
Computable Set Theory
and

Logic Programming

Agostino Dovier
Dipartimento di Informatica,

Università di Pisa,
Corso Italia, 40 – 56100 PISA

dovier@di.unipi.it

Contents

1 Introduction 1
1.1 Why this dissertation? 1
1.2 Overview of the thesis 10

I Computable Set Theory for Logic Program-
ming 13

2 Preliminaries 15
2.1 First order logic . 15
2.2 Unification and substitutions 19
2.3 Basic decidability definitions 21

3 Basic Aggregate Theories 23
3.1 Pure theories . 24

3.1.1 Lists . 31
3.1.2 Multi sets . 33
3.1.3 Compact lists . 42
3.1.4 Sets . 45

3.2 Hybrid theories . 56
3.2.1 Lists . 67
3.2.2 Multi sets . 68
3.2.3 Compact lists . 70
3.2.4 Sets . 72

4 Unification 77
4.1 Complexity bounds . 78

i

ii CONTENTS

4.1.1 NP-hardness of multi-set unification 78
4.1.2 NP-hardness of compact-list unification 79
4.1.3 NP-hardness of set unification 79

4.2 À la Robinson: the well-founded case 80
4.2.1 Hybrid lists unification 81
4.2.2 Hybrid multi-sets unification 84
4.2.3 Hybrid compact-lists unification 93
4.2.4 Hybrid sets unification 96

4.3 The non-well-founded case 106
4.3.1 NWF-list unification 108
4.3.2 NWF-compact-list unification 110
4.3.3 NWF-set unification 113
4.3.4 NWF-bag unification 132

4.4 A minimality analysis . 140
4.4.1 Sample problems 142
4.4.2 Solutions computed by a naive algorithm 154
4.4.3 The algorithm SUA 162

II Logic Programming with Sets 169

5 Constraints 171
5.1 Membership . 172
5.2 Negated Equality . 173
5.3 A full system for handling hybrid and well-founded set

constraints . 176

6 The CLP language {log} and the relation between in-
tensional sets and negation 191
6.1 Preamble . 192

6.1.1 Which representation of sets? 193
6.1.2 Which primitive operations/relations on sets? . . 195
6.1.3 CLP (S) . 196

6.2 The Language {log} . 197
6.3 Compiling intensional sets 201

6.3.1 Intensional sets and Negation 205
6.3.2 Negation as Failure 205

CONTENTS iii

6.3.3 From Negation as Failure to Constructive Negation207
6.3.4 Constructive Negation: an overview 209
6.3.5 Constructive Negation in {log} 212
6.3.6 Generalizing Chan’s Result 214
6.3.7 Undecidability Results 217

7 Programming in Logic with Sets 221
7.1 Well founded sets . 221

7.1.1 Programming with extensional sets 222
7.1.2 Programming with intensional sets 226

7.2 Non-well-founded sets . 229
7.2.1 Automaton matching 231
7.2.2 Type finding . 232

A 235
A.1 Flatland . 235

A.1.1 Mono-dimensional theories 235
A.1.2 Zero-dimensional theories 240

A.2 The foundation axiom 241
A.3 Finiteness . 245
A.4 RUQs elimination . 247
A.5 Translation of hybrid unification into pure set unification 250
A.6 Benchmark tables . 262

iv CONTENTS

Acknowledgements

I would like to thank several people for making my four years as a
studente di dottorato a rewarding and valuable experience.

Verbose and a bit baroque in writing and (apparently) theoretically-
oriented in his research the former, direct and linear in writing and
application-oriented the latter, Eugenio G. Omodeo and Gianfranco
Rossi crossed their academic careers at the University of Udine in the
Fall of 1989. At the same time two young students were researching
their Masters’ theses allowing them to start a research walk. This was
the beginning of the {log}1 project: an effective usable Logic Program-
ming language dealing with set entities. The longing to reach such a
goal and the friendship among us have been invigorated by the difficul-
ties related to our gypsy style of life imposed by academic constraints.
I owe much to both of them. They taught me (or, at least, desper-
ately tried to teach me) to measure each single word I write, to restrain
my haste for submitting preliminary papers, and to persevere when
the judgement of referees and of commissari d’esame was not the one
expected. For these reasons, and many others, I wish to thank them.

People can be divided into two categories: the constraint generators
and the constraint solvers. My advisor Alberto Policriti is the greatest
constraint solver I have ever known. Most of the problems that this
thesis deals with would probably still be open without our long, Sat-
urday morning discussions. I will always remain indebted to him both
for his ability to always find time for me in his full schedule and for his
subtle work aimed at allowing a lasting collaboration.

The research carried on in this thesis would not have been possible

1Read ‘setlog ’

v

vi CONTENTS

without Giorgio Levi’s confidence in my abilities and his unconditional
help.

One of the most immeasurable academic rewards is co-working on
one project. I have had the pleasure of co-writing papers with a number
of people. Thank you Davide Aliffi, Puri Arenas-Sànchez, Paola Brus-
coli, and, only lexicographically last, my old companion of many battles
and dear friend, Enrico Pontelli (one of the two above-mentioned young
students).

I am grateful to the Dipartimento di Informatica dell’Università di
Pisa for the facilities it has provided to me and for the possibility to
learn the basic knowledge of a lot of research fields. I am also grateful
to the Dipartimento di Matematica ed Informatica dell’Università di
Udine for providing enough hardware to allow me to conclude the thesis
close to my advisor (and to my wife).

A special ‘thank you’ to my colleagues Dorella Bellè, Stefano Guer-
rini, Marino Miculan, Stefano Mizzaro, Angelo Monti, Paola Quaglia,
Alessandro Roncato, Luca Roversi, and Enea Zaffanella, for the helpful
discussions and the sagacious advice in several fields.

Michael G. Seaman generously spent part of his summer’95 vacation
in the (hopeless) enterprise to improve the English of my thesis. All
mistakes the reader can find were added by the author after the autumn
equinox.

I took advantage of the many useful comments and spurs of my ref-
erees Egon Börger, Bharat Jayaraman, Giorgio Levi, Andrea Maggiolo-
Schettini, Paolo Mancarella, and Mario Rodriguez-Artalejo during the
presentations of preliminary versions of my thesis. In particular, I wish
to thank Mario Rodriguez-Artalejo for his very careful reading and
proof-checking which allowed me to greatly improve the quality of the
presentation. I would like to thank Gopal Gupta for setting Enrico free
to work with me, although engaged in the fascinating ACE project.

Finally, I benefited by a lot of untraceable e-mails by colleagues
from all over the world.

On a more personal level, I owe a lot to a small number of people;
I prefer to settle my large debt with them in a private setting. Non
posso tuttavia non citare i miei genitori, che hanno sempre accettato le

CONTENTS vii

mie scelte economicamente incomprensibili, and Antonella, who made
my life unpredictable.

Pisa, March 1996

viii CONTENTS

Chapter 1

Introduction

This dissertation is about the integration of Computable Set Theory and
Logic Programming. Elementary theories of aggregates concerning lists,
multi sets (in which ordering is immaterial), compact lists (in which
the ordering of elements is important, while contiguous occurrences
of the same element do not count), and sets are analyzed in various
frameworks. Logic Programming languages dealing with such high-
level data structures can be obtained as instances of the Constraint
Logic Programming scheme and are studied in detail in the case of sets.

1.1 Why this dissertation?

Apart from meaningless answers, such as ‘Why not? ’ or ‘Because I have
to achieve my PhD degree! ’, there are very good reasons which justify
the researches presented in this thesis. Before explaining my personal
point of view, I like to give voice to more authoritative researchers.

Symbolic logic was originally conceived by Leibniz, possi-
bly in analogy with symbolic algebra, as a tool to be used
computationally. This same pragmatic aim has been as-
sociated with several of the most significant periods of ad-
vance of logic during the more than two centuries that have
passed since Leibniz’s original suggestions: particularly with
Boole’s systematization of elementary propositional calculus
and with the enthusiastic 1920s efforts of Hilbert and his

1

2 CHAPTER 1. INTRODUCTION

school to demonstrate the full mechanizability of mathemat-
ics by solving the predicate decision problem. However, the
decisive refutation of Hilbert’s attempt by the famous results
of Gödel and Church concerning unsolvability and undecid-
ability pushed most later work in logic, up to our own day,
in a much less pragmatic direction; in consequence of their
brilliant insights, logic took on a largely negative focus, and
became principally a tool for demonstrating impossibility re-
sults of all kinds.

The rise of the computer in the mid and late 1940s be-
gan to revive Leibniz’s original emphasis. Propositional
calculus, which had been used very successfully for some
time as a computational tool for switching circuit design,
proved easy to mechanize. It was also clear tat the full
predicate calculus could also be mechanized (although here
a semi-decision procedure was the best that one could hope
for). Early expectations that techniques such as resolution
would prune predicate proof searches very effectively then
focused the energy and enthusiasm of artificial intelligence
researchers on the possibility that a wide variety of intelli-
gent actions could be realized by recasting them as predicate-
calculus proof searches. Even though this hope has been
frustrated by the exponentially large searches that plague
the general predicate case even after application of the best
available proof-search pruning techniques, the efforts it in-
spired have left behind a continuing, and steadily growing,
stream of more cautiously conceived research . . .

J. T. Schwartz, Foreword to [24]

It is well-known that any mathematical theory can be em-
bedded in set theory. It hence follows that an automated
theorem-prover for set theory can be used as an all-purpose
theorem prover, or as a useful component of a program that
checks the correctness of mathematical proofs. Also, various
specialized dialects of set theory—often dealing with finite
sets only—have been designed and successfully exploited for
high-level specifications of algorithms, and, more generally,

1.1. WHY THIS DISSERTATION? 3

for expressing in an unambiguous form problems that one
intends to eventually submit to computers. It is therefore le-
gitimate to expect that the automation of deduction methods
for set theory will be very helpful . . . Decidability results re-
garding various portions of set theory have been obtained in
the last ten years. The research that has led to such results
aims at laying the foundation stones upon which a formal
set theory, both neat and orientated towards the needs of
automated deduction, can develop. . . .

D. Cantone and E. G. Omodeo, Chapter 1 of [24]

Constraint Logic Programming (CLP) began as a natural
merger of two declarative paradigms: constraint solving and
logic programming. . . . the power of CLP cannot be obtained
by making simple changes to LP systems. . . . The crucial
insight the CLP scheme . . . was that a logic-based program-
ming language, its operational semantics, its declarative se-
mantics, and the relationship between these semantics could
all be parametrized by a choice of domain of computation
and constraints. The resulting scheme defines the class of
languages CLP (X) obtained by instantiating the parameter
X There are several . . . constraint domains of interest
. . . They include . . . domain of finite sets [42] . . .

J. Jaffar and M. J. Maher, [54]

If mathematics, and hence algorithms, can be embedded in set the-
ory, why not using sets in programming languages? Sets are, in fact,
a widely-recognized data structure for specifying the requirements of
a problem (cf., e.g., the specification language Z—[102]). Sets can be
conveniently employed in rapid software prototyping, where the avail-
ability of high level data and operation abstraction are the key features
of the implementation language. In spite of such acclaimed usefulness,
only relatively few programming languages provide sets as primitive
objects; among them,

• the procedural languages Setl ([96]) and Setl2 ([60]),

4 CHAPTER 1. INTRODUCTION

• the functional languages Miranda ([108]—it exactly provides
ZF-expressions, i.e. lists defined by their property, in the style
of Zermelo-Fraenkel set theory) and Me Too ([82]),

• the deductive databases language LDL ([15]),

• the logic-equational languages SEL ([55]) and SuRE ([56]),

• the new general logic programming language Gödel ([51]), and

• the Constraint Logic Programming languages Clps ([68]), Con-
junto ([46]), and {log} ([37, 36]).

Although very useful for programming, most of the languages deal-
ing with set entities lack in an adequate semantics definition for them;
moreover, free nesting of sets is explicitly forbidden. The highly declar-
ative nature of logic programming languages makes them particularly
well-suited for extensions with set entities; in particular, the semantic
analysis of such extensions is more feasible and the non-determinism in-
side such languages enables an easy implementation of the satisfiability
algorithms for set formulae. The first proposals in this direction come
from the field of deductive databases (see, e.g., [66, 15]). In particular,
the LDL language, presented in [15], is a deductive database language,
syntactically similar to Prolog, and capable of handling intensional
definitions of set formers, very useful for high-level queries. Opera-
tional semantics for building intensionally defined sets is bottom-up;
this allows to dodge the direct facing of the set unification problem.
Nevertheless, the matching problem for set terms is itself NP-complete
(cf. § 4.1).

More recently, a number of papers have addressed the problem of
adding set entities to logic programming in wider settings.

The logic-equational language SuRE ([56])1 that can be seen as a
natural continuation of the language SEL ([55]), has been recently in-
troduced to provide a unifying framework which subsumes both equa-
tional and logic programming and is able to deal with set entities.

1SuRE stands for Subsets, Relations, and Equations, but also for the affirmative
answer to the question: Can programming be declarative and practical?

1.1. WHY THIS DISSERTATION? 5

In the preliminary definition of the language {log} ([37, 38]), ex-
tending (pure) logic programming with set entities, particular care has
been taken in describing the set theory both axiomatically and model-
theoretically. SLD-resolution has been modified ad hoc in order to cap-
ture the semantics of the entities introduced. Soundness and complete-
ness of the extended resolution procedure are proved extending classical
results; moreover, being an ad hoc extension, any simple change in the
desired data structures requires to start again such tedious proofs.

Constraint Logic Programming (see the survey paper [54]) is a gen-
eral framework which, once instantiated to a particular domain of com-
putation, automatically produces an effective logic programming lan-
guage whose answers can contain constraints. Constraints are, typically,
conjunctions of positive and negative literals, but, more generally, a
constraint can be any first-order formula of a given language. (In stan-
dard logic programming only positive literals, in the form of explicit
substitution, are returned.) In this way it is possible to concentrate
the efforts on developing algorithms for solving constraints written in a
given language, namely, to check the satisfiability of them with respect
to a given theory; moreover, opportune normal forms must be cho-
sen. If the algorithms developed to perform this check satisfy a (small)
number of requirements, then the extension of the SLD resolution au-
tomatically obtained guarantees soundness and completeness results.
Declarativeness and efficiency are inherited from the data structure
inserted in the general scheme and from the satisfiability algorithms
presented, respectively.

It is not surprising that, once this concepts have become familiar to
researchers, CLP languages with sets arose. In particular the language
{log} has been revised from this point of view (see [42, 33] and also
for the implementation [40]). Two practically oriented approaches to
Constraint Logic Programming with Sets are the Clps system ([68, 69])
and the language Conjunto ([46]).

The CLP scheme is hence a parametric language. The guideline of
this thesis is a parametric approach to extensions of Logic Program-
ming with aggregate (lists, multi sets, compact lists, and sets) entities.
Having chosen the CLP (X) as host framework, the efforts are concen-
trated on the analysis of the parameter X . Here, and this is one of

6 CHAPTER 1. INTRODUCTION

the most important steps ahead with respect to the other proposals
(even the CLP -based, but application-oriented Clps and Conjunto)
is that the semantics of sets given using a first order axiomatization.
Moreover, the axiomatizations of the various theories of aggregates pre-
sented is parametrically given. Namely, adding or removing one axiom,
it is possible to switch from a theory to another (for instance, from sets
to multi sets). In addition, the axiomatization is chosen to make natu-
ral the passage from the pure case (e.g. pure set theory) to the hybrid
case—when aggregate objects can be freely combined with standard
terms of Logic Programming. A careful choice of the axiomatization
will reflect also in a parametric development of the unification and con-
straint solving algorithms for such theories. In this way, by taking care
that the algorithms fulfill the CLP requirements, with simple modifi-
cations it is possible to obtain several CLP languages of which {log} is
only an example. Although simple, the theories presented can be con-
sidered as minimal cores for more sophisticated theories of aggregates.
We will adopt (cf. § 3.2) the following notations:

• WF and NWF stand for well-founded and non-well-founded, respect-
ively;

• lists, bags, clists, and sets are abbreviations for the (mini-
mal) theories of lists, multi sets, compact lists, and sets, respec-
tively.

Due to the inherent difficulty of algorithmic handling of the data
structure set, particular care has to be taken to simplify as much as
possible the axiomatization (having always in mind the requirements
of the Constraint Logic Programming framework). For these, as well
as for historical reasons, among the various possibilities to represent
theories of aggregates (for a detailed description, see § 6.1.1), we have
preferred the simplest one: a list representation. The cons operator
[· | ·] in set theoretic language is constituted by the with symbol {· | ·}
whose behavior is regulated by the axiom

(W) x ∈ {y | z} ↔ (x
.
= y ∨ x ∈ z)

With this representation, first introduced by Bernays in [17], a finite set
{t1, . . . , tn} will be represented in the theory by n element insertions

1.1. WHY THIS DISSERTATION? 7

to the emptyset ∅; more concretely, by the term

{t1 | {t2 | · · · {tn | ∅} · · ·}}

In other words, the semantics associated with the binary set constructor
symbol {· | ·} is the following:

{t | s} = {t} ∪ s .

Although apparently too simple, this representation of sets enables one
to depict all hereditarily finite sets (those sets whose elements are them-
selves hereditarily finite); in particular, it allows one to state the clas-
sical definition of numerals à la Von Neumann:{

0 = ∅
n+ 1 = {n |n}

Thanks to the list representation chosen, the usual extensionality ax-
iom, stating when two sets are equal (cf. e.g. [64]):

(E) x
.
= y ↔ ∀z (z ∈ x↔ z ∈ y) ,

which works in any abstract context (finite sets, as well as infinite sets
of any infinite cardinality), can be replaced by more computationally
oriented axioms. Such axioms will be shown to be equivalent to (E)
for the set terms (i.e. terms denoting sets) expressible inside a Logic
Programming Language. To give a taste of this possibility, and to
guarantee that the theory provides the desired semantics for the set
constructor symbol, two equational properties must hold:

(E1) ∀xyz {x, y | z} .
= {y, x | z}

(E2) ∀xz {x, x | z} .
= {x | z}

Axioms (E1) and (E2), state the permutativity and the (left) absorption
properties of the set constructor symbol, respectively.

From an equational point of view, removing one (or both) from
between axioms (E1) and (E2), the corresponding theory becomes a
weaker theory (the number of objects that cannot be considered equal
decreases). In particular, allowing only the permutativity property
(E1), a multi-set theory arises. Accepting only the absorption prop-
erty (E2), the result is a theory of lists in which contiguous occurrences
of the same element are immaterial. We will refer to such entities as

8 CHAPTER 1. INTRODUCTION

compact lists . Clearly, allowing none of them the standard list theory
of Logic Programming is considered; with the word aggregate we will
refer to any of the four data structures.

A first test for an axiomatization of a theory of aggregates devoted
to Logic Programming is to develop a unification algorithm; unifica-
tion is in fact the basic operation for the implementation of resolution;
furthermore, it plays an important role in constraint solving. This is
also a reasonable test from a logical point of view: considering an ax-
iomatic set theory (e.g., WF sets, our minimal theory of well-founded
sets) in which the extensionality axiom (E) defined above holds, two
set expressions s1 and s2, containing variables y1, . . . , yn, are unifiable
if and only if

WF sets ` ∃y1 . . . yn∀x (x ∈ s1 ↔ x ∈ s2) .

Solving the unification problem for such a theory means that the va-
lidity problem for (∃∗∀) is decidable. In [84, 85, 87] decidability and
completeness of the class of formulae (∃∗∀) for a minimal theory of sets
is presented. The theory consists of the axiom (N) stating the exis-
tence of the emptyset, the axiom (W) which regulates the behavior of
the set constructor symbol, the extensionality axiom (E), and the reg-
ularity (foundation) axiom (R) (axiom (N) will be introduced in § 3.1,
while axiom (R) is deeply analyzed in § A.2). This result extends the
result of Gogol ([47]) which proves the completeness in ZFC of such
class of formulae.2 Any CLP interpreter should be able to decide the
satisfiability of a negative literal. This purpose is logically equivalent
to

Sets ` ∃y1 . . . yn∃x (x ∈ s1 ↔ x 6∈ s2),

a simpler (∃∗) problem.
For these reasons, we study in all details the unification problem

for all the analyzed theories of aggregates. The solutions to the con-
straint satisfaction problem will be also presented; particular care will
be devoted to the (most difficult) set case.

2Notice that decidability and completeness of the class (∃∗∀) implies decidability
and completeness of the class (∀∗∃), class proved to be undecidable in the general
case of classical predicate calculus (cf. [71]).

1.1. WHY THIS DISSERTATION? 9

By studying the unification problem for the various theories of
aggregates, a certain number of interesting characteristics has been
pointed out:

• all unification problems for theories of aggregates are NP-hard,
save the list one (which is linear). Furthermore, we produce a
goal-oriented unification algorithm with a polynomial complexity
on a non-deterministic executor for each of the NP-hard theories
proving them to be NP-complete;

• It is possible to impose that any solution to a finite conjunction of
equations (Herbrand system) requires infinite aggregate objects,
save for the set case. In the latter case the result in [90, 91] states
that a more complex formula is needed;

• the number of most general solutions to a given unification prob-
lem for aggregate objects is always finite; nevertheless, for the
multi set, compact list, and set case, such number grows very
quickly. A combinatorial case-analysis for sets has been per-
formed and an algorithm with a minimal behavior with respect
to the analyzed significant examples has been designed.

In the practice of mathematics very often a set is denoted inten-
sionally, by providing a condition ϕ[x] that is necessary and sufficient
for an element x to belong to it. This intensional definition of a set is
syntactically achieved by a (standard) syntax of the form:

{x : ϕ[x]} .

Observe that, if its semantics were the desired one, the setof extra-
logical predicate of Prolog would be exactly equivalent to such set
former (cf., e.g., [18]).

However, the introduction of intensionally defined sets in set theory
requires one to accept the comprehension schema, which quickly leads
to famous paradoxes such as the Russell’s paradox. Although Russell
paradox can easily be avoided, other pathological situations arise from
the insertion of a (restricted) comprehension schema (namely the sep-
aration axiom—c.f., e.g., [64]) in the axiomatic theory. A different way
to face the problems concerning the (desirable) insertion of intensional

10 CHAPTER 1. INTRODUCTION

set formers in a CLP with sets framework, is the one to rewrite clauses
and goals in which they appear using negation.

I would like to conclude this introductive section with a remark.
While historical works on axiomatization of set theory were motivated
by the purpose of incorporating mathematics inside it, the aim of the
(parametric) axiomatizations presented here is only to provide simple
(parametric) theories for CLP computations. For this reason, the ax-
iomatizations presented are perhaps less interesting and elegant than
the classical ones. However, I hope that the hard work done to provide
a parametric and effective presentation of them will turn out to be a
useful tool for programmers.

1.2 Overview of the thesis

The dissertation is divided into two parts.

The first part (Computable Set Theory for Logic Programming)
is devoted to the axiomatic and model-theoretic analysis of theories
of aggregates. Unification algorithms (together with their complexity
analysis) for them are presented, either for the well founded case, or
more in general, for the non well-founded case.

Entering into more details, Chapter 2 introduces a uniform notation
for well-known concepts of first-order logic. In the first section of Chap-
ter 3, pure theories of aggregates are presented. Adding or removing a
few axioms, theories of lists, multi sets, compact lists, and sets are de-
scribed. In the second section such axiomatizations are combined with
the axiomatization for standard (free) terms of Logic Programming.
Terms and universes which model them will be called hybrid. An inter-
esting comparison between the anti-foundation axiom AFA introduced
by Aczel in [3] and an axiom introduced by Maher in the context of
infinite terms in [74] is performed. Moreover, formulae forcing infinite
solutions to a system of equations in the aggregate theories, save the
set one, are discussed.

Chapter 4 faces the unification problem for hybrid theories of ag-
gregates defined. The choices performed to describe parametrically the
axiomatizations, allow a parametric development of the unification al-

1.2. OVERVIEW OF THE THESIS 11

gorithms. In § 4.1 the unification problem for the multi set, compact
list, and set case are shown to be NP-hard; in § 4.2, unification algo-
rithms à la Robinson are described for all the theories analyzed. They
are suitable for a Logic Programming implementation; the unification
algorithm for hybrid sets (presented in [37, 36]) is used by the Gödel
language ([51]). Moreover, its implementation on Warren abstract ma-
chine presented in [40], has been useful for the implementation of the
SuRE language ([56]). In § 4.3, unification algorithms for the non well
founded case (that can, however, be used also for the well-founded one)
are described for all the theories analyzed. In particular, showing the
complexity of them, the NP-completeness of the multi-set, compact-
list, and set unification problem is proved. Any set unification problem
needs (in general) a large number of most general unifiers to describe
the set of all possible solutions. The capability of returning (if possi-
ble) exactly such set of mgu’s is an important property (the minimality
property) for a unification algorithm. In other words, neither repeti-
tions of solutions nor instances of other solutions are welcome. § 4.4
faces such problem, providing a reasonable set of sample problems for
testing set unification algorithms, and briefly presenting a set unifica-
tion algorithm minimal for all of them.

The second part (Logic Programming with Sets), is oriented to the
definition of a CLP language dealing with theories of aggregates. The
analysis will be performed in details for the (more difficult) set case;
however, the basis for repeating such design with other theories are
presented: the parametric presentation of axiomatizations makes easy
this work.

In Chapter 5 algorithms for constraint handling (conjunctions of
positive and negative literals on the predicate symbols ∈ and

.
=) are

presented. In particular the (hybrid) set case is analyzed in all details.
Chapter 6 presents the CLP language {log}, an effective language deal-
ing with hybrid sets, obtained as instance of the CLP scheme on the
theory WF sets described in § 3.2.4. Also intensional set definitions are
allowed in {log}: the axiomatic theory is not extended with the (too
strong) separation axiom (cf. end of § 1.1). We describe a translation
of such entities using negation. The results obtained using Negation as
Failure allow to compare the power of intensional sets of {log} with the

12 CHAPTER 1. INTRODUCTION

set grouping of LDL ([15]), and with the subset-equational definitions
of the language SEL ([55]); see details of such a comparison in [41].
We show how to extend Constructive Negation with set entities ob-
taining a wider class of accepted intensional set definitions. Chapter 7
presents some examples of the declarativeness of the language {log}.
Some immediate applications for the non-well-founded set unification
algorithm (equivalence and completion of automata, type finding) end
the chapter.

The Appendix deepens some marginal theoretical results regarding
very simple set theories, the foundation axiom, and the finiteness ax-
iom. Then it is shown how restricted universal quantifiers are a purely
syntactical extension of the language {log}. The last part of the Ap-
pendix refers to unification; in particular, the rewriting of an hybrid set
unification problem into a pure set unification one and tables reporting
the number of independent unifiers that any set unification algorithm
must return to given set unification problems, are presented.

Part I

Computable Set Theory for
Logic Programming

13

Chapter 2

Preliminaries

The aim of this chapter is mainly to give a uniform presentation of
well-known concepts that are not always uniformly presented in the
literature. Relevant references are cited.

2.1 First order logic

Definition 2.1 A First Order Language L is determined by the
set of its predicate symbols Π, together with the set of its functional
symbols Σ. ar : Π∪Σ −→ ω is said to be the Arity Function and is
such that ar(p) > 0 for each p in Π. A set of symbols together with its
arity function ar is called a Signature. Moreover, we assume there
is a denumerable set V—disjoint from Π and Σ—of logical variables.
The arity of variables is 0.

Following [73] (Ch. 6), we give the following definition:

Definition 2.2 An Ordered Tree is a set T of lists of non-negative
integers such that

if [a1, . . . , an, j] ∈ T then
[a1, . . . , an] ∈ T and [a1, . . . , an, i] ∈ T , for all i < j.1

A Term over a signature S is a mapping t : T −→ S, where

• T (= dom(t)) is a nonempty ordered tree, and

1We identify [[a1, . . . , an], an+1] with [a1, . . . , an, an+1], to ease notation.

15

16 CHAPTER 2. PRELIMINARIES

• for all ν in T , ar(t(ν)) = | { i : [ν, i] in T } |, where [ν, i] stands
for the i-th son of ν.

If S is Σ, then the term is said to be ground. If S is Σ ∪ V, and at
least one node is labeled with an element of V, then the term is said to
be non-ground.

Definition 2.3 Given two terms t1, t2 over a signature Σ, we say that
t1 is a Subterm of t2 (t1 � t2) if there exists a tuple [a1, . . . , an] of
non-negative integers (n ≥ 0) such that

t1(x) = t2(append([a1, . . . , an], x))

for every x ∈ dom(t1). t1 is a Proper Subterm of t2 if t1 � t2 and
t1 6≡ t2 (i.e. exists x ∈ dom(t1) such that t1(x) 6= t2(x)).

Definition 2.4 The Herbrand Universe HΣ is defined to be the set
of (ground) terms t over Σ such that dom(t) is finite. The Complete
Herbrand Universe H̄Σ is defined to be the set of all terms over Σ.

τ(Σ) denotes the set of (ground) terms t over Σ such that dom(t)
is finite, and τ(Σ ∪ V) denotes the set of terms t over Σ ∪ V such that
dom(t) is finite, respectively. Clearly, τ(Σ) is the same as HΣ.

Given a term t, one can ‘fold’ it by fusing two nodes ν, µ of t into a
single node whenever the subterms rooted at ν, µ are equivalent to each
other. This will lead to a rooted multi-graph Gt retaining information
of all essential features of t: the picture of t, as we name it. If there
are no infinite paths in Gt, this indicates that the original t was already
finite: this is the case of an ordinary term. When, less demandingly,
Gt is finite, t (which might be infinite) is said to be a rational term. In
other words,

Definition 2.5 A Rational Term is a term with finitely many dif-
ferent subterms.

Generally speaking, the complete Herbrand universe is not consti-
tuted by algorithmic data structures. However, if one restricts one’s
own attention to rational terms and represents them suitably (e.g., by
their graph pictures), then, assuming the signature Σ is finite, even
infinite terms can be algorithmically construed and manipulated.

2.1. FIRST ORDER LOGIC 17

Definition 2.6 A Formula for L(Π,Σ) is inductively defined as fol-
lows:

• p(t1, . . . , tn), where p ∈ Π, ar(p) = n, and t1, . . . , tn ∈ τ(Σ∪V) is
a formula (atomic formula, or Atom, or Positive Literal);

• if ϕ is a formula, then (¬ϕ) is a formula (if ϕ is an atom, then
(¬ϕ) is called a Negative Literal);

• if ϕ1 and ϕ2 are formulae, then (ϕ1 ∨ ϕ2) is a formula;

• if ϕ is a formula and x ∈ V, then (∃xϕ) is a formula.

As usual, we will remove parentheses when they are not needed for
the parsing, and, moreover, we will use the formulae ϕ1 ∧ ϕ2, ϕ1 →
ϕ2, ϕ1 ← ϕ2, ϕ1 ↔ ϕ2, ∀xϕ1, (∀x ∈ y)(ϕ), and (∃x ∈ y)(ϕ), as a
denotation for ¬(¬ϕ1∨¬ϕ2), ¬ϕ1∨ϕ2, ϕ2 → ϕ1, (ϕ1 → ϕ2)∧(ϕ2 → ϕ1),
¬(∃x¬ϕ1), ∀x (x ∈ y → ϕ), and ∃x (x ∈ y ∧ ϕ), respectively.2

Definition 2.7 A Model for L(Π,Σ) is a pair M = 〈D, I〉, where

• D is a non-empty set, called the Domain of M ;

• I is a mapping, called the Interpretation function, that asso-
ciates:

– to any constant symbol c ∈ Σ some member cI ∈ D;

– to every function symbol f ∈ Σ, ar(f) = n > 0, some n-ary
function f I : Dn −→ D;

– to every relation symbol p ∈ Π, ar(p) = n > 0, some n-ary
relation pI ⊆ Dn.

For instance, given Π = { .=} and a signature Σ containing at least
one constant symbol, the Herbrand Model is defined as follows:

• the domain D is the Herbrand Universe HΣ, the set of all ground
terms generated by Σ,

2For the last two cases (restricted quantifiers), the membership predicate ∈,
ar(π) = 2, is assumed to belong to Π.

18 CHAPTER 2. PRELIMINARIES

• tI = t for any ground term t,

• s .
=I t if and only if sI and tI are syntactically equal.

We recall from [27] a few basic notions about submodels.

Definition 2.8 Let A and B be two models of a theory T on the lan-
guage L(Π,Σ). A is a Submodel of B (A ⊆ B) if

• A ⊆ B, and

• for any p ∈ Π with ar(p) = n, pA = pB ∩ An, and

• for any f ∈ Σ with ar(f) = n > 0, fA = fB ∩ An+1, and

• for any constant c ∈ Σ, cA = cB.

A is an Elementary Submodel of B (A � B) if

• A ⊆ B, and

• for any (Π,Σ)–formula ϕ such that the set of free variables of ϕ,
FV (ϕ) = {x1, . . . , xn}, and for any a1, . . . , an ∈ A

A |= ϕ[a1, . . . , an] if and only if B |= ϕ[a1, . . . , an]

A theory T is Model-Complete if, given two models A and B of T ,
A ⊆ B implies A � B.

Definition 2.9 When we refer to First-Order Logic with Equa-
lity we assume the standard equality axioms (see, e.g., [79])

(
.
=1) x

.
= x

(
.
=2) x

.
= y → (ϕ→ ϕ′)

where ϕ is any first order formula—x and y are not bounded in ϕ—and
ϕ′ is obtained from ϕ by replacing zero or more occurrences of x with
y, are in the theory.

