
GPU-based parallelism for ASP-solving

Andrea Formisano

Dept. of Mathematics and Computer Science

University of Perugia

andrea.formisano@unipg.it

DECLARE 2019 — Cottbus, September 9–13, 2019

Joint research with A. Dal Palù, A. Dovier, E. Pontelli, F. Vella

andrea.formisano@unipg.it 1/38

Outline

1 GPUs and GPU-computing

2 CUDA in a rush

3 A glimpse of ASP

4 Conflict-driven solving and nogoods

5 Parallelization of a conflict-driven solver

6 Conclusions

andrea.formisano@unipg.it 2/38

General Purpose GPU

• Graphic Processing Units (GPUs) have been originally

conceived for graphic processing (e.g., realtime high resolution

3D graphics)

• highly parallel multi-threaded many-core processors with high

memory bandwidth

• in the last decade GPUs evolved towards a more flexible

architecture enabling the use of GPUs for general purpose

programming:

GPU-computing

• GPUs offer great efficiency and high performance (if carefully

programmed...)

andrea.formisano@unipg.it 3/38

GPUs vs CPUs

GPU vs CPU: Floating point operations per second

This and the following pictures regarding GPUs are from CUDA C Programming Guide, Nvidia,

www.nvidia.com, or from the Nvidia web site.

andrea.formisano@unipg.it 4/38

GPUs vs CPUs

CPU: complex control logic, out-of-order exec., branch-prediction,

speculative exec., powerful ALU, large cache to reduce latency in

memory access, ...

GPU: many cores, massive floating point parallel computations,

larger bandwidth in memory access, simple control logic, no

branch prediction or out-of-order exec., ...

Transistors are mainly devoted to data processing rather than data

caching and flow control

andrea.formisano@unipg.it 5/38

Under the hood — The architectural scheme

andrea.formisano@unipg.it 6/38

Zoom in: A stream multiprocessor (SM)

andrea.formisano@unipg.it 7/38

Zoom in: Each SM includes

• cores

• registers

• shared memory

• scheduling and

dispatch units

• special function units

• LD/ST units

• cache, ...

Some Tesla GPUs:

K40: 15 SM, 2880 cores

M40: 24 SM, 3072 cores

P100: 56 SM, 3584 cores

V100: 80 SM, 5120+460 cores

andrea.formisano@unipg.it 8/38

CUDA framework for GPU computing

CUDA — Compute Unified Device Architecture

(introduced by NVIDIA in 2006)

• general-purpose parallel computing platform and programming

model

• provides compilers, libraries, API, drivers, devel. tools, ...

• exposes GPU compute capabilities of any CUDA-enabled GPU

• enable access to GPU memory

• extends common programming languages (C, C++, Fortran, ...) in a
minimal way. E.g. in CUDA-C:
DEFINITION:

__global__ void procName(FormalArgs){...C code...}

CALL:

procName<<<Grid,TPB>>>(ActualArgs)

andrea.formisano@unipg.it 9/38

Execution model (CUDA-style)

The underlying execution model is named

SIMT: single-instruction multiple-thread

• multiple independent threads execute a single instruction

• SIMT = SIMD+multithreading

The SIMT model differs from SIMD in various aspects:

• each thread has its own program counter

• each thread has its own register state (i.e., it has a register set)

• each thread can have an independent execution path (namely,

threads in the same group can execute independently)

andrea.formisano@unipg.it 10/38

Execution model (CUDA-style)

The computation can proceeds both on the host (CPU) and on the

device (GPU)

• The programmer writes a kernel

that will be run on the device

• Each thread executes

an instance of the kernel

The host instructs the device:

1 copy data, host⇒device

2 kernel call

3 kernel execution on GPU

4 retrieve results, host⇐device

andrea.formisano@unipg.it 11/38

Thread and memory hierarchies (CUDA-style)

• Each core executes a thread

• registers

• local memory

• warp: 32 threads

• work in lock-step:

share instruction fetch

• block: a group of threads

• scheduled on a SM

• shared memory (banks)

• synchronization support

• grid: a group of blocks

• global memory

• constant, texture mem.
HOST

GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID

andrea.formisano@unipg.it 12/38

Grids, blocks, and threads

The host calls a grid (of kernels) to be executed on the device:

kernelName<<<GridDim,BlockDim>>>(ActualArgs)

• a grid is a 1D/2D/3D matrix of blocks

• in turn, each block is a (1D/2D/3D) matrix of threads

• each thread has its own ID (usually used to address different data)

• example: 2D grid of 3D blocks

andrea.formisano@unipg.it 13/38

Efficiency in CUDA programming

The rigid memory hierarchy and the SIMT execution model require

careful programming...

