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Abstract

The protein folding problem is the problem of predicting the 3D structure of a
protein when the linear sequence of aminoacids identifying it is known. In this
paper we present a declarative implementation in Constrain & Generate style in
CLP (FD) of the protein folding problem, for models based on face-centered cubes.
We use information concerning secondary structure (and other heuristics) to sensibly
prune the search space. Preliminary results on real proteins are encouraging.

Key words: CLP (FD), Bio-Computing, Protein-Folding.

1 Introduction

Proteins are linear polymers constituted by linked units (aminoacids). The
linear sequence of n aminoacids may be represented by a string of n letters
taken from an alphabet of 20 letters (one for each aminoacid type, which differs
from all others in its physico-chemical properties), and it has a direction due
to the asymmetry of its components. The process by which a protein in a ran-
dom conformation reaches its thermodynamically stable and peculiar spatial
arrangement, the so-called native conformation, is known as protein folding.
Several experiments prove that in consequence of an induced randomization
of conformation (a process known as denaturation) the protein returns imme-
diately in the native conformation [1]. The protein folding problem (PFP) is
the problem of predicting the native conformation (i.e., the 3D structure of
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the protein) when the linear sequence of aminoacids identifying the protein
(i.e., its chemical structure) is known.

It is widely accepted that the native conformation ensures a state of min-
imum free energy. Thus, the solution of the PFP can be split into two steps:

(i) Defining an energy function, for the adopted protein representation, whose
basic values generally depend on distances between any pair of aminoacids
and on their type.

(ii) Finding the 3D conformation that minimizes the value of the energy
function.

The former subproblem is faced using statistical analysis of native confor-
mations obtained by X-Ray or NMR methods, e.g. by defining a matrix of
potentials such that, for each pair of aminoacids, returns the value of energy
associated with each contact. Thus, we can use this information for defining an
energy function associated to a given conformation. This allows us to face the
latter subproblem which is exactly a minimization problem involving several
constraints. The decision version of the problem (namely, is there a folding
of the sequence with energy less than k? ) with some simplifying topological
assumptions is proved to be NP-complete [5,8]. If the energy function can be
polynomially computed, also the decision version of the general PFP remains
(it is not worse than) NP. In spite of its intractability, the problem deserves
to be attacked. The problem is in fact of crucial importance in Biology and
Biotechnology and we can be encouraged by the non-huge typical length of a
protein. Moreover, the fact that proteins fold extremely fast witnesses the ex-
istence of a hidden mechanism. Some knowledge about this mechanism surely
improves any previous attempt. One of the ingredients of this mechanism
could be the fact that particular partial conformations such as helices and
sheets are recognizable in most proteins. These structural elements are called
Secondary Structure of a protein. The high accuracy obtained by secondary
structure predictions [15] prompts for inclusion of this prediction for protein
folding prediction. In particular, in this work we investigate how effective is,
in terms of efficiency and accuracy, the introduction of constraints obtained
by this prediction.

In this paper we formally define the protein folding problem. Then we
describe our declarative implementation in Constrain & Generate style in
CLP (FD). We use a topological model based on face-centered cubes. Ini-
tially, constraints come from this structure. Then we test the effectiveness of
using secondary structure information in the algorithm. These further con-
straints, together with some heuristics for pruning the search space, allow
us to successfully apply the algorithm on proteins of length around 50. We
study the effectiveness of the method on some small proteins whose structure
is known.
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2 Related Work

There exists a wide bibliography concerning the PFP. For detailed and up-
to-date reviews, see [7,16]. All prediction methods make use of statistical
information available from the more than 18000 structures deposited in the
Protein Data Bank (PDB) [10]. The correct fold for a new sequence can be
obtained when homology (sequence similarity) is detected with a sequence
for which the structure is available. Another approach tries to superimpose
(thread) a chain on a known structure and evaluates the plausibility of the
fold. At variance with the latter methods, ab-initio methods try to find the
native conformation without a direct reference to a structural model.