2.2. UNIFICATION AND SUBSTITUTIONS 19

2.2 Unification and substitutions

Let T be an equational theory (namely a first-order theory whose ax-
ioms are given by universally quantified equality atoms) predicating
about symbols from Σ, and let =T be the congruence relation induced
between terms by T . It is a fundamental and straightforward result in
universal algebra and unification theory (cf., e.g., [101]) that any func-
tion σ : W → τ(Σ ∪ V) defined on a subset W of V uniquely extends
into a Σ-endomorphism σ of τ(Σ∪ V) so that every variable belonging
to V \W is fixed.

Definition 2.10 σ is called a Substitution if it acts as identity on
all but a finite number of elements of V. By abuse of terminology and
notation, we will call σ a substitution too, and will write sσ to indicate
σ(s). The Composition of two substitutions σ and δ, denoted σδ, is
defined as usual, to the effect that sσδ = (sσ)δ for all s.

Given two substitutions µ and σ, and a subset W of V, µ is said to
be More General in T than σ with respect to W (in symbols, σ ≤ µ
with respect to W) if there exists a substitution δ such that Xσ =TXµδ
for all X in W.

Definition 2.11 Given t1, t2 ∈ τ(Σ ∪ V), a substitution γ is said to
be a T -Solution of t1

.
= t2 if t1γ, t2γ ∈ τ(Σ), and t1γ =T t2γ; a

substitution σ is said to be a T -Unifier of t1 and t2 if the universal
closure of t1σ

.
= t2σ is a theorem of T . A T -unifier µ of t1 and t2 is

said to be a T -Unifier of Maximal Generality (in brief, a umg)
of t1 and t2 if for every T -unifier σ of t1 and t2, σ 6≤ µ implies µ 6≤ σ
with respect to W, where W consists of all variables appearing in t1 or
in t2.

The set of all T -unifiers of two terms s and t is denoted by
⋃
T (s, t).

A set U of T -unifiers is said to be Complete with respect to s and t
if

∀σ ∈ ⋃T (s, t) ∃θ ∈ U θ ≤T σwith respect to FV (s) ∪ FV (t).

A set of T -Unifiers of maximal generality of s and t, µ
⋃
T (s, t) is a

Minimal Complete Set of T -Unifiers when

∀στ ∈ µ⋃T (s, t)
(
σ ≤T τ implies σ =T τ

)
.

20 CHAPTER 2. PRELIMINARIES

When the context is clear, we will omit the prefix T before the
word unifier. Similar definitions can be given starting from a system of
equations E instead of the unification problem s

.
= t.

Definition 2.12 A Herbrand System is a finite conjunction `1
.
=

r1 ∧ . . . ∧ `n .
= rn of first-order equalities, where `1, r1, . . . , `n, rn are

terms over the signature Σ ∪ V.

For any T -satisfiable Herbrand system E involving terms from τ(Σ∪
V), a unification algorithm should be able to compute each element of
a complete set of unifiers of E . Notice that it is not required that
it computes exactly a µ

⋃
T (E) (in general, it can not exist or be not

unique). However, since for the theories T we will deal with in this
thesis, even for simple unification problems s

.
= t, µ

⋃
T (s, t) becomes

very large, a valid criterion to compare two (set) unification algorithms
is the analysis of the length of the list of solutions computed by them
(the use of the word ‘list’ here is needed to reflect the fact that if a
unification algorithm computes exactly µ

⋃
T (s, t), but some solution is

returned more than once, it cannot be considered minimal).
If the input system E is T -unsatisfiable, any unification algorithm

should conclude its computation reporting a failure result. The theories
we will analyze in this theory are all finitary, namely µ

⋃
T (s, t) is always

finite.

Definition 2.13 A unification algorithm for a theory T is said to be
Minimal for a Unification Problem t1

.
= t2, if it returns exactly

a minimal complete set of unifiers for it. It is said to be Minimal for
the theory T if it is minimal for all unification problems written in the
language of the theory T .

For instance, the Robinson algorithm (cf. Chapter 4), is minimal
for the empty equational theory (it returns a unique—most general—
unifier or fail).

Similar definitions can be given even when T is not an equational
theory but a more general first-order theory . In this case the concept
of solution must be extended to systems of equations concerning any

2.3. BASIC DECIDABILITY DEFINITIONS 21

object definable in the theory (hence, not only terms having finite do-
main). This allows to saying, for instance, that σ = [Y/Z] is a the most
general solution to the system X

.
= f(X, Y) ∧X .

= f(X,Z), where X
denotes the root of a rational term.

2.3 Basic decidability definitions

In this brief section we recall from [107] some basic notions that will be
useful in § 6.3.7.

Definition 2.14 A Decision Procedure for a given formalized the-
ory T is a method which permits us to decide in any particular case
whether a given sentence formulated in the signature of T is valid in T .

The Decision Problem for T is the problem of determining whe-
ther a decision procedure for T exists (and possibly of exhibiting such a
procedure).

A theory T is called Decidable or Undecidable according as the
solution of the decision problem is positive or negative.

A theory T is called Essentially Undecidable if not only T
itself is undecidable, but the same holds for every consistent extension
of T which has the same constants as T .

22 CHAPTER 2. PRELIMINARIES

Chapter 3

Basic Aggregate Theories

This Chapter consists of two main parts. In the first part (§ 3.1) we
introduce minimal axiomatizations for (pure) membership theories, in
the stream of recent computable set theory works (cf., e.g., [84, 85, 86]).
Our aim is to give a uniform (parametric) presentation of

• list theory (§ 3.1.1), in which ordering and number of occurrences
of elements are both important,

• multi-set theory (§ 3.1.2), in which number of occurrences of ele-
ments are important, while their position is immaterial,

• compact-list theory (§ 3.1.3), in which the ordering of the elements
is important, while the number of consecutive occurrences of an
element is immaterial,

• set theory (§ 3.1.4), in which, as usual, the ordering of the ele-
ments and possible repetitions of some of them are not important.

In the second part of the chapter (§ 3.2) we will integrate the axiom-
atization provided for pure aggregates with the axiomatization used in
Logic Programming for (standard) free terms (cf., e.g., [74]). In other
words, we will give a (minimal) axiomatization for (well-founded) terms
of the form

• f(g(a), ∅),

• f({g(b), ∅}, g(∅)),

23

24 CHAPTER 3. BASIC AGGREGATE THEORIES

• {∅, g(∅), g(g(∅))}, etc.

and for (non-well-founded) acyclic terms defined as the (unique when
opportune conditions are verified) solution to equations of the form

• X .
= f(X, ∅),

• X .
= {X, {∅}},

• X .
= {X, g(X), g(g(X)) |X}, etc.

Aiming at parametric definitions, particular care has been paid in
choosing the axioms regulating equality between aggregates. The ax-
ioms (F1), (Em

k), (Ec
k), and (Es

k)—used for lists, bags, compact lists,
and sets, respectively—are bi-implications with a common left hand
side. Their right hand sides consist of disjunctions of 1, 2, 3, and 4
formulas chosen from among the four of (Es

k). Such axioms are proved
to be equivalent to the standard ones (for instance the extensionality
axiom in the case of sets) for all the aggregates we are interested in.
Moreover, they can be used both in the pure case and in the case in
which free terms are kept into account (the hybrid case).

The universe and axiomatization for well-founded hybrid sets was
presented in [38, 33, 42, 36].

A preliminary analysis of the well-founded and non well-founded
universe for hybrid sets and hybrid multi-sets can be found in [88]. A
deep analysis of the hybrid (hyper-)sets universe and axiomatization is
described in [35, 34].

3.1 Pure theories

Consider the first order theory with equality, using the set of predicate
symbols Π = { .=,∈}, and consisting of the two axioms

(N) ∃z∀x (x 6∈ z)
(W) ∀y v∃w∀x (x ∈ w ↔ x ∈ v ∨ x .

= y).

The skolemization of (N) and (W) requires the introduction of two
functional symbols, one of arity 0, denoting an ‘empty’ entity, and one

3.1. PURE THEORIES 25

of arity 2, denoting the list (multi set, compact list, set) constructor
symbol. Since axioms (N) and (W) will hold for all the aggregate
theories that this thesis deals with, we will introduce different functors.
More precisely,

• [] and [· | ·] for lists (cf. § 3.1.1),

• {[]} and {[· | ·]} for multi sets (cf. § 3.1.2),

• [[]] and [[· | ·]] for compact lists (cf. § 3.1.3), and

• ∅ and {· | ·} for sets (cf. § 3.1.4).

For what follows we will extend standard Prolog syntactic sugar
(see [73]) for denoting lists (for instance [a | [b | []]] will be denoted
simply as [a, b]) to all such pairs of symbols.

Using the two functional symbols introduced above, we can write
(N) and (W), in the case of lists, as

(N) ∀x (x 6∈ []), and
(W) ∀y v x (x ∈ [y | v]↔ x ∈ v ∨ x .

= y).

and similarly when we want to deal with other functors. We will refer to
NW for this theory, both in its function-free form and in its skolemized
form.

If L, M, C, and S are reasonable theories of lists, multi sets, compact
lists, and sets, respectively (we will see examples of such theories in the

26 CHAPTER 3. BASIC AGGREGATE THEORIES

rest of this chapter) then the following lattices of implications hold:

M ` {[s1, . . . , sm]} .= {[t1, . . . , tn]}
↗ ↘

L ` [s1, . . . , sm]
.
= [t1, . . . , tn] S ` {s1, . . . , sm} .= {t1, . . . , tn}

↘ ↗
C ` [[s1, . . . , sm]]

.
= [[t1, . . . , tn]]

M ` {[s1, . . . , sm]} 6 .= {[t1, . . . , tn]}
↗ ↘

S ` {s1, . . . , sm} 6 .= {t1, . . . , tn} L ` [s1, . . . , sm] 6 .= [t1, . . . , tn]
↘ ↗

C ` [[s1, . . . , sm]] 6 .= [[t1, . . . , tn]]

where s1, . . . , sm, t1, . . . , tn are—not necessarily distinct—ground terms.
Moreover,

L ` t ∈ [s1, . . . , sm] ↔ M ` t ∈ {[s1, . . . , sm]} ↔
C ` t ∈ [[s1, . . . , sm]] ↔ S ` t ∈ {s1, . . . , sm} .

For this reason, if the data-structure list is used in a positive result,
then such result will hold also for multi sets, compact lists, and sets.
Conversely, if a negative result holds for sets, it will hold for multi sets,
compact lists, and lists. In the preliminary results that will follow, we
will use the set constructor symbol (NW imply neither the importance
of the ordering of the elements, nor the importance of repetitions of the
same element).

The first model-theory result about NW is that any model must
necessarily be infinite. We split the preliminaries of the proof of this
important fact into a pair of technical Lemmata.

Lemma 3.1 NW ` ∀yv (∅ 6 .= { y | v }).

Proof. Suppose ȳ and v̄ are such that NW ` ∅ .
= { ȳ | v̄ }. Then,

by (
.
=2) NW ` ∀z(z 6∈ ∅) → ∀z(z 6∈ { ȳ | v̄ }). By (N), ∀z(z 6∈ ∅)

3.1. PURE THEORIES 27

must hold, while (W) forces that ∀z(z 6∈ { ȳ | v̄ }) cannot hold, since
ȳ ∈ { ȳ | v̄ }. Hence NW ` false, a contradiction.

3.1 2

This means, in particular, that NW ` ∅ 6 .= { ∅ }, NW ` ∅ 6 .=
{ { ∅ } }, NW ` ∅ 6 .= { { { ∅ } } }, and so on.

Definition 3.2 { ∅ }n is defined, by meta-mathematical induction, as
follows: {

{ ∅ }0 = ∅
{ ∅ }n+1 = { { ∅ }n }

Lemma 3.3 For any pair of different and non-negative integers i and
j, NW ` { ∅ }i 6 .= { ∅ }j.

Proof. Without loss of generality, assume i to be less than j. We
prove the claim by meta-mathematical induction on i.
Base) If i = 0 the claim follows directly from Lemma 3.1.
Step) First note that, by (N) and (W), for any non-negative k

(∗) NW ` x ∈ { ∅ }k+1 ↔ x
.
= { ∅ }k.

Assume NW ` { ∅ }i+1 .
= { ∅ }j+1. Then, by (

.
=2), using as ϕ the for-

mula (∀z ∈ x)({ ∅ }i .= z) we would have NW ` (∀z ∈ { ∅ }i+1)({ ∅ }i .=
z)→ (∀z ∈ { ∅ }j+1)({ ∅ }i .= z).

By (∗), this is equivalent to saying that NW ` true → {∅}i .
=

{ ∅ }j, which contradicts the induction hypothesis, unless NW is incon-
sistent. Lemma 3.1 ensures that this is not the case.

3.3 2

Lemma 3.3 states in particular that any model of NW must model
all the different elements { ∅ }i with different objects, for any non-
negative integer i. Hence

Theorem 3.4 Any model of NW is infinite. 2

The next fact we will analyze is that the theory NW is not complete
(nor model-complete). First, we analyze some interesting models of
NW (cf. Def. 2.7).

28 CHAPTER 3. BASIC AGGREGATE THEORIES

• The Herbrand model HΣ = 〈τ(Σ), idΣ〉, where for each ground
term t ∈ τ(Σ), tidΣ = t; moreover,

.
=idΣ is the syntactical equality

between terms, ∈idΣ (t, s) is true if and only if s is of the form
{· · · , t, · · ·}.

• Let ≡ be a congruence relation on τ(Σ). For each t ∈ τ(Σ), with
[t]≡ we denote the (canonical) representative of the equivalence
class modulo ≡ in τ(Σ).

With HΣ/ ≡ we denote the structure 〈{[t]≡ : t ∈ τ(Σ)}, I〉, where
tI = [t]≡, for any term t, t1

.
=I t2 is true if and only if [t1]≡ =

[t2]≡, and t1 ∈I t2 is true if and only if [t2]≡ is of the form
{· · · , [t1]≡, · · ·}.
In particular, if the following (E1) and (E2) are the definitions of
the permutativity property and of the absorption property:

(E1) {x, y | z } .
= { y, x | z }

(E2) {x, x | z } .
= {x | z },

then the structures

– HΣ/ ≡m, induced by (E1) (m here stands for multi sets),

– HΣ/ ≡c, induced by (E2), (c here stands for compact lists),
and

– HΣ/ ≡s, induced by (E1) and (E2) (s here stands for sets)

are all models of NW . An aggregate oblect is said to be heredi-
tarily finite if it is finite—namely the number of (occurrences of)
its elements is finite—and every its element is hereditarily finite.
The domains of the models just described represent the set of
the Hereditarily Finite and Well-founded (there cannot
be infinte descending chains of membership) multi-sets, compact-
lists, and sets, respectively.

• We denote as HΣ∪{∗}, where ‘∗’ is a constant symbol which is not
in Σ, the model 〈τ(Σ) ∪ {∗}, idΣ〉.

• The universe of all infinite trees (IT—or complete Herbrand
Universe—cf. Def. 2.4) over the signature Σ.

3.1. PURE THEORIES 29

Definition 3.5 In agreement with the literature, we define as Domain
Closure Axiom (briefly denoted as (DCA)): the axiom

(DCA) ∀x
∨
f∈Σ

∃x1 . . . xar(f) x = f(x1, . . . , xar(f)).

Observe that if Σ is infinite, (DCA) is not a first-order axiom; when
Σ = {∅, {· | ·}}, it becomes the formula

∀x (x
.
= ∅ ∨ ∃yv (x = { y | v })).

Observe that

• HΣ |= { ∅, { ∅ } } 6 .= { { ∅ }, ∅ },
HΣ |= { ∅, ∅ } 6 .= { ∅ },
HΣ |= (DCA),
HΣ |= ∀x (x 6 .= {x }),
HΣ |= ∀x (x 6 .= { ∅ | x }).

• HΣ/ ≡m|= { ∅, { ∅ } } .= { { ∅ }, ∅ },
HΣ/ ≡m|= { ∅, ∅ } 6 .= { ∅ },
HΣ/ ≡m|= (DCA),
HΣ/ ≡m|= ∀x (x 6 .= {x }),
HΣ/ ≡m|= ∀x (x 6 .= { ∅ | x }).

• HΣ/ ≡c|= { ∅, { ∅ } } 6 .= { { ∅ }, ∅ },
HΣ/ ≡c|= { ∅, ∅ } .= { ∅ },
HΣ/ ≡c|= (DCA),
HΣ/ ≡c|= ∀x (x 6 .= {x }),
HΣ/ ≡c|= ∃x (x

.
= { ∅ | x }).

• HΣ/ ≡s|= { ∅, { ∅ } } .= { { ∅ }, ∅ },
HΣ/ ≡s|= { ∅, ∅ } .= { ∅ },
HΣ/ ≡s|= (DCA),
HΣ/ ≡s|= ∀x (x 6 .= {x }),
HΣ/ ≡s|= ∃x (x

.
= { ∅ | x }).

• HΣ∪{∗} |= { ∅, { ∅ } } 6
.
= { { ∅ }, ∅ },

HΣ∪{∗} |= { ∅, ∅ } 6
.
= { ∅ },

HΣ∪{∗} 6|= (DCA).

30 CHAPTER 3. BASIC AGGREGATE THEORIES

• IT |= { ∅, { ∅ } } 6 .= { { ∅ }, ∅ },
IT |= ∃x (x

.
= {x }),

IT |= ∃x (x
.
= { ∅ | x }).

Given a theory T and two models A and B of T such that A ⊆ B,
it is easy to prove (see Def. 2.8 and [27]) that A � B if and only if for
any formula of the form ∃xϕ(x, x1, . . . , xn) and for any a1, . . . , an ∈ A,
if B |= ∃xϕ(x, a1, . . . , an) then there exists an a ∈ A such that A |=
ϕ(a, a1, . . . , an). Then

Theorem 3.6 NW is neither a complete nor a model-complete theory.

Proof. NW is not complete: HΣ |= { ∅, ∅ } 6 .= { ∅ } and HΣ/ ≡s|=
{ ∅, ∅ } .= { ∅ }.
For the model-completeness, consider the two models HΣ and HΣ∪{∗}.
Clearly, HΣ ⊆ HΣ∪{∗}; let ϕ be the formula ∀y(y 6∈ x1) ∧ x1 6= x2. It
is easy to see that HΣ 6|= ∃x1 ϕ[x1, ∅], while HΣ∪{∗} |= ϕ[∗, ∅]. Hence
HΣ 6� HΣ∪{∗}.

3.6 2

Undecidability Results

It has been shown in several papers (e.g. [110, 89, 16, 80]) that the
theory NW is not decidable. For instance, in [110] Vaught showed
the essential undecidability (see Def. 2.14) of NW (therein called Z1).
In [16] the undecidability of NW has been proved directly, via reduction
to the halting problem. In particular it is shown that

Theorem 3.7 (Bellé, Parlamento) It is undecidable whether or not
a sentence

∀x (`1
.
= r1 ∧ · · · ∧ `k .

= rk ∧ `k+1 6 .= rk+1)

where `i’s and ri’s are (Σ ∪ {x})-terms, is satisfiable in NW .

3.1. PURE THEORIES 31

3.1.1 Lists

In this section we will add new axioms to NW so as to model exactly
a theory of lists; to this aim, we start from Π = { .=,∈} and Σ =
{[], [· | ·]}. Among the models forNW presented, the models that better
reflects the semantics of a list constructor (namely, both ordering and
repetitions of elements are relevant) are the Herbrand modelHΣ and the
complete Herbrand model IT . Therefore, we need an axiomatization of
such universes. This has been done in literature by introducing the so-
called freeness axioms—see, for instance, [75, 28], in a simpler signature
not comprising the membership symbol ∈.

The first two freeness axioms, in our signature, became simply

(F1) ∀y1y2v1v2 ([y1 | v1]
.
= [y2 | v2]→ y1

.
= y2 ∧ v1

.
= v2)

(F2) ∀yv ([] 6 .= [y | v]).

Notice that

1. HΣ |= (F1) and IT |= (F1), while HΣ/ ≡m 6|= (F1), HΣ/ ≡c 6|=
(F1), and HΣ/ ≡s 6|= (F1).

2. NW ` (F2), as proved in Lemma 3.1.

Thus, the behavior of membership allows us to forget axiom (F2), which
is a theorem.

Moreover, the third freeness axiom, which is an axiom schema,

(F3) ∀x (x 6 .= t[x])

(where t[x] is any term containing x, except x itself) is a sort of syntactic
version of the regularity axiom, as will be shown in detail in § A.2, and it
is used to ensure that any model of the theory contains an isomorphical
copy of the Herbrand model. Notice that

1. HΣ |= (F3) and HΣ/ ≡m 6|= (F3), while

2. HΣ/ ≡s 6|= (F3), since HΣ/ ≡s|= [[]]
.
= [[], []], and

IT 6|= (F3), since x = [x] is solvable in IT .

The insertion of axiom schema (F3) in the theory allows to describe
well-founded lists only; as it will be clarified in § A.2, in particular it
states that, for any n, there are no elements x0, . . . , xn such that

32 CHAPTER 3. BASIC AGGREGATE THEORIES

x0 ∈ x1 ∧ x1 ∈ x2 ∧ · · · ∧ xn−1 ∈ xn ∧ xn ∈ x0.

Theorems 3.6 and 3.7 point out the difficulty in managing NW
algorithmically. Moreover, we will see that the theory we present here
is complete and decidable for a significant class of sentences.

In [74], the completeness of the theory consisting of the axioms
(
.
=1), (

.
=2), (F1), (F2), (F3), and (DCA), when Π = { .=} and Σ is any

finite signature, has been proved. For infinite signatures, (DCA) is not
needed for completeness.1 (∈ is not a predicate symbol of the language
analyzed.) The proof of this fact is given by a quantifier elimination
procedure that can be applied unaltered to our theory NWF1F3(DCA),
when in the formula there are no occurrences of the predicate symbol
‘∈’. Such result is implicitly a proof of the following

Theorem 3.8 If ϕ is a ({ .= },Σ)-formula (i.e. no occurrences of ∈
are in ϕ) then:

NWF1F3(DCA) ` ϕ is decidable.

Moreover, such theory is complete for the above class of formulae.

Nevertheless, the essential undecidability of NW stated in [110],
implies that the theory constituted by the axioms NWF1F3(DCA)
is undecidable, namely it is impossible to extend the result of Theo-
rem 3.8 to any ({ .=,∈},Σ)-formula. An example of the difficulty to
extend such result is the following: in § 3.1.2 it will be shown that, if the
permutativity property held for [· | ·], then t ∈ s would be equivalent
to ∃v (s

.
= [t | v]), for any finite list s. However, since such property

does not hold for NWF1F3(DCA) (the co-existence of the permutativ-
ity property with axiom (F1) is inconsistent), it would be impossible to
rewrite a membership literal into a simple equality formula. In partic-
ular, for any finite list s,

x ∈ s ↔ ∃z0 · · · zn (v
.
= [z1, . . . , zn, x | z0])

but the value of n is not known.

1If Σ ⊃ {[], [· | ·]}, then axioms (F1) and (F2) must be generalized to all elements
of Σ, as it will be done in § 3.2.

3.1. PURE THEORIES 33

The non-well-founded theory of lists (in which axiom schema (F3)
is replaced by a suitable axiom) will be presented and analyzed in a
stronger framework in § 3.2.1. Also in this case the result of Maher will
hold (see [74] for the proof).

As a side remark, usually, a list theory supports the functional sym-
bols car and cdr, whose semantics is the following

car([x | y])
.
= x cdr([x | y])

.
= y .

We can introduce such operators into the presented theory simply by
skolemizing axiom (DCA):

(DCA) ∀x (x 6 .= []→ x
.
= [car(x) | cdr(x)]) .

In [100] an elegant unification algorithm (based on a rewriting into a
normal form) for lists with car and cdr is presented.

3.1.2 Multi sets

Adding to the theory NW over the language Π = { .=,∈} and Σ =
{ {[]}, {[· | ·]} }, the axiom

(E1) ∀xyz {[x, y | z]} .= {[y, x | z]}

we define the theory NWE1, a minimal theory of multi sets.

In literature, multi sets are usually called bags because of their in-
tended meaning: two housewives consent to swap their shopping bags
only if they contain exactly the same sundries. The position of the
sundries in the bag is immaterial, while the number of each item in the
bag is important.

We will present some basic results about bags.

Lemma 3.9 Let π : {1, . . . , n} −→ {1, . . . , n} be a permutation. Then

E1 ` {[s1, . . . , sn]} .= {[sπ1 , . . . , sπn]}

for any n-tuple of Σ-terms s1, . . . , sn.

34 CHAPTER 3. BASIC AGGREGATE THEORIES

Proof. First we show the ‘swap’ property:

E1 ` {[a1, . . . , ah, s, b1, . . . , bk, t | r]} .= {[a1, . . . , ah, t, b1, . . . , bk, s | r]}

provided ai, bj, s, t, and r be Σ-terms.

E1 ` {[s, b1, . . . , bk, t | r]} .
= by (E1)

{[b1, s, . . . , bk, t | r]} .
= by (E1) and (

.
=2)

...
...

...
...

{[b1, . . . , bk, s, t | r]} .
= by (E1) and (

.
=2)

{[b1, . . . , bk, t, s | r]} .
= by (E1) and (

.
=2)

...
...

...
...

{[b1, t, . . . , bk, s | r]} .
= by (E1)

{[t, b1, . . . , bk, s | r]}

The swap property follows immediately for (
.
=2).

Since the permutation π is known, it is easy to write an algo-
rithm which, performing at most n ‘swaps’, rewrites {[s1, . . . , sn]} as
{[sπ1 , . . . , sπn]}.

3.9 2

Theorem 3.10 E1 ` {[s1, . . . sm]} .
= {[t1, . . . tn]} if and only if m = n

and E1 ` ti .= sπi for some permutation π : {1, . . . , n} −→ {1, . . . , n}.

Proof. The (←) direction follows from equality and Lemma 3.9. Under
E1, a ≡ {[s1, . . . sm]} can be proved to be equal to b ≡ {[t1, . . . tn]} if
(and only if) a can be re-written to b using the following two rules:

(
.
=2)inst x

.
= x′ ∧ z .

= z′ ⇒ {[x | z]} .= {[x′ | z′]}
(E1) x

.
= x′ ∧ y .

= y′ ∧ z .
= z′ ⇒ {[x, y | z]} .= {[y′, x′ | z′]}

It is immediate to see that a necessary condition is that m = n. More-
over, if si is different from all t1, . . . tn (or viceversa), then such rewriting
is impossible.

3.10 2

3.1. PURE THEORIES 35

Models for multi sets

Clearly, any model of NWE1 is also a model of NW ; an intuitive model
for NWE1 is the model HΣ/ ≡m, which was briefly touched on in § 3.1.
We will first analyze such model and later modify the axiomatization in
order to capture as much as possible the characteristics of such model.

We describe now a way for choosing the canonical representative [t]
of any term t in HΣ. Consider the well-ordering <Σ on HΣ described
as follows:

• {[]} <Σ {[y | v]}, for any y and v in HΣ;

• {[y1 | v1]} <Σ {[y2 | v2]} if (y1 <Σ y2) or (y1 ≡ y2 and v1 <Σ v2).

Consider a finite multiset {[s1, . . . , sn]}. From Theorem 3.10 it fol-
lows that ≤ n!× | [s1] | × · · · × | [sn] |

(= if and only if the [si]’s are pairwise distinct) elements belong to
[{[s1, . . . , sn]}]. The canonical representative will be the one preceding
all the others with respect to <Σ.

For instance, the canonical representative of

{[{[{[]}, {[{[]}]}]}, {[]}, {[{[{[{[]}]}]}, {[]}, {[]}]}]}

is
{[{[]}, {[{[]}, {[]}, {[{[{[]}]}]}]}, {[{[]}, {[{[]}]}]}]}.

We define here one enumeration function αm of HΣ/ ≡m. Such
function is defined on any Σ-term; however, as it will be proved, it
takes the same value for all members of an ≡m equivalence class. Let
p1, p2, p3, . . . be the first, second, third, . . . prime number.{

αm({[]}) = 1
αm({[s1, . . . , sn]}) =

∏n
i=1 pαm(si)

Lemma 3.11 αm : HΣ → ω \ {0} is onto. Furthermore, αm(t1) =
αm(t2) implies E1 ` t1 .

= t2.

Proof. By induction on k we show first that for all k > 0 exists t ∈ HΣ

such that αm(t) = k.
Base) αm({[]}) = 1 by definition.

36 CHAPTER 3. BASIC AGGREGATE THEORIES

Step) Suppose the claim is true for any k ≤ h. By the (unique)
factorization Theorem ∃!β1 . . . βr (h+ 1 = pβ1

i1 × · · · × p
βr
ir) with βi > 0.

Since x < px for any x ∈ ω\{0}, by induction hypothesis exist s1, . . . , sr
such that αm(s1) = i1 and . . . and αm(sr) = ir.
By definition, αm({[s1, . . . , sr]}) = h+ 1.

We prove αm is a semantical injection by induction on rank(x)
(where the function rank is defined rank({[]}) = 0, rank({[y | v]}) =
max{1 + rank(y), rank(v)}).
Base) {[]} is the only element whose rank is 0.
Step) Suppose the claim is true for multi-sets of rank less than or
equal to h. Consider {[s1, . . . , sm]} and {[t1, . . . , tn]} such that

rank({[s1, . . . , sm]}) = h+ 1 and rank({[t1, . . . , tn]}) ≤ h+ 1 .

This means in particular that rank(si), rank(tj) ≤ h, for i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}.
Assume αm({[s1, . . . , sm]}) = αm({[t1, . . . , tn]}). By the unique factor-
ization Theorem, for any integer k

| Sk = {si : αm(si) = k} |= | Tk = {tj : αm(sj) = k} | .

Consider a value of k such that Sk is not empty. By induction hypothe-
sis, all the elements of Sk∪Tk are equivalent for E1. This means that we
may replace all occurrences of them in {[s1, . . . , sm]} and {[t1, . . . , tn]}
with a unique representative (not necessarily the canonical one). By
Lemma 3.9, E1 ` {[[s1], . . . , [sm]]} .= {[[t1], . . . , [tn]]}.

3.11 2

Corollary 3.12 Given two Σ-terms t1 and t2, E1 ` t1 .
= t2 if and only

if αm(t1) = αm(t2). 2

This suggests a quite simple numerical procedure for solving the
unification problem of two ground terms in the theory NWE1.

In figure 3.1 we present a Prolog program which returns the
canonical representative of a ground term (predicate canon) and the
value of αm for it (predicate get value).
(The auxiliary predicate prime(N,P) returns in P the N th prime num-
ber.)

3.1. PURE THEORIES 37

canon({[]}, {[]}).
canon({[T | S]},Can) :−

canon(T,Tcan),
canon(S, Scan),
ev insert(Tcan, Scan,Can).

ev insert(T, {[]}, {[T]}).
ev insert(T, {[S |R]}, {[T, S |R]}) :−

get value(T,ValT),
get value(S,ValS),
ValT ≤ ValS,
!.

ev insert(T, {[S |R]}, {[S |R1]}) :−
ev insert(T,R,R1).

get value({[]}, 1).
get value({[T | S]},Val) :−

get value(T,ValT),
get value(S,ValS),
prime(ValT,P),
Val is (P ∗ ValS).

Figure 3.1: Reducing bags to canonical form

Equality criterion for bags

We are going to find a bridge between equality and membership; for
doing that we will introduce different equality criterion for bags. Their
relations under some conditions will be proved.

It is consistent for the theory NWE1 that {[{[]}, {[]}]} .= {[{[]}]} (it
is true in the model HΣ/ ≡s). We need to enforce the theory in order
to make the data-structure multi-set distinct from the set one. First
we analyze the following

Lemma 3.13 For all integer n and for all x, y1, . . . , yn

NWE1 ` x ∈ {[y1, . . . , yn]} ↔ ∃z ({[y1, . . . , yn]} .= {[x | z]}).

Proof. The if direction follows trivially from (W).
For the only if direction, by n applications of (W) and one of (N).

NWE1 ` x ∈ {[y1, . . . , yn]} if and only if x
.
= y1 ∨ . . . ∨ x .

= yn.

Let x
.
= yi be the (not necessarily unique) true disjunct. By Lemma 3.9,

NWE1 ` {[yi, y1, . . . , yi−1, yi+1, . . . yn]} .= {[y1, . . . , yn]}.

38 CHAPTER 3. BASIC AGGREGATE THEORIES

Choose z as {[y1, . . . , yi−1, yi+1, . . . yn]}.
3.13 2

As corollary, after giving the following intuitive definition of finite-
ness:

• a multiset m is said to be finite if it is {[]} or if there exists
an integer n such that m is written as {[y1, . . . , yn]} for some
y1, . . . , yn,2

we have:

Corollary 3.14 If v is a finite multiset, then

NWE1 ` ∀x
(
x ∈ v ↔ ∃z (v

.
= {[x | z]})

)
.

The finiteness requirement is a necessary conditions for the above
corollary. This will follow from the following remark.

Remark 3.15 We will define a model M = 〈D, I〉 of NWE1 in which
there is an object v containing infinite elements and such that the con-
dition of Corollary 3.14 does not hold for v.