...many things to take care of:

• maximize number of active threads, occupancy

⇒ configure grid/block dimensions, shared mem., registers,...

• maximize device utilization, overlap memory transfers and

computations

⇒ use streams, concurrent kernels,...

• prefer shared memory to global memory

• use intra-warp communication/synchronization (shuffling, voting,

matching functions)

• avoid thread divergence

• impose coalescence in global memory accesses

⇒ use coalesced accesses

• avoid bank conflicts in shared memory accesses

⇒ use strided accesses
andrea.formisano@unipg.it 14/38

Strided and coalesced accesses

Example: Four threads accessing elements of an array:

coalesced:

strided:

andrea.formisano@unipg.it 15/38

Answer Set Programming (ASP)

• A successful form of Logic Programming paradigm

• Knowledge representation and Non-monotonic reasoning
(default negation)

• Logical theories serve as problem specifications
• Solutions are described by models of the theories

• Strong theoretical foundation: it originates from extensive

research on semantics of LP with negation

• Expressive power: it captures (in its simplest form) the

NP complexity class

• Efficient inference engines

andrea.formisano@unipg.it 16/38

ASP syntax

An ASP program Π is a collection of propositional rules of the form

r : p ← p1, . . . , pm, not pm+1, . . . , not pn

• p and {p1, . . . , pm, not pm+1, . . . , not pn} are denoted by

head(r) and body(r), resp.

• {p1, . . . , pm} is denoted by body+(r)

• {pm+1, . . . , pn} is denoted by body−(r)

andrea.formisano@unipg.it 17/38

ASP semantics

• Semantics of ASP program Π is given in terms of stable models

(or answer sets)

• A set M of atoms is a stable model for Π if it is the least

Herbrand model of the reduct ΠM obtained by

• removing from Π all rules r such that M ∩ body−(r) 6= ∅; and

• removing all negated atoms from the remaining rules

andrea.formisano@unipg.it 18/38

Model-based problem solving in ASP

Typical approach in ASP:

• An ASP program (i.e., a logical theory) serves as problem

specification

• Each stable model encodes a solution

Problem Solution

❄
MODELING

Specification ✲SOLVING

Stable model

✻
INTERPRETING

andrea.formisano@unipg.it 19/38

Models, Completion, and Loop-formulas

Given a program Π, its completion Πcc is defined as:

Πcc =
{

βr ↔
∧

a∈body+(r) a ∧
∧

b∈body−(r) ¬b | r ∈ Π
}

∪
{

p↔
∨

r∈bodyΠ(p) βr | p ∈ atom(Π)
}

Given a set of atoms U, the set of external bodies for U is defined as

EBΠ(U) = {βr | r ∈ Π, body+(r) ∩ U = ∅}

The loop formula of U is

Πlf (U) =
∨

p∈U p→ (
∨

β∈EBΠ(U) β)

The set of loop formulas for Π is

Πlf = {Πlf (U) | U is a loop in D+
Π}

Property:

A set of atoms is a stable model of Π iff it satisfies Πcc ∧Πlf

andrea.formisano@unipg.it 20/38

Nogoods ...in a nutshell

Intuitively, a nogood δ is a forbidden set/conjunction of literals

An assignment A (i.e., a set of lits.) is a solution for δ if δ 6⊆ A

A nogood δ such that δ ∩ A = {p} can be used to infer the need to

add p̄ to A

The completion Πcc can be “compiled” into a collection ∆Πcc
of

completion nogoods of the forms:

- {not βr} ∪ {a | a ∈ body+(r)} ∪ {not b | b ∈ body−(r)}
- {βr, not a} for each a ∈ body+(r) and {βr, b} for each b ∈ body−(r)

for each r in Π, and

- {not p, βr} for each r ∈ bodyΠ(p), for each head p in Π
- {p} ∪ {not βr | r ∈ bodyΠ(p)}, for each head p in Π

Similarly one introduces a set ΛΠ of loop nogoods to reflect loop

formulas

andrea.formisano@unipg.it 21/38

Nogood-driven ASP-solving

Considering a program Π and a complete assignment A, we have that

A corresponds to a stable model iff it is a solution for ∆Πcc
∪ ΛΠ

Then,

• given ∆Πcc
∪ ΛΠ, a DPLL-like procedure can be used to find the

stable models of Π

• PROBLEM: there can be too many loop nogoods

• SOLUTION: distinguish between completion nogoods (static) and

loop nogoods (dynamic)

• generate static nogoods by compiling Π

• lazy generation of dynamic nogoods as soon as unfounded sets

(i.e., loops lacking any external support) are detected

The state-of-the-art ASP-solver clasp uses a conflict-driven

procedure and fruitfully adapts SAT-technology (conflict analysis,

learning, backjumping, forgetting, ...)
andrea.formisano@unipg.it 22/38

Ingredients for a nogood-driven solver

Considering the basic solving procedure exploited in clasp, one

identifies these main sub-tasks:

• Preprocessing: parse the input; compute completion nogoods,

dependency graph, statistics for heuristics,...