As far as the constraint community is concerned, a subproblem of the
whole problem, based on the HP-model is studied and successfully solved for
proteins of length 30–40 in [2]. This model splits aminoacids into two classes
(H and P) and the problem reduces to that of finding the conformation that
maximizes the contacts of H’s. This approach is very interesting, but the high
level abstraction of the model does not ensure that the result is the native
conformation; in particular, the local sub-conformations of the form of α-
helices or β-strands (cf. Sect. 3) are often lost. Several other interesting works
on this model have been performed by the same group (see, e.g., [3,4]). In [17]
the related side-chain problem is studied inside the CLP framework.

3 The Protein Folding Problem

In this section we formally define the protein folding problem. We use a
recently computed matrix of contact potentials (Table 1) and we focus on the
mathematical formalization of the problem.

3.1 Preliminary notions

The Primary structure of a protein is a sequence of linked units (or residues)
of length, typically, less than 500. Each residue is an aminoacid, from a set A
of 20 types:

Alanine (A) Cysteine (C) Aspartic Acid (D) Glutamic Acid (E)

Phenylalanine (F) Glycine (G) Histidine (H) Isoleucine (I)

Lysine (K) Leucine (L) Methionine (M) Asparagine (N)

Proline (P) Glutamine (Q) Arginine (R) Serine (S)

Threonine (T) Valine (V) Tryptophan (W) Tyrosine (Y)

Applying statistical methods on structures obtained by X-Rays and NMR
experiments, Table 1, that points out the energy associated to a pair of non
consecutive aminoacids when they are in contact, has been developed [13,6].
With Pot(x, y) we denote the value of the table addressed by aminoacids x
and y (the order is immaterial).
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CYS MET PHE ILE LEU VAL TRP TYR ALA GLY