Consider the domain DH of the model HΣ/ ≡m defined in § 3.1
(namely, the set of all hereditarily finite and well-founded bags). The
domain D is obtained extending DH with the object v fulfilling the follow
properties:

v = {[{[]} | v]}, and {[{[]}]} ∈ v exactly once.

Assume now that x ≺ v for all x ∈ DH , in order to model axiom (W),
we must insert in D a representative for all the objects obtained by
applying a finite number of times the {[· | ·]} operator to the elements
of DH and v. (≺ relation is used to choose the representative). The
element v is such that {[{[]}]} ∈ v, but there is no z in D such that
v
.
= {[{[{[]}]} | z]}.

The aim of the following propositions is to analyze the existing
relations among different equality criteria for multisets. We start from
a trivial lemma whose proof is omitted.

2For a more formal definition of finiteness see § A.3.

3.1. PURE THEORIES 39

Lemma 3.16

(i) (
.
=) ` ∀y1y2v1v2 (y1

.
= y2 ∧ v1

.
= v2 →

{[y1 | v1]} .= {[y2 | v2]}),
(ii) (

.
=)(E1) ` ∀y1y2v1v2 (∃z (v1

.
= {[y2 | z]} ∧ v2

.
= {[y1 | z]})→

{[y1 | v1]} .= {[y2 | v2]}),
(iii) (

.
=) ` ∀v1v2 (v1

.
= v2 → ∀x (x ∈ v1 ↔ x ∈ v2)).

Then we introduce the ker-equality (the reason for such name will
be clear in § 3.2 when the concept of kernel will be presented in detail)
axiom for bags:

(Em
k) ∀y1y2v1v2

 {[y1 | v1]} .= {[y2 | v2]} ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

∃z (v1
.
= {[y2 | z]} ∧ v2

.
= {[y1 | z]})


which, in a sense, complete properties (i) and (ii) of the previous
lemma. Moreover, Lemma 3.16 (iii) states that ‘having the same ele-
ments’ is a necessary conditions for two bags to be considered equal.
Axiom (Em

k) states that two non-empty bags are equal if and only if
they have the same number of occurrences of each element. Assuming
(DCA) implies that any finite bag is built adding to the empty con-
stant symbol {[]} a finite number of elements using the bag constructor
symbol {[· | ·]}. If (DCA) does not hold, in principle, a bag can be built
starting from any other object. Axiom (Em

k) states, in particular, that
a necessary condition for two bags to be equal is that they are based
on the same object; we will call such object the kernel of the bag.

Assuming (DCA), axiom (Em
k) forces two bags to be equal if and

only if they have the same number of occurrences of each element (even-
tually none).

In order to state this property in the language itself (for finite sets
only), we introduce into Π the denumerable family of predicate sym-
bols ∈0,∈1,∈2, . . ., that will be used as shorthands for formulae of the
language according to the following definition:

(∈0) ∀xy (x ∈0 y ↔ x 6∈ y)

(∈1) ∀xy
(
x ∈n+1 y ↔ ∃z (y

.
= {[x | z]} ∧ x ∈n z)

)
We will refer to the conjunction of all instances of the formulae (∈0)
and (∈1) as (∈∗) . Note that for any x and v, x ∈n v holds in any model
of NWE1 and (∈∗) for exactly one n ∈ ω.

40 CHAPTER 3. BASIC AGGREGATE THEORIES

Lemma 3.17 For any v1 and v2 finite bags, if NWE1 ` v1
.
= v2, then

NW ∈∗` ∀x (x ∈n v1 ↔ x ∈n v2).

Proof. First observe that any model M = 〈D, I〉 of NWE1 ∈∗ is a
model of NWE1, provided M |= x ∈ v if and only if M |= x ∈n v for
some n > 0.

Let M be a model of NWE1 ∈∗ and assume exist v1, v2, c ∈ D such
that M |= v1

.
= v2 and M |= c ∈n1 v1∧c ∈n2 v2, with n1 6= n2. Without

loss of generality, assume n1 > n2. By corollary 3.14, z1 and z2 such
that M |= v1

.
= {[c, . . . , c︸ ︷︷ ︸

n2

| z1]} ∧ v2
.
= {[c, . . . , c︸ ︷︷ ︸

n2

| z2]}, exist.

By axiom (∈∗), it follows that c ∈n1−n2 z1 and c ∈0 z2; hence M |= c ∈
z1 ∧ c 6∈ z2.
Let ϕ(x, v) be the formula ∃z (v

.
= {[x, . . . , x︸ ︷︷ ︸

n2

| z]} ∧ x ∈ z). By axiom

(
.
=2), M |= ϕ(c, v1)→ ϕ(c, v2); since M |= ϕ(c, v1) but M |= ¬ϕ(c, v2),

the claim is true.
3.17 2

The converse is not true (analyze a model based on different ker-
nels). We introduce the equality principle for finite multi-sets

(Em) ∀v1v2 v1
.
= v2 ↔ for all n∀x (x ∈n v1 ↔ x ∈n v2),

where n ranges over natural numbers. The finiteness restriction is due
to the definition of (∈∗) which is a finite property. We may state the
corresponding of Corollary 3.14 for the theory NW, (∈∗), and (Em).
The straightforward proof, basically the definition of ∈n+1, is omitted.

Lemma 3.18 If v is a finite bag, then for any n ≥ 0:

NW ∈∗ Em ` ∀x
(
x ∈n+1 v ↔ ∃z (v

.
= {[y | z]} ∧ x ∈n z)

)
.

We are ready to state

Theorem 3.19 Let v1 and v2 be two finite bags. Then the following
are equivalent:

(i) NWE1 ` v1
.
= v2,

(ii) NW ∈∗ Em ` v1
.
= v2,

(iii) NWEm
k ` v1

.
= v2.

3.1. PURE THEORIES 41

Proof. (i) ⇒ (ii). Directly from Lemma 3.17 and the definition of
(Em).

(ii)⇒ (iii). By induction on max{size(v1), size(v2)} (the function size
is defined on ground terms as size(f(t1, . . . tn)) = 1 +

∑n
i=1 size(ti).

The base case {[]} .= {[]} follows trivially by (
.
=1).

Let v1 ≡ {[t1 | s1]} and v2 ≡ {[t2 | s2]};

• if NW ∈∗ Em ` t1 .
= t2 then, by induction hypothesis, NWEm

k `
t1
.
= t2. In addition, by axioms (∈∗) and (Em), it is easy to prove

that NW ∈∗ Em ` s1
.
= s2. By induction hypothesis and (

.
=2),

NWEm
k ` {[t1 | s1]} .= {[t2 | s2]};

• if NW ∈∗ Em 6` t1
.
= t2, then let z1 ≡ s1 − {[t2]} and z2 ≡

s2 − {[t1]} (they exist thanks to Lemma 3.18). By (Em) it is
easy to prove that NW ∈∗ Em ` z1

.
= z2, hence we will simply

refer to them as z. By induction hypothesis, NWEm
k ` s1

.
=

{[t2 | z]} ∧ s2
.
= {[t1 | z]}. By (Em

k), {[t1, t2 | z]} .
= {[t2, t1 | z]}.

Hence NWEm
k ` {[t1 | s1]} .= {[t2 | s2]}.

(iii)⇒ (i). Again by induction on max{size(v1), size(v2)}.
The base case {[]} .= {[]} follows trivially by (

.
=1).

Let v1 ≡ {[t1 | s1]} and v2 ≡ {[t2 | s2]};

• if NWEm
k ` t1

.
= t2 ∧ s1

.
= s2 then, by induction hypothesis and

(
.
=2) NWE1 ` {[t1 | s1]} .= {[t2 | s2]};

• suppose NWEm
k ` ∃z (s1

.
= {[t2 | z]} ∧ s2

.
= {[t1 | z]}). Both the

equations involve ground terms of size fewer than

max{size({[t1 | s1]}), size({[t2 | s2]})} .

By induction hypothesis NWE1 ` s1
.
= {[t2 | z]} and NWE1 `

s2
.
= {[t1 | z]}. By (E1), {[t1, t2 | z]} .= {[t2, t1 | z]}.

3.19 2

42 CHAPTER 3. BASIC AGGREGATE THEORIES

3.1.3 Compact lists

Let Σ be {[[]], [[· | ·]]}; the (left) absorption axiom (E2) is defined as
follows:

(E2) ∀xy [[x, x | y]]
.
= [[x | y]]

The theory obtained by adding (E2) in NW , briefly denoted as NWE2

and modeled, for instance, by HΣ/ ≡c has been scarcely studied. We
will give here an intuitive model chosen from real life, which justifies
the caption compact lists.

Assume a clerk at a pension window hands out forms of two different
kinds—Male/Female—having picked them from their respective stacks.

If two or more consecutive pensioners in the queue require the same
form, the wise clerk can fulfill their request with a unique action. There
is no great difference3 for him if the input queue is

[[M, M, F, F, F, M, M]] or [[M, F, M]].

A similar example is the following: assume a laser printer can print
on sheets of different size, but has a unique paper feeder. Whenever a
new size of the paper is required, an operator should replace sheets in
the feeder. Even in this case the input queue can be perfectly modeled
by a compact list.

Models for compact lists

Let ≡c be a congruence relation on τ(Σ) induced by axiom (E2) shown
above. For each t ∈ τ(Σ), with [t] we denote the (canonical) represen-
tative of the equivalence class modulo ≡c in τ(Σ). A representative can
be chosen adopting any judicious criterion; one possibility is the follow-
ing: for any representative [t] no subterm of the form [[x, x | z]] occurs
in it. (This is the same thing as require: [t] is the minimum member-
ship of the equivalence class with respect to the number of occurrences
of the functional symbols [[· |·]] employed.)

3Clearly this model ceases to hold when the number of consecutive pensioners
requiring the same form is larger than the number of forms in the stack. Moreover,
even if this is not the case, the clerk cannot ignore the difference of weight between
a thousand forms and only one. It is only a model for scarcely accustomed windows.

3.1. PURE THEORIES 43

The Prolog program which returns the canonical representative
of each compact list is the following:

canon([[]], [[]]).
canon([[T | S]],Can) :−

canon(T,Tcan),
canon(S, Scan),
ev insert(Tcan, Scan,Can).

ev insert(T, [[T |R]], [[T |R]]) :−
!.

ev insert(T,R, [[T |R]]).

It is easy to see that two hereditarily finite compact-lists `1 and `2

are such that NWE1 ` `1
.
= `2 if and only if the goal

:− canon(`1,Can), canon(`2,Can)

succeeds (i.e. `1 and `2 have the same canonical representative).

Similarly to bags, we are interested in generated models of compact
lists, namely models whose domains contain only finite terms. In such
models, in particular, the following lemmata, which will be useful to
define the occur-check axiom for bags, hold.

Lemma 3.20 (E2) ` ∀xy
(
x
.
= [[y |x]]↔ ∃z (x

.
= [[y | z]])

)
.

Proof. The (→) direction follows immediately (pick z as x).
For the (←) one, assume x

.
= [[y | z]]. Then, by (E2), x

.
= [[y, y | z]] ≡

[[y | [[y | z]]]], i.e. [[y |x]].
3.20 2

Lemma 3.21 In any generated model of NWE2, for any y1, . . . , yn,
the following holds:

∃x (x
.
= [[y1, . . . , yn |x]])↔ (y1

.
= y2

.
= · · · .= yn).

Proof. The (←) direction follows immediately picking x as [[y1]].
For (→), assume x

.
= [[y1, . . . , yn |x]]. Axiom (

.
=2) implies that

x
.
= [[y1 · · · yn |x]] ,

x
.
= [[y1 · · · yn, y1 · · · yn |x]] ,

x
.
= [[y1 · · · yn, y1 · · · yn, y1 · · · yn |x]] ,

...
...

...
...

44 CHAPTER 3. BASIC AGGREGATE THEORIES

y1, . . . , yn are subdivided into 1 ≤ k ≤ n classes such that

y1
.
= · · · .= yi1 6

.
= yi1+1

.
= · · · .= yi2 6

.
= · · · 6 .= yik+1

.
= · · · .= yn .

Whether y1
.
= yn or not, y1, · · · , yn, y1, · · · , yn will be subdivided into

2k or into 2k − 1 classes of the form above, respectively.
Similarly, y1, · · · , yn, y1, · · · , yn, y1, · · · , yn will be subdivided into 3k or
into 3k − 2 classes, and so on.
Since k ≥ 1, the observation preceding this lemma implies that y1

.
= yn

must hold and that k = 2k − 1 = 3k − 2 = · · ·. This (infinite) set of
equations has the unique finite solution k = 1, i.e. y1

.
= y2

.
= · · · .= yn.

3.21 2

Observe that the finiteness requirement is necessary for lemmas 3.21.
If we were to accept infinite solutions, then, for any y1, . . . , yn, the
equation x

.
= [[y1, . . . , yn |x]] would always admit the infinite solution

x = [[y1, . . . , yn, y1, . . . , yn, y1, . . . , yn, . . .]].

Equality criterion for compact lists

Similarly to what done for bags, we will define below an equality cri-
terion for compact lists. The equational axiom E2 cannot state when
two objects are distinct: it is consistent for the theory NWE2 that
[[[[]], [[[[]]]]]]

.
= [[[[[[]]]], [[]]]] (it is true in the model HΣ/ ≡s). We will

enforce the theory in order to make the data-structure compact-list dis-
tinct from the set one. We introduce the following equality principle
for compact lists:

(Ec
k) ∀y1y2v1v2


[[y1 | v1]]

.
= [[y2 | v2]] ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= [[y2 | v2]])∨

(y1
.
= y2 ∧ [[y1 | v1]]

.
= v2)


which has its expected meaning for finite terms. The ‘←’ direction of
axiom (Ec

k) makes axiom (F2) superfluous.

Lemma 3.22 (Ec
k) implies (E2)

3.1. PURE THEORIES 45

Proof. (Ec
k) guarantees that [[x, x | y]]

.
= [[x | y]] if and only if x

.
=

x ∧ ([[x | y]]
.
= y ∨ [[x | y]]

.
= [[x | y]] ∨ [[x, x | y]]

.
= y). (

.
=1) implies both

x
.
= x and [[x | y]]

.
= [[x | y]] hold.

3.22 2

Hence, the well-founded theory of hereditarily finite compact-lists
that we propose extends NW with axiom Ec

k and axiom schema F c
3

(occur-check axiom), defined accordingly with the result of Lemmata
3.20 and 3.21:

(F c
3) x 6 .= t[x]

unless t[x] is of the form [[t1, . . . , tn |x]],
and t1

.
= · · · .= tn

where, t[x] denotes a term having x as proper subterm.

Non-well-founded (even infinite) theories of compact lists are de-
scribed in an extended context in § 3.2.3.

3.1.4 Sets

Let L be such that Π = { .=,∈} and Σ = {∅, { · | ·} }. The theory
NWE1E2 written in the language L(Π,Σ) will be the starting point
for the analysis of the set theories useful in Logic Programming:

(E1) ∀xyz {x, y | z} .= {y, x | z}
(E2) ∀xz {x, x | z} .= {x | z}

The first presentation of a set theory based on the simple constructors
∅ and { · | ·} (the with constructor) can be found in [17].

In the rest of this section we first describe in detail a privileged
model forNWE1E2, and then we will compare different equality criteria
(extensionality axioms) for sets.

Models for sets

Theorem 3.4 ensures that any model of NW (hence of NWE1E2) must
necessarily be infinite. Furthermore, it is easy to see that any model
of NWE1E2 must contain an isomorphical copy of the model HΣ/ ≡s
of the hereditarily finite and well-founded sets. HΣ/ ≡s reflects the in-
tuitive semantics of sets; moreover, in this model, all regularity axioms

46 CHAPTER 3. BASIC AGGREGATE THEORIES

presented in § A.2 become equivalent, as well as all equality criteria pre-
sented below. Moreover, HΣ/ ≡s is the initial model of the equational
theory (E1)(E2).

We repeat here its definition. Let ≡s be a congruence relation on
τ(Σ) determined by axioms (E1) and (E2). For each t ∈ τ(Σ), with
[t] we denote the (canonical) representative of the equivalence class
modulo ≡ in τ(Σ). With HΣ/ ≡s we denote the structure 〈{[t] : t ∈
τ(Σ)}, I〉, where tI = [t]≡s , for any term t, t1

.
=I t2 is true if and only

if [t1]≡s = [t2]≡, and t1 ∈I t2 is true if and only if [t2]≡s is of the form
{· · · , [t1]≡s , · · ·}.

The following Prolog program returns the canonical representa-
tive of any ground term t.

canon(∅, ∅).
canon({T | S},Can) :−

canon(T,Tcan),
canon(S, Scan),
ev insert(Tcan, Scan,Can).

ev insert(T, ∅, {T}).
ev insert(T, {T |R}, {T |R}) : −

!.
ev insert(T, {S |R}, {T, S |R}) :−

get value(T,ValT),
get value(S,ValS),
ValS < ValT,
!.

ev insert(T, {S |R1}, {S |R2}) :−
ev insert(T,R1,R2).

get value(∅, 0).
get value({T | S},Val) :−

get value(T,V1),
get value(S,V2),
exp(2,V1,Val1),
Val is Val1 + V2.

Note that ∅ and {· | ·} are here used free (uninterpreted) and they can
be replaced by standard [] and [· | ·], respectively. exp(A,B,C) returns

3.1. PURE THEORIES 47

in C the value AB.

Consider the ordering
O
≺ of {[t] : t ∈ τ(Σ)}, defined as follows:

• for any x and y, ∅
O
≺ {x | y};

• Let x = {s0, . . . , sm} and y = {t0, . . . , tn} be such that ti
O
≺ tj

and si
O
≺ sj for i > j (the lighter elements will take the larger

index); then

x
O
≺ y if and only if s0

O
≺ t0 ∨ {s1, . . . , sm}

O
≺ {t1, . . . , tn}

We recall from the literature (see e.g. [70]) the Ackermann order-
ing. Bind any hereditarily finite x to an integer n as follows (here
{s1, . . . , sn} is the real set):{

ack(∅) = 0
ack({x1, . . . , xn}) =

∑n
i=1 2ack(xi)

Then x
A
≺ y if and only if ack(x) < ack(y).

Theorem 3.23 Let x and y be hereditarily finite and well-founded sets.

Then x
O
≺ y if and only if x

A
≺ y.

Proof. It follows immediately from the inequality 2n+1 >
∑n
i=0 2i, that

we prove by mathematical induction on n.
Base) (n = 0): 21 = 2 > 20 = 1.
Step) Assume (induction hypothesis) that 2n >

∑n−1
i=0 2i. This means

that 2n ≥ 1 +
∑n−1
i=0 2i. Hence 2n+1 ≥ 2 +

∑n−1
i=0 2i+1 = 1 +

∑n
i=0 2i >∑n

i=0 2i.
3.23 2

It is easy to see that the goal

:− get value(S,V)

returns in V exactly the value ack(S).

48 CHAPTER 3. BASIC AGGREGATE THEORIES

A non-well-founded universe

We will describe now a non-well-founded model of the theory NWE1E2

of which HΣ/ ≡s is a submodel.

All elements of the model HΣ/ ≡s are representable by suitable
terms (cf. Def. 2.2) having finite domain. This abstract view of ground
terms becomes almost mandatory when one comes to consider the gen-
eralized kind of terms that form the completion of a Herbrand universe:
typically this is done by withdrawing the requirement that labeled trees
must have finitely many nodes.4 From this graph-theoretical perspec-
tive, syntactic equivalence between terms turns out to coincide with
the notion of isomorphism between labeled, ordered trees (cf. § 2.1).

Adjusting the complete Herbrand universe definition to the case
when the construction of the universe is not entirely free, due to the
presence of the set constructor symbol in the signature one obtain a
universe of non-well-founded sets or hyperset [13].

The intuitive semantics of this construct must reflect into the cri-
teria we adopt for finding equivalences between rooted graphs. Such
criteria cease accordingly, in our specialized context, to be purely syn-
tactic. At an even more fundamental level, we will have to discard
certain trees labeled over Σ, that cannot be regarded as ground terms
due to the semantics of {· | ·}.

Discarding axiom (DCA), we may label nodes with symbols distinct
from ∅ and {· | ·}. This provides a definition of model more general than
the one needed here; however, it will be useful to model the hybrid
theory of sets described in § 3.2.4.

The terms whose root bears a label distinct from {· | ·} will be re-
garded as memberless entities, named colors : we will allow insertions
like {X | c} for any color c distinct from ∅, regarding any hyperset that
results from an insertion of this kind as something distinct from {X}.

To avoid under-specified situations, we add to the definition of
ground term (cf. Def. 2.2) the following:

4Alternatively, one could characterize generalized ground terms by means of
systems, possibly infinite, of equations involving ordinary non ground terms (cf. [30,
78]).

3.1. PURE THEORIES 49

(a)

•
{· | ·}

•∅

?
�

�
�	 �

�
�

�

Xa
.
= {Xa}

(b)

•
{· | ·}
?
A
A
A

�
�
-
�
�
�

�
�

�

Xb
.
= {Xb |Xb}

Figure 3.2: Two terms that cannot be regarded as ground.

Groundness restriction. The requirement henceforth be-
comes integral part of the definition of (ground) term that
there be no infinite sequence ν0, ν1, ν2, . . . of nodes with
T (νi) = {· | ·} and νi+1 = [νi, 2] for all i.

To see why the presence of a path ν0, ν1, ν2, . . . as above, in a term,
would conflict with the very notion of groundness, let us examine the
two graphs of Fig. 3.2.

Either of them is the picture of a labeled tree that violates the
groundness restriction. The left arc in either graph only indicates self-
inclusion; hence it conveys no information about the entity (Xa and Xb

respectively) represented by the root. The first arc of Fig. 3.2(a) indi-
cates that ∅ must belong to Xa, a property which is clearly insufficient
to characterize Xa. The right arc of Fig. 3.2(b) indicates that Xb must
belong to itself. If Xb were to be an ordinary set, this would be an ab-
surdity, but we are dealing with hypersets here. Since membership can
form cycles among such entities, we are again facing an under-specified
situation.

Our next step will be to get rid of irrational terms (an interesting
example of set-theoretic irrational term is the one whose picture is the
graph of Fig. 3.3). Preliminary to that, we need the notion of bisim-
ulation, which in turn presupposes the following couple of auxiliary
notions.
For every term T and any ν in dom(T), let τ0, . . . , τg and µ0, . . . , µg−1

be the sequences of nodes such that:

• τ0 = ν;

• T (τi) = {· | ·}, µi = [τi, 1] and τi+1 = [τi, 2] for i = 0, . . . , g − 1;

50 CHAPTER 3. BASIC AGGREGATE THEORIES

• T (τg) 6= {· | ·}.

We denote by Color(ν) the node τg and call ∈-predecessors of ν the µis.

Definition 3.24 Let T0, T1 be terms. A relation

B ⊆ dom(T0)× dom(T1)

is said to be a Bisimulation between T0 and T1 if and only if:

i) [] B [],

ii) when ν0 B ν1, the following hold:

– Color 0(ν0) B Color 1(ν1), T0(ν0) = T1(ν1), and moreover

– to every ∈-predecessor %b of νb in Tb (b = 0 or b = 1), there
corresponds at least one ∈-predecessor %1−b of ν1−b in T1−b
such that %0 B %1;

– if T0(ν0) 6= {· | ·}, then [ν0, i]B[ν1, i] for i = 1, . . . , ar(T0(ν0)).

We write T0 ≈ T1 if and only if there is a bisimulation B between T0

and T1.

Bisimulations are, in a sense, isomorphisms complying with the in-
tended (hyperset) semantics of {· | ·}. Accordingly, T will be regarded
as a rational term if and only if it has only finitely many subterms that
cannot bisimulate one another. To make this idea precise, let us denote
by T dν the subterm of T issuing from a given node ν.

Definition 3.25 A ground term T is said to be Rational if and only
if there are ν0, . . . , νm in dom(T), with m in ω, such that for every µ
in dom(T) there is an i, 0 ≤ i ≤ m, fulfilling T dνi ≈ T dµ.

In conclusion,

Definition 3.26 Indicating by GI Σ the family of all rational terms over
Σ, our Hyperset Universe will be

IHIΣ = GI Σ/ ≈ .

3.1. PURE THEORIES 51

◦

• • • • . . .

• • • • . . .

X0
? X1 X2 X3

U0

U1 U2 U3 U4

A
A
A
A
A
AK

@
@
@

@
@
@I

Q
Q

Q
Q

Q
Q
Q

QQk

H
HH

H
HH

H
HH

H
HHY

? ? ? ?

- - - -

� � � ��
6

Legenda:

T (•) = {· | ·}
T (◦) = ∅

Xi
.
= {Xi+1,Ui}

U0
.
= ∅

Ui+1
.
= {Ui}(i = 0, 1, 2, . . .)

Figure 3.3: A cycle-free irrational hyperset

X1
.
= k(g(X3))

X2
.
= k(k(X3))

X3
.
= h(h(g(X3)))

• •

• •

• •

? ?

?

6

�

@
@
@R

X1 ⇀ k k↼ X2

X4 ⇀ g k↼ X5

X6 ⇀ h h↼ X3

X1
.
= k(X4) X2

.
= k(X5)

X3
.
= h(X6) X4

.
= g(X3)

X5
.
= k(X3) X6

.
= h(X4)

Figure 3.4: Two renderings (one of them ‘flat’) of the same graph.

Let us now broaden the discourse by adjoining to our former sig-
nature Σ the denumerably infinite collection V of variables . Labeled
graphs, and in particular terms, whose labeling may involve variables,
or that may violate the above-stated groundness restriction, will be said
to be hollow . As will emerge from § 4.3.3, every hollow, rooted and
finite graph depicts a collection of ground terms, obtainable from it via
substitutions.

As illustrated by Fig. 3.3 and 3.4, any ground labeled graph G (pos-
sibly with cycles) can be variously rendered , up to isomorphism, as a
conjunction (singleton when G is finite and acyclic; infinite when G is
not rational) ∧

ν in C
(Xν

.
= tν)

of first-order equalities over the signature Σ ∪ V , where

• C is a collection of nodes of G comprising all nodes of G devoid

52 CHAPTER 3. BASIC AGGREGATE THEORIES

of entering arcs, along with at least one node lying on $ for each
infinite path $ of G;

• the Xν ’s belong to V , hence they are not used as labels in G, and
they are distinct from one another; the tν ’s are first-order terms5

over the signature Σ ∪ {Xν : ν in C}.

To do that, one views G as a collection { Gν : ν inC } of finite acyclic
rooted graphs labeled over Σ ∪ {Xν : ν in C }, each ν in C bearing the
label Xν and each Gν being in a sense ‘grafted’ into ν; then one takes
as tν the first-order term that straightforwardly corresponds to Gν .6

Viewed this way, a rational ground labeled graph G is just a special
case of what is usually called a Herbrand system (cf. Def. 2.12).

An axiomatization for our hypersets will be proposed in § 3.2.4.

Equality criteria for sets

In the remaining part of this section we want to point out the rela-
tions between three different forms of the equality criteria for sets: the
classical one (extensionality axiom—see e.g. [64])

(E) x
.
= y ↔ ∀z (z ∈ x↔ z ∈ y) ;

the combination of axioms (E1) and (E2)

(E1) ∀xyz ({x, y | z} .
= {y, x | z})

(E2) ∀xz ({x, x | z} .
= {x | z}) ,

and, lastly, based on the same stream of ideas that guided the introduc-
tion of axioms (Em

k) and (Ec
k), the axiom (Es

k), very useful in practice:

(Es
k) {x | v} .= {y |w} ↔

(x
.
= y ∧ v .

= w)∨
(x

.
= y ∧ v .

= {y |w})∨
(x

.
= y ∧ w .

= {x | v})∨
∃z (v

.
= {y | z} ∧ w .

= {x | z}) .
5Notice the distinction we are making between first-order (concrete) terms and

terms in the graph-theoretical sense.
6When G is rooted, finite and acyclic, so that its rendering is X

.
= t, X not

occurring in t, t itself is called rendering of G.

3.1. PURE THEORIES 53

We will use axiom (DCA), namely ∀x
(
x
.
= ∅ ∨ ∃yz (x

.
= {y | z})

)
, to

avoid to deal with uncontrolled functional symbols. As usual, we denote
x ⊆ y for the formula ∀z(z ∈ x→ z ∈ y).

The two following facts trivially hold:

1. E ` x .
= y ↔ (x ⊆ y) ∧ (y ⊆ x);

2. W ` {w1 | v1} ⊆ {w2 | v2} ↔
(
(w1

.
= w2 ∨ w1 ∈ v2) ∧ v1 ⊆ v2

)
.

Theorem 3.27 In any model of NW and (DCA) in which every object
of the domain contains finite (possibly 0) elements, then (E) implies
(Es

k).

Proof. It is easy to see that

E(DCA) ` ∀xy (x
.
= y ↔

(x
.
= ∅ ∧ y .

= ∅ ∧ x ⊆ y ∧ y ⊆ x)∨
(x

.
= ∅ ∧ ∃v2w2 y

.
= {w2 | v2} ∧ x ⊆ y ∧ y ⊆ x)∨

(∃v1w1 x
.
= {w1 | v1} ∧ y .

= ∅ ∧ x ⊆ y ∧ y ⊆ x)∨
(∃v1w1 x

.
= {w1 | v1} ∧ ∃v2w2 y

.
= {w2 | v2} ∧ x ⊆ y ∧ y ⊆ x)) .

Axiom (N) forces the first disjunct to be equivalent to x
.
= ∅ ∧ y .

= ∅
and forces the second and third to fail.

Thanks to the property (2), stated just above the claim of this
Theorem, the fourth disjunct simplifies to

∃v1w1v2w2 x
.
= {w1 | v1} ∧ y .

= {w2 | v2}∧
(w1

.
= w2 ∨ (w1 ∈ v2 ∧ w2 ∈ v1)) ∧ v1 ⊆ y ∧ v2 ⊆ x))

which can be opened in two disjuncts.

• The first, ψ1 ≡ x
.
= {w1 | v1} ∧ y .

= {w2 | v2} ∧ w1
.
= w2 ∧ v1 ⊆

y ∧ v2 ⊆ x. We sometimes refer to both w1 and w2 as w1 (they
must be equal for satisfying ψ1). Since

WE ` (v1 ⊆ {w1 | v2} ∧ v2 ⊆ {w1 | v1})→
(v1

.
= v2 ∨ v1

.
= {w1 | v2} ∨ v2

.
= {w1 | v1}) ,

then ψ1 implies (w1
.
= w2) ∧ (v1

.
= v2 ∨ v1

.
= {w2 | v2} ∨ v2

.
=

{w1 | v2}).

54 CHAPTER 3. BASIC AGGREGATE THEORIES

• The second disjunct will be ψ2 ≡ x
.
= {w1 | v1} ∧ y .

= {w2 | v2} ∧
w1 ∈ v2 ∧ w2 ∈ v1 ∧ v1 ⊆ y ∧ v2 ⊆ x. Let h1 = v1 \ {w1, w2} and
h2 = v2 \ {w1, w2} (their existence is ensured by the finiteness
requirement of the model).

We first show that WE ` h1
.
= h2; let z ∈ h1; then z ∈ v1 ∧ z 6=

w1 ∧ z 6= w2. Since v1 ⊆ y, this means that z ∈ {w2 | v2} ∧ z 6=
w1∧z 6= w2. By definition of h2, z ∈ h2. For the inclusion h2 ⊆ h1

the proof is similar. We refer to both h1 and h2 as h1.

(E) forces v1
.
= {w2 |h1} ∧ v2

.
= {w1 |h1}.

We have proved that

∀xy (x
.
= y → (x

.
= ∅ ∧ y .

= ∅)∨
(∃v1w1v2w2 x

.
= {w1 | v1} ∧ y .

= {w2 | v2}∧
(w1

.
= w2 ∧ v1

.
= v2)∨

(w1
.
= w2 ∧ v1

.
= {w2 | v2})∨

(w1
.
= w2 ∧ v2

.
= {w1 | v1})∨

∃h1 (v1
.
= {w2 |h1} ∧ v2

.
= {w1 |h1}))

The ← direction follows immediately.
3.27 2

Remark 3.28 We are here interested in interpreting finite aggregates
only. If one wishes to extend the result of Theorem 3.27 for infinite
sets, then it is sufficient to insert in the theory the Removal Axiom

(L) ∀yv ∃`
(
∀x (x ∈ `↔ x ∈ v ∧ x 6 .= y)

)
,

which, once skolemized, takes the form

(L) ∀xyv
(
x ∈ v less y ↔ x ∈ v ∧ x 6 .= y

)
.

Remark 3.29 (DCA) is necessarily needed to prove Theorem 3.27.
Assume that M = 〈D, I〉 is a model of NW , and assume that ∅̄ = ∅I
and c̄ ∈ D is also such that ∀x (x 6∈ c̄). Then {∅̄ | ∅̄} and {∅̄ | c̄} are
extensionally equal. However they are not equal neither for (E1)(E2)
nor for (Es

k).

3.1. PURE THEORIES 55

Remark 3.30 We will define a model M = 〈D, I〉 of NWE1E2(DCA)
in which there is an object v containing infinite elements and such that
the formula introducing the less operation does not hold for it.

Let HF be the domain of the model HΣ/ ≡s defined in § 3.1 (namely,
the set of all hereditarily finite and well-founded sets). The domain D
is the smallests set such that:

• HF ⊆ D;

• the elements v, v1, v2, . . . fulfilling the properties:

v = {∅ | v1}
v1 = {{∅} | v2}
v2 = {{{∅}} | v3}

...
...