• Selection: select/assign next branching atom (decision step)

• Propagation: propagate the consequences of decision steps

• Nogood-Check: look for violations of nogoods

• Unfounded-Set-Check: add dynamic nogoods, if any unfounded

set is detected

• Conflict-Analysis: in case of conflict, learn new nogoods

• Backjumping: in case a conflicting partial assignment is reached,

update data structures consequently

Question: can we design efficient CUDA-based parallel versions of

these tasks?
andrea.formisano@unipg.it 23/38

Ingredients for a nogood-driven solver

Parallelization is “natural” for tasks that are executed for collections

of data, such as:

• Preprocessing: nogood generation, heuristics evaluation, ...

• Selection: ranking of candidate selectable atoms, in parallel

• Propagation: perform all propagations in parallel

• Nogood-Check: check nogoods for violations, in parallel

• Backjumping: update data structures, in parallel (and similarly for other

tasks, such as forgetting, restarting,...)

Some tasks turn out to be hardly parallelizable, in particular

Unfounded-Set-Check and Conflict-Analysis

Because they

• involve intrinsically sequential computations

• perform highly irregular and hardly predictable accesses to data

let’s find some alternatives...

andrea.formisano@unipg.it 24/38

Avoiding loop-formulas: ASP-computations

An alternative characterization of stable models:

An ASP-computation is a sequence of sets of atoms I0 = ∅, I1, I2, . . .

s.t.

• Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)

• I∞ =
⋃∞

i=0 Ii is such that TΠ(I∞) = I∞ (Convergence)

• Ii+1 ⊆ TΠ(Ii) for all i ≥ 0 (Revision)

• if p ∈ Ii+1 \ Ii then there is a rule p← body in Π such that

Ij |= body for each j ≥ i (Persistence of Reason)

(where TΠ is the usual immediate consequence operator of definite LP)

Prop: M is a stable model of Π iff there exists an ASP-computation

that converges to M, namely, M =
⋃∞

i=0 Ii

andrea.formisano@unipg.it 25/38

Parallelizing conflict analysis

Intuitively, in clasp conflict analysis proceeds as follows:

1. a conflict arises whenever two nogoods δ, ε propagate opposite

values for an atom p ∈ δ

2. a new (intermediate) nogood is obtained

δ′ = (δ \ {p}) ∪ (ε \ {p})

3. δ′ is conflicting as well, hence update δ = δ′ and repeat the

process until the 1UIP is reached: such δ is the learned nogood

(in practice: stop as soon as δ contains exactly one atom assigned

at the conflict decision level)

Parallel implementations of this schema exhibits poor performance

andrea.formisano@unipg.it 26/38

Efficient parallel conflict analysis

A simple procedure, alternative to the resolution-based learning, is as

follows:

1. introduce a set Deps(p) for each atom p

2. whenever a decision step selects p, set Deps(p) = {p}

3. whenever an atom p is propagated because of a nogood δ,

set Deps(p) =
⋃

d∈(δ\{p}) Deps(d)

4. if a conflict arises because two nogoods δ, ε propagate opposite

values for p ∈ δ, then obtain a learned nogood as:

Deps(p) =
⋃

d∈(δ∪ε) Deps(d)

All steps can be executed in parallel by exploiting:

• a bitmap representation of Deps(p)
• a logarithmic reduction schema for computing unions

• shared memory for intermediate results

• shuffling functions for fast intra-warp data exchange

andrea.formisano@unipg.it 27/38

GPU-based ASP-computation exploiting nogoods

Summing up: yasmin is a prototypical solver that:

• exploits GPUs and the CUDA framework

⇒ massive parallelism for all tasks

• adopts a nogood-driven approach

⇒ SAT/ASP technology, heuristics, learning,...

