | 26.74
37-sokoban-optimization-0-0.asp 0.38 | 8.52
4-sokoban-optimization-0-0.asp | Mem Out | 0.62
43-sokoban-optimization-0-0.asp | Mem Out | 35.67
45-sokoban-optimization-0-0.asp | Mem Out 9.30
47-sokoban-optimization-0-0.asp | Mem Out | 18.66
5-sokoban-optimization-0-0.asp 0.00 | 0.16
9-sokoban-optimization-0-0.asp 0.00 | 2.12

Zhou and Dovier (CUNY and DIMI) Sokoban 30/31

Conclusions
@ We have played with the Sokoban

game using several Logic
Programming tools

Zhou and Dovier (CUNY and DIMI) Sokoban

31/31

Conclusions

@ We have played with the Sokoban
game using several Logic
Programming tools

@ It was funny

Zhou and Dovier (CUNY and DIMI) Sokoban 31/31

Conclusions

@ We have played with the Sokoban
game using several Logic
Programming tools

@ |t was funny

@ Direct ASP (or B translated to ASP)
works

@ B interpreted by CLP(FD) does not
work correctly (but we are now
developing and exploiting a special
reachability global constraint)

Zhou and Dovier (CUNY and DIMI) Sokoban 31/31

Conclusions

@ We have played with the Sokoban
game using several Logic
Programming tools

@ |t was funny

@ Direct ASP (or B translated to ASP)
works

@ B interpreted by CLP(FD) does not
work correctly (but we are now
developing and exploiting a special
reachability global constraint)

@ Tabled B-Prolog works (even if there
are still some memory problems to
cope with)

@ Adding knowledge, of course, helps

Zhou and Dovier (CUNY and DIMI) Sokoban 31/31

	Introduction
	Sokoban as a Planning Problem
	Tabling
	Sokoban as a Prolog Program
	Computational Results
	Conclusions