...
{∅, {∅}} ∈ v

belongs to D.

• close D ∪ {v, v1, v2, . . .} to correctly model the (W) axiom.

The set v less {∅, {∅}} does not belong to D.

Theorem 3.31 In any model of (W), axiom (E) implies both axiom
(E1) and axiom (E2).

Proof. Axiom (W) ensures that the two sets {x, y | z} and {y, x | z}
contains exactly the same elements. The same holds for {x | z} and
{x, x | z}.

3.31 2

Theorem 3.32 (Es
k) implies (E1) and (E2).

Proof. Applying the disjunction opened by (Es
k) we obtain in partic-

ular:

56 CHAPTER 3. BASIC AGGREGATE THEORIES

(Es
k) ` {x, y | z}

.
= {y, x | z} ↔

. . . ∨ ∃v ({y | z} .= {y | v} ∧ {x | z} .= {x | v})︸ ︷︷ ︸
pick v = z. True by (

.
=1)

∨ . . .

(Es
k) ` {x | z}

.
= {x, x | z} ↔

. . . ∨ x .
= x ∧ {x | z} .= {x | z}︸ ︷︷ ︸

True by (
.
=1)

∨ . . .

3.32 2

Theorem 3.33 In any model of NW and (DCA) in which every object
of the domain contains finite (possibly 0) elements, then (Es

k) implies
(E) and axioms (E1) and (E2) imply axiom (E).

Proof. Let x and y be non-empty sets. Assume that they are not
extensionally equal; this means that there exists z ∈ x such that z ∈ y
(or, symmetrically, z ∈ y and z ∈ x). The finiteness requirement,
ensures the existence of a set w1 such that x

.
= {z |w1}. (DCA) ensures

that, since y is not empty, exist v2 and w2 such that y
.
= {v2 |w2}. Since

z 6∈ y, axiom (W) states that z 6≡ v2 and z 6∈ w2. Hence, x and y cannot
be considered equal either by (Es

k) or by (E1)(E2).
3.33 2

Theorem 3.34 In any model of (E1) and (E2) in which all elements
are finite, then axiom (Es

k) holds.

Proof. Operational axiom (Es
k) contains inside it (in the fourth dis-

junct) the (L) axiom, which is a theorem for finite sets. This is the
only difference between the two axioms, since the first three disjuncts
reflects precisely axiom (E2) while the fourth is the counter-part of ax-
iom (E1).

3.34 2

3.2 Hybrid theories

In this section we will extend the signature Σ containing the constant
symbol [] ({[]}, [[]], ∅) and the binary symbol [· | ·] ({[· | ·]}, [[· | ·]],

3.2. HYBRID THEORIES 57

{ · | · }), able to describe pure list (bag, compact list, and set) theory,
as shown in § 3.1, with a (finite or infinite) number of functional sym-
bols, together with their arities. Such functional symbols will take the
role of the standard free functional symbols mainly used in Logic Pro-
gramming. Possible terms are, therefore, standard terms, lists (bags,
compact lists, and sets) of standard terms, and any possible combina-
tion among them.

In the context of lists, as well as in the other axiomatic theories we
will consider, objects denoted by ground terms are forced to have a fi-
nite number of elements. Moreover, it is easily seen that in every model
of each of the considered theories in which all elements are denoted by
finite terms (we will briefly denote such models as Generated Mod-
els, the membership cannot form either cycles or infinite descending
chains. To this extent such theories can be considered well-founded.
We will first consider this case; then we will extend the axiomatization
to non-well-founded and finite or even non-well-founded and rational
theories.

The axiomatizations presented can easily be combined in order to
obtain axiomatic theories capable to deal with any subset of the collec-
tion of proposed data-structures. Moreover, the unification algorithms
that will be presented in Chapter 4 can easily be merged to solve the
unification problem relative to such ‘combined’ context.

As in § 3.1, the set Π of predicate symbols consists of ‘
.
=’ and

‘∈’. Axioms (
.
=1), (

.
=2), (N), and (W) will always hold (as shown in

Theorem 3.4, this is sufficient to force any model to be infinite).

The Kernel Problem

Assume that the constant symbol ‘a’ belongs to the signature Σ; a term
t of the form [t1, . . . , tn | a] can be written. (W) states that t1, . . . , tn
are elements of t. Remaining elements of t are those of a.

To keep the notion of list (bag, compact list, set) distinct from the
notion of ‘free’ term, we will enforce axiom (N) so as to keep ‘empty’
any term which is not a list of terms.

Therefore we introduce the axiom schema

(K) ∀x y1 · · · yn (x 6∈ f(y1, . . . , yn))

58 CHAPTER 3. BASIC AGGREGATE THEORIES

for any f ∈ Σ, f distinct from [· | ·] ({[· | ·]}, [[· | ·]], { · | · }), ar(f) = n.
(‘K’ stands for kernel .) Observe that—since [] belongs to Σ—(N) is
an instance of (K).

Definition 3.35 We will denote as Ur-Element (cf. [58]) any term
of the form f(t1, . . . , tn), where f ∈ Σ, f distinct from [· | ·] ({[· | ·]},
[[· | ·]], { · | · }), ar(f) = n. When an ur-element is ground, it is called
a Kernel or a Seed.

From now on, if the contrary is not explicitly stated, with f and g
we will denote the main functional symbols of an ur-element.

Since we are particularly interested to axiomatize objects denoted
by terms, when we deal with the well-founded case we will make a
Meta-use of a function, the kernel extraction function ker defined as
follows:{

ker(f(t1, . . . , tn)) = f(t1, . . . , tn)
ker([t1 | t2]) = ker(t2) also for {[· | ·]}, [[· | ·]], and {· | ·}

In this way we can extend the axioms (Em) and (Es), presented for the
pure case, to the hybrid case.

Being an element-less term, ker(t) can easily be proved to be distinct
from any list term [t | s]. Nevertheless, nothing is stated by NW about
the relations between two ur-elements f(s1, . . . , sm) and g(t1, . . . , tn).

A possible model 〈D, I〉 can be obtained mapping all constants of Σ
into []I , and, for any f ∈ Σ, f distinct from [· | ·], ar(f) = n, putting
f I([]I , . . . , []I) = []I . Nevertheless, this interpretation does not allow
to take advantage of such enrichment of Σ. A reasonable model is the
Herbrand model or the complete Herbrand model (cf. Def. 2.4).

When also infinite objects are allowed, the function ker , inductively
defined to return the kernel of a list (bag, compact list, set) ceases
to work. An axiomatization able to control the behavior of kernel
entities also for infinite objects is required. In this a meta-use of ker
is impossible: the signature must be extended in order to contain ker .
Luckily it is possible to develop the theories we need without explicitly
adding the following axioms in the theory:

3.2. HYBRID THEORIES 59

(ker 0) ker(f(t1, . . . , tn))
.
= f(t1, . . . , tn)

(f ∈ Σ \ { [· | ·], {[· | ·]}, [[· | ·]], {· | ·} })
(ker 1) ker([t1 | t2])

.
= ker(t2)

(The same for {[· | ·]}, [[· | ·]], and {· | ·})
As explained in Remarks 3.15 and 3.30, when infinite objects are con-
sidered, a removal axiom (L) is needed to guarantee useful properties
for bags and sets, such as, for instance:

Bags ` y ∈ x→ ∃z (x
.
= {[y | z]})

Sets ` y ∈ x→ ∃z (x
.
= {y | z} ∧ y 6∈ z)

In this case we need to add a further axiom concerning with the removal
operator less defined in Remark 3.28.

(ker 2) ker(s less t)
.
= ker(s)

Lastly, we need to be sure that a kernel entity does not contain elements.
This can be done introducing axiom (K ′):

(K ′) ∀xy (x 6∈ ker(y))

or, alternatively, introducing a sort of (DCA) axiom for kernels which,
together with axiom (K), implies (K ′):

(DCAker) ∀x∃y1 . . . yA
∨

f∈Σ\{[· | ·],{[· | ·]},[[· | ·]],{· | ·}}
ker(x)

.
= f(y1, . . . , yar(f))

where A = max{ar(f) : f ∈ Σ \ {[· | ·], {[· | ·]}, [[· | ·]], {· | ·}} }.

Axiomatization of the Herbrand universe

In [28] Clark provides an axiomatization (shown to be complete in [74])
for a signature Σ when Π is simply { .=}. Such axiomatization can be
summarized by the three axiom schemata

(F1) ∀x1 · · · xny1 · · · yn
(
f(x1, . . . , xn)

.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn .

= yn

)
f ∈ Σ

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) 6 .= g(y1, . . . , yn) f, g ∈ Σ, f 6≡ g
(F3) ∀x (x 6 .= t[x])

where t[x] denotes a term having x as a proper subterm

They are well-known as freeness axioms (or Clark equality axioms).

Axiom schemata (F1) and (F2) tell us, in particular, that

60 CHAPTER 3. BASIC AGGREGATE THEORIES

1. different constants denote different objects;

2. different functors are different data constructors;

3. constructed objects are equal (if and) only if they are constructed
from equal components;

4. constructed objects are distinct from any constant.

They also impose that for any pair of ground terms x and t, if x is a
subterm of t, then x 6 .= t. Axiom schema (F3) enforces the last property
by saying that data constructors always generate new objects. It is easy
to see that if Σ contains at least one constant symbol, then any model
of

.
=1

.
=2 F1F2F3 contains an isomorphic copy of the Herbrand Universe.

Axiom schema (F3) states that there exists no term which is also
subterm of itself. This is a form of well-foundedness. Since we deal
also with membership, we must also require that a term t having x as
a (proper or not) subterm cannot belong to x (hence, as a particular
case, there cannot be cycles of memberships of the form x0 ∈ x1 ∈ . . . ∈
xn ∈ x0). This can be expressed by axiom (F(6∈)):

(F(6∈)) ∀x (t[x] 6∈ x)
where t[x] denotes a term having x as a proper subterm

In the following lemma it will be shown that in a sensible class of models
of the theories we deal with, axiom (F(6∈)) is superfluous.

Lemma 3.36 In any model of KW whose domain is a subset of the
Herbrand universe or of the complete Herbrand universe, then (F3) im-
plies (F(6∈)).

Proof. Let M = 〈D, I〉 be a model of KW (DCA). Assume tI ∈I xI
and x be a subterm of t. (DCA) ensures that any object in D is the
image of an ur-element or of a list. Axiom (K) and the fact that tI ∈I xI
ensures that xI is the image of a list, hence it has the form [· · · , t, · · ·]I .
Since x � t and t ≺ x then x ≺ x: this contradicts (F3).

3.36 2

3.2. HYBRID THEORIES 61

The converse is not true: as an example, the rational tree that gives
a solution to x

.
= f(x) contradicts (F3); however, axiom (K) ensures

that f(x) 6∈ x.
Since we are interested exactly in models based on the Herbrand

universe (standard or complete), we are allowed to forget the weaker
non-membership freeness axiom.

If axiom schema (F3) is removed, then a constraint of the form
x
.
= f(x) can be satisfied in the so-called complete Herbrand Universe

(cf. Def. 2.4).

Axiomatization of the complete Herbrand universe

As said in § 2.1, the complete Herbrand universe is also made up of
data structures whose algorithmic handling is not possible. We are
interested in infinite elements which can be finitely represented, namely
the rational terms (cf. Def. 2.5). Given a term t, one can ‘fold’ it
by fusing two nodes µ, ν of dom(t) into a single node whenever the
subterms rooted at µ, ν are equivalent to each other. This will lead to
a graph G retaining information of all essential features of t (the picture
of t). If there are no infinite paths in G, this indicates that the original
t was already finite: this is the case of an ordinary term. When G is
finite, t (which might be infinite) is said to be a rational term (cf. also
Def 2.5).

For instance, provided that Σ contains the one-place functor symbol
f , the term tf defined as

• dom(tf) = {[0, . . . , 0︸ ︷︷ ︸
n

] : n ≥ 0};

• tf (ν) = f , for all ν in dom(tf).

coincides with everyone of its subterms. Notice that it is a solution to
the above constraint x

.
= f(x). If Σ consists of the constant symbols

0, . . . , 9, and of the binary symbol cons , the infinite term tπ defined as
follows:

• dom(tπ) = {[1, . . . , 1︸ ︷︷ ︸
n

, 0], [1, . . . , 1︸ ︷︷ ︸
n

] : n ≥ 0};

62 CHAPTER 3. BASIC AGGREGATE THEORIES

f
•

��
��

tf

• cons

•3 • cons

•1 • cons

•4 • cons
...

tπ

�
�	
@
@R
�
�	
@
@R
�
�	
@
@R

Figure 3.5: The picture of a rational and of an irrational term

• tπ([]) = tπ([1, . . . , 1]) = cons ;

• tπ([1, . . . , 1︸ ︷︷ ︸
i

, 0]) = the ith digit in the decimal expansion of π,

cannot be finitely represented. The two examples are depicted in
Fig. 3.5.

Restricting the attention to rational terms suitable represented,
then, even infinite terms can be algorithmically constructed and ma-
nipulated.

For any Herbrand system E of the form

E = x1
.
= t1 ∧ . . . ∧ xn .

= tn ,

with xi’s distinct variables, when any variable

y1, . . . , yk ∈ FV (t1, . . . , tn) \ {x1, . . . , xn}

(we will refer to such variables as eliminable variables) is assigned to
a term t1, . . . , tk in the complete Herbrand universe, then a solution
in the complete Herbrand Universe for the variables x1, . . . , xn can be
found in the following way:7

7Observe that the assumption ‘xi’s distinct variables’ is necessary for the ex-
istence of the solution. To provide a counter-example, consider the system:
X1

.
= [] ∧ X1

.
= [Y1, |Y2]. Freeness axiom (F2) (or Lemma 3.1) ensures that it

is unsatisfiable.

3.2. HYBRID THEORIES 63

• Without loss of generality, we can assume that no equations of
the form Xi

.
= Xj (i, j ∈ {1, . . . , n}) are in E . If this was not the

case, we would apply the substitutions [Xi/Xj] to E , when i 6= j
and remove the identities Xj

.
= Xj obtained. Correctness of such

procedure is ensured by equality axioms (
.
=1) and (

.
=2).

• Moreover, still without loss of generality, we can assume that the
system E is flat , namely every equation is of the form Xi

.
= Yj or

Xi
.
= f(V1, . . . , Var(f)), V1, . . . , Var(f) variables.

• We will build a (possibly infinite) graph G whose nodes are la-
beled by elements of Σ using a function T . After this definition,
the rational term obtained by infinite unfolding of G will represent
a solution (a tree-solution) for all X1, . . . , Xn satisfying E .

– ν1, . . . , νn are the nodes related to the variables X1, . . . , Xn.

– for any equation Xi
.
= f(V1, . . . , Var(f)), let T (νi) = f , and

add the edges
〈νi, µ1〉, . . . , 〈νi, µar(f)〉

to G, where µj is

∗ νk if Vj is Xk,

∗ the root of the term tk assigned to Yk if Vj is the elim-
inable variable Yk.

The solution for a variable Xi is the subterm of the term obtained by
infinite unfolding of G rooted at νi. Intuitively, the solution obtained in
this way is also the unique solution in the complete Herbrand universe.
Maher, in [74], introduces explicitly axiom schema (F4):

(F4) ∀y1 · · · ym∃!x1 · · · xn (x1
.
= t1 ∧ · · · ∧ xn .

= tn)
xi’s are pairwise distinct variables,
FV (ti) ⊆ {x1, . . . , xn, y1, . . . , yn}

This allows him to prove the completeness of the theory consisting
of axioms (F1), (F2), (F4), and (if the signature is finite is needed,
otherwise it can be removed) (DCA), when Π = { .=} (cf. § 3.1.1). For
instance, the system X1

.
= f(X2) ∧ X2

.
= f(X1) admits the unique

(tree) solution X1 = f(f(f(· · ·))), X2 = f(f(f(· · ·))), which implies
X1 = X2.

64 CHAPTER 3. BASIC AGGREGATE THEORIES

Remark 3.37 Notice that if the axiomatization were less restrictive, it
would be possible to find solutions in which X1 is distinct from X2. For
instance, assume that the domain of the structure in which we can find
solutions is the set of natural numbers and that it is consistent with the
theory that f is defined as follows:

f(x) =

{
x− 1 if x is odd
x+ 1 if x is even

Then, for instance, X1 ≡ 0(= f(1)) and X2 = 1(= f(0)) is one of the
(infinite) solutions for X1 and X2 in which X1 6= X2.

All this reasoning has a (famous) counter part in pure set theory.
Anti-foundation axiom AFA was introduced by Aczel in [3] to extend
extensionality axioms when the sets are non-well-founded. Intuitively, a
set is non-well-founded when it has an infinite descending membership
sequence; i.e. an infinite sequence of sets, consisting of an element
of the set, an element of that element, an element of that element of
that element and so on ad infinitum (for an analysis of the concept of
well-foundedness, see § A.2). Aczel’s sets are nodes of graphs whose
edges represents the membership relation. The infinite unfolding of
such graphs produces a term of a signature having a set constructor
{·, . . . , ·︸ ︷︷ ︸

n

} of arity n for each n. Given a term of this form, it is easy

to rewrite it in a term written in the signature {∅, {· | ·} }. It is not
surprising, therefore, to be able to adapt the anti-foundation axiom
AFA: Every graph has a unique decoration to our notation, in order to
establish when a system of equations between sets has a solution and,
if this is the case, how many solutions there are.

Given a system of equations

E = X1
.
= t1 ∧ . . . ∧Xn

.
= tn

where X1, . . . , Xn are pairwise distinct variables and FV (t1, . . . , tn) =
{X1, . . . , Xn, Y1, . . . , Yn}, then, once an assignment to a set for the vari-
ables Y1, . . . , Yn is fixed,

(AFA 1) every system of the form above admits a solution; moreover

(AFA 2) such a solution is unique.

3.2. HYBRID THEORIES 65

In the following four subsections we will properly adapt the above
axioms so as to fulfill the intended meaning of the list, bag, compact
list, and set constructor symbols.

Zippers and infinite objects

Before enter into the details of the various hybrid aggregate theories
that will be axiomatically presented, we want to point out the differ-
ent behavior of the aggregate data structures analyzed with respect to
particular sets of equations. We will see that such systems contains
enough information to force the infiniteness of the solution to all the
cases but the sets one. Moreover, we will point out that infinite (ratio-
nal) solution and non-well-founded solutions are independent concepts.

Consider the following unification problem(s)

(`1) X
.
= [[] |X]

(m1) X
.
= {[{[]} |X]}

(c1) X
.
= [[[[]] |X]]

(s1) X
.
= {∅ |X}

The (unique) solution to the list case (`1) is the infinite list X =
[[], [], [], . . .]. The corresponding bindings

X = {[{[]}, {[]}, {[]}, . . .]}, X = [[[[]], [[]], [[]], . . .]], X = {∅, ∅, ∅, . . .}
are solutions to the problems (m1), (c1), and (s1), respectively. Nev-
ertheless, they are not the unique solution (neither the more general).
Notice that, although involving infinite aggregates, such solutions do
not break well-foundedness of membership.

Any bag containing an infinite number of {[]} is a solution to (m1);
furthermore, any compact list beginning with the element [[]] is a so-
lution to (c1), and any set containing the element ∅ is a solution to
problem (s1). Observe that lists and bags admits only infinite solu-
tions to this problem.

Consider now the problem:

(`2) X0
.
= [[] |X1] ∧ X1

.
= [X0 |X0]

(m2) X0
.
= {[{[]} |X1]} ∧ X1

.
= {[X0 |X0]}

(c2) X0
.
= [[[[]] |X1]] ∧ X1

.
= [[X0 |X0]]

(s2) X0
.
= {∅ |X1} ∧ X1

.
= {X0 |X0}

66 CHAPTER 3. BASIC AGGREGATE THEORIES

Since X0 and X1 are both forced to contain elements, they are distinct
from the empty entities in all the solution to the above problems.

The (unique) solution to (`2) is the—implicitly described—binding

X0 = [[], X0, [], X0, [], X0, . . .], X1 = [X0, [], X0, [], X0, [], . . .],

for which, in particular, we can infer that X0 6= X1.
(m2) forces X0 = X1 in any solution. Moreover, any solution must

associate to X0 a bag with an infinite number of occurrences of {[]}
and X0 itself.

(c2) admits the (unique) solution:

X0 = [[[[]], X0, [[]], X0, [[]], X0, . . .]],
X1 = [[X0, [[]], X0, [[]], X0, [[]], . . .]] ,

which forces X0 to be distinct from X1.
The binding X0 = {∅, X0 |N}, X1 = X0, where N is a newly gen-

erated variable, is the most general solution to the problem (s2). Any
term (finite or infinite) associated to such variable fulfills the require-
ments of the problem.

Observe that this second problem forces all the solutions to be in-
finite, save for the set case. Moreover, in [90, 91], it is shown that the
simplest way to force a formula to be satisfied by non-finite sets require
a logical complexity greater than a simple equation system.

However, notice that well-foundedness of membership is violated in
all the solutions to this problem, since X0 is forced to belong to itself.

Subsystems generating situations of the form above are called zip-
pers :

Definition 3.38 A conjunction of equalities of the form

X0
.
= [Y0 |X1] ∧ . . . ∧Xm−1

.
= [Ym−1 |Xm] ∧Xm

.
= [Ym |X0]

(similarly for {[· | ·]}, [[· | ·]], and {· | ·}) is called a Zipper. For m = 0
this reduces to the single equation X0

.
= [Y0 |X0].

Zippers, which force infiniteness for all the aggregate data structures
save the set one, will play crucial roles both in the axiomatizations
described in the following sections and in the unification algorithms
that will be presented in Chapter 4.

3.2. HYBRID THEORIES 67

3.2.1 Lists

We need to integrate the so-called freeness axioms , developed for un-
interpreted terms, with the interpreted functional symbol [· | ·].

As already stated, axiom (F2) is a theorem of KW when one of the
two symbols f , g is [· | ·].

Since the number of occurrences and the ordering of elements in a
list are both important, axiom (F1) must be extended for the functor
[· | ·]. In the remaining sections of this chapter, we will discover that
under axioms (E1) and/or (E2) this is no longer true. Moreover, under
absorption axiom (E2), axiom schema (F3) cannot be accepted.

The axioms identifying the well-founded hybrid theory of lists
(WF lists), where Π = { .=,∈} and Σ = {[], [· | ·], . . .}, are the equality
axioms (

.
=1), (

.
=2), plus

(K) ∀x y1 · · · yn (x 6∈ f(y1, . . . , yn)) f ∈ Σ \ {[· | ·]}
(W) ∀xyz (x ∈ [y | z]↔ x

.
= y ∨ x ∈ z)

(F1) ∀x1 · · ·xny1 · · · yn

(
f(x1, . . . , xn)

.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn

.
= yn)

)
f ∈ Σ

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) 6 .= g(y1, . . . , yn) f, g ∈ Σ, f 6≡ g
(F3) ∀x x 6 .= t[x]

To obtain a non-well founded theory, axiom (F3) must be suitably
replaced by another one. Assume x = t[x]: it has the unique solution
t[t[t[t[· · ·]]]] in the complete Herbrand Universe. Hence axiom (F3) is
replaced by axiom

(F4) ∀y1 · · · ym∃!x1 · · ·xn (x1
.
= t1 ∧ · · · ∧ xn .

= tn)
xi’s are pairwise distinct variables,
FV (ti) ⊆ {x1, . . . , xn, y1, . . . , yn}

This theory allows to deal with finite and infinite well-founded lists,
as well as for finite and infinite non-well-founded-lists. It is in fact
immediate to see that it provides (tree) solutions to the equations:

• x .
= [[] |x] (which has the infinite and well-founded tree solution

x = [[], [], [], . . .]),

• x .
= [x] (which has the finite and non-well-founded tree solution

x = [[[[· · ·]]]]), and

68 CHAPTER 3. BASIC AGGREGATE THEORIES

• x .
= [x |x] (which has the infinite and non-well-founded tree solu-

tion implicitly described by x = [x, x, x, . . .]).

We will refer as NWF lists to this theory.8

3.2.2 Multi sets

The signature of a hybrid theory of bags must comprise the binary func-
tional symbol {[· | ·]}, whose behavior is regulated by the permutativity
axiom (E1) (see § 3.1.2). This means, in particular, that

{[a | {[b]}]} (i.e. {[a, b]}) .
= {[b | {[a]}]} (i.e. {[b, a]})

even if a is distinct from b. Hence axiom schema (F1) does not hold
when f is instantiated to {[· | ·]}. Therefore, we introduce a weaker
axiom (F ′1), defined as

(F ′1) ∀x1 · · ·xny1 · · · yn
(
f(x1, . . . , xn)

.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn .

= yn)

)
only when f ∈ Σ \ {{[· | ·]}}. On the other hand, we need to establish
a criterion for stating when (and only when) two (hybrid) bags are to
be considered equal; following the ideas presented in § 3.1.2 we can
introduce axiom (Em

k):

(Em
k) ∀y1y2v1v2

 {[y1 | v1]} .= {[y2 | v2]} ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

∃k (v1
.
= {[y2 | k]} ∧ v2

.
= {[y1 | k]})


or we can enrich Π with an infinite number of predicate symbols ∈n,
one for every natural number n, and use the multiset equality principle,
modified here in order to capture the concept of kernel:

(Em) ∀v1v2 for all n ∀x
(

(x ∈n v1 ↔ x ∈n v2)
∧ker(v1)

.
= ker(v2)

)
→ v1

.
= v2

Since the two extensions can be considered equivalent for finite bags
(it is easy to extend the proof of Theorem 3.19 to the hybrid case),
we prefer to choose the first approach, which allows Π left unchanged

8Observe that WF lists and NWF lists are Maher’s axioms from [74] plus the
axioms (K) and (W) to govern membership.

3.2. HYBRID THEORIES 69

(and finite) and it follows the parametric guideline of the thesis: axiom
(Em

k) extends axiom (F1) used for lists with a disjunct on the right of
the double impication.

We show here that the ‘←’ direction of axiom (Em
k) implies axiom

(E1) that can therefore be removed.

Lemma 3.39 (Em
k)⇒ (E1)

Proof. Consider the two bag-terms {[x, y | z]} and {[y, x | z]}. If x
.
= y

they are equal for (
.
=1). Assume x 6 .= y; by (Em

k) {[x, y | z]} .= {[y, x | z]}
if and only if ∃k ({[y | z]} .

= {[y | k]} ∧ {[x | z]} .
= {[x | k]}). Choosing k

as ‘z’ the result follows.
3.39 2

The axioms identifying the well-founded hybrid theory of multisets
(WF bags), where Π = { .=,∈} and Σ = {{[]}, {[· | ·]}, . . .}, are therefore
(
.
=1), (

.
=2), plus

(K) ∀x y1 · · · yn (x 6∈ f(y1, . . . , yn)) f ∈ Σ \ {{[· | ·]}}
(W) ∀xyz (x ∈ {[y | z]} ↔ x

.
= y ∨ x ∈ z)

(Emk) ∀y1y2v1v2

 {[y1 | v1]} .= {[y2 | v2]} ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

∃k (v1
.
= {[y2 | k]} ∧ v2

.
= {[y1 | k]})


(F ′1) ∀x1 · · ·xny1 · · · yn

(
f(x1, . . . , xn)

.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn

.
= yn)

)
f ∈ Σ \ {{[· | ·]}}

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) 6 .= g(y1, . . . , yn)
f, g ∈ Σ, f 6≡ g

(F3) ∀x x 6 .= t[x]

For the non-well founded case, similarly to what was shown for
hybrid lists, we will replace axiom schema (F3) by a suitable counter-
part of the anti-foundation axiom (AFA). Nevertheless, a zipper—
see Def. 3.38—is a template denoting infinite solutions (for instance,
X = {[a |X]}: any bag containing the constant term ‘a’ an infinite
number of times is a solution for X). This means that the uniqueness
requirement of the axiom must be dropped:

(Fm
4) ∀y1 · · · ym∃x1 · · ·xn (x1

.
= t1 ∧ · · · ∧ xn .

= tn)
xi’s are pairwise distinct variables,
FV (ti) ⊆ {x1, . . . , xn, y1, . . . , yn}

70 CHAPTER 3. BASIC AGGREGATE THEORIES

One might replace axiom (Em
k) (proved to be equivalent to axiom (Em))

with an axiom capturing the concept of infiniteness :

(Em
ord) ∀v1v2 for all α ∀x

(
(x ∈α v1 ↔ x ∈α v2)
∧ker(v1)

.
= ker(v2)

)
→ v1

.
= v2

where α ranges over ordinal numbers (see, e.g., [64]). However, this
requires the introduction of ordinal numbers in the theory (or in the
meta-theory) and to extend signature and theory in order to deal with
kernel entities.

Since we are interested in infinite but finitely representable bags
(namely, via systems of equations), the former requirement can be sim-
plified as follows:

(Em
ω) ∀v1v2 for all n ∀x

 (x ∈n v1 ↔ x ∈n v2)∧
(x ∈ω v1 ↔ x ∈ω v2)∧

ker(v1)
.
= ker(v2)

→ v1
.
= v2

where n ranges over natural numbers, the ∈n’s are defined in § 3.1.2,
and x ∈ω y is a shorthand for the formula y

.
= {[x | y]}.

The functional symbol ker can be seen as a meta-symbol when
the bags are finite. Otherwise new axioms concering with it must be
introduced. However, as it will show in Theorem 4.49, axiom (Em

k)
(which is clearly implied by (Em

ω)) contains sufficient information to
simplify Herbrand system in an equivalent form. We therefore leave it
in the theory.

Such theory will be denoted by the abbreviation NWF bags.

3.2.3 Compact lists

Similarly to bags, also for compact lists axiom schema (F1) does not
correctly model the behavior of functional symbol [[· | ·]] (which is reg-
ulated by the absorption axiom (E2)—see § 3.1.3), as it ensues from
the example:

[[a | [[a]]]] (i.e. [[a, a]])
.
= [[a | [[]]]] (i.e. [[a]])

Notice that [[a]] is distinct from [[]].
Moreover, also freeness axiom (F3) must be modified accordingly to

the interpretation of [[· | ·]]. In the just described example, for instance,

3.2. HYBRID THEORIES 71

[[a]] is a proper subterm of [[a | [[a]]]]; nevertheless, they are equal in
the theory (and also the desired well-foundedness holds—x

.
= [[a |x]]

admits a finite tree solution).

We first recall the equality principle for compact lists (with kernels)
presented in § 3.1.3:

(Ec
k) ∀y1y2v1v2


[[y1 | v1]]

.
= [[y2 | v2]] ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= [[y2 | v2]])∨

(y1
.
= y2 ∧ [[y1 | v1]]

.
= v2)


that, in particular, makes axiom (E2) superfluous.

Let c be the equational theory consisting of axiom (E2); axiom (F c
3)

must keep into account the result stated in Lemma 3.21:

(F c
3) x 6= t[x]

unless t is of the form [[t0, . . . , tn |x]],
and t0

.
= . . .

.
= tn and x does not occur in t0 . . . tn

The axioms below, together with equality axioms (
.
=1) and (

.
=2

) identify the well-founded hybrid theory of compact lists WF clists,
where Π = { .=,∈} and Σ = {[[]], [[· | ·]], . . .}.

(K) ∀x y1 · · · yn (x 6∈ f(y1, . . . , yn)) f ∈ Σ \ {[[· | ·]]}
(W) ∀xyz (x ∈ [[y | z]]↔ x

.
= y ∨ x ∈ z)

(Eck) ∀y1y2v1v2


[[y1 | v1]]

.
= [[y2 | v2]] ↔

(y1
.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= [[y2 | v2]])∨

(y1
.
= y2 ∧ [[y1 | v1]]

.
= v2)


(F ′1) ∀x1 · · ·xny1 · · · yn

(
f(x1, . . . , xn)

.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn

.
= yn)

)
f ∈ Σ \ {[[· | ·]]}

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) 6 .= g(y1, . . . , yn) f, g ∈ Σ, f 6≡ g
(F c3) ∀x x 6= t[x]

unless t is of the form [[t0, . . . , tn |x]],
t0

.
= . . .

.
= tn, and

x does not occur in t0 . . . tn

72 CHAPTER 3. BASIC AGGREGATE THEORIES

For the non-well-founded case, after removing axiom (F c
3), consider

the satisfiability problem for the constraint x
.
= [[y1, y2 |x]] in the com-

plete Herbrand universe. If y1 is distinct from y2, then the unique
solution is the (rational) infinite term [[y1, y2, y1, y2, · · ·]]. If y1 is equal
to y2 it admits the solution x = [[y1 |N]], for any Σ-term instantiation
for the variable N . Clearly, such a solution is not unique.

The same problem occurs when we consider the satisfiability prob-
lem of any zipper (cf. Def. 3.38). This means that also for compact
lists the uniqueness requirement of the axiom must be dropped:

(F c
4) ∀y1 · · · ym∃x1 · · ·xn (x1

.
= t1 ∧ · · · ∧ xn .

= tn)
xi’s are pairwise distinct variables,
FV (ti) ⊆ {x1, . . . , xn, y1, . . . , yn}

The theory of (even infinite) non-well-founded compact-lists will be
denoted by NWF clists.