CYS -3.477 -2.240 -2.424 -2.410 -2.343 -2.258 -2.080 -1.892 -1.700 -1.101

MET -2.240 -1.901 -2.304 -2.286 -2.208 -2.079 -2.090 -1.834 -1.517 -0.897

PHE -2.424 -2.304 -2.467 -2.530 -2.491 -2.391 -2.286 -1.963 -1.750 -1.034

ILE -2.410 -2.286 -2.530 -2.691 -2.647 -2.568 -2.303 -1.998 -1.872 -0.885

LEU -2.343 -2.208 -2.491 -2.647 -2.501 -2.447 -2.222 -1.919 -1.728 -0.767

VAL -2.258 -2.079 -2.391 -2.568 -2.447 -2.385 -2.097 -1.790 -1.731 -0.756

TRP -2.080 -2.090 -2.286 -2.303 -2.222 -2.097 -1.867 -1.834 -1.565 -1.142

TYR -1.892 -1.834 -1.963 -1.998 -1.919 -1.790 -1.834 -1.335 -1.318 -0.818

ALA -1.700 -1.517 -1.750 -1.872 -1.728 -1.731 -1.565 -1.318 -1.119 -0.290

GLY -1.101 -0.897 -1.034 -0.885 -0.767 -0.756 -1.142 -0.818 -0.290 0.219

THR -1.243 -0.999 -1.237 -1.360 -1.202 -1.240 -1.077 -0.892 -0.717 -0.311

SER -1.306 -0.893 -1.178 -1.037 -0.959 -0.933 -1.145 -0.859 -0.607 -0.261

ASN -0.788 -0.658 -0.790 -0.669 -0.524 -0.673 -0.884 -0.670 -0.371 -0.230

GLN -0.835 -0.720 -0.807 -0.778 -0.729 -0.642 -0.997 -0.687 -0.323 0.033

GLU -0.616 -0.409 -0.482 -0.402 -0.291 -0.298 -0.613 -0.631 -0.235 -0.097

ASP -0.179 -0.209 -0.419 -0.439 -0.366 -0.335 -0.624 -0.453 -0.039 0.443

HIS -1.499 -1.252 -1.330 -1.234 -1.176 -1.118 -1.383 -1.222 -0.646 -0.325

ARG -0.771 -0.611 -0.805 -0.854 -0.758 -0.664 -0.912 -0.745 -0.327 -0.050

LYS -0.112 -0.146 -0.270 -0.253 -0.222 -0.200 -0.391 -0.349 0.196 0.589

PRO -1.196 -0.788 -1.076 -0.991 -0.771 -0.886 -1.278 -1.067 -0.374 -0.042

THR SER ASN GLN ASP GLU HIS ARG LYS PRO

CYS -1.243 -1.306 -0.788 -0.835 -0.616 -0.179 -1.499 -0.771 -0.112 -1.196

MET -0.999 -0.893 -0.658 -0.720 -0.409 -0.209 -1.252 -0.611 -0.146 -0.788

PHE -1.237 -1.178 -0.790 -0.807 -0.482 -0.419 -1.330 -0.805 -0.270 -1.076

ILE -1.360 -1.037 -0.669 -0.778 -0.402 -0.439 -1.234 -0.854 -0.253 -0.991

LEU -1.202 -0.959 -0.524 -0.729 -0.291 -0.366 -1.176 -0.758 -0.222 -0.771

VAL -1.240 -0.933 -0.673 -0.642 -0.298 -0.335 -1.118 -0.664 -0.200 -0.886

TRP -1.077 -1.145 -0.884 -0.997 -0.613 -0.624 -1.383 -0.912 -0.391 -1.278

TYR -0.892 -0.859 -0.670 -0.687 -0.631 -0.453 -1.222 -0.745 -0.349 -1.067

ALA -0.717 -0.607 -0.371 -0.323 -0.235 -0.039 -0.646 -0.327 0.196 -0.374

GLY -0.311 -0.261 -0.230 0.033 -0.097 0.443 -0.325 -0.050 0.589 -0.042

THR -0.617 -0.548 -0.463 -0.342 -0.382 -0.192 -0.720 -0.247 0.155 -0.222

SER -0.548 -0.519 -0.423 -0.260 -0.521 -0.161 -0.639 -0.264 0.223 -0.199

ASN -0.463 -0.423 -0.367 -0.253 -0.344 0.160 -0.455 -0.114 0.271 -0.018

GLN -0.342 -0.260 -0.253 0.054 0.022 0.179 -0.290 -0.042 0.334 -0.035

GLU -0.382 -0.521 -0.344 0.022 0.179 0.634 -0.664 -0.584 -0.176 0.189

ASP -0.192 -0.161 0.160 0.179 0.634 0.933 -0.324 -0.374 -0.057 0.257

HIS -0.720 -0.639 -0.455 -0.290 -0.664 -0.324 -1.078 -0.307 0.388 -0.346

ARG -0.247 -0.264 -0.114 -0.042 -0.584 -0.374 -0.307 0.200 0.815 -0.023

LYS 0.155 0.223 0.271 0.334 -0.176 -0.057 0.388 0.815 1.339 0.661

PRO -0.222 -0.199 -0.018 -0.035 0.189 0.257 -0.346 -0.023 0.661 0.129

Table 1
Potential Matrix

Native conformations are largely built from Secondary Structure elements
(i.e., helices and sheets) often arranged in defined motifs. α-helices are consti-
tuted by 5 to 40 contiguous residues arranged in a regular right-handed helix
with 3.6 residues per turn. β-sheets are constituted by extended strands of 5
to 10 residues. Each strand is made of contiguous residues, but strands par-
ticipating in the same sheet are not necessarily contiguous in sequence. There
are algorithms based on neural networks that can predict with high accuracy
(75% [7]) the secondary structure of a protein. Another important structural
feature of proteins is the capability of cysteine residues of covalently binding
through their sulphur atoms, thus forming disulfide bridges, which impose im-
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portant contact constraints. This kind of information is often available, either
by experiments or predictions.

Fig. 1. α-helix, β-strand, and fcc cube

3.2 Problem definition

Several models are proposed for reasoning about the 3D properties of proteins,
basically concerning the admissible spatial positions of each aminoacid (also
called the Tertiary Structure of the protein). Given a sequence S = s1 · · · sn,
with si ∈ A, the position pi of a point representing each aminoacid si is a
triple of values 〈x, y, z〉 (3D models). Moreover, the variables x, y, and z can
be real numbers (in—rather untractable—models in which proteins are left
free to take any position) or integer numbers (in models where aminoacids
can take a finite number of positions of a suitable lattice).