• relies on ASP-computations

⇒ focus on completion nogoods (avoid loop nogoods)

• uses parallelizable conflict analysis

⇒ alternative learning strategy

andrea.formisano@unipg.it 28/38

Basic schema of the CUDA application

Algorithm 1: Host code of YASMIN (simplified)

procedure YASMIN(∆: Nogoods, P : Program)

cdl← 1 ; reset (A) /* set initial values */

InitialPropagation<<<b,t>>>(A,∆,Viol) /* check input units sat */

if Viol then return no-answer-set

else loop

PropagateAndCheck(A,∆, cdl,Viol) /* updateA and flag V iol */

if Viol ∧ (cdl = 1) then return no-answer-set /* Violation at first dec.level */

else if Viol then /* Violation at level cdl>1 */

Learning<<<b,t>>>(∆,A, cdl) /* conflict analysis: update ∆, cdl */

Backjump<<<b,t>>>(A, cdl) /* update A and cdl */

if (A is not total) then

Decision<<<b,t>>>(∆,A,Lit) /* If possible, rank/select/extend A */

if no-selection then /* no applicable rules */

CompleteAssignment<<<b,t>>>(A) /* falsify unassigned atoms */

else return AT
∩ atom(P) /* stable model found */

andrea.formisano@unipg.it 29/38

Implementation details: Data representation

• literals are represented by (signed) integers

• assignments are represented by arrays of signed integers (dl+sign)

• literals of each nogood are stored contiguously and nogoods are

stored in contiguous locations using a CSR-like representation.

For example, the nogoods {1, 2, 3, 4}, {3, 4, 7}, {2, 7, 11},... are

stored as:

This ensures coalescence when entire nogood has to be retrieved

Moreover

• contiguous nogoods/literals are processed by contiguous threads

• nogoods are sorted and partitioned w.r.t. their size

This improves uniformity of workload for threads of the same block

(see the paper for more technical details)
andrea.formisano@unipg.it 30/38

Implementation details: Propagate-and-Check

The propagation and the check-for-violation tasks are performed by

the same code. In particular,

• 1-to-1 mapping between nogoods and threads is adopted

• a standard technique based on watched literals is used

• nogoods of different length are processed by different grids

(uniform workload)

• special kernels designed for unary, binary, and ternary nogoods

• check/propagate processes only nogoods affected by the last

propagation step

• learned nogoods are processes similarly (different data structure)

andrea.formisano@unipg.it 31/38

Implementation details: Selection and Learning

The selection/decision procedure is designed to implement

ASP-computations

• 1-to-1 mapping between rules and threads to detect applicable

rules

• 1-to-1 mapping between rules and threads to rank applicable

rules

• logarithmic reduction to determine best choices (shared mem.

and shuffling)

Two alternative learning procedures:

RES: parallel version of clasp-like resolution-based

FWD: learning schema based on dependencies

andrea.formisano@unipg.it 32/38

RES-learning vs FWD-learning

Experimental comparison of the two learning procedures

FWD-learning is faster:

andrea.formisano@unipg.it 33/38

RES-learning vs FWD-learning

...and generates shorter nogoods:

andrea.formisano@unipg.it 34/38

RES-learning vs FWD-learning

Consequently, FWD-learning speeds-up the propagation procedure

andrea.formisano@unipg.it 35/38

RES-learning vs FWD-learning

...and the entire search for stable models:

andrea.formisano@unipg.it 36/38

Conclusions

• We investigated the parallelization of ASP-solving on GPUs

• The design and implementation of an ASP-solver exploiting

GPUs is possible but challenging, because of

- the specific character of the satisfiability problem under

stable-model semantics (similarly, with SAT solving)

- the particular characteristics of the HW and the constraints

imposed by the execution model

• Performance of the implemented prototype scales with the

computing power of the GPUs

• but more has to be done:

- we focused only on basic components of the solver

- missing: all smart heuristics used in state-of-the-art solvers

- missing: multi-level parallelism (see next)

andrea.formisano@unipg.it 37/38

More parallelism?

Themes for future/ongoing work: Multi-level parallelism:

• program splitting (e.g., relying on the splitting theorem) and

process sub-programs in parallel

• space-search splitting (lookahead techniques)

• compute multiple solutions in parallel

• partitioned solving exploiting multiple devices and

heterogeneous architectures

andrea.formisano@unipg.it 38/38

	GPUs and GPU-computing
	CUDA in a rush
	CUDA framework
	GPU programming style

	A glimpse of ASP
	Conflict-driven solving and nogoods
	Parallelization of a conflict-driven solver
	ASP-computations
	CUDA implementation choices
	Some experimental results

	Conclusions
	More levels of parallelism