3.2.4 Sets

As shown in § 3.1.4, the insertion of both axioms (E1) and (E2) gener-
ates a minimal theory of sets. The introduction of (free) functors into
the signature generates the hybrid theory of sets, a framework suited
for high level declarative programming, as it will be shown in Chap-
ter 7. Similarly to what done in the previous three subsections, we
choose one extensionality criterion for testing the equality of two sets:

(Es
k) ∀y1y2v1v2


{y1 | v1} .= {y2 | v2} ↔

(y1
.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= {y2 | v2})∨

(y1
.
= y2 ∧ {y1 | v1} .= v2)∨

∃k (v1
.
= {y2 | k} ∧ v2

.
= {y1 | k})


which is shown to imply both (E1) and (E2) that can, henceforth, be
ignored. Moreover, a simple extension of the classical extensionality
axiom with the meta-concept of kernel is the following:

(Es) ∀v1v2 ∀x
(

(x ∈ v1 ↔ x ∈ v2)∧
ker(v1)

.
= ker(v2)

)
→ v1

.
= v2

(it will be useful in the next chapter, in handling negative constraints).
It is easy to modify the proofs of Theorems 3.27 and 3.33 to show that

3.2. HYBRID THEORIES 73

it is equivalent to (Es
k) in all models of finite sets (that are sufficient

for our purposes), hence we will use such axiom but we only need to
introduce the parametric axiom (Es

k) in the theory.

Axiom schema (F s
3) for sets simplifies axiom schema (F c

3) introduced
for compact lists:

(F s
3) X 6 .= t[x]

unless t[x] is of the form {t0, . . . , tn |x},
and x does not occur in t0, . . . , tn.

The axioms identifying the well-founded hybrid theory of sets
(WF sets), where Π = { .=,∈} and Σ = {[], { · | · }, . . .}, are (

.
=1), (

.
=2),

plus

(K) ∀x y1 · · · yn (x 6∈ f(y1, . . . , yn)) f ∈ Σ \ {{ · | · }}
(W) ∀xyz (x ∈ {y | z} ↔ x

.
= y ∨ x ∈ z)

(Esk) ∀y1y2v1v2


{y1 | v1}

.
= {y2 | v2} ↔

(y1
.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= {y2 | v2})∨

(y1
.
= y2 ∧ {y1 | v1}

.
= v2)∨

∃k (v1
.
= {y2 | k} ∧ v2

.
= {y1 | k})


(F ′1) ∀x1 · · ·xny1 · · · yn (f(x1, . . . , xn)

.
= f(y1, . . . , yn)→

x1
.
= y1 ∧ · · · ∧ xn

.
= yn) f ∈ Σ \ {{ · | · }}

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) 6 .= g(y1, . . . , yn)
f, g ∈ Σ \ {{ · | · }}, f 6≡ g

(F s3) ∀x x 6 .= t[x]
unless t[x] is of the form {t0, . . . , tn |x},
and x does not occur in t0, . . . , tn.

Removing axiom (F s
3) allows a non-well-founded interpretation of the

theory; an interesting example of purely set-theoretic irrational term is
the one whose picture is the graph of Fig. 3.3.

As shown in § 3.2.3, axiom (E2) causes the uniqueness (once param-
eters has been instantiated) of the solution to a system of equations in
solved form is no longer true. However, using the pre-processing pro-
cess:

74 CHAPTER 3. BASIC AGGREGATE THEORIES

v0
.
= {t00, . . . , t0k0

| v1},
v1

.
= {t10, . . . , t1k1

| v2},
. . .
vn

.
= {tn0 , . . . , tnkn | v0}

 7→



v0
.
= {t00, . . . , t0k0

,
t10, . . . , t

1
k1
,

. . . ,
tn0 , . . . , t

n
kn | z},

v1
.
= v0,

...
...

...
vn

.
= v0

where z0, . . . , zn are new variables, the uniqueness is again guaranteed.
The adapted version of axiom schema (F4), named (F s

4), taking the
place of standard AFA axiom (see [3]) is the following:

(F s
4) ∀y1 · · · ym∃!x1 · · ·xn (x1

.
= t1 ∧ · · · ∧ xn .

= tn)
xi’s are pairwise distinct variables,
there are no zippers in x1

.
= t1 ∧ · · · ∧ xn .

= tn
FV (ti) ⊆ {x1, . . . , xn, y1, . . . , yn}

The equality criterion between sets is equivalent to the classical ex-
tensionality axiom (enriched with a test of the equality of the kernels)
when the two sets are finite (cf. § 3.1.4). It can be used for infinite sets
by adding the removal axiom (L) to the theory. However, since we will
be interested in sets defined by a (finite) system of equations, and since
it is impossible to force infinite set solutions with a finite system of
equations (cf. [90, 91]), the introduction of axiom (L) is not necessary.

The theory presented is named NWF sets.

Fig. 3.6 summarizes the axiomatic theories presented in this section.

3.2. HYBRID THEORIES 75

WF lists (
.
=)(K)(W)(F1)(F2)(F3)

NWF lists (
.
=)(K)(W)(F1)(F2)(F4)

WF bags (
.
=)(K)(W)(Em

k)(F ′1)(F2)(F3)
NWF bags (

.
=)(K)(W)(Em

k)(F ′1)(F2)(Fm
4)

WF clists (
.
=)(K)(W)(Ec

k)(F
′
1)(F2)(F c

3)
NWF clists (

.
=)(K)(W)(Ec

k)(F
′
1)(F2)(F c

4)
WF sets (

.
=)(K)(W)(Es

k)(F
′
1)(F2)(F3)

NWF sets (
.
=)(K)(W)(Es

k)(F
′
1)(F2)(F s

4)

Figure 3.6: Hybrid theories

76 CHAPTER 3. BASIC AGGREGATE THEORIES

Chapter 4

Unification

In this chapter we will study the unification problems for the well-
founded theories WF lists, WF bags, WF clists, and WF sets (§ 4.2),
as well as for the non well-founded theories NWF lists, NWF bags, NWF -

clists, and NWF sets (§ 4.3). The parametric definition of the axiom-
atizations will allow a parametric development of such algorithms.

In the preliminary section 4.1, such unification problems are shown
to be NP-hard, save the list one. Unification algorithms for non-well-
founded theories of compact lists (§ 4.3.2), sets (§ 4.3.3), and bags
(§ 4.3.4) can easily be modified to obtain an NP-algorithm for the
corresponding well-founded problem.

The unification algorithm for hybrid and well-founded sets of § 4.2.4
was firstly presented in [37], as an extension of the one presented in [57]
in a slight different context, to complete an inferential engine to the
logic programming language with sets {log}. It was later implemented
(cf. [40]) on a suitable extension of the Warren Abstract Machine, called
{WAM}. The reduction to 3-SAT of the set unification problem, argu-
ment of § 4.1.3, was firstly presented in [38].

The hybrid hyperset unification algorithm follows from a stream of
preliminary works which involved several people (cf. [7, 88]). The first
organic presentation of that material is [35].

The minimality analysis, presented in § 4.4, is a summary of [11].

77

78 CHAPTER 4. UNIFICATION

4.1 Complexity bounds

While unification for (hybrid) lists can be performed in linear time
(see § 4.2.1), all other unification problems analyzed in this thesis are
NP-complete.

To show NP-hardness we reduce the NP-complete problem 3-SAT
to the unification problem for bags (§ 4.1.1), compact lists (§ 4.1.2), and
sets (§ 4.1.3). First we recall 3-satisfiability (3-SAT—cf. [45]) problem:

Instance: A collection C = {`1
1∨`1

2∨`1
3, . . . , `

m
1 ∨`m2 ∨`m3 } of clauses on

a finite set U = {X1, . . . , Xn} of propositional letters, such that
every `ji (i = 1, 2, 3; j = 1, . . . ,m) is either of the form Xk or of
the form ¬Xk, for one k ∈ {1, . . . , n}.

Question: Is there a truth assignment for U that satisfies all the
clauses in C?

We will use variables A1, . . . , Am, B1, . . . , Bm, X1, . . . , Xn, Y1, . . . , Yn
(|C | = m and |V | = n). {[]} ([[]], ∅) will represent false and {[{[]}]}
([[[[]]]], {∅}) will represent true. The linear-time encoding of an in-
stance 〈C,U〉 of 3-SAT into an instance Φ of the set unification problem
is based on the function f defined as follows:{

f(Xi) = Xi

f(¬Xi) = Yi .

4.1.1 NP-hardness of multi-set unification

Any instance of 3-SAT can be mapped into the conjunction of bag
unification problems

{[Xi, Yi]} .
= {[false, true]} i

.
= 1, . . . , n

{[f(`j1), f(`j2), f(`j3)]} .
= {[true, Aj, Bj]} j = 1, . . . ,m

or into the unique unification problem

{[{[X1, Y1]}, . . . , {[Xn, Yn]},
{[f(`1

1), f(`1
2), f(`1

3)]}, . . . , {[f(`m1), f(`m2), f(`m3)]}]} .
=

{[{[false, true]}, . . . , {[false, true]}︸ ︷︷ ︸
n

,

{[true, A1, B1]}, . . . , {[true, Am, Bm]}︸ ︷︷ ︸
m

]}

4.1. COMPLEXITY BOUNDS 79

(remember that k-element bags can only unify with k-element bags).

4.1.2 NP-hardness of compact-list unification

Any instance of 3-SAT can be mapped into the conjunction of unifica-
tion problems

[[false, Xi, false, Yi, false]]
.
= [[false, true, false]]

[[false, f(`j1), f(`j2), f(`j3)]]
.
= [[false, true, Aj, Bj]]

for all i = 1, . . . , n and j = 1, . . . ,m. Notice how an adequate number
of alternations of false and true allows to force the desired matching.
Equivalently, it can be reduced to the unique unification problem

[[[[false, X1, false, Y1, false]], . . . , [[false, Xn, false, Yn, false]],
[[2, false, f(`1

1), f(`1
2), f(`1

3)]],
. . . ,
[[1 +m, false, f(`m1), f(`m2), f(`m3)]]]]

.
=

[[[[false, true, false]],
[[2, false, true, A1, B1]], . . . , [[1 +m, false, true, Am, Bm]]]] ,

where k stands for the term [[· · · [[︸ ︷︷ ︸
k

]] · · ·]]. Such numeral elements are

introduced to ensure the correct matching.

4.1.3 NP-hardness of set unification

Any instance of 3-SAT can be mapped into the conjunction of set uni-
fication problems

{Xi, Yi} .
= {false, true} i = 1, . . . , n

{false, f(`j1), f(`j2), f(`j3)} .
= {false, true} j = 1, . . . ,m

or, equivalently, into the unique unification problem

{ {X1, Y1}, . . . , {Xn, Yn},
{false, f(`1

1), f(`1
2), f(`1

3)},
. . . ,
{false, f(`m1), f(`m2), f(`m3)} } .

=
{ {false, true} }

80 CHAPTER 4. UNIFICATION

For any of the three presented reductions, it is a matter of routine
to verify that the restriction to U of any solution to Φ is an affirmative
answer for 〈C,U〉. On the other hand, for any solution to 〈C,U〉 there
exists a solution to the corresponding unification problem Φ extending
it.

An alternative reduction for the set case is provided in [59].

4.2 À la Robinson: the well-founded case

The unification algorithms presented in this section are based on a
rewriting technique firstly presented by Jacques Herbrand in his famous
P.h.D. thesis (cf. [49]). The Herbrand algorithm was retaken and made
famous by J. A. Robinson (cf. [95]) for its use in the implementation of
the resolution algorithm. More in general, Although easy to understand
and to implement, such algorithms share the unpleasant property to
hidden an exponential space requirement due to the explicit application
of substitution. For instance, when the input system is of the formX1

.
=

f(X2, X2), X2
.
= f(X3, X3), . . . , Xn

.
= f(Xn+1, Xn+1), the computed

substitution for the variable X1 is represented by the following diagram:

•

• •

• • • •

• • • •

�������9

XXXXXXXz
�����
HHHHj

HHHHj
�����

��	 @@R ��	 @@R ��	 @@R ��	 @@R

X1 = f

f f

f f f f

.

.

.

.

.

.

Xn+1 Xn+1 . . . Xn+1 Xn+1︸ ︷︷ ︸
2n

Such problem will be overcome by the algorithms presented in the next
section § 4.3, following ideas and techniques from [92, 77]. Nevertheless,
it is important to deeply study algorithms in the style of Robinson both
for the easiness to implement them using meta-interpreters of Prolog
and for the fact that they represent an important starting point for
future optimizations.

Every unification algorithm that will be presented can be concep-
tually divided into two parts. A standard part consisting of actions

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 81

already treated in Robinson’s Algorithm, such as substitution appli-
cation, (standard) term decomposition, etc. A part dealing with set-
set (list-list, bag-bag, compact-list–compact-list) equations of the form
{t1 | s1} .= {t2 | s2}. Such equations will be re-written accordingly with
the corresponding equality principle: axiom (F1) for lists, axioms (Em

k),
(Ec

k), and (Es
k), for bags, compact lists, and sets, respectively.

The following definitions will be useful in the rest of the section.

Definition 4.1 An equation set E is said to be Solved if it has the
form {X1

.
= t1, . . . , Xn

.
= tn} and the Xi’s are distinct variables which

do not occur in terms r.h.s. of any equation of E. X1, . . . , Xn are said
to be Eliminable. Similarly, any variable X occurring in E (not nec-
essarily solved) only as l.h.s. of one equation is said to be Eliminable.

Definition 4.2 The Size of a term t is recursively defined as follows:{
size(X) = 0

size(f(t1, . . . , tn)) = 1 +
∑n
i=1 size(ti) .

In the algorithms that will follow, adopting standard Prolog syn-
tax, identifiers beginning with capital letters will denote variables, (in
particular N will denote a fresh variable, generated dynamically by the
algorithm), identifiers beginning with small letters will denote func-
tional symbols. s, t, si, ti, etc. will stand for generic terms.

4.2.1 Hybrid lists unification

The unification algorithm for hybrid lists is basically the same algorithm
presented by Herbrand in his famous thesis ([49]) and, later, used by
Robinson to implement the resolution algorithm ([95]).

The aim of the algorithm is to return a solved form system E ′ equiv-
alent, in the theory WF lists (the well founded theory of hybrid lists
presented in § 3.2.1) to the input system E . The form of a solved form
system allows to easily obtain a substitution (the—unique—most gen-
eral unifier—cf., for instance, [73, 67]). As already said, an exponential
space (hence time in a sequential implementation) can be necessary to

82 CHAPTER 4. UNIFICATION

Unify lists(E):
(1) X

.
= X ∧ E 7→ E

(2)
t
.
= X ∧ E

t is not a variable

}
7→ X

.
= t ∧ E

(3)
X

.
= t ∧ E

X does not occur in t

X occurs in E

 7→ E [X/t] ∧X .
= t

(4)
X

.
= t ∧ E

X 6≡ t and X occurs in t

}
7→ fail

(5)
f(s1, . . . , sm)

.
= g(t1, . . . , tn) ∧ E
f different from g

}
7→ fail

(6) f(s1, . . . , sm)
.
= f(t1, . . . , tm) ∧ E 7→

s1
.
= t1 ∧ . . . ∧ sm .

= tm ∧ E

Figure 4.1: List unification algorithm à la Robinson

perform such rewriting. This bad behavior marks all unification algo-
rithm presented in § 4.2.2, § 4.2.3, and § 4.2.4; however they can easily
be implemented inside a logic programming environment.

The variable E is viewed as a conjunction of equations; to this aim,
it can be considered as a set . From an operational point of view, it can
be useful to see it as a multi set; however, all the results can be proved
exactly in the same way.

In the algorithm of Fog. 4.1 f and g range over Σ; action (4) per-
forms the so-called occur-check. It checks the well-foundedness of the
unique most general solution solution to the system.

The termination of the algorithm is easy to prove:

Theorem 4.3 (Termination) Unify lists(E) always terminates.

Proof. We prove that any non-failing action cause the decreasing of
an adequate complexity measure.

• Action (1) decreases the number of equations of E (and does not
increase anything else).

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 83

• Action (2) decreases the sum of the size of the l.h.s. term of the
equations of E .

• Action (3) decreases the number of non-eliminable variables of E
(observe that it can increase the size of the terms containing X
occurring in some equation of E).

• Action (6) decreases the sum of the size of the l.h.s. of the equa-
tions of E (and also of the r.h.s.; moreover, observe that it can
increase the number of equations of E).

A complexity measure based on the triple of non-negative integers
〈A,B,C〉, where

• A is the number of non-eliminable variables of E ,

• B =
∑
`
.
=r in E size(`), and

• C is the number of equations in E ,

lexicographically ordered, decreases at each non failing-action. The
termination follows from the well-foundedness of the lexicographical
ordering of tuples of non-negative integers.

4.3 2

The correctness and completeness of the algorithm with respect to
the corresponding theory presented in § 3.2.1 is proved in the following

Theorem 4.4 (Soundness and Completeness) Let E be an equa-
tion system, and E ′ be the equation system resulting from the computa-
tion of Unify lists(E) (we assume that when the computation fails, then
E ′ = false). Then WF lists ` E ↔ E ′.

Proof. We prove the correctness result for each action. The termi-
nation of the algorithm, guaranteed by Theorem 4.3 ensure that the
result holds globally.

Correctness of actions (1), (2), and (3) are ensured by equality ax-
ioms (

.
=1) and (

.
=2).

Correctness of failing actions (5) and (6) follow from freeness axioms
(F3) and (F2), respectively.

84 CHAPTER 4. UNIFICATION

Completeness of action (6) is justified by (F1); its correctness is
ensured by equality.

4.4 2

4.2.2 Hybrid multi-sets unification

The basic difference between the theories WF lists and WF bags is that
freeness axiom (F1) (related to action (6) of the unification algorithm
Unify lists), does not hold anymore when dealing with bags (cf. § 3.2.2).
Axiom (Em

k), which takes its role for bags, introduces a source of non-
determinism.

Therefore, the aim of a unification algorithm for hybrid bags (the
same will hold also for compact lists and sets), is to return, non-
deterministically, a (finite) number of solved form systems E1, . . . , Ek,
all together equivalent to the input system E (see Theorem 4.6), or to
return fail, when E is unsatisfiable in WF bags.

We first introduce a naive fully non-deterministic algorithm naive -
Unify bags. We will show that it does not terminate when the input
system is of a certain form. Then we will introduce a little of deter-
minism, in order to guarantee termination.

The first five actions of naive Unify bags are the same as in the al-
gorithm for hybrid lists presented in the previous section. We need to
restrict action (6) for non-bag terms only, and to introduce a bag-bag
case (7). This case introduces a source of don’t know non-determinism;
at run time both the alternatives (i) and (ii) must be exploited.

naive Unify bags(E):
(1)−−(5) as in Unify lists

(6)
f(s1, . . . , sm)

.
= f(t1, . . . , tm) ∧ E

f ∈ Σ \ {{[· | ·]}}

}
7→

s1
.
= t1 ∧ . . . ∧ sm .

= tm ∧ E
(7) {[t | s]} .= {[t′ | s′]} ∧ E 7→

(i) t
.
= t′ ∧ s .

= s′ ∧ E
(ii) s

.
= {[t′ |N]} ∧ {[t |N]} .= s′ ∧ E

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 85

Although sound and complete with respect to the theory WF bags,
for some initial E there is some infinite sequence of transformation steps,
applying actions (1)–(7); examples of inputs leading to non-termination
are the following:

1. {[T |S]} .= {[T ′ |S]} 7(ii)7→
S
.
= {[T ′ |N]} ∧ {[T |N]} .= S

37→
S
.
= {[T ′ |N]} ∧ {[T |N]} .= {[T ′ |N]}.

The last system contains a subsystem equal—modulo variable
renaming—to the one we started from.

2. {[T1 |S1]} .= {[T2 |S2]} ∧ {[T3 |S2]} .= {[T4 |S1]} 7(ii)7→
S1

.
= {[T2 |N1]} ∧ {[T1 |N1]} .= S2 ∧ {[T3 |S2]} .= {[T4 |S1]} 7(ii)7→

S1
.
= {[T2 |N1]} ∧ {[T1 |N1]} .= S2 ∧
S2

.
= {[T4 |N2]} ∧ {[T3 |N2]} .= S1

2−3−37→
S1

.
= {[T2 |N1]} ∧ S2

.
= {[T1 |N1]} ∧

{[T1 |N1]} .= {[T4 |N2]} ∧ {[T3 |N2]} .= {[T2 |N1]}.

3. More generally, for any situation of the form
{[· · · |S1]} .= {[· · · |S2]} ∧ {[· · · |S2]} .= {[· · · |S3]} ∧ . . . ∧
{[· · · |Sn]} .= {[· · · |S1]},

it is easy to find a non-deterministic sequence of actions leading
to non-termination.

The (base) situation described in the above example (1) can be easily
handled as special case: let tail and de tail be the functions defined
below (X will denote a generic variable):

tail({[]}) = {[]}
tail(X) = X

tail({[t | s]}) = tail(s)

{
de tail(X) = {[]}

de tail({[t | s]}) = {[t | de tail(s)]} ;

then action (7) of the above algorithm can be split into two sub-actions.
If tail(s) and tail(s′) are not the same variable then perform action (7).
Otherwise replace {[t | s]} .= {[t′ | s′]} with:

de tail({[t | s]}) .
= de tail({[t′ | s′]}).1

1To be precise, in this way, a variable X occurring in a system only as tail of the
two bags analyzed, disappears from the system. This is not a problem for correctness
and completeness, since the above equation does not force any constraint for X.

86 CHAPTER 4. UNIFICATION

The reason for non-termination is that the unification algorithm
looks for all substitutions for S such that {[T |S]} .

= {[T ′ |S]}, i.e.
when S is left ‘free’, when it contains at least one element, two ele-
ments, and so on. clearly, the first solution is more general than the
others. For the base case the remedy has already been described. To
overcome counter-examples (2) and (3) action (7) is modified and a
particular control is imposed to the application of the actions adopt-
ing a stack data structure. This will be sufficient to guarantee that
when an equation {[s1, . . . , sm |S]} .

= {[t1, . . . , tn |S ′]} is encountered,
the sequence of actions executed is such that a conjunction of equa-
tions of the form si1

.
= tj1 , . . . , sik

.
= tjk , plus two equations of the

form S
.
= {[tjk+1

, . . . , tjn |N]}, S ′ .= {[sik+1
, . . . , sim |N]} or one equa-

tion of the form S
.
= {[tjk+1

, . . . , tjn |S ′]} or one of the form S ′
.
=

{[sik+1
, . . . , sim |S]} (cf. Lemma 4.7) is returned. After that, applying

the substitutions related to variables S and S ′, even if a new variable N
is introduced into the system, one or both variables S and S ′ become
eliminable (see Def. 4.1), i.e., in a sense, disappear from the system
(this will be better explained in the proof of Theorem 4.5).

For instance, counter-example 2 will be overcome:

{[T1 |S1]} .= {[T2 |S2]} ∧ {[T3 |S2]} .= {[T4 |S1
7(ii)7→

S1
.
= {[T2 |N1]} ∧ {[T1 |N1]} .= S2 ∧ {[T3 |S2]} .= {[T4 |S1]} 2−3−37→

S1
.
= {[T2 |N1]} ∧ S2

.
= {[T1 |N1]} ∧ {[T3, T1 |N1]} .= {[T4, T2 |N1]} .

The last equation will be replaced by {[T3, T1]} .
= {[T4, T2]}, avoiding

the loop.

This circle of ideas is summarized by the algorithm in Fig. 4.2.

Theorem 4.5 (Termination) Unify bags always terminates, for any
input system E.

Proof. We define a complexity measure 〈AE , BE , CE〉, where AE , BE , CE
are non-negative integers depending on the value of E . We will show
that each non-failing action of Unify bags decreases the value of 〈AE , BE ,
CE〉 with respect to the lexicographical ordering. Since the lexicograph-
ical ordering on tuples of non-negative integers is a well-ordering, this
is sufficient to prove the termination of the algorithm.

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 87

Unify bags(E);
stack := empty;
while E is not in solved form or not empty(stack) do

begin
while not empty(stack) do

begin
e := pop(stack)
if e is in solved form with respect to (E and stack)
then E := e ∧ E
else action

end
select arbitrarily from E an equation e not in solved form; action

end.

action:
let E ′ be E \ {e};

case e of
(1) X

.
= X 7→ E := E ′

(2)
t
.
= X

t is not a variable

}
7→ E := X

.
= t ∧ E ′

(3)
X

.
= t

X does not occur in t

X occurs in E ′

 7→ E := E ′[X/t] ∧X .
= t;

stack := stack[X/t]

(4)
X

.
= t

X 6≡ t and X occurs in t

}
7→ fail

(5) f(s1, . . . , sm)
.
= g(t1, . . . , tm) 7→ fail

(6)
f(s1, . . . , sm)

.
= f(t1, . . . , tm)

f ∈ Σ \ {{[· | ·]}}

}
7→

E := s1
.
= t1 ∧ . . . ∧ sm .

= tm ∧ E ′

(7)
{[t | s]} .= {[t′ | s′]}

tail(s) and tail(s′)

are the same variable

 7→

E := E ′; push(de tail({[t | s]}) .
= de tail({[t′ | s′]}), stack);

(8)
{[t | s]} .= {[t′ | s′]}

tail(s) and tail(s′)

are not the same variable

 7→

(i) E := t
.
= t′ ∧ E ′;

(ii) push(s
.
= {[t′ |N]}, stack);

push({[t |N]} .= s′, stack);

Figure 4.2: Multi-set unification algorithm à la Robinson

88 CHAPTER 4. UNIFICATION

• AE is the number of non-eliminable variables of E (see Def. 4.1).

• BE is the left size of E , i.e.
∑

(`
.
=r) in E size(`) (see Def. 4.2).

• CE is the number of equations of E .

A phase of the computation of the algorithm is defined to be the

• a single action (∗) if the stack is empty and (∗) does not modify
the variable stack;

• the (finite) sequence of actions that begins with action 8(ii) and
ends with an action distinct from 8(ii) and fired by the equation
selected from the stack leaving it empty.

We will analize, for each non-failing phase, the behavior of the selected
measure of complexity:

1: AE and BE are left unchanged; CE decreases;

2, 5: AE is left unchanged; BE decreases;

3: AE decreases;

7: c.f. the analysis of action (8) when tail(s) and tail(s′) are not vari-
ables (i.e. they are both {[]});

(8): Assume tail(s) and tail(s′) are not variables. The data structure
stack ensure that a conjunction of equations between elements is
returned, together with an equation regarding the kernels of the
two bags. When the latter does not force an immediate failure due
to subsequent action (5), a new conjunction of equations between
smaller terms is introduced by action (6). AE is left unchanged,
while BE decreases.

Assume tail(s) is the variable S and tail(s′) is a kernel f(. . .). A
substitution of the form [S/{[r1, . . . , rn | f(. . .)]}], where n is the
difference between the number of elements of the rightmost bag
and the number of elements of the leftmost one when S is replaced
by {[]}. Thanks to the substitution application, AE decreases.

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 89

The proof for the symmetrical case (namely when tail(s′) is the
variable S and tail(s) is a kernel f(. . .)) is similar.

Assume tail(s) is the variable S and tail(s′) is the variable S ′ (the
distinction between actions (7) and (8) ensures that S and S ′ are
distinct). As shown in Lemma 4.7, a new (and not solved) variable
N can be introduced. If this is the case, however, a substitution
of the form [S/{[r1, . . . , rn |N]}, S ′/{[`1, . . . , `m |N]}] is applied:
AE decreases. If, conversely, a new variable is not introduced,
then a substitution of one of the form [S/{[r1, . . . , rn |S ′]}] or of
the form [S ′/{[`1, . . . , `m |S]}] is applied, decreasing AE .

4.5 2

Theorem 4.6 (Soundness and Completeness) Let E be an equa-
tion system, E1, . . . , Eh be the equation systems non-deterministically
resulting from the computation of Unify bags(E). Let N1, . . . , Nk be the
variables occurring in E1, . . . , Eh but not in E; then WF bags ` E ↔
∃N1, . . . , Nk

∨h
i=1 Ei.

Proof. As for the proof of Theorem 4.4, it is sufficient to prove the
claim for each single action.

Actions (1)–(6) are the same as in algorithm Unify lists whose cor-
rectness has been proved in Theorem 4.4.

Since two bags are equal if and only if they contains the same num-
ber of occurrences of each element, then the problem

{[s1, . . . , sm |X]} .= {[t1, . . . , tn |X]}

is perfectly equivalent to the problem

{[s1, . . . , sm]} .= {[t1, . . . , tn]} .

Soundness and completeness of action (8) follows from the fact that
action (7) of algorithm naive Unify bags is exactly axiom (Em

k).
4.6 2

Given an equational theory T , for any satisfiable Herbrand system
E involving terms from τ(Σ ∪ V), a unification algorithm should be
able to cover through non-determinism each element of a complete set

90 CHAPTER 4. UNIFICATION

of T -unifiers of E (c.f. § 2.2). From Theorem 4.6 we can infer that
{E1, . . . , Eh} is, in fact, a complete set of (E1)-unifiers of E . However,
nothing can be stated about the minimality properties of E1, . . . , Eh,
namely whether they are all independent or not.

In general, a valid criterion to compare two unification algorithms
is the analysis of the length of the list of solutions computed by them.
(The word ‘list’ is used here to reflect the fact that, if a unification al-
gorithm computes exactly the minimal complete set of unifiers µ

⋃
T (E)

but some solution is returned more than once, then it cannot be con-
sidered minimal).

In the rest of this section we will analyze the behavior, with re-
spect to the minimality, of the execution of the unification on some
(significant) sample problems. First we present the following general
result.

Lemma 4.7 Let A1, . . . , Am, B1, . . . , Bn, S, S
′ (m ≤ n) be pairwise

distinct variables. Any solution (even non ground) representable with
finite trees to the unification problem

{[A1, . . . , Am |S]} .= {[B1, . . . , Bn |S ′]}

is of the form

Ai1
.
= Bj1 , . . . , Aik

.
= Bjk ,

S
.
= {[Bjk+1

, . . . , Bjn |N]} (if n = k then N = S)
S ′

.
= {[Aik+1

, . . . , Aim |N]} (if m = k then N = S ′)

where

• i : {1, . . . ,m} −→ {1, . . . ,m} and j : {1, . . . , n} −→ {1, . . . , n}
are two permutations;

• k is an integer 0 ≤ k ≤ min{m,n}.

Proof. It is easy to see that each (solved form) system of the form
above is a solution to the unification problem at hand in a bag theory.
For the converse direction, let γ be a ground unifier of

{[A1, . . . , Am |S]} .= {[B1, . . . , Bn |S ′]}

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 91

and let ai, i = 1, . . . ,m, and bj, j = 1, . . . , n, be Aiγ and Bjγ, respec-
tively.
Since we are interested in finite solutions only, Sγ and S ′γ should have
the form {[am+1, . . . , ah]} and {[bn+1, . . . , bk]} (k ≥ max{m,n}), respec-
tively.

From a simple adaptation to Theorem 3.10for the hybrid case it
follows that h = k and, moreover, a permutation π : {1, . . . , k} −→
{1, . . . , k} such that aπi

.
= bi, for i = 1, . . . , k, exists.

It is immediate to see that γ is an instance of one of the unifiers de-
scribed in the statement.

4.7 2

Thus, any solution to the problem can be obtained selecting a bag
consisting of i elements from {[A1, . . . , Am]} and a bag consisting of i
elements from {[B1, . . . , Bn]}. Then a bijection among them has to be
chosen.

Corollary 4.8 The bag unification problem

{[A1, . . . , Am |S]} .= {[B1, . . . , Bn |S ′]}

(Ai’s, Bj’s, S, and S ′ pairwise distinct variables) admits exactly

min{m,n}∑
i=0

(
m

i

)(
n

i

)
i!

independent solutions. 2

With the following Lemma and Theorem we will prove the mini-
mality of the presented bag unification algorithm with respect to the
selected sample problem:

Lemma 4.9 Let A1, . . . , Am, B1, . . . , Bn, S, S
′ be pairwise distinct vari-

ables. Then

Unify bags({[A1, . . . , Am |S]} .= {[B1, . . . , Bn |S ′]})
returns exactly f(m,n) solutions, where f is recursively defined as fol-
lows: {

f(m, 0) = f(0, n) = 1
f(m+ 1, n+ 1) = (m+ 1)f(m,n) + f(m+ 1, n)

92 CHAPTER 4. UNIFICATION

Proof. If m = 0 or n = 0 the result is trivial. Since Unify bags is
simply a more deterministic version of naive Unify bags, and that the
particular form of the input guarantees the termination of the latter
algorithm on it, without loss of generality, we will prove the claim for
the simplest algorithm.

In order to compute the value for f(m+1, n+1), assume the problem
is {[A0, . . . , Am |S]} .

= {[B0, . . . , Bn |S ′]}. The unification algorithm
performs, non-deterministically, one of the two sub-actions of action
(7):

(i) A0 = B0 and {[A1, . . . , Am |S]} .= {[B1, . . . , Bn |S ′]}: since variables
are all distinct, f(m,n) solutions are returned.

(ii) {[A1, . . . , Am |S]} .
= {[B0 |N]} and {[A0 |N]} .

= {[B1, . . . , Bn |S ′]}:
following the termination strategy, the unification algorithm op-
erates first on the former equation until it is reduced to a solved
form system, and later on the latter.

The first computation reports a solution which, restricted to the
initial variables, is of one of the two forms

(◦) Ai
.
= B0 ∧N .