We use the predicate next stating that two positions are admissible consec-
utive positions for two aminoacids that appear consecutively in the sequence.
next requires as parameters the two points, but also the whole sequence of
positions, since in some lattices the fact that two points are in sequence de-
pends also on other points (for instance, the previous one). It is assumed
that a fixed (often chosen as unitary value) distance separates two consec-
utive aminoacids. We also employ the binary predicate contact: two non-
consecutive aminoacids si and sj in the position pi and pj are in contact (in
this case we write contact(pi, pj)) when their distance is less than a certain
value. Lattice models simplify the definition of these two predicates. The
following definition of the PFP is general enough to apply to several models.

Given a sequence S = s1 · · · sn, with si ∈ A, the protein folding prob-
lem (PFP) is the problem of finding the sequence of positions P = p1 · · · pn

satisfying the constraints:

(∀i ∈ {1, . . . , n − 1}) next(P, pi, pi+1)(1)

(∀i, j ∈ {1, . . . , n})(i 6= j → pi 6= pj)(2)

and minimizing the energy:

E(P )=
∑

1 ≤ i < n
i + 2 ≤ j ≤ n

f(P, S, i, j)(3)
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where f(P, S, i, j) =







Pot(si, sj) if contact(pi, pj)

0 otherwise

3.3 Lattice Models

Lattice models have long been used for protein structure prediction [11]. A
possible model is a lattice whose points are a subset of N

3. Nevertheless, the
only angles between three consecutive aminoacids allowed in this case are 90◦

and 180◦. This lattice is too rigid for a realistic modelization of the problem.

In [14] it is shown that the Face-Centered Cubic Lattice (fcc) model is a
well-suited, realistic model for 3D conformations of proteins. The model is
based on cubes of size 2, but the central point of each face is also admitted
(together with the vertices). Points at distance

√
2 are connected; their dis-

tance is said lattice unit. In this way each point is adjacent to 12 neighboring
points (see Fig. 1).

Every residue may be linked to an adjacent residue by one of the possible
twelve lattice vectors. The angle between three residues may therefore assume
values 60◦, 90◦, 120◦, and 180◦. Steric and energetic restraints in proteins make
values 60◦ and 180◦ unfeasible. Therefore only links at 90◦ and 120◦ will be
retained. No similar restriction exists on torsional angles among four adjacent
residues. A contact is defined among two non adjacent residues when their
separation is two lattice units. The more natural choice of a single lattice unit
is ruled out because it does not take into account aminoacid steric hindrance.
Physically, a lattice unit corresponds to 3.8 Å, which is roughly the van der
Waals contact distance between two carbon atoms. Consequently, we impose
the constraint that two non consecutive residues must be separated by more
than one lattice units.

4 Definition in CLP (FD)

In this section we describe the main predicates used to implement declara-
tively the PFP. We have used the library clpfd of SICStus PROLOG 3.9.1 [9].
Complete code and other related material can be found in:

http://www.dimi.uniud.it/∼dovier/PF/pf clp.html

The main clause is a classical Constrain & Generate [12] clause of the form:

fcc_pf(ID, Energy):-

protein(ID, Primary, Secondary),

constrain(Primary, Secondary, Indexes, Tertiary_flat, Energy, _),

labeling(Primary, Secondary, Indexes, Tertiary_flat, Energy),

pretty_print(Primary, Tertiary_flat).

The protein predicate, extensionally defined in an auxiliary file data.pl,
allows us to access to the Primary and Secondary structures of a protein given
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its name. For instance,

protein(ID, Primary, Secondary):-

ID = ’1LE0’,

Primary = [s,w,t,w,e,g,n,k,w,t,w,k],

Secondary = [strand(2,4), strand(9,11)].

The constrain predicate deterministically adds the (finite domain) con-
straints for the variables involved, while labeling looks for the solution in
the search space. pretty print prints the output in a format suitable for
validating the results with biological software (c.f. Section 6).

Tertiary flat is the output list of positions (triples of integers) of the
various aminoacids (the conformation) and Energy is the output value of energy
associated to it (values of the Table 1 are multiplied by 1000 in order to deal
with integer values). For efficiency reasons in the labeling phase, we use a flat
representation of this list. Also a non-flat version of it, called Tertiary, is
used in other predicates.

Indexes is an auxiliary variable that we discuss, together with the variable
Secondary, in the next section.

Just as an example, consider a possible computation:

| ?- fcc_pf(’1LE0’, Energy).

1 s 12 12 12

2 w 13 13 12

3 t 14 13 13

4 w 15 12 13

5 e 16 13 13

6 g 17 12 13

7 n 17 11 12

8 k 18 10 12

9 w 17 9 12

10 t 16 9 13

11 w 15 10 13

12 k 14 10 12

Energy = -4085

4.1 Constrain

The predicate constrain is defined as follows:

constrain(Primary, Secondary, Indexes,

Tertiary_flat, Energy, PotList):-

generate_tertiary(N, Primary, Tertiary, Tertiary_flat),

domain_bounds(N, Tertiary),

avoid_symmetries(N, Tertiary),

avoid_self_loops(Tertiary),

7
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next_constraints(Tertiary),

distance_constraints(Tertiary),

energy_constraints(Primary, Tertiary, Energy, PotList).

The first group of predicates adds constraints to the variables of the lists

Tertiary = [[X1, Y1, Z1], . . . , [XN , YN , ZN ]]

Tertiary flat = [X1, Y1, Z1, . . . , XN , YN , ZN ]

where N is the length of the list Primary. domain bounds bounds to 0 . . . 2∗N
all the variables Xi, Yi, Zi. Moreover, exploiting some lattice properties (as
done in [2]) we also force Xi + Yi + Zi to be even. avoid symmetries intro-
duces some constraints aimed at removing redundant admissible conforma-
tions, equivalent to others modulo some symmetries. In particular, we set

[X1, Y1, Z1], [X2, Y2, Z2] = [N, N, N ], [N + 1, N + 1, N ]

(if N is odd, add 1 to all variables, for satisfying the even constraint).
avoid self loops forces all triples to be distinct. We use the built-in predi-
cate all different on the list [I1, . . . , In] where Ii #= (Xi∗P ∗P )+(Yi∗P )+
Zi, for a suitable value P . next constraints imposes the fact that [Xi, Yi, Zi]
and [Xi+1, Yi+1, Zi+1] are adjacent points in the lattice. We use the variables
DX, DY , and DZ, constrained in 0 . . . 1, and we force

DX #= abs(Xi − Xi+1), DY #= abs(Yi − Yi+1), DZ #= abs(Zi − Zi+1),

DX + DY + DZ #= 2.

Moreover, we also force that three consecutive points can only form angles of
90◦ or 120◦. Given three consecutive points A, B, and C, we set

vector_sum(A,D1,B),

vector_sum(B,D2,C),

vector_sum(D1,D2,[Dx, Dy, Dz]),

abs(Dx) #= 2 #<=> Flag1,

abs(Dy) #= 2 #<=> Flag2,

abs(Dz) #= 2 #<=> Flag3,

Flag1 + Flag2 + Flag3 #= 1.

where vector sum performs the sum of two vectors. Observe the use of reified
constraints: we require that exactly one direction has a variation of 2 units in
2 steps. distance constraints forces two non-consecutive points to be at a
distance of at least 2. For j > i + 1 we add:

DX #= abs(X_i - X_j),

DY #= abs(Y_i - Y_j),

DZ #= abs(Z_i - Z_j),

DX #> 1 #\/ DY #> 1 #\/ DZ #> 1 #\/ DX + DY + DZ #> 2.
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In this way, we avoid Euclidean distances that would have moved us outside
CLP (FD).