= {[A1, . . . , Ai−1, Ai+1, . . . , Am |S]}
(•) S

.
= {[B0 |N ′]} ∧N .

= {[A1, . . . , Am |N ′]} .

In particular, m solutions of the form (◦) and one of the form
(•) are returned; applying the substitution for N , m subproblems
returning f(m,n) solutions and one returning f(m + 1, n) are
generated.

Hence, we have:

f(m+ 1, n+ 1) = f(m,n)︸ ︷︷ ︸
from (i)

+m · f(m,n)︸ ︷︷ ︸
from (ii)◦

+ ·f(m+ 1, n)︸ ︷︷ ︸
from (ii)•

= (m+ 1) · f(m,n) + f(m+ 1, n)

4.9 2

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 93

Theorem 4.10 If f is the function defined in the statement of Lemma
4.9, then

f(m,n) =
min{m,n}∑

i=0

(
m

i

)(
n

i

)
i! .

Proof. When m = 0 or n = 0 the result is trivial. We conclude the
proof by induction. Assume that m < n (if m ≥ n the proof is similar):

f(m+ 1, n+ 1) =
∑m+1
i=0

(
m+1
i

)(
n+1
i

)
i!

(since
(
m+1

0

)(
n+1

0

)
0! = 1)

=
∑m
i=0

(
m+1
i+1

)(
n+1
i+1

)
(i+ 1)! + 1

(since
(
n+1
i+1

)
=
(
n
i

)
+
(
n
i+1

)
)

=
∑m
i=0

(
m+1
i+1

) ((
n
i

)
+
(
n
i+1

))
(i+ 1)! + 1

=
∑m
i=0

(
m+1
i+1

)(
n
i

)
(i+ 1)!+∑m

i=0

(
m+1
i+1

)(
n
i+1

)
(i+ 1)! + 1

Since
(
m+1
i+1

)
= m+1

i+1

(
m
i

)
and

(
m+1

0

)(
n
0

)
1! = 1, then

f(m+ 1, n+ 1) =
∑m
i=0

m+1
i+1

(
m
i

)(
n
i

)
(i+ 1)i!+∑m+1

i=0

(
m+1
i+1

)(
n
i+1

)
(i+ 1)! + 1

= (m+ 1)f(m,n) + f(m+ 1, n)
4.10 2

Nevertheless, Unify bags is not minimal for all instances of the uni-
fication problem. For instance, it returns three solutions to

{[A,A |S]} .= {[A |S ′]}

whereas the complete set of unifiers can be described by the unique
solution S ′ = {[A |S]}.

Minimality can be reached also for this and other cases, provided
the algorithm is modified to deal with various special cases. In this
thesis, however, we only analize optimization techniques of this kind
for set unification (see § 4.4).

4.2.3 Hybrid compact-lists unification

The unification algorithm for hybrid compact-lists should differ from
the lists one both for the fact that axiom (F1) does not hold for com-

94 CHAPTER 4. UNIFICATION

pact lists, and, as shown in § 3.1.3, that axiom (F3) must be modified
accordingly to the semantics to the compact-list constructor [[· | ·]].

Similarly to the bag case, the former difference is handled by modi-
fying action (6) of Unify lists restricting it to non compact-list case only
and introducing a new non-deterministic action reflecting the semantics
of axiom (Ec

k). The latter difference is reflected into the occur check per-
formed by action (4)—taking into account the freeness requirement of
axiom schema (F c

3)—of the algorithm Unify clists described in Fig. 4.3.
We only give here the statement of the termination theorem (for

future references). Its proof will follow by the proof of the corresponding
one for sets (Theorem 4.16) presented in the next section.

Theorem 4.11 (Termination) For any input system E, Unify clists
always terminates, no matter what non-deterministic sequence of choic-
es is made.

Theorem 4.12 (Soundness and Completeness) Let E be an equa-
tion system, E1, . . . , Eh the equation systems non-deterministically re-
sulting from the computation of Unify clists(E). Let N1, . . . , Nk be the
variables occurring in E1, . . . , Eh but not in E; then WF clists ` E ↔
∃N1, . . . , Nk

∨h
i=1 Ei.

Proof. As for Theorem 4.4, it is sufficient to prove the claim for each
single action application. By case analysis. Actions (1)–(3) and (6)–
(7) are the same as in algorithm Unify lists whose correctness has been
proved in Theorem 4.4.

Correctness of actions (4) and (5) ensues from an intuitive extension
of Lemma 3.21 to the hybrid case.

Action (8) reflects exactly axiom (Ec
k).

4.12 2

Theorem 4.12 proved also that {E1, . . . , Eh} is a complete set of
(E2)-unifiers for E .

Let us give a look to the minimality properties of Unify clists.

Lemma 4.13 Let A1, . . . , Am, B1, . . . , Bn, S, S
′ be pairwise distinct va-

riables. Then

Unify clists([[A1, . . . , Am |S]]
.
= [[B1, . . . , Bn |S ′]])

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 95

Unify clists(E);
(1) X

.
= X ∧ E 7→ E

(2)
t
.
= X ∧ E

t is not a variable

}
7→ X

.
= t ∧ E

(3)
X

.
= t ∧ E

X does not occur in t

X occurs in E

 7→ E [X/t] ∧X .
= t

(4)
X

.
= [[t0, . . . , tn |X]] ∧ E

X does not occur in t0, . . . , tn

}
7→

(Y
.
= t0 ∧ . . . ∧ Y .

= tn ∧ E)[X/[[Y |Z]]] ∧X .
= [[Y |Z]]

(5)

X
.
= s ∧ E

(s is f(t0, . . . , tn), f 6≡ [[· | ·]]
and X occurs in s) or

(s is [[t0, . . . , tn | t]], t 6≡ [[· | ·]]
and (X occurs in ti, for some 0 ≤ i ≤ n or

t 6≡ X and X occurs in t))


7→ fail

(6)
f(s1, . . . , sm)

.
= g(t1, . . . , tn) ∧ E
f different from g

}
7→ fail

(7)
f(s1, . . . , sm)

.
= f(t1, . . . , tm) ∧ E

f ∈ Σ{[[· | ·]]}

}
7→

s1
.
= t1 ∧ . . . ∧ sm .

= tm ∧ E
(8) [[t | s]]

.
= [[t′ | s′]] ∧ E 7→

(i) t
.
= t′ ∧ s .

= s′ ∧ E
(ii) t

.
= t′ ∧ s .

= [[t′ | s′]] ∧ E
(iii) t

.
= t′ ∧ [[t | s]]

.
= s′ ∧ E

Figure 4.3: Compact-list unification algorithm à la Robinson

96 CHAPTER 4. UNIFICATION

returns exactly f(m,n) solutions, where f is recursively defined as fol-
lows:{

f(m, 0) = f(0, n) = 1
f(m+ 1, n+ 1) = f(m,n) + f(m+ 1, n) + f(m,n+ 1) .

Proof. If m = 0 or n = 0 the result is trivial. To compute the
value for f(m + 1, n + 1), assume the problem is [[A0, . . . , Am |S]]

.
=

[[B0, . . . , Bn |S ′]]. The unification algorithm performs, non-determinis-
tically, one of the sub-actions

(i): exploring [[A1, . . . , Am |S]]
.
= [[B1, . . . , Bn |S ′]],

(ii): analyzing [[A1, . . . , Am |S]]
.
= [[B0, . . . , Bn |S ′]]), and

(iii): investigating [[A0, . . . , Am |S]]
.
= [[B1, . . . , Bn |S ′]],

of action (8). They return f(m,n), f(m,n+ 1), and f(m+ 1, n) solu-
tions, respectively.

4.13 2

It is immediate to verify that such number of solutions is exactly
the minimum number of solutions needed. However, the algorithm it
returns five solutions to [[A,A |S]]

.
= [[A |S ′]], whereas only the three

solutions S
.
= S ′, S

.
= [[A |S ′]], and S ′

.
= [[A |S]] are needed.

4.2.4 Hybrid sets unification

To develop a unification algorithm for the well-founded hybrid theory
of sets WF sets presented in § 3.2.4, one must combine the ideas used in
designing the unification algorithm Unify bags and Unify clists presented
in § 4.2.2 and § 4.2.3, respectively.

The unification algorithm for hybrid sets is based on the following
main program:

Unify set(E);
stack := empty;
while E is not in solved form or not empty(stack) do

begin
while not empty(stack) do

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 97

begin
e := pop(stack)
if e is in solved form with respect to E and stack
then E := e ∧ E
else action

end
select arbitrarily from E an equation e not in solved form; action

end.

which is the same algorithm presented for the multi-set case, and on
the procedure action described in Figg. 4.4 and 4.5.

Let us briefly comment action (9) of the algorithm. Its aim is the
reduction of set-set equations, in particular, cases (ii) and (iii) take care
of duplicates in the left-hand side term and in the right-hand side term,
respectively (axiom (E2)). Case (iv), instead, reflects the permutativity
of the set constructor {· | ·} (axiom (E1)).

As an example, let us consider the system {a|X} .
= {b, a|Y }. The

algorithm applies action (9.a), requiring one of the following systems
to be solved

E stack
(i) a

.
= b [X

.
= {a|Y }]

(ii) a
.
= b [{a|X} .= {a|Y }]

(iii) a
.
= b [X

.
= {b, a|Y }]

(iv) ∅ [{a|Y } .= {a|N}, X .
= {b|N}]

The first three clearly have no solution, whereas system (iv) can be
further transformed by applying again action (9.a) to its first equation,
which leads to the following new systems:

E stack
(i) ∅ [Y

.
= N,X

.
= {b|N}]

(ii) ∅ [X
.
= {b|N}, {a|Y } .= N]

(iii) ∅ [X
.
= {b|N}, Y .

= {a|N}]
(iv) ∅ [N

.
= {a|N ′}, Y .

= {a|N ′}, X .
= {b|N}]

98 CHAPTER 4. UNIFICATION

action
let E ′ be E \ {e};
case e of

(1) X
.
= X 7→ E := E ′

(2)
t
.
= X

t is not a variable

}
7→ E := E ′ ∧X .

= t

(3)
X

.
= t ∧ E

X does not occur in t
X occurs in E

 7→ E := E ′[X/t] ∧X .
= t;

stack := stack[X/t]

(4)
X

.
= f(t0, . . . , tn)

f 6≡ {· | ·} and X ∈ FV (t0, . . . , tn)

}
7→ fail

(5)
X

.
= {t0, . . . , tn | t}

t 6≡ {· | ·} and (X ∈ FV (t0, . . . , tn) or
t 6≡ X and X occurs in t)

 7→ fail

(6)
X

.
= {t0, . . . , tn |X}

X does not occur in t0, . . . , tn

}
7→

E := E ′;
push(X

.
= {t0, . . . , tn |N}, stack)

(7)
f(s1, . . . , sm)

.
= g(t1, . . . , tn)

f different from g

}
7→ fail

(8)
f(s1, . . . , sm)

.
= f(t1, . . . , tm)
f ∈ Σ{{· | ·}}

}
7→

E := s1
.
= t1 ∧ . . . ∧ sm

.
= tm ∧ E ′

Figure 4.4: Set unification algorithm à la Robinson–I

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 99

(9)
{t0, . . . , tm |h}

.
= {t′0, . . . , t′n | k}

h, k ur-elements or variables:

}
7→

if h, k are not the same variable
(9.a) then choose one of the following actions:

(i) E := t0
.
= t′0 ∧ E ′;

push({t1, . . . , tm |h}
.
= {t′1, . . . , t′n | k}, stack)

(ii) E := t0
.
= t′0 ∧ E ′;

push({t0, . . . , tm |h}
.
= {t′1, . . . , t′n | k}, stack)

(iii) E := t0
.
= t′0 ∧ E ′;

push({t1, . . . , tm |h}
.
= {t′0, . . . , t′n | k}, stack)

(iv) E := E ′; push({t1, . . . , tm |h}
.
= {t′0 |N}, stack);

push({t0 |N}
.
= {t′1, . . . , t′n | k}, stack);

(9.b) else h, k ∈ V , h ≡ k ≡ X
select arbitrarily i in {0, . . . ,m};
choose one of the following actions:

(i) E := t0
.
= t′i ∧ E ′;

push({t1, . . . , tm |h}
.
= {t′0, . . . , t′i−1, t

′
i+1, . . . , t

′
n | k}, stack)

(ii) E := t0
.
= t′i ∧ E ′;

push({t0, . . . , tm |h}
.
= {t′0, . . . , t′i−1, t

′
i+1, . . . , t

′
n | k}, stack)

(iii) E := t0
.
= t′i ∧ E ′;

push({t1, . . . , tm |h}
.
= {t′0, . . . , t′n | k}, stack)

(iv) E := E ′; push(X
.
= {t0 |N}, stack);

push({t1, . . . , tm |N}
.
= {t′0, . . . , t′n |N}, stack)

Figure 4.5: Set unification algorithm à la Robinson–II

100 CHAPTER 4. UNIFICATION

By variable substitution, they carry to the following four situations:

1 Y
.
= N,X

.
= {b |N}

2 X
.
= {b, a |Y }, N .

= {a |Y }
3 X

.
= {b |N}, Y .

= {a |N}
4 N

.
= {a |N ′}, Y .

= {a |N ′}, X .
= {b, a |N ′}

The substitutions suggested by such solved form equation systems
constitute a complete set of unifiers for the initial syste. Note that
this set is not minimal even though sound and complete. For in-
stance, the unifier that can be obtained by the fourth disjunct [X

.
=

{b, a|N ′}, Y/{a|N ′}] is an instance (modulo (E1) and (E2)) of the one
obtainable by the second disjunct (over the variables of the initial prob-
lem) [X/{b, a|Y }]. This can be seen by applying to it the substitution
[Y/{a|N ′}].

In general, the set of substitutions computed by our unification al-
gorithm can contain substitutions which are less general and/or equiv-
alent (with respect to the given theory) to other substitutions in the
set. The number of these ‘redundancies’ is in any case finite; in § 4.4
it will be shown a technique to optimize the behavior of Unify set with
respect to the minimality property, namely the capability of reducing
redundancies.

Equations of the form {t0, . . . , tm |X} .= {t′0, . . . , t′n |X}, where the
two sides are set terms with the same variable tail element, are handled
as a special case by action (9.b). Using action (9.a) also to deal with
this kind of equations, it is easy to find a sequence of actions leading to
non termination. The problem is close to the one described in § 4.2.2
about unification of bags ended by the same variable. Also in this case
a data structure stack allows to impose as much determinism as needed
to guarantee the termination result.

Remark 4.14 The unification algorithm presented here is akin to the
one sketched by Jayaraman and Plaisted in [57, 55], but it solves a larger
number of cases. In particular, the algorithm in [57, 55] intentionally
does not take into account the idempotency property of sets (i.e. our
absorption property). While this restriction enables a simplification
of the unification algorithm, it leads, on the other hand, to a loss in

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 101

expressivity and flexibility. Furthermore, the algorithm in [57, 55] does
not properly take into account the situation dealt with by action (9.b)
of our algorithm (set terms with the same variable tail).

The following theorems state soundness, completeness and termina-
tion of Unify set(E) for any given system E of equations.

Theorem 4.15 (Soundness and Completeness) Given a system
E, suppose E1, . . . , En (n ≥ 0) are all the systems non-deterministically
returned by Unify set(E). Then WF sets ` E ↔ ∃X1, . . . , Xm

∨n
i=1 Ei,

where X1, . . . , Xm are the variables occurring in E1, . . . , En but not in
E.

Proof. Actions (1)–(5) and (7)–(8) of the algorithm trivially yield the
desired equivalence, in view of the basic properties of equality and of the
freeness assumptions (cf. proof of preceding correctness Theorems 4.4,
4.6, and 4.12).

Justifying action (6) is also straightforward, in view of the permu-
tativity and absorption properties of {· | ·}.

Action (9.a) is exactly axiom (Es
k).

The ‘←’ direction of action (9.b) is justified again by axiom (Es
k).

For the ‘→’ direction observe that {t0, . . . , tm |X} .
= {t′0, . . . , t′n |X}

and t0 6 .= t′i for all i = 0, . . . , n implies that t0 ∈ X. Moreover, in-
terpreting N as X less t0 or as X itself, then also {t1, . . . , tm |N} .

=
{t′0, . . . , t′n |N} must hold.

4.15 2

Theorem 4.15 shows, in particular, that {E1, . . . , En} is a complete
set of (E1)(E2)-unifiers for E .

Theorem 4.16 (Termination) For any Herbrand system E, the pro-
cedureUnify set(E) always terminates, no matter what sequence of non-
deterministic choiches is made.

Proof. The data structure stack is introduced for sequencing the unify
actions:

action (6): an action (3), performed on the newly generated equation
e′ immediately follows, unless e′ is already in solved form.

102 CHAPTER 4. UNIFICATION

action (9): this action generates two new equations, e1 and e2, the
second of which typically enables action (9) again. In any case, e2

is immediately treated. When the sequence of consecutive actions
so determined reaches an end, a similar ‘9-exhaustive’ treatment
of e1 is triggered in the case of actions (9.a)iv and (9.b)iv.

Intuitively, a branch of the Unify set execution induces a series of
modifications on a forest structure (or simply a DAG) with superim-
posed links, akin to the one in [92]. Initially, this structure GE , labeled
over the set of logical symbols, represents the collection of all terms
appearing as sides of equations in E ;2 moreover, a link connects two
leaves in GE if and only if the two are labeled by the same variable. An
execution of action (3) does not add new nodes or edges to GE : rather,
it creates a link between two nodes, representing X and t respectively.
When new set terms are generated by action (5) or (9), new nodes are
added to GE to represent them.

A path through GE is defined to be a list n0, . . . , n` of nodes such
that each 〈ni, ni+1〉 is either a link or an edge (unlike edges, links can be
exploited in both directions). By the very construction of GE , all paths
issuing from a variable will hit the same non-variable term, if any.

Let us indicate how to measure the cost of a path. Links, as well
as second edges issuing from with-nodes, have cost 0; the cost of the
remaining edges is 1; the cost of a path is the sum of the costs of all
edges and links constituting it, increased by 1 if the path ends in a
constant node.3 A rough explanation of these conventions is that we
intend to combine the notion of height of a term with the (equally
widespread) notion of rank of a set.

To conclude this preamble, let us define the pseudorank of a node
n to be the maximum cost of a path issuing from n. Relevant to our
analysis of unify is that the cost of a path will never exceed the initial
number p of non-variable nodes in GE . On the one side, this results
from the occurrence checks made in actions (3) and (4): these in fact
forestall the formation of cyclic paths. On the other side, it follows
from inspection of the unify algorithm (cf. actions (5), (9.a)iv and

2As usual, there will be an ordered m-tuple of edges issuing from a node labeled
f/m and there will be no edge issuing from a variable node.

3Paths of cost 0 will establish an equivalence relation between nodes.

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 103

(9.b)i, ii, iv) that no addition of edges can disrupt this bound on the
path length. In fact, each new edge of cost 1 shares the target node
with a pre-existing edge of cost 1: this implies that no path will ever
contain both such edges at once.

Let E(0), E(1), E(2), . . . be the successive values of E along a branch
of the unify execution not ending with a failure.

Indicating by prk i the pseudorank function defined on the nodes of
GE at the time when E = E(i), it makes sense to define prk∞(n) to be
the ultimate value of the sequence

prk i(n), prk i+1(n), . . . ,

for any node n eventually introduced in GE . This sequence, being
bounded by p as we have already noticed, can in fact increase at most
p times.

Plainly, every prk i (even the one with i =∞) satisfies the identities

prk i(f(t1, . . . , tm)) = 1 + maxmj=1 prk i(tj) ,
prk i({t | s}) = max{1 + prk i(t), prk i(s)} .

We can exploit the ‘limit pseudorank’ prk ≡ prk∞, whose domain is
enlarged by putting prk(`

.
= r) = prk(`)+ prk(r), to associate with E a

useful (2 ·p+1)-tuple Size(E) of non-negative integers. Indicating by �

the lexicographic ordering, we will prove that Size(E(i)) � Size(E(i+1))
unless the action leading from E(i) to E(i+1) is one of the actions (2),
(6), or (9). Even then, a decrease will turn out to be the outcome of
a ‘phase’ consisting of consecutive actions. In particular, in the case of
actions (6) and (9), the phase is the series of actions imposed by the
execution strategy described at the beginning. It will follow, thanks to
the well-foundedness of �, that the E(i) sequence eventually terminates,
which proves our thesis.

It is helpful to view E as composed of two disjoint collections E1 , E2

of equations: E2 is the part of the system which has already been
brought to solved form; the remaining equalities form the ‘working

104 CHAPTER 4. UNIFICATION

system’ E1.4 The definition of Size is

Size(E) = 〈 | {e in E1 : prk(e) = 2 · p} |, . . . , | {e in E1 : prk(e) = 0} | 〉 .

We now proceed to show that every successful phase of unify reduces
the complexity. In the following, each number on the left indicates the
first action of a phase.

(1) One equation with pseudorank 2 · prk(X) is removed: the size
decreases.

(2) This action occasionally decreases the size, but may also leave it
unchanged. Anyway, it is unproblematic, because it cannot be
performed an indefinite number of consecutive times. It suffices
for our purposes to regard a series of such actions as preamble of
the subsequent phase.

(3) One equation X
.
= t with pseudorank prk(X)+prk(t) = 2·prk(X)

is moved from E1 to E2. This lowers the size.

(6) The presence in the new system of the equation

X
.
= {t0, . . . , tn |N}

forces prk(N) ≤ prk(X) to hold, which implies that the size
does not increase in consequence of the replacement of X

.
=

{t0, . . . , tn |X} by X
.
= {t0, . . . , tn |N} in E1. The size will de-

crease thanks to action (3), which is required to be performed
immediately.

(8) One equation of pseudorank

2 + max{prk(t1), . . . , prk(tn)}+ max{prk(t′1), . . . , prk(t′n)}

is replaced by equations of lower pseudorank in E1: lexicographi-
cally, the size tuple decreases.

4Conceptually, all equations which are in solved form are moved from E1 to E2
before each action; then, after e has been chosen, a (possibly empty) collection of
newly generated equations replace it in E1. As for e, sometimes it gets moved to
E2, sometimes it simply gets discarded.

4.2. À LA ROBINSON: THE WELL-FOUNDED CASE 105

(9) One can view the global effect of the phase starting with ac-
tion (9), as that of replacing the selected equation

e ≡ {t0, . . . , tn | h} .= {t′0, . . . , t′m | k}

by a collection ti1
.
= t′j1 , . . . , tip

.
= t′jp of equations relating ele-

ments of the two sets, one or two equations regarding h and k
being also added, as explained in detail below.

The pseudorank ¯̀ = max{1 + prk(t0), . . . , 1 + prk(tn), prk(h)}+
max{1+prk(t′0), . . . , 1+prk(t′m), prk(k)} of e, exceeds that of any
ti
.
= t′j equation. Hence we only need to focus on the equations

concerning h and k. Various cases need to be considered.

• If neither h nor k is a variable, there will be only one equa-
tion e′ regarding h, k. If the form of e′ differs from h ≡
f(r1, . . . , rq)

.
= f(r′1, . . . , r

′
q) ≡ k, an immediate failure will

ensue due to action (7). Else, since the pseudorank of e′

cannot exceed ¯̀, action (8), immediately performed on e′,
will cause the size to decrease.

• If h is a variable and k is not, the only case that does not
immediately lead to failure or size decrease, is when the new
equation e′ has the form h

.
= {t′i1 , . . . , t

′
iq | k}, with h not

occurring in the right-hand side, and e′ gets added to the
working system E1. Action (3), immediately performed on
e′, will cause the size to decrease. The case when k is a
variable and h is not is entirely analogous.

• If h and k are both variables, with h 6≡ k, the equation(s)
dealing with them added to the working system can be of
the form:

– h = {t′i1 , . . . , t
′
iq | k}, or

– k = {ti1 , . . . , tiq |h}, or

– h = {t′i1 , . . . , t
′
iq |N}, and k = {tj1 , . . . , tjr |N}, with N

new variable.

After action (3) is performed (possibly twice), the size decre-
ases.5

5Note how important is the assumption that h differs from k: without it —in

106 CHAPTER 4. UNIFICATION

• If h and k are the same variable X (action (9.b) of unify),
an equation of the form X

.
= {ti1 , . . . , tiq , t′j1 , . . . , t

′
jq′
|X}

(possibly of pseudorank ¯̀) is added to the working system.
After actions (6) and (3) are performed on this equation, the
size decreases.

4.16 2

4.3 The non-well-founded case

As shown at the beginning of § 4.2, all unification algorithms à la
Robinson share the common unpleasant effect to require an exponential
space when the input is of a certain form. This problem has been solved
in literature, producing unification algorithms almost linear [77] and
even linear [92]. As a starting point, we select the algorithm presented
in [78], which simplifies the famous Martelli and Montanari algorithm
([77]). All the algorithms that will be presented can be used to solve
also the well-founded problem, provided they are ended by a suitable
acycicity test.

Observe that in this section the subsection related to multi sets
follows all the other. This has been done to improve readability. In
fact, the algorithm for bags requires some concepts developed for the
set case.

A pre-processing of the system is required in order to produce an
equivalent flat system.

Definition 4.17 An equation set E is said to be Flat if every equation
in it is of the form

• X = Y , or

• X = f(Y1, . . . , Yn).

the third case—, after the substitution {h ← {t′i1 , . . . , t
′
iq
|N}} is performed, the

second equation would become a set-set equation, possibly of pseudorank ¯̀.

4.3. THE NON-WELL-FOUNDED CASE 107

Such pre-processing can be performed by the following simple algo-
rithm:

while E is not flat do
begin

if `
.
= r ∈ E and ` is not a variable

then replace ` = r with N
.
= ` and N

.
= r, N a new variable;

if X
.
= f(. . . , t, . . .) ∈ E and t is not a variable

then replace X
.
= f(. . . , t, . . .) with

X
.
= f(. . . , T, . . .) and T

.
= t, T a new variable

end.
As in the previous section, Capital letters X, Y , Z, etc. represent

variables; f , g, etc. stand for functional symbols (i.e. elements of
Σ); ≡ denotes the syntactic identity relation between first-order terms
over Σ ∪ V ; ϕXY denotes the result of replacing every occurrence of the
variable X by Y in a quantifier-free first-order expression ϕ, and FV (ϕ)
denotes the set of all free variables occurring in ϕ.

There are systems of equations of special forms for which a solution
can be determined quite easily.

Definition 4.18 A Herbrand system E is said to be in Solvable
Form if each equation in it has one of the forms:

• X .
= Y , with Y distinct from X and X not occurring elsewhere

in E;

• X .
= f(Y1, . . . , Yn), f ∈ Σ, X not occurring elsewhere in E as

l.h.s. of an equation.

A Herbrand system in solvable form is said to be Explicit if it contains
no subsystem of the following Zipper form:

X0
.
= {Y0 |X1}, . . . , Xm−1

.
= {Ym−1 |Xm}, Xm

.
= {Ym |X0}

similarly for [· | ·], {[· | ·]}, and [[· | ·]]. For m = 0 this reduces to the
single equation X0

.
= {Y0 |X0}.

For the set case, from any non-explicit solvable form system, it is
easy to obtain an equivalent explicit one. This can not be done in

108 CHAPTER 4. UNIFICATION

the case of lists, bags, and compact lists, since explicit solvable form
systems admit finite solutions, and non-explicit only infinite ones.

We are now ready to state the unification problem in very specific
terms. Systems in solvable form can, for that sake, be employed as
‘templates’ of the solutions to a given system:

Definition 4.19 Given a Herbrand system E, solving E amounts to
producing a finite set of Herbrand systems in solvable form E1, . . . , Em,
such that

• for every solution γ to E, at least one of the Ei’s has a solution σ
such that γ(X) = σ(X) for all X in FV (E)∩ FV (Ei);

• for any solution σ of any to the Ei’s, every substitution γ such that
dom(γ) ⊇ FV (E) and γ(X) = σ(X) for all X in FV (E)∩dom(σ),
is a solution to E.

4.3.1 NWF-list unification

The unification algorithm for non-well-founded, even infinite hybrid
lists (or, simply, for infinite terms, as named in [78]) can be stated as
follows.

nwf Unify lists(E);
(1) X

.
= X ∧ E 7→ E

(2)
X

.
= Y ∧ E

X occurs in E

}
7→

E [X/Y] ∧X .
= Y

(3)
X

.
= f(Y1, . . . , Yn) ∧X .

= g(Z1, . . . , Zn) ∧ E
f 6≡ g

}
7→ fail

(4) X
.
= f(Y1, . . . , Yn) ∧X .

= f(Z1, . . . , Zn) ∧ E 7→
E ∧X .

= f(Z1, . . . , Zn) ∧ Y1
.
= Z1 ∧ . . . ∧ Yn .

= Zn

it is important to notice that it can become an efficient unification
algorithm for finite terms, simply performing an acyclicity test to the
graph related to the (solvable form) system returned as result by the
algorithm.

Termination, correctness and completeness are easy to prove:

4.3. THE NON-WELL-FOUNDED CASE 109

Theorem 4.20 (Termination) nwf Unify lists(E) performs at most

(e+ 1)(v + s× α)

actions, where v, s, and e are the number of variables, of occurrences
of functional symbols, and of equations in E, respectively, and α =
max{ar(f) : f ∈ Σ}.

Proof. Action (3) causes (failing) termination. It can be executed at
most once.

Action (4) removes an occurrence of the functional symbol f from
the system (ar(f) = n). It can be executed at most s times.

Action (2) causes the variable X becomes eliminable, namely, it will
never occur in an equation firing an action of nwf Unify lists. It can be
executed at most v times.

Action (1) is fired by (trivial) equations of the form X
.
= X. At the

beginning there are at most e equations of this form. Any substitution
application (action (2)) can introduce at most one of these equations.
Any term decomposition (action (4)) at most α, where α = max{ar(f) :
f ∈ Σ}.

4.20 2

Theorem 4.21 (Complexity) A simple optimization of the proce-
dure nwf Unify lists performs at most (2 · v) + s+ e actions to compute
nwf Unify lists(E).

Proof. We define such optimization as follows:

• execute first action (1) as much as possible (at most e times);

• when action (2) is executed, select (if any) the equation Y
.
= Y ,

just introduced (at most v times) and apply action (1);

• do not introduce in E equations of the form X
.
= X when gener-

ated by action (4).

From the proof of Theorem 4.20, the result follows trivially.
4.21 2

Axiom schema (F4) (cf. § 3.2) ensures that a solvable form system
is satisfiable in the theory NWF lists. Moreover,

110 CHAPTER 4. UNIFICATION

Theorem 4.22 (Soundness and Completeness) Let E ′ be the sol-
vable form system produced by nwf Unify lists(E). Then:

NWF lists ` E ↔ E ′ .

Proof. As usual, we prove this fact by showing correctness and com-
pleteness of each action of nwf Unify lists. The global result follows from
the termination Theorem 4.20.

Action (1) is justified by axiom (
.
=1); action (2) by (

.
=2).

Correctness of action (4) is justified by axiom (F1); completeness
by (

.
=).

Action (3) is justified by axiom (F2).
4.22 2

4.3.2 NWF-compact-list unification

In what follows we show how to extend the simple unification algorithm
for NWF lists to the non-well-founded theory of hybrid compact-lists
NWF clists presented in § 3.2.3. Similarly to what done in § J4.2.3,
we need to modify the term decomposition action (4) with a non-
deterministic one able to deal with the semantics of the compact-list
constructor symbol [[· | ·]], regulated by axiom (Ec

k).
Axiom (F c

4) allows to deal with infinite compact-lists (cf. § 3.2.3).
However, if one is interested only in finite (non-well-founded) solutions,
it is sufficient to include the optional action (3) that rejects infinite so-
lutions. Such action must be included aiming at using nwf Unify clists
as a unification algorithm for the well-founded theory (in this case it
must be ended by a occur check phase). Termination and computa-
tional complexity of the algorithm is not affected by the presence of
action (3). Assuming it, observe that only simple zippers of the form
X

.
= [[Y |X]] can occur in the final system. However, they admit the

solution [X/[[Y | t]]], for each term t, even ground and finite.

Given a system E , after it has been reduced to the flat form, the fol-
lowing algorithm reduces it to an equivalent disjunction of flat systems
in solvable form. We introduce a little determinism so as to logically
split the algorithm of Fig. 4.6 into three parts. In the first part (the

4.3. THE NON-WELL-FOUNDED CASE 111

Preamble) and the second one (the Turning point) the order of execution
is important. In the third (Action) the ordering is immaterial. More-
over, in this part a don’t know non-determinism is introduced by action
(b).

Before we undertake analyzing the complexity of nwf Unify clists
—to be followed by the correctness proof—, let us introduce a little
nomenclature.

Definition 4.23 It will be useful to think of a (non-deterministic) exe-
cution of nwf Unify clists as consisting of segments classified as Phases.
A Phase is an iteration of the outer repeat, consisting of a preamble
(i.e., a full execution of the inner repeat), followed by the checks per-
formed at the turning point, and (unless a termination has occurred)
by one of the actions in the action part (when more than one of these
is viable, one is arbitrarily chosen).

Theorem 4.24 (Termination) Let E be a flat system, and let v and
s be the number of distinct variables and the number of occurrences
of functional symbols in E, respectively. Then every non deterministic
branch of the computation of nwf Unify clists(E) terminates in less than
s phases.