The predicate energy constraints is the sum of the variables C defined
for each pairs of aminoacids Ai, Aj occurring in Primary, with j > i + 1, as
follows:

table(A_i,A_j, Pot),

C in {0,Pot},

DX #= abs(X_i - X_j),

DY #= abs(Y_i - Y_j),

DZ #= abs(Z_i - Z_j),

2 #= DX + DY + DZ #<=> C #= Pot.

where table reports the value Pot(Ai, Aj) from Table 1 and the ‘2’ in the last
line states that the contact distance required is 2 (observe that DX, DY, and DZ

are not constrained in 0 . . . 1 as happens for the definition of next constraints).
PotList is the list of all the Cs defined above. We pass it as parameter since
it is useful for our ad-hoc labeling that we discuss in Section 5.2. It is not
needed in the main program (a mute variable is in fact used) but we use it in
internal calls to the predicate constraint.

The number of constraints globally introduced is O(n2).

4.2 Generate

We can easily define the predicate labeling using the built-in labeling as
follows:

labeling(Primary, Secondary, Indexes, Tertiary_flat, Energy):-

labeling([ff,minimize(Energy)], Tertiary_flat).

The program is highly declarative, and thus it can be used to verify the
correctness of the model. However, according to our tests, it finds solutions
in reasonable time (few minutes) only for input lists of length N ≤ 11.

5 Use of Secondary Structure Information

In this section we show how to exploit the secondary structure information to
optimize the declarative prototype presented in the previous section. More-
over, we introduce some reasonable heuristics for pruning the search space.

As said in Section 3, the secondary structure of a protein can be predicted
with high accuracy (e.g., by the program ‘PhD’ [15]). Information is of the
kind:

helix(i, j): stating that elements i, i+1, . . . , j of the input sequence form an
helix,

strand(i, j): that states that elements i, i + 1, . . . , j are in a β-strand.

Often also information on disulfide bridges is available, either by experi-
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ments or predictions, which can be cast in the form:

ssbond(i, j): that witnesses the presence of a disulfide bridge between element
number i and j (namely, that they are in contact or at least, very closed
each other).

This information is contained in the list Secondary; for our tests, we have
picked it from the Protein Data Bank [10]. It is of course possible to modify
the code so as to use automatically the prediction given by the program PhD

and/or other programs.

In the fcc model it is useful to adopt also another representation for de-
scribing the positions of the aminoacids. We already discussed that, given
two points, only 6 possible directions for the next point are allowed. Thus,
with a list of N − 2 numbers ranging from 1 to 6 we can precisely identify the
space position of each aminoacid. This representation is not well-suited for
computing energy, but it is perfect for imposing constraints regarding helices
and strands. As a matter of fact, helices are sequences of the form: 1-3-4-6-
1-3-4-6-· · · (they can also start from 3, 4, or 6) while β-strands are associated
to sequences of the form: 2-3-2-3-· · · (or 3-2-3-2· · ·)—cf. Fig. 1.

5.1 New Constraints

The predicate constrain is modified by adding the following literals in its
body (N is the length of the input list Primary):

generate_indexes(N,Indexes),

secondary_info(Secondary, Indexes, Tertiary),

indexes_to_coordinates(Indexes, Tertiary).

generate indexes returns the list Indexes = [I3, . . . , IN ] of the variables con-
strained between 1 . . . 6. The predicate secondary info adds the constraints
concerning the secondary structure information. In particular, helix(i, j)
forces the variables of Indexes associated to elements i, i + 1, . . . , j to have
values 1, 3, 4, 6, . . .. 4 Similarly, strand(i, j) forces the variables of Indexes
associated to elements i, i + 1, . . . , j to have values 2, 3, . . .. 5 ssbond(i, j)
introduces the constraint:

abs(Xi − Xj) + abs(Yi − Yj) + abs(Zi − Zj) #=< 6.

The predicate indexes to coordinates relates the constraints on the in-
dexes to the variables denoting positions. The definition is rather technical
and we omit it here due to lack of space. Basically, we need to relate a variable
Ii with domain 1 . . . 6 to the sequence of points

[Xi−2, Yi−2, Zi−2], [Xi−1, Yi−1, Zi−1], [Xi, Yi, Zi]

4 Or, using more relaxed constraints, one of the sequences starting from 1, 3, 4, or 6.
5 Again, we could use 2,3,. . . or 3,2,. . .