Proof. Any phase consists, in particular, of an execution of (exactly)
one of actions (a), (b.1), (b.2), and (b.3). The execution of any of such
actions lowers the number of occurrences of functional symbols in E .

To conclude, notice that no action in the Preamble (or Turning point)
increases the number of occurrences of functional symbols.

4.24 2

Introducing the simple optimization described inside Theorem 4.21,
whose aim is to give a clever handling of trivial equations X

.
= X, one

immediately has that

Corollary 4.25 A simple optimization of nwf Unify clists performs at
most (2 · v + s) + e actions to compute nwf Unify clists(E). 2

This fact, together with the result of above Theorem 4.24, are a
proof of the following:

112 CHAPTER 4. UNIFICATION

nwf Unify clists(E);
repeat
Preamble: repeat

(1) X
.
= X ∧ E 7→ E

(2)
X

.
= Y ∧ E

X occurs in E

}
7→ E [X/Y] ∧X .

= Y

(3)(opt)

if there is a zipper X0
.
= [[Y0 |X1]], . . . ,

Xm−1
.
= [[Ym−1 |Xm]], Xm

.
= [[Ym |X0]]

m > 0, X0, . . . , Xm distinct from one another

 7→

E ∧X1
.
= X0 ∧ . . . ∧Xm

.
= X0∧

Y1
.
= Y0 ∧ . . . ∧ Ym .

= Y0

until nothing has been changed during the last iteration
Turning point:

Fail:
X

.
= f(Y1, . . . , Yn) ∧X .

= g(Z1, . . . , Zn) ∧ E
f 6≡ g

}
7→ fail

Succeed: if E is in solvable form, then exit with success returning E ;
Action: perform, non-deterministically, one of the following actions

(a)
X

.
= f(Y1, . . . , Yn) ∧X .

= f(Z1, . . . , Zn) ∧ E
f ∈ Σ \ {[[· | ·]]}

}
7→

E ∧X .
= f(Z1, . . . , Zn) ∧ Y1

.
= Z1 ∧ . . . Yn .

= Zn
(b) X

.
= [[Y |V]] ∧X .

= [[Z |W]] ∧ E 7→
(b.1) Y

.
= Z ∧ V .

= W ∧X .
= [[Z |W]] ∧ E

(b.2) Y
.
= Z ∧ V .

= X ∧X .
= [[Z |W]] ∧ E

(b.3) Y
.
= Z ∧W .

= X ∧X .
= [[Y |V]] ∧ E

forever.

Figure 4.6: Non well-founded compact-lists unification algorithm

4.3. THE NON-WELL-FOUNDED CASE 113

Theorem 4.26 (Complexity) The unification problem for hybrid co-
mpact-lists belongs to the class NP. Hence, thanks to the result of
§ 4.1.2, stating its NP-hardness even in the simpler well-founded case,
it is NP-complete. 2

Correctness and completeness of the algorithm with respect to the
theory WF clists is proved in the following

Theorem 4.27 (Soundness and Completeness) Let E be an equa-
tion system in flat form, and let E1, . . . , Eh be the solvable form equa-
tion systems non-deterministically resulting from the computation of
nwf Unify clists(E). Then NWF clists ` E ↔ ∃N1, . . . , Nk

∨h
i=1 Ei,

where N1, . . . , Nk are the variable occurring in E1, . . . , Eh but not in
E.

Proof. As usual, the proof is performed by case analysis. Actions (1),
(2), Fail, and (a) are actions (1)–(4) of algorithm nwf Unify lists, whose
correctness ha been proved in Theorem 4.22.

Action (b) is exactly axiom (Ec
k).

Correctness of action (3) is trivial. Its completeness follows from
the fact that accepting it, we explicitly avoided infinite compact lists.

4.27 2

4.3.3 NWF-set unification

We begin with a brief discussion of how a solution to a system in solv-
able form can be found when the system is in explicit solved form. One
can proceed to enlarge the system with all equations Y

.
= ∅, where

each Y is a variable that, although occurring in the system, does not
occur as left-hand side of any of its equations. The ground image γ(X)
of each variable X in a solution γ, can thus be read directly off the
system.

More generally, a system in solvable form can be modified until it
becomes explicit. Every modification step will introduce new variables;
however each solution to the modified system can be restricted to the
old variables giving a solution to the preceding system. Thus, at the

114 CHAPTER 4. UNIFICATION

end, any solution to the explicit system will also be a solution to the
original system. To see this, note that

γ(X0) = γ(X1) = · · · = γ(Xm)

must hold in any solution γ, when there is a zipper

X0
.
= {Y0 |X1}, . . . , Xm−1

.
= {Ym−1 |Xm}, Xm

.
= {Ym |X0}.

Therefore, as long as a there is a subsystem of this kind, we can replace
it by the equations

X0
.
= {Y0 |K0}, . . . , Xm

.
= {Ym |Km} ,

where K0, . . . , Km are new variables. While the system resulting from
this modification is still in solvable form, it is closer to explicit form,
because the number of zippers has been reduced.

Special chains of inclusions, introduced by the following definition,
will play an important role in our subsequent discussion:

Definition 4.28 A Path in a Herbrand system E is a sequence X0
Y0←

X1
Y1← · · · Yn← Xn+1 of equations such that Xi

.
= {Yi |Xi+1} is in E for

all i in {0, . . . , n}.

We are now beginning to discuss the unification algorithm nwf Unify-
sets described in Fig. 4.7. Al the other algorithms for the non-well-

founded case, it gets an input E which, without loss of generality, is
assumed to be flat.

nwf Unify sets performs a non-deterministic search. Reaching the
leaf of a successful branch of the search tree, it will output a system Ei
in solvable, explicit, form. The whole search tree will be finite.

The algorithm makes also use of an auxiliary data structure, C, to
keep track of a number of temporary assumptions of the form W /∈
V . Action Fail 1 may detect a failure situation by checking whether
a constraint Y 6∈ X is in C, and the variable Y is forced to belong
to X by E . It can be use as an efficient unification algorithm for the
theory WF sets simply ending it with a procedure which rejects cyclic
solutions.

4.3. THE NON-WELL-FOUNDED CASE 115

nwf Unify sets(E : Herbrand system);
C := ∅;
repeat
Preamble: repeat

(1) X
.
= X ∧ E 7→ E

(2)
X

.
= Y ∧ E

X occurs in E

}
7→ E [X/Y] ∧X .

= Y
C := C[X/Y]

(3)
if there is a zipper

X0
.
= {Y0 |X1}, · · · , Xm

.
= {Ym |X0} ∧ E

X0, . . . , Xm distinct from one another

 7→
E ∧X1

.
= X0 ∧ . . . ∧Xm

.
= X0∧

X0
.
= {Y0 |K0}, · · · , Xm

.
= {Ym |Km}

C := C ∪ {Y0 6∈ K0, . . . , Ym 6∈ Km}

(4)

if there is a path in E ∧X0
.
= {Y0 |X1}

X0
Y0← X1

Y1← · · · Yn← Xn+1
Y0← Xn+2

with Y0, . . . , Yn distinct from one another

 7→
E ∧ {X1

.
= X0}

(5)
close C with respect to the rule:

(Y 6∈ X in C, X Y← V in E)⇒ Y 6∈ V in C
until nothing has been modified by the last iteration;
Turning point:

Fail 1: if there is an edge X
Y← V in E with Y 6∈ X in C,

then exit with failure;
Fail 2: if there are equations X

.
= f(X1, . . . , Xn) and

X
.
= g(Y1, . . . , Ym) in E with f 6≡ g, then exit with failure;

Succeed: if E is in solvable form, then exit with success returning E ;
Actions:
(a) X

.
= f(X1, . . . , Xn) ∧X .

= f(Y1, . . . , Yn) ∧ E 7→
X

.
= f(Y1, . . . , Yn) ∧ E ∧X1

.
= Y1 ∧ . . . ∧Xn

.
= Yn

(b)
X

.
= {Y |V } ∧X .

= {Z |W} ∧ E
(X 6≡ V and X 6≡ W–ensured by action (3)

}
7→

(b.1) Y
.
= Z ∧ V .

= W ∧X .
= {Z |W} ∧ E

(b.2) X
.
= V ∧X .

= {Y |V } ∧X .
= {Z |W} ∧ E

(b.3) X
.
= W ∧X .

= {Y |V } ∧X .
= {Z |W} ∧ E

(b.4) V
.
= {Z |N} ∧W .

= {Y |N} ∧X .
= {Z |W} ∧ E

C := C ∪ {Y 6∈ N,Z 6∈ N}
forever.

Figure 4.7: Hyperset unification algorithm

116 CHAPTER 4. UNIFICATION

Before we undertake analyzing the complexity of nwf Unify sets—to
be followed by the correctness proof—, let us develop a little nomen-
clature and some preliminary remarks and comments.

We extend here the partition of a (non-deterministic) execution of
nwf Unify sets into segments given in Def. 4.23 with the notion of stage.

Definition 4.29 A Stage is a series of consecutive phases that

• immediately follows either initialization or an execution of action
(b.4);

• does not comprise any execution of action (b.4);

• either goes on forever, or terminates at the turning point, or ends
with an execution of action (b.4).

(An important fact we will discover later on is that no stage consists of
infinitely many phases).

As we are about to discuss, we can think that an equivalence rela-
tion between variables is being implicitly calculated by nwf Unify sets.
Initially, each variable makes an equivalence class by itself; then, the
equivalence relation gets refined by the preamble of each phase. Once
they have become equivalent, two variables are to represent the same
hyperset; accordingly, as soon as a variable formerly generated by ac-
tion 3 or (b.4) becomes equivalent to an initial variable, we identify
the two with one another and cease to regard the generated variable as
‘new’ any more.

Let us now clarify the main purpose of each preamble. Such purpose
is to decompose the system E into subsystems of the form

X1
...
X`

 .
= R

.
=


f1(Y11, . . . , Y1a1)

...
...

fm(Ym1, . . . , Ymam)

with `+m ≥ 1 (hopefully with fi ≡ fj for all pair i, j). These subsys-
tems will be mutually independent in the sense that

• no left-hand side variable Xi appears, globally, more than once;

4.3. THE NON-WELL-FOUNDED CASE 117

• no representative variable R occurs as left-hand side of a variable-
variable equation; apart from this, R is entirely free to occur in
right-hand sides.

Notice that if m ≤ 1 held for each one of the said subsystems, then
a solvable form would result from the preamble; otherwise an action
aimed at reducing some ` will immediately take place.

As for the equivalence relation over variables hinted at above, it can
be characterized at the end of each preamble as being the reflexive and
transitive closure of the relation {[X,R] : X

.
= R in E}.

In sight of proving that every branch of the search tree of nwf Unify-
sets eventually breaks off, reporting either a failure or a success, it is

useful to associate with the input system E two size parameters v0 and
s0:

• v0 is the number of initial variables;

• s0 is the number of occurrences of functional symbols in E (in-
cluding {· | ·}).

The following remark will turn out to be the key in proving termi-
nation (and complexity) of nwf Unify sets.

Remark 4.30 1. A new variable Q always shows up at creation
time in a context V

.
= {Y |Q} (where V 6≡ Q and Y 6≡ Q);

later on, it can be moved to a different context by actions (2), or
(b.2)–(b.3). However, it will never come to occupy a label position

over an edge X
Q← W : that is, no equality X

.
= {Q |W} will

ever appear into E unless after Q has become equivalent to a pre-
existing label, in which case we convene to no longer regard it as
‘new’.

2. It follows from the previous observation and from the presence of

actions (3) and (4) in nwf Unify sets that no path X0
Y1← X1

Y2←
· · · Yn← Xn can have length n > v0 at the end of any preamble.

3. If an edge X0
Y0← X1 drawing its origin from an action (3) or

(b.4) becomes part of a path X0
Y0← X1

Y1← · · · Y0← Xn+1 which

118 CHAPTER 4. UNIFICATION

either has X0 ≡ Xn+1 (zipper case) or can be lengthened with an

edge Xn+1
Yn+1← Xn+2 already available in E, a failure will take

place at the next turning point. This follows from the fact that

the creation of the edge X0
Y0← X1 causes the constraint Y0 6∈ X1

to be put in C; however the path in question will cause action (3)
or (4) to trigger a Fail 1 termination when the next turning point
is reached.

4. The preceding observation implies that the overall number of arcs
introduced by action (3) is less than the number of occurrences of
{· | ·} in the initial system, bounded by s0.

In what follows we first show that the algorithm terminates provided
action (b.4) is performed a finite number k of times (cf. Corollary 4.32).
Later on, with Lemma 4.33 we will place a finite bound on k, and with
Theorem 4.42 we will refine it into a polynomial bound.

Lemma 4.31 Consider a stage of a computation of nwf Unify sets(E).
Let v and s be the number of inequivalent variables (initial or not) and
the number of occurrences of functional symbols in E, as they are at the
beginning of that stage. Then the stage comprises at most 1 +v+s0 +s
phases.

Proof. First note that no action other than (b.4) increases s.

The number v might increase due to an action (3), which however
cannot be exploited more than s0 times, as noticed in Remark 4.30.4.
This potential increase of v accounts for the addendum s0 in the thesis
of the lemma.

We can henceforth focus on actions (a), (b.1)–(b.3), namely the ones
from which a non-deterministic choice is performed in every non-final
phase.

(a) and (b.1) cause s to decrease; actions (b.2) and (b.3), although
leaving s unchanged, set the ground for either a reduction of v in the
next preamble or a Fail 1 termination at the next turning point.

4.31 2

4.3. THE NON-WELL-FOUNDED CASE 119

Corollary 4.32 Suppose action (b.4) is performed exactly k times dur-
ing a computation of nwf Unify sets(E). Then the computation com-
prises at most (k + 1) · v0 + (k + 2) · s0 + (k + 1)2 phases.

Proof. Let N1, . . . , Nk be the variables introduced by the successive
executions of action (b.4). We can split the sequence of phases per-
formed by nwf Unify sets(E) into k+ 1 successive stages determined by
the introduction of the Nis.

N1 Nk

• −−−→ • −−−→ · · · −−−→ • −−−→ ◦

The first stage is based on a system with size parameters v0 and s0;
hence, by Lemma 4.31, it contains no more than 1+v0 +s0 +s0 phases.
After the application of action (b.4), both s and v get increased at most
by one; therefore the second stage, again by Lemma 4.31, contains no
more than 1 + (v0 + 1) + (s0 + 1) + s0 phases. JThe overall situation is
summarized by the following diagram:

N1 Nk

• −−−→︸ ︷︷ ︸
1+v0+s0+s0

• −−−→ · · · −−−→ • −−−→︸ ︷︷ ︸
1+(v0+k)+(s0+k)+s0

◦

The number of phases forming a whole computation is hence bounded
by

∑k
i=0(1 + (v0 + i) + (s0 + i) + s0); however, it is appropriate to

consider the addendum s0 only once, because it represents an upper
bound on the number of edges introduced by action (3), which is a
global quantity. Thus, no more than (k+ 1) · v0 + (k+ 2) · s0 + (k+ 1)2

phases can be performed.
4.32 2

To place a bound on the number k of times (b.4) gets executed, we
will define in terms of ∼i a tuple τi of natural numbers so that modifica-
tions of E , C made during the i-th phase may cause τi+1 to differ from τi.
Changes of τ will invariably lower it with respect to the lexicographic
well-ordering of tuples, without affecting its lenght. τ gets lowered
whenever a new variable is introduced, which happens, in particular,
with (b.4). This by itself ensures—in view of Corollary 4.32—the ter-
mination of nwf Unify sets.

120 CHAPTER 4. UNIFICATION

Notice that any lowering of a tuple [x0, . . . , x`] with respect to the
said ordering can be achieved by elementary decrease actions of the
following kind:

• a component xj, with xj > 0, gets decremented by one; simulta-
neously (if j < `)

• a component xi, with i > j, is incremented by h units, with h ≥ 0.

In the case at study, we will be able to show that such decrease actions
will always have 0 ≤ h ≤ 2; correspondingly, a decrease action will be
named:

destruction: if h = 0,

climbing: if h = 1,

generation: if h = 2.

To introduce τ , let us consider the set

Li = { Y : X = {Y |W } in Ei}

of all Y s occurring in a context X
Y← W within Ei. By Remark 4.30.1–

2, |Li| ≤ |L0| for all i ≥ 0. Moreover, as easily seen, |Li| = |L0/∼i |.
We define τi to be the tuple τi = [x0, . . . , x|L0|] , where each xj is the
cardinality of the following set:{

equations of the form = { |W } in Ei:

|L0| − |Li|+ |{Y : Y /∈ W in Ci }| = j

}

The initial value τ0 of τ clearly has x0 ≤ s0 and x1 = · · · = x|L0| = 0.

Lemma 4.33 A stage always lowers the value of τ except, possibly, in
the imminence of a Fail 1 exit.

Proof. Actions (1), (a), (b.2), and (b.3) do not affect τ . Action (b.1)
always affects τ as a destruction action.

The complexity function compl(τ) has been carefully chosen in order
that action (2), whose effect is a sequence of destruction and generation
actions, cannot increase it.

4.3. THE NON-WELL-FOUNDED CASE 121

Actions (3) and (5) may leave τ unchanged or affect it as climbing
actions; action (4) might cause τ to increase, but in this case Fail 1 will
immediately cause termination.

If neither Y /∈ W nor Z /∈ V belongs to C, then action (b.4) makes
τ lower (it can be viewed as a generation action). Unless this is the
case, an immediate combination of action (3) with Fail 1 will lead to
termination.

4.33 2

Theorem 4.34 (Termination) Let E be a flat system. Then the pro-
cedure nwf Unify sets(E) always terminates, no matter what sequence
of non-deterministic choices has been made.

Proof. Lemma 4.33 ensures that a only finite number of actions (b.4)
occur along a branch of the computation. The claim follows, by Corol-
lary 4.32.

4.34 2

One may wonder whether the above translation of nwf Unify sets ac-
tions into chains of destruction, climbing, and generation actions, may
disclose a time complexity assessment sharper than a simple termina-
tion result. Unfortunately, this is not the case.

It can be shown that, starting with a tuple [x0, . . . , x`] of natural
numbers, no more than 3` · x0 + 3`−1 · x1 + · · · + 30 · x` ≤ (x0 + · · · +
x`) ·3` consecutive destruction, climbing, and generation actions can be
performed.

This exponential bound cannot be improved significantly without
refining the technique: if, as in our case, the initial tuple has the form
[s0, 0, . . . , 0︸ ︷︷ ︸

`−1

], a chain consisting of s0 ·(2`−1) generation actions followed

by s0 · 2` destructions is a priori conceivable. However, as we will
now see, a similar chain does not reflect the behaviour of any concrete
nwf Unify sets computation.

We will prove now that nwf Unify sets belongs to the complexity
class NP. It hence follows that the hyperset unifiability problem is NP-
complete, in view of the reduction of 3-SAT to set matching shown in
§ 4.1.3.

122 CHAPTER 4. UNIFICATION

We will represent E by a multi-graph GE , and C by a function lev :
FV (E) −→ ω. We momentarily defer the characterization of lev . As
for GE , its constituents are:

• nodes NE = {V1, V2 : V1 = { |V2 } in E};

• labels LE = {Y : = {Y | } in E};

• directed labelled edges AE = {V1
Y← V2 : V1 = {Y |V2} in E}.

Conceptually, the pair GE , lev gets updated at every turning point,
like τ . As we have already proved termination, we are in the position
that we can refer to the final value of either of these structures. (Ob-
viously, GE and lev , as well as their final values, depend on the course
of a non-deterministic computation.)

The following two examples are aimed at conveying an intuitive
grasp of why each non-deterministic branch contains a number of phases
(equivalently, a number of (b.4) actions) polynomially related to the size
v0 + s0 of E .

Example 4.35 Starting with the set E = {X = {A|V1}, X = {B|V2},
X = {C|V3} } of membership constraints, a branch that maximizes the
number of stages will yield the following final value for GE . Indicating
by the arrow ←◦ any edge removed by action (b.4), we have

V1
A

↙◦
B

↖
X

B←◦ V2
A←◦ N1

C

↖
C

↖
C

↖
V3

B← N2
A← N3

Notice that the unification algorithm does not generate a variable corre-
sponding to each subset of a three-element set, a reason being that once

the edge X
A← V1 has been removed, it becomes impossible to re-exploit

it in conjunction with X
C← V3 to fire an action (b.4).

4.3. THE NON-WELL-FOUNDED CASE 123

Example 4.36 A branch that maximizes the number of phases for the
Herbrand system

E = { X = {Y1 | A1 }, A1 = {Y2 | A2 }, A2 = {Y3 | A3 },
X = {Z1 |B1 }, B1 = {Z2 |B2 } },

expressing the set unification problem {Y1, Y2, Y3 |A3} = {Z1, Z2 |B2},
will yield the following final value for GE :

A3
Y3

↙◦
Z1

↖
A2 N

(3)
2

Y2

↙◦
Z1

↖
Y3

↙◦
Z2

↖
A1 N

(2)
2 N

(4)
1

Y1

↙◦
Z1

↖
Y2

↙◦
Z2

↖
Y3

↙
X N

(1)
1 N

(3)
1

Z1

↖
Y1

↙◦
Z2

↖
Y2

↙
B1 N

(2)
1

Z2

↖
Y1

↙
B2

Inspection of these examples leads to the following observations:

Remark 4.37 1. If one subtracts the initial number of edges in GE
from the number of edges in the final GE—counting also those that
were removed by (b.4)—, one obtains twice the overall number β
of (b.4) actions.

2. The evolution of GE progressively limits the possibility to apply
action (b.4): calling into play again the decrease actions on the
tuple τ , this means that generation actions (the only potential
source of exponentiality) become less and less viable.

Sometimes the termination guarantee does not come from this
phenomenon, but, rather, from the presence of constraints. This
does not emerge from the two examples just seen, but can be seen
from studying a system like the following:

X = { |A }, X = { |B }, Y = { |A }, Y = { |B } .

124 CHAPTER 4. UNIFICATION

3. If a node X eventually inserted into GE has incoming edges in
some phase, at least one incoming edge will always be alive, till
the end of the computation.

It is now time to introduce lev :

Definition 4.38 Given the pair E , C, a Level-Mapping is a function
lev : FV (E) −→ ω, satisfying the following conditions:

• for all edge V1
Y← V2 of GE , if Y /∈ V2 belongs to C, then lev(V2) =

lev(V1) + 1, otherwise lev(V2) ≤ lev(V1) + 1;

• for all equation V1 = V2 in E, lev(V1) = lev(V2).

Remark 4.39 In the absence of negative information, a trivial level-
mapping can be obtained by simply setting to 0 all variables. On the
other hand, it may be the case that a level-mapping does not exist, as
the following example shows:

X
Y1←−−−−−−−−− V

Y2

↖
Y3

↙ Y3 /∈ V, Y2 /∈ W both belonging to C .
W

Plainly, if a level-mapping lev for E , C exists at all, it is not unique:
one may ‘tune’ its construction so as it meet the condition

for all variable V , lev(V) ≤| LE |
This new condition—to be taken from now on as part of the definition
of a level-mapping—can easily be fulfilled, e.g., by setting lev(W) = 0
for at least one node W in each connected component of (the undirected
graph underlying) GE .

With respect to a level-mapping lev , we say that an edge X
Y← V

(or, more generally, an ordered pair X, V) is of level i if lev(V) = i.

Definition 4.40 Let E ′ be the system in solvable form resulting from a
(non-deterministic) computation of nwf Unify sets with input E: hence
any variable generated in such a computation occurs in E ′. Let, more-
over, lev be a level-mapping for E ′ (hence for E). Then,

4.3. THE NON-WELL-FOUNDED CASE 125

• α(i) stands for the number of edges of level i in GE . Also, α =∑∞
i=0 α(i) =

∑|LE |
i=0 α(i).

• β(i) stands for the number of edges of level i introduced in the
computation by action (b.4) (disregard of whether such edges sur-

vive in GE ′). Let also β =
∑∞
i=0 β(i) =

∑|LE |
i=0 β(i).

In view of Corollary 4.32, in order to guarantee the NP-completeness
of nwf Unify sets, it is sufficient to place a polynomial bound on the total

number β
2

of executions of (b.4).

Theorem 4.41 In a successful branch of nwf Unify sets(E), if no vari-
able X generated by action (b.4) ever joins another variable Y (in the
sense that either X = Y or Y = X is put into E), then β is O(α3).

Proof. First of all, let us focus on a couple of conditions necessary for
an action (b.4) to take place:

• two ‘parent’ edges of level j concur to the action, where j + 1
is the level of the two edges to be created—one of these parent
edges will be deleted by the action;

• since the parent edges must enter the same node, the latter cannot
have a single incoming edge when the action is fired.

Based on these remarks, we derive the following:

• β(0) = 0 and β(1) ≤ 2 · α(0).

• The presence of two generated edges at level j − 1 implies that
there is a node at level j − 1.

The overall number of generated nodes of level j − 1 is β(j−2)
2

;
hence the assumption that generated nodes never join—implying
that nodes, once generated, persist in GE retaining an incoming
edge— ensures, for j ≥ 2, that

β(j) ≤ 2 ·
(
α(j − 1) + β(j − 1)− β(j − 2)

2

)
.

126 CHAPTER 4. UNIFICATION

By unfolding these constraints on β, we obtain

β(j) ≤ 2 ·

 j∑
i=1

i · α(j − i)

 .

Since | LE |≤ α, we conclude:

β =
|LE |∑
j=0

β(j) ≤ 2 ·

|LE |∑
j=1

j∑
i=1

i · α(j − i)

 = O(α3) .

4.41 2

We are left with the task of showing that the assumption that gen-
erated variables never join can be discarded from the statement of
Theorem 4.41. To this end, notice that two variables of level j + 1
becoming equivalent might generate a situation in which action (b.4)
can be performed. However, an inspection of nwf Unify sets (cf. proof
of Theorem 4.42 below) shows that at the same time two edges of level
j come to coincide. As a consequence, the overall number of actions
(b.4) (and hence β) cannot increase.

Theorem 4.42 In any computation of nwf Unify sets, no more than
O(ᾱ3) = O

(
(s0)3

)
new variables can be generated.

Proof. In view of Theorem 4.41, we only need to show the following
fact: if a variable N introduced by action (b.4) as the tail of two edges

V
Y← N and W

Z← N of level i joins another variable A, then a pair of
edges of level i has not been used to generate two edges of level i+ 1.

In fact, in order for N to be unified with A, a series N = A1, A1 =
A2, . . . , An = A of equalities must be inferred by nwf Unify sets. To
get the first equation N = A1, the unification algorithm must perform
action (b) with one of the two equations V = {Y |N } or W = {Z |N },
together with an equation V = {C |B } or W = {C |B }. A simple
inspection of the four subcases of action (b) shows that (b.1) is the
only subcase that introduces an equation N = B without leading to a
subsequent Fail 1 (note that B ≡ A). This means that in such branch

of a computation, the edges V
C← B (or W

C← B) and V
Y← N (or

4.3. THE NON-WELL-FOUNDED CASE 127

W
Z← N) of level i cannot be used to fire action (b.4) and hence to

generate two edges of level i+ 1.
4.42 2

Corollary 4.43 (NP-completeness) Unification of hybrid hyperset
is NP-complete. In particular, every single branch generated during the
execution of nwf Unify sets(E) consists in a number of phases polyno-
mially bounded by v0 + s0.

Proof. From NP-hardness of set unification problem (hence of hy-
persets) has been proved in § 4.1. To prove the completeness, notice
that Theorem 4.42 implies that the number k of variables generated by
action (b.4) of the algorithm is bounded by a polynomial with respect
to v0 · s0. The thesis follows from Corollary 4.32.

4.43 2

It remains to prove that the set unification algorithm nwf Unify sets
presented above is sound and complete with respect to the axiomatic
set theory NWF sets. These important properties of the algorithm can
be phrased as follows:

Theorem 4.44 (Soundness and Completeness) Let E1, . . . , Ek be
the systems in solvable form produced as output by the algorithm
nwf Unify sets(E). Then the following holds

NWF sets ` E ↔ ∃Q1 · · · ∃Qm

k∨
i=1

Ei ,

where Q1, . . . , Qm are all the variables in the Ei’ s not occurring in E.

In order to achieve greater generality, we will prove the above result
as a consequence of an analogous result concerning a variant proce-
dure named nwf Unify sets∗(E , C) —see Lemma 4.46 below. Although
strictly akin to nwf Unify sets, nwf Unify sets∗ will not be guaranteed to
terminate. The only differences between the two procedures are:

• C is regarded as a new input parameter. Therefore, it shall not
be initialized to ∅ inside nwf Unify sets∗;

128 CHAPTER 4. UNIFICATION

• in actions (3), (4), and (b.4), situations where nwf Unify sets places
a new pair into C, nwf Unify sets∗ is free to do the same or to leave
C unchanged . (Note that the only remaining action that may af-
fect C, which is action (5), remains as before.)

Preliminary to stating the generalization of Theorem 4.44, we need
a few definitions.

Definition 4.45 A Unify-tree is a directed unordered, non-empty
tree, each of whose nodes ν bears labels Eν , Cν meeting the following
conditions:

• Eν is a flat Herbrand system;

• Cν is a collection of literals of the form Y /∈ Q, with Y and Q
variables.

• A relationship reflecting the behavior of nwf Unify sets∗ holds be-
tween Eν , Cν on the one hand and the tuple Eµ1 , Cµ1 , . . . , Eµp , Cµp,
where µ1, . . . , µp are the distinct childrens of ν, on the other. To
describe this relationship simply, it will be helpful to regard the
identity C =

∧
Y in not in{Q} Y 6∈ Q as an invariant rather than just

as an initial condition. The relationship is as follows:

If the values of E and C are set to Eν and Cν at the beginning of a
phase, then, depending on the first action that will affect either of
them in the subsequent execution of nwf Unify sets∗, one has that:

(1), (2), (3), (4), (5), (a): p = 1 and Eµ1 and Cµ1 are possible
values of E, C after the execution of the modifying action;

(b): p = 4 and Eµi and Cµi are possible values of E, C after the
execution of (b.i);

none: p = 0. In this case, ν will be called a failure or a success
leaf in agreement with the kind of exit that takes place (cf.
actions Fail 1, Fail 2, and Succeed).

A fringe of a Unify-tree is a set S of nodes such that: every maximal
path of the tree contains at most one node from S, and, if it contains
none, it ends with a failure leaf.

4.3. THE NON-WELL-FOUNDED CASE 129

It should be clear from this definition that for any given pair E∗, C∗, a
Unify-tree whose root is labeled E∗, C∗ exists. Unify-trees correspond in
fact to the parallel executions of the algorithm nwf Unify sets∗(E∗, C∗):
there are two sources of parallelism in nwf Unify sets∗, namely action (b)
and some freedom in putting literals into not in. However, it is only
the branching caused by action (b) that gets represented by a single
Unify-tree.

Among others, a Unify-tree originates from the specific execution of
nwf Unify sets∗ that is entirely alike to an execution of nwf Unify sets,
except for the different initialization of not in. In this execution, not in
literals are added whenever possible; moreover, the Unify-tree will be
finite in this special case (cf. Theorem 4.34), and its set of success
leaves will constitute a fringe.

Lemma 4.46 Let T be a Unify-tree, with root %. Then, for any fringe
S of T , the following holds:

NWF sets ` (E% ∧ C%)↔ ∃Q1 · · · ∃Qm

∨
ν in S

(Eν ∧ Cν) ,

where Q1, . . . , Qm are all the variables in the Eν’s that do not occur in
E% ∧ C%.

Proof. To prove the thesis, since

NWF sets ` ¬(Eν ∧ Cµ)

trivially holds for every failure leaf µ, it will suffice to check that every
single action of the algorithm nwf Unify sets∗ leads from a node ν to
nodes µ1, · · · , µp such that

NWF sets ` Eν ∧ Cν)↔ ∃Z1 · · · ∃Z`
∨p
i=1(Eµi ∧ Cµi ,

where Z1, . . . , Z` are the new variables (if any). In the following, each
number on the left indicates the action being analyzed.

(1) X
.
= X, being true by (

.
=1), can be discarded from Eν .

(2) For any formula ϕ, X
.
= Y ∧ ϕ(X, Y) is equivalent to X

.
= Y ∧

ϕ(Y, Y) by (
.
=2).

130 CHAPTER 4. UNIFICATION

(3) Viewed as a formula, a zipper X0
Y0← X1

Y1← · · · Yn−1← Xn
Yn← X0

yields Xi = X0, hence Yi ∈ X0, for i = 0, . . . , n —by (Es
k) and

(W). Accordingly, by assigning X0 less Yi to Ki,
6 one has both

X0
.
= {Yi |Ki} and Yi 6∈ Ki for all i—by (W) and (L).

It follows that

(W)(Es
k)(L) ` (Eν ∧ Cν)→ ∃K0 · · · ∃Kn

(
Eµ1 ∧ Cν ∧

n∧
i=0

Yi 6∈ Ki

)

Conversely, as is easily seen,

(W)(
.
=) ` (Eµ1 ∧ Cν)→ (Eν ∧ Cν) .

(4) From X0
Y0← X1

Y1← · · · Yn← Xn+1
Y0← Xn+2 by (W) and (Es

k), it fol-
lows that X0

.
= X1. In fact, Y0 ∈ Xn+1, whence Y0 ∈ Xn, · · · , Y0 ∈

X1. Hence, the insertion, of Y0 intoX1 has no effect and, thanks to
(
.
=), the equality X0

.
= {Y0 |X1} can be simplified into X0

.
= X1.