10
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that can form only 6 possible angles.

5.2 New Generate

Even with the pruning ensured by the constraints coming from secondary
structure information, the search space remains in general too large to be used
for real-size proteins. We have sets of working examples of length around 20,
but this does not suffice. Thus, we have replaced the labeling predicate
with the predicate local labeling that we explain below in order to further
pruning the search space. Two ideas are used to justify the heuristics employed
for this aim:

(i) It is not frequent that elements that are distant in the primary structure
affect sensibly the contacts on the closer elements. This allows us to
compute first some local optimal conformations and then propagate this
information.

(ii) Each time a fixed number of position values have been instantiated, we
evaluate the partial energy and, possibly, decide to cut the search tree.
The rationale behind this heuristic is the fact that the global minimum
energy conformation must be compatible with locally low energy con-
formations. Thus, conformations that have high partial energies can be
discarded.

As far as point (i) is concerned, we manage the instantiation procedure so
as to locally optimize subsequences in which known secondary structures have
been recognized. In this way, we force the relative position of the elements of
the subsequence analyzed. This partial structure is rigid and as such it can
be inserted in the whole minimization process.

More in detail, let Indexes be the list of variables that will store the various
angles. At a certain point of the computation some of them are instantiated
(due to domain reduction or a previous partial labeling), other are still not
instantiated. The situation is therefore of the form:

Indexes = [(v̄0), c̄1, v̄1, . . . , c̄h, (v̄h)]

for some h ≥ 0, where v̄i denotes a list of unbounded variables, c̄i a list of
ground values. v̄0 and v̄h can be the empty list (e.g., when all the variables
in Indexes are instantiated). The predicate admissible sub finds all the
sublists of the form:

[c̄i, v̄i, c̄i+1, v̄i+1, c̄i+2]

If no tuples of this form occur in Indexes (e.g., when Indexes = [v̄0]), some
particular cases have been studied. Then the sublist SubIndexes that maxi-
mizes the value: |c̄i|+ |v̄i|+ |c̄i+1| − 2 · |v̄i| is chosen (in other words, the most
constrained sublist). If in the most constrained sublist there are too much
variables (e.g., more than 10) we cut the sublist in order to leave only 10 free
variables. Then we find the best folding of the local sublist. The folding of a
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subsequence is called a phase.

The heuristic (ii) is implemented as follows. If the number of variables of
the selected subsequence is less than 6, then we call the built-in

labeling([ff,minimize(Energy)], SubIndexes).

Otherwise, we have developed an ad-hoc labeling. The choice of the variable
is first-fail and leftmost, as in the built-in case described above. After each
instantiation of k variables in this phase we:

• Retrieve the minimum value Val already computed

• Retrieve the number To do of variables to be instantiated in this stage

• Compute the number Done of variables instantiated in this phase

• Compute the energy value Valint forced by the contacts of the already known
elements

We continue the solution search in this branch if:

Valint #< integer(ξ ∗ Val ∗ (Now Done/To do))

Experimentally, we have set k = 5 and ξ ≤ 0.3. This heuristics has the
drawback of performing a partial computation for Valint. A constraint-based
heuristics based on the same ideas that allows to avoid that computation uses
the constrained global variable Energy:

Energy #< integer(η ∗ Val ∗ (Now Done/To do))

to be used with η ≤ 1.2 (in the tests: η = 1.1). We have used both the
checks. We have implemented this heuristic using assert and retract for
storing/retrieving the minimum energy Val temporarily found.

6 Experimental Results

We have tested our program on some small protein model systems. The names
we have used are their identity codes in the Protein Data Bank [10] where their
primary and secondary structures, as well as some other relevant information
can be obtained. Computational results are reported in Table 2 (we have
used SICStus PROLOG 3.9.1 [9] and a—rather old—PC Pentium III 500
MHz). More details on the computation time and results can be found at:
http://www.dimi.uniud.it/∼dovier/PF/pf clp.html.

In Table 2, “b” stands for ssbond, “s” for strand, and “h” for helix. The
quality of the prediction has been judged by the root mean square deviation
(RMSD) of α-carbons in optimally superimposed structures extracted from
the Protein Data Bank. In the protein model systems 1LE3, 1PG1, and
1ZDD terminal protecting groups have been neglected.

In addition to small peptide model systems we have studied viscotoxin A3
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Name N Secondary Info Time Energy RMSD

1LE0 12 [s(2,4),s(9,11)] 2m.30s -4085 4.1 Å

1KVG 12 [b(2,11),s(2,4),s(9,11)] 2m.30s. -6247 3.8 Å

1LE3 16 [s(2,6),s(11,15)] 12m.30s. -4338 5.3 Å

1EDP 17 [b(1,15),b(3,11),h(9,15)] 33m.30s -19416 4.7 Å

1PG1 18
[b(6,15),b(8,13),

s(4,9),s(12,17)]
26s. -2907 4.2 Å

1ZDD 34 [b(5,34),h(3,13),h(20,33)] 47m. -19843 4.3 Å

1VII 36 [h(4,8),h(15,18),h(23,32)] 1h.31m. -24725
10.0 Å

7.5 Å (4-32)

1E0M 37 [s(7,12),s(18,22),s(17,19)] 19h.17m. -21944
7.2 Å

5.9 Å (7-22)

2GP8 40 [h(6,21),h(26,38)] 6h.37m. -12361 5.0 Å

1ED0 46

[b(3,40),b(4,32),b(16,26),

h(7,18),h(23,30),

s(2,4),s(33,34)]

17h.50m. -29916
7.3 Å

3.7 Å (7-30)

1ENH 54
[h(8,20),h(26,36),h(40,52),

s(22,23)]
3h.24m. -24859

10.0 Å

5.4 Å (8-52)

Table 2
Experimental Results

(1ED0) which is a 46 residue protein and engrailed homeodomain (1ENH), a
DNA-binding domain of 54 residues, which display a somewhat more complex
structure. In the case of 1ENH we have also executed a computation with
a lower value of the parameters ξ and η (see Section 5.2) used to prune the
search tree. Precisely, with ξ = 0.1 and η = 0 (actually, we have removed
the test concerning η) we have obtained a solution with an energy of -24859
instead of the one with -20261 obtained with the other parameters. For other
cases, no particular differences emerge by decreasing those parameters, but the
computations become slower. A stereoview of the results obtained for 1ZDD
is reported in Figure 2 in order to represent graphically the output of the
computation (obtained using the program Whatif [18] on the Prolog output)
and to compare it with the known structure deposited in the PDB (helices are
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depicted as cylinders). 6

Fig. 2. Stereoview of 1ZDD protein

It is remarkable that for most small peptides ranging in length from 12 to
40 residues the RMSD is rather low, typically around 5.0 Å. For the home-
odomain the superposition of residues 8–52 belonging to the core region be-
tween predicted and actual structure is as low as 5.4 Å. For viscotoxin A3 the
different orientation of end parts of the molecule lead to a RMSD of 7.3 Å,
while the RMSD obtained superimposing the helical region (residues 7–30) is
extremely low (3.7 Å).

7 Future Work and Conclusions

In this paper we have formally defined the protein folding problem as a min-
imization problem using a recently developed table of potentials. We have
implemented it in CLP (FD) and we have sensibly optimized the code using
information from secondary structure and two ad-hoc heuristics. The work
done could be a starting point for further analysis of the same problem. The
high declarativeness of the code allows an easy implementation of new ideas,
certified by biological considerations, for introducing new constraints and/or
heuristics. In the immediate future we plan to use the information coming
from the folding in the HP model [2] as an initial suggestion for starting the
solution search and/or for pruning the search tree. Other constraints can be
inserted, such as side-chains constraints [17] or other topological constraints.
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6 To view the stereo image, put it close to your eyes, and then slowly move the paper away
from your face, trying to keep the images superimposed until you can focus on them. You
will see three images: the middle one should be a 3D image.
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