(5) Eν ∧ Cν is equivalent to Eµ1 ∧ Cµ1 by virtue of (W) alone.

(a) X
.
= f(X1, . . . , Xn) ∧ X .

= f(Y1, . . . , Yn) is equivalent to X
.
=

f(X1, . . . , Xn) ∧X1
.
= Y1 ∧ · · · ∧Xn

.
= Yn. One direction follows

from (F1), and the other from (
.
=2).

(b) (Es
k) states that e ≡ X

.
= {Y |V }∧ e′ ≡ X

.
= {Z |W} if and only

if

• ϕ1 ≡ e ∧ e′ ∧ Y .
= Z ∧ V .

= W , or

• ϕ2 ≡ e ∧ e′ ∧X .
= {Z |W} ∧ Y .

= Z ∧ V .
= X, or

• ϕ3 ≡ e ∧ e′ ∧X .
= {Y |V } ∧ Y .

= Z ∧W .
= X, or

• ϕ4 ≡ e ∧ e′ ∧ ∃N (V
.
= {Z |N} ∧W .

= {Y |N}).

Consider the formula ϕ4. It can be split into 4 disjuncts:

• ϕ4.1 ≡ Y ∈ N ∧ Z ∈ N ∧ ϕ4,

6Since we are dealing with finite structure only, the less operation can be con-
structively implemented—cf. Lemma 3.18, which holds also for sets.

4.3. THE NON-WELL-FOUNDED CASE 131

• ϕ4.2 ≡ Y ∈ N ∧ Z 6∈ N ∧ ϕ4,

• ϕ4.3 ≡ Y 6∈ N ∧ Z ∈ N ∧ ϕ4,

• ϕ4.4 ≡ Y 6∈ N ∧ Z 6∈ N ∧ ϕ4.

ϕ4.4 is exactly the formula of action (b.4) (the equation e can be
deduced).

From ϕ4.1 it is immediate to check that X = V = W = N , hence
it is an instance of both th formula corresponding to action (b.2)
and of action (b.3).

ϕ4.2 implies, in particular, that Y 6= Z, and that W
.
= {Y |N}

and Y ∈ N , namely, N = W . This implies that X = V . Hence
it can be re-written as Y 6= Z ∧X .

= V ∧ e∧ e′. Such case can be
combined with the formula ϕ2 above allows to obtain exactly the
formula corresponding to action (b.2).

The relations between ϕ4.3, ϕ3, and the formula corresponding to
action (b.3) follows in a similar way.

To end, notice that the formula ϕ1 is exactly he formula corre-
sponding to action (b.1).

4.46 2

Proof of Theorem 4.44 Let us consider the Unify-trees T0, T1 cor-
responding to the executions of nwf Unify sets∗(E , ∅) that respectively
add not in literals

• whenever possible,

• never.

T0 corresponds to the execution of nwf Unify sets(E); hence it is
finite, by Theorem 4.34. The preceding lemma, referred to the fringe
S0 consisting of all success leaves of T0, gives

E ↔ ∃Q1 · · · ∃Qm

∨
ν in S0

(Eν ∧ Cν) .

T1 clearly contains an isomorphic copy T ′0 of T0: every node µ in T0

is labeled Eµ, Cµ, while the corresponding node µ′ is labeled Eµ, ∅ in T ′0 .

132 CHAPTER 4. UNIFICATION

We consider the fringe S1 of T1 consisting of all nodes ν ′ such that ν
either belongs to S0 or is a Fail 1 leaf of T0. Again by Lemma 4.46, we
have

E ↔ ∃Q1 · · · ∃Qm∃Qm+1 · · · ∃Qm+k

∨
ν′ in S1

Eν .

Assuming ∃Q1 · · · ∃Qm
∨
ν in S0

Eν , one readily obtains

∃Q1 · · · ∃Qm+k
∨
ν′ in S1

Eν ,
whence E follows. Conversely, from E , one derives

∃Q1 · · · ∃Qm
∨
ν in S0

(Eν ∧ Cν),
which entails

∃Q1 · · · ∃Qm
∨
ν in S0

Eν .
We conclude with the desired thesis: E ↔ ∃Q1 · · · ∃Qm

∨
ν in S0

Eν .
4.44 2

4.3.4 NWF-bag unification

In § 4.3.2 and in § 4.3.3 we have presented two unification algorithms
based on a two-level ‘repeat’. The same architecture will be used here
to develop the unification algorithm for the non-well-founded theory of
hybrid (even infinite) multi-sets NWF sets presented in § 3.2.2.

As anticipated in § 4.3, explicit solvable form systems (cf. Def. 4.18)
admits finite bags solutions. On the contrary, if a subsystem contains
a zipper (cf. Def. 3.38):

X0
.
= {[Y0 |X1]}, . . . , Xm−1

.
= {[Ym−1 |Xm]}, Xm

.
= {[Ym |X0]}

(for m = 0 this reduces to the single equation X0
.
= {[Y0 |X0]}), this

means that
X0 = X1 = · · · = Xm

and that Y0, . . . , Ym all belong to the bag X0 an infinite number of
times. The handling of such situations is performed by action (3).

When two bags are to be unified (namely, when two equations X
.
=

{[Y |V]}, and X
.
= {[Z |W]} are both in E—assume that V and W are

distinct from X) one of the two situations

4.3. THE NON-WELL-FOUNDED CASE 133

(1) Y
.
= Z ∧ V .

= W
(2) ∃N (V

.
= {[Z |N]} ∧W .

= {[Y |N]})

should hold (cf. axiom (Em
k)—§ 3.1.2). However, if such rule is imple-

mented in the following way, directly suggested by the axiomatization:

X
.
= {[Y |V]} ∧X .

= {[Z |W]} ∧ E
return non-deterministically:
(a1) Y

.
= Z ∧ V .

= W ∧X .
= {[Z |W]} ∧ E ,

(a2) X
.
= {[Y |V]} ∧ V .

= {[Z |N]} ∧W .
= {[Y |N]} ∧ E ,

it is easy to find non-terminating sequences of actions (cf. with a sim-
ilar problem in § 4.2.2). For instance, if the input system is X

.
=

{[Y |V]}, X .
= {[Z |W]}, X ′ .= {[Y ′ |V]}, X ′ .= {[Z ′ |W]}, then apply-

ing always action (a2), the situation schematically represented in the
following diagram may be generated (Y, Y ′, Z, Z ′ are not influential for
the computation, hence they are omitted in the diagram):

X N1 N2 N3

. . .

X ′ N ′1 N ′2 N ′3 . . .

• • • • •

• • • • •

� � � �

� � � �

@
@

@
@I

@
@

@
@I

@
@
@
@I

@
@

@
@I�

�
�
�	

�
�

�
�	

�
�

�
�	

�
�

�
�	

In the case of (hybrid) hypersets (cf. § 4.3.3), the technical way
to escape such situations is to check whether N represents the set V
deprived of Z (and the set W deprived of Y). This check is performed
by action Fail 2, using the data-structure C.

In the case of bags, it is no longer possible to perform such kind
of check, since one element can be removed from a bag an arbitrary
number (even infinite!) of times generating always different bags.

What we will prove is that, even it is perfectly correct to find so-
lutions generating chains of bag inclusions of arbitrarily length, only
a finite number of removing is sufficient to gain completeness of the
search tree (the other computations would look for instances of already
computed solutions). This allows to force the pruning of the search tree,
and to put a polynomial bound on the length of any non-deterministic
computation.

134 CHAPTER 4. UNIFICATION

To begin with, we prove the following combinatorial lemma, whose
intuitive meaning is that if there exists a solution to a system of equa-
tions, then there exits a simpler solution to it. Moreover, the number
of finite occurrences of elements in a bag in the simpler solution can be
bounded by the number of occurrences of the bag constructor symbol
in the system.

Lemma 4.47 Let E consisting of

• ` equations of the form Xi
.
= {[Xj |Xk]} and

• a certain number of equations of the form Xi
.
= {[]}.

Let X1, . . . , Xm be the variables occurring in E. Then, for any solution
θ to E in a model of bag theory, there exists a ground solution θ′ to E
such that, for every i = 1, . . . ,m, the following conditions hold:

1. for all j = 1, . . . ,m, if Xiθ = Xjθ, then Xiθ
′ = Xjθ

′;

2. for all j = 1, . . . ,m, one of the following holds:

(a) Xjθ
′ ∈n Xiθ

′, where n ≤ `, or

(b) Xjθ
′ ∈ω Xiθ

′;

3. if Y ∈α Xiθ
′, then Y = Xjθ

′, for some j = 1, . . . ,m.

Proof. Let θ be a solution to E in a model of bag theory; for i =
1, . . . ,m, let ai = Xiθ. The following preliminary definitions are useful
in the remaining part of the proof.

• θ induces a congruence relation ≈ over X1, . . . , Xm: Xi ≈ Xj if
and only if ai = aj.

• ≈ can be used to determine another equivalence relation ∼ over
the same set of variables defined as the transitive and reflexive
closure of the following rule:

Xi ∼ Xj if there is an equation in E of the form X
.
= {[· |V]}

such that Xi ≈ X and Xj ≈ V .

4.3. THE NON-WELL-FOUNDED CASE 135

• For all i and j, we define

µji =

{
ω if aj ∈α ai, α ≥ ω
mink:Xi∼Xk{h : aj ∈h ak} otherwise

Observe that, if Xi = {[Xj |Xk]} belongs to E , then µji = µjk.

We compute the function ‘∗’ using the following algorithm:

a∗i := {[]};
for j = 1 to m do

if Xi ∼ Xj and aj is distinct from a1, . . . , aj−1

then a∗i := a∗i]


{[a∗j , a∗j , . . .︸ ︷︷ ︸

ω

]} if aj ∈α ai, ω ≤ α

{[a∗j , . . . , a∗j︸ ︷︷ ︸
h

]} if aj ∈h+µji ai, h+ µji ∈ ω

Since two bags represented by Xi and Xk, where Xi ∼ Xk, can differ
for (at most) ` occurrences of elements, then, for any i and j, a∗j ∈α a∗i
for α = ω or for α ≤ `.

Hence, the three conditions trivially hold for the substitution θ′ =
[X1/a

∗
1, . . . , Xm/a

∗
m]. It remains to show that it is also a (ground)

solution to E . It is sufficient to verify that, for any equation Xi
.
=

{[Xj |Xk]}, a∗i = {[a∗j | a∗k]}.
By assumption ai = {[aj | ak]}; assume first that ai = ak. This

implies that a∗i = a∗k and a∗j ∈ω a∗i = a∗k. This ensures that a∗i =
{[a∗j | a∗k]}.

Assume now that ai 6= ak. This implies that aj ∈h ak and aj ∈h+1 ai.

By construction of the function ∗, we have that a∗j ∈h+1−µji a∗i and

a∗j ∈h−µ
j
i a∗k. It only remains to show that, for any other element a of

a∗i and a∗k, we have

a ∈ω a∗i if and only if a ∈ω a∗k and
a ∈h a∗i if and only if a ∈h a∗k h ≤ ` .

This fact follows by definition of the function ∗ and by the fact that
ai = {[aj | ak]}.

4.47 2

136 CHAPTER 4. UNIFICATION

In other words, any solution for a variable X defined into a an
equation system E (involving the functional symbols for bags this thesis
deals with) can be finitely represented in this way:

X
.
= {[Y1 |X]}, . . . , X .

= {[Yp |X]},
X

.
= {[Z1 |V1]}, V1

.
= {[Z2 |V2]}, . . . , Vn−1

.
= {[Zn |Vn]},

(possibly) Vn
.
= {[]}

where

• Y1, . . . , Yp are distinct elements that belong an infinite (ω) number
of times to X;

• Z1, . . . , Zn, all distinct from Y1, . . . , Yp, belong to it finitely.

The lemma ensures also that n ≤ `, where ` is the number of occur-
rences of the functional symbol {[· | ·]} in E .

Such a bound can be further refined as suggested by the proof of the
Lemma 4.47. Every equation occurring in a zipper predicates only on
infinite membership. This means that the number of initial equations
that will occur in a zipper during the computation can be subtracted
from ` to place a stricter bound to the length of ‘useful’ paths.

All the above considerations continue to hold for variable denoting
bags even when in the system free functional symbols occur. We only
need to be sure that the pruning of a tree will not result in a loss of
completeness. If the kernel of two bags unify, the algorithm behaves as
if they were both {[]}; otherwise the two bags do not unify, hence the
pruning does not result in a loss of completeness.

This stream of ideas will have an immediate counter-part in the
algorithm we are going to present. It is sufficient that the length m of
any path in E

X0
Y1← X1

Y2← . . .
Ym−1← Xm−1

Ym← Xm

(Xi pairwise distinct) be bounded by ` − k, where k is the number
of occurrences of initial equations of the form

.
= {[|]} used in

‘zippers’.
The unification algorithm is presented in Fig. 4.8.

4.3. THE NON-WELL-FOUNDED CASE 137

nwf Unify bags(E : Herbrand system);
let ` be the number of occurrences of the functional symbol {[· | ·]} in E ;
k := 0;
repeat
Preamble: repeat

(1) X
.
= X ∧ E 7→ E

(2)
X

.
= Y ∧ E

X occurs in E

}
7→ E [X/Y] ∧X .

= Y

(3)
if there is a zipper X0

.
= {[Y0 |X1]}, . . . ,

Xm−1
.
= {[Ym−1 |Xm]}, Xm

.
= {[Ym |X0]}

m > 0, X0, . . . , Xm distinct from one another

 7→
E ∧X1

.
= X0 ∧ . . . ∧Xm

.
= X0

let n be the number of initial edges from
the m+ 1 considered; let k := k + n

until nothing has been modified by the last iteration;
Turning point:

Fail 1: if there is a path of length greater than `− k in E
then exit with failure;

Fail 2: if there are equations X
.
= f(X1, . . . , Xn),

and X
.
= g(Y1, . . . , Ym) in E with f 6≡ g, then exit with failure;

Succeed: if E is in solvable form, then exit with success returning E ;
Actions: perform, non-deterministically, one of the following actions

(a) X
.
= f(X1, . . . , Xn) ∧X .

= f(Y1, . . . , Yn) ∧ E 7→
X

.
= f(Y1, . . . , Yn) ∧ E ∧X1

.
= Y1 ∧ . . . ∧Xn

.
= Yn

(b)
X

.
= {[Y |X]} ∧X .

= {[Z |W]} ∧ E
X 6≡ W

}
7→

(b.1) X
.
= {[Y |X]} ∧W .

= X ∧ Y .
= Z ∧ E

(Z ∈ω X = W)
(b.2) W

.
= {[Y |W]} ∧X .

= {[Z |W]} ∧ E
(Z ∈h W,Z ∈h+1 X)

(c)
X

.
= {[Y |V]} ∧X .

= {[Z |W]} ∧ E
X 6≡ V and X 6≡ W

}
7→

(c.1) X
.
= {[Z |W]} ∧ V .

= W ∧ Y .
= Z ∧ E

(c.2) if V 6≡ W then X
.
= {[Y |V]} ∧ V .

= {[Z |N]}∧
W

.
= {[Y |N]} ∧ E

forever.

Figure 4.8: Hyperbag unification algorithm

138 CHAPTER 4. UNIFICATION

If only finite bags solutions are required, then remove action (b) and
replace the updating performed by action (3) with fail.

The proof of termination and of the fact that the algorithm shows
that the non well-founded bags unification problem belongs to NP are
very similar (but simpler) to the corresponding proofs for the (hybrid)
hyperset case (cf. § 4.3.3). More in detail,

Theorem 4.48 (Termination and Complexity) nwf Unify bags(E)
always terminates. Moreover, if v0 and s0 are the number of variables
and of occurrences of functional symbols in E, respectively, then in any
non-deterministic computation the number of executed actions is poly-
nomially bound by (v0 + s0).

Proof. First note that if action (c.2) is not executed, then at any phase
one occurrence of functional symbol disappear from the system. This is
clear in the case of (a), (b.1), and (c.1). Action (c.2) apparently does not
cause such complexity decreasing; however, the equation X

.
= {[Z |W]}

is the only one in which X does occur, thus, it will be never considered
again by the algorithm.

Then we observe that a preamble can at most perform O(v+ s) ac-
tions, where v and s are the the number of variables and of occurrences
of functional symbols in E at the beginning of the preamble considered.

To conclude the proof, it only remains to show that only a poly-
nomial number of variables can be generated in a non-deterministic
computation. Observe that, if a generated edge occur in a zipper, then
it cannot generate any new edge and variable (the generation power
of the algorithm decreases). Moreover, when this occurs, the data-
structure action (3) updates k to keep into account this fact, putting a
stricter limit to the length of the paths. Thus, the combinatorial The-
orem 4.42 developed for hyperset continues to hold, (the bound limit
for paths is given by ` ≤ s0) ensuring that the number of generated
variables is O((s0)3).

4.48 2

Soundness is straightforward, for completeness, we need to call into
play the combinatorial lemma 4.47.

4.3. THE NON-WELL-FOUNDED CASE 139

Theorem 4.49 (Soundness and Completeness) Let E1, . . . , En be
the systems non-deterministically returned by nwf Unify bags(E) (n = 0
means that all the computations end with fail). Then

NWF bags ` E ↔ ∃N1 · · ·Nh
∨n
i=1 Ei,

where N1, . . . , Nh are the variables occurring in E1, . . . , En but not in E.

Proof. The proof develops in two parts. In the first part we show
that any action distinct from Fail 1 locally guarantees the claim. Later,
using the combinatorial Lemma 4.47, we will show that Fail 1 does
not force a loss of completeness. The finiteness of each computation,
ensured by Theorem 4.48, concludes the proof.

Soundness and completeness of actions (1) and (2) follows trivially
by (

.
=). One direction of actions (3) follows from (Em

k). The other is
trivial. Fail 1 action is justified by Lemma 4.47. Action (a) is justified
in one sense by (

.
=), in the other by axiom (F1). Action (c) is exactly

the implementation of axiom (Em
k).

Let us analyze action (b). Axiom (Em
k) states that X

.
= {[Y |X]} ∧

X
.
= {[Z |W]} is equivalent to the disjunction

(1) (X
.
= {[Y |X]} ∧ Y .

= Z ∧W .
= X)∨

(2) X
.
= {[Z |W]} ∧ ∃N (X

.
= {[Z |N]} ∧W .

= {[Y |N]})

The disjunct (1) is exactly the formula introduced by action (b.1). Since
(Em

k) states, in particular, that X
.
= moZ |W]}∧X .

= {[Z |N]} implies
W

.
= N , the second disjunct is equivalent to the formula introduced by

action (b.2).

It remains to see that the pruning of the search tree performed by
action Fail 1 in the Turning point does not cause a loss of completeness.
The algorithm, in a branch in which more than ` − k variables have
been generated, looks for a solution that, in view of Lemma 4.47, it can
find with less than ` − k removing of elements. Hence, such branch is
superfluous.

4.49 2

140 CHAPTER 4. UNIFICATION

4.4 A minimality analysis

Experience in programming with sets teachs that the number of unifiers
returned by a set unification algorithm is, in general, very large. There-
fore, one of the main goals of a unification algorithm is to reduce, as
much as possible, redundancies in the set of solutions returned. Clearly,
the best situations is that a unification algorithm for a theory T is min-
imal for it (cf. Def. 2.13), namely, that it returns exactly the minimal
complete set of unifiers, without repetitions, without instances, for any
unification problem.

Given a unification problem between two sets it is possible, in prin-
ciple, to determine the minimal number of an independent set of uni-
fiers of maximal generality for it (i.e. the minimum cardinality of a
µ
⋃

(E1)(E2)(s, t)—cf. § 2.2). Nevertheless, it is impossible to experimen-
tally test the minimality (namely the capability of returning exactly
| µ⋃(E1)(E2)(s, t) | solutions) for all possible (infinite) problems s

.
= t

with s, t in τ(Σ ∪ V). We propose a number of sample goals on which
the minimality of an algorithm can be tested, as done in the famous
paper [21] in the contect of AC-unification. Such choice is suggested
by the following reasoning:

• problems with nested sets (i.e. sets containing sets, such as ex-
ample above) give rise to confusion in the analysis. It is more
important to concentrate the efforts in pointing out the new uni-
fication problems between elements of the two sets that must be
generated. This can be seen as the reduction from a problem to a
set of problem of fewer size; in other words, it allows us to analyze
the minimality of the induction step;

• closed sets (i.e. of the form {t1 | · · · {tn | ∅} · · ·}) and open sets
(ending in a variable, as the following {t1 | · · · {tn |R} · · ·}) can
be described. Any unification problem between two sets can be
in one of the following forms:

– closed with closed (problems (1)–(4));

– open with closed (or vice-versa) (problems (5) and (6));

– open with open (problems (7) and (8)).

4.4. A MINIMALITY ANALYSIS 141

In each of such cases, if the elements of the sets are distinct
variables, the number of possible solutions is maximized (for in-
stance {X1, X2} .

= {Y1, Y2} admits more solutions either than
{X1, X2} .= {Y1, X2} or than {X1, X2} .= {a1, a2}).

As particular case, it is interesting to analize the cleverness of an
algorithm in solving the problem in which the two sets share elements
(problems (3) and (4)). Moreover, also a shrewd treatment of the
matching problem (namely when one of the two sets is ground) is im-
portant (problems (1) and (5)).

The unification problem between open sets must be analyzed differ-
ently whether the ‘rest’ variables are identical or not. The announced
sample problems are the following:

(1) {X1, . . . , Xm} .
= {a1, . . . , an} ,

(2) {X1, . . . , Xm} .
= {Y1, . . . , Yn} ,

(3) {X1, . . . , Xm, a1, . . . , ak} .
= {Y1, . . . , Yn, a1, . . . , ak} ,

(4) {X1, . . . , Xm, Z1, . . . , Zk} .
= {Y1, . . . , Yn, Z1, . . . , Zk} ,

(5) {X1, . . . , Xm |Z} .
= {a1, . . . , an} ,

(6) {X1, . . . , Xm |Z} .
= {Y1, . . . , Yn} ,

(7) {X1, . . . , Xm |Z} .
= {Y1, . . . , Yn |Z} ,

(8) {X1, . . . , Xm |W} .
= {Y1, . . . , Yn |Z} ,

where

• X1, . . . , Xm, Y1, . . . , Yn, Z1, . . . , Zk,W, Z are pairwise distinct vari-
ables, and

• a1, . . . , amax{n,k} are pairwise distinct constant symbols.

Remark 4.50 It is important to notice that problems (1), (6), (7), and
(8) constitute a complete set of templates into which any set unifica-
tion problem written in the signature {∅, {· | ·}, . . .} is comprised. For
instance, any solution θ to problem (2)—which consists of a number of
mappings of the form Xi/Yj or Yj/Xi—can be seen as a template use-
ful to generate a number of equations between the elements s1, . . . , sm
and t1, . . . , tn of the two generic sets in the equation {s1, . . . , sm} .

=

142 CHAPTER 4. UNIFICATION

{t1, . . . , tn}. More precisely, the latter unification problem can be re-
duced to the conjunction

∧
Xi/Yj in θ∨Yj/Xi in θ

si
.
= tj .

In § 4.4.1 we will describe the functions which compute the minimum
cardinality of a µ

⋃
(E1)(E2) for problems (1)–(8) (tables reporting some

values for them are presented in § A.6). The behavior of the algorithm
Unify sets (cf. § 4.2.4) with respect to the eight sample problems is the
argument of 4.4.2. Finally, in § 4.4.3 we present a unification algorithm,
named SUA, which is optimal for all problems (1)–(8).

4.4.1 Sample problems

In this section we will count, from a combinatorial point of view, the
minimal number of (E1)(E2)-unifiers that a µ

⋃
(E1)(E2)(s, t), where s

.
= t

has one of the eight form above, must contain. To avoid proliferation
of trivial lemmata, while the combinatorial analysis is carried on in all
details, the fact that such solutions are (E1)(E2)-unifiers of s

.
= t is left

to the intuition of the reader.

The problem (1)

The number of solutions to the problem

(1) {X1, . . . , Xm} .
= {a1, . . . , an}

is exactly the number of surjective applications from a set of m elements
onto a set of n elements (such number will be denoted as Surj (m,n)).

If m < n then Surj (m,n) = 0. Assume m ≥ n; if m = n = 0 then
Surj (m,n) = 1; if m > 0 and n = 0 then Surj (m,n) = 0. If n = 1,
then Surj (m,n) = 1.

Let n > 1: any surjective function g : {X1, . . . , Xm} → {a1, . . . , an}
can be obtained as follows:

• select aj (n different ways of making such choice);

4.4. A MINIMALITY ANALYSIS 143

• select a nonempty subset S of {X1, . . . , Xm} (|S| = i+1). Extend
any surjective function

g : {X1, . . . , Xm} \ S → {a1, . . . , aj−1, aj+1, . . . , an}

so as to g(X) = aj, for any X ∈ S. In order such g exists,
m− (i+ 1) cannot be less than n− 1, i.e. i ≤ m− n.

The recursive definition for Surj when m ≥ n > 0 will be
Surj (m, 1) = 1 m ≥ 1

Surj (m,n) = n
m−n∑
i=0

(
m− 1

i

)
Surj (m− 1− i, n− 1) m ≥ n > 1

Alternatively, any surjective function g : {X1, . . . , Xm} → {a1, . . . , an}
can be obtained:

• extending a surjective function

g : {X1, . . . , Xm−1} → {a1, . . . , an}

so as to g(Xm) = ai (there are n possibilities for choosing such i);

• extending uniquely a surjective function

g :{X1, . . . , Xm−1}→{a1, . . . , ai−1, ai+1, . . . , an}

(there are n possibilities for choosing such i), so as to fulfill
g(Xm) = ai.

This suggests the following recursive definition for the function Surj :
Surj (m,n) = 0 if m < n
Surj (m, 1) = 1 if 1 ≤ m

Surj (m,n) = n ·
(

Surj (m− 1, n− 1)+
Surj (m− 1, n)

)
if 1 < n ≤ m.

A more compact description of Surj (m,n) can be given using Stirling

numbers of the second type (see, for instance [61]):
{
m

k

}
is the num-

ber of ways to partition a set of m elements into k nonempty disjoint

144 CHAPTER 4. UNIFICATION

subsets. Any surjective function g : {X1, . . . , Xm} → {a1, . . . , an} can
be obtained mapping (with a bijection) an n-partition of {X1, . . . , Xm}
onto the set {a1, . . . , an}. Thus,

Surj (m,n) = n!
{
m

n

}
.

However, the recursive nature of the definition is not removed, but only
hidden into the definition of Stirling number

The problem (2)

We will describe a function Φ : ω2 → ω computing the number of most
general and independent solutions to the problem

(2) {X1, . . . , Xm} .
= {Y1, . . . , Yn} .

If m = 0 and n = 0 then Φ(m,n) = 1; if m > 0 and n = 0, or m = 0
and n > 0, then Φ(m,n) = 0.

Assume m,n > 0; if m = 1 or n = 1 then Φ(m,n) = 1; otherwise
(i.e. when m,n > 1) fix an element in the first set, say Xm. Two cases
must be analyzed:

• Xm is joined to all elements of a subset S of {X1, . . . , Xm−1} and
mapped onto one element Yi, for some i = 1, . . . , n (n ways).
This mapping is then added to any solution to the sub-problem
{X1, . . . , Xm−1} \ S .

= {Y1, . . . , Yi−1, Yi+1, . . . , Yn};

• Xm is mapped to all elements of a subset T of {Y1, . . . , Yn} such
that |T | ≥ 2 (if |T | = 1 then it would be one of the cases analyzed
in the previous item). This mapping is then added to any solution
to the sub-problem {X1, . . . , Xm−1} .= {Y1, . . . , Yn} \ T .

Pick S nonempty (former case) and T such that |T | ≥ 2 (latter case).
Select Yj ∈ T and consider the solution θ = [Xm/Yj] ∪ [Xi/Yj :
Xi ∈ S] ∪ [Yp/Yj : Yp ∈ T, j 6= p] ∪ θ1, where θ1 is a solution to
{X1, . . . , Xm−1} \ S .

= {Y1, . . . , Yn} \ T . This solution is not faced by
one of the two cases above. However, for any Yp ∈ T , p 6= j, θ is an
instance of the solution θ′ = [Xm/Yj] ∪ [Xi/Yp : Xi ∈ S] ∪ [Y`

.
= Yp :

Y` ∈ T, ` 6= j, p]. This process can be iterated until in the solution there
are no situations of the described form.

4.4. A MINIMALITY ANALYSIS 145

For m,n > 0 the function Φ will be recursively described as follows:
Φ(m, 1) = 1 m ≥ 1
Φ(1, n) = 1 n > 1

Φ(m,n) = n
∑m−2
i=0

(
m−1
i

)
Φ(m− 1− i, n− 1)+ m,n > 1∑n−1

j=2

(
n
j

)
Φ(m− 1, n− j) .

The following alternative analysis of Φ will be useful for the study
of problems (6) and (8).

From the above description it follows that any most general unifier θ
of {X1, . . . , Xm} .= {Y1, . . . , Yn} connects X-variables with Y -variables
in one of the following ways (= here denotes syntactical equality, with
distinct we mean syntactical inequality):

1. Xiθ = Yjθ and for all h = 1, . . . ,m, h 6= i and for all k = 1, . . . , n,
k 6= j, Xhθ and Ykθ are all distinct from Xiθ;

2. there are j1, . . . , jq, q ≥ 2, such that Xiθ = Yj1θ = · · · = Yjqθ
and for all h = 1, . . . ,m, h 6= i, and for all k = 1, . . . , n, k 6=
j1, . . . , k 6= jq, Xhθ and Ykθ are all distinct from Xiθ; in this case
we say there is a q-fork in the solution θ;

3. there are i1, . . . , ip, p ≥ 2, such that Xi1θ = · · · = Xipθ = Yjθ and
for all h = 1, . . . ,m, h 6= i1, . . . , h 6= ip, and for all k = 1, . . . , n,
k 6= j, Xhθ and Ykθ are all distinct from Xi1θ; in this case we say
there is a p-cone in the solution θ.

We will describe below a procedure for counting all such solutions.

Given n > 0, a n-tuple c ≡ [i1, . . . , in] is said to be a configuration
for the set {Y1, . . . , Yn} if the non-negative integers i1, . . . , in are such
that

∑n
j=1 ij · j = n.

Let k (1 ≤ k ≤ n) be
∑n
j=1 ij; the configuration c is a witness of

any partition of {Y1, . . . , Yn} into k nonempty disjoint subsets such that
there are exactly i1 singleton subsets, i2 doubleton subsets, and so on.
Let Cn be the set of all the configurations for a fixed n; for instance,

146 CHAPTER 4. UNIFICATION

configurations(N,Cn) :−
setof(C, conf(N, 1,N,C),Cn).

conf(0, ,M, []) :−
!,M = 0.

conf(N, , 0,C) :−
!, zerolist(N,C).

conf(N,W,M, [A |C]) :−
T is (M div W), in(A,T),
M1 is M−W ∗ A,
N1 is N− 1,W1 is W + 1,
conf(N1,W1,M1,C).

in(T,T).
in(A,T) :−

T > 0,T1 is T− 1,
in(A,T1).

zerolist(0, []) :− !.
zerolist(N, [0 |R]) :−

M is N− 1,
zerolist(M,R).

Figure 4.9: : The Prolog program generating configurations.

when n = 6, the possible configurations are the following eleven

i1 i2 i3 i4 i5 i6

6 0 0 0 0 0
4 1 0 0 0 0
3 0 1 0 0 0
2 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

i1 i2 i3 i4 i5 i6

2 2 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
1 1 1 0 0 0
0 1 0 1 0 0

It is easy to write a Prolog program which computes the set Cn, for
a given n (see figure 4.9).

Let ‖[i1, . . . , in]‖ be the number of partitions of {Y1, . . . , Yn} of the
form uniquely determined by [i1, . . . , in]; clearly,∑

i1+···+in=k

1·i1+···+n·in=n

‖[i1, . . . , in]‖ =
{
n

k

}
.

The following simple example will clarify how to compute ‖[i1, . . . , in]‖;
let n = 16 and c ≡ [5, 4, 1, 0, . . . , 0].

There are
(

16
2

)
ways for selecting the first doubleton,

(
14
2

)
,
(

12
2

)
, and(

10
2

)
ways for selecting the second, the third and the fourth doubleton,

4.4. A MINIMALITY ANALYSIS 147

respectively. In this way, however, any partition will be counted 4!
(= i2!) times, since there is no difference in selecting two elements Yi
and Yj in the first, second, third or fourth attempt.

There are still
(

8
3

)
for selecting the unique subset of three elements.

The remaining elements will constitute the singletons of the partition.
Thus,

‖c‖ =

(
16
2

)(
14
2

)(
12
2

)(
10
2

)
4!

·

(
8
3

)
1!

=
16!

((2!)4(3!)1)(5!4!1!)
.

Such situation is easy to generalize so as to obtain:

‖[i1, . . . , in]‖ =
n!

Πn
j=2(j!)ij · Πn

j=1(ij!)
.

Assume a partition S of {Y1, . . . , Yn} (S ⊆ P({Y1, . . . , Yn})) has the
configuration c ≡ [i1, . . . , in]. We want to compute the number of (most
general and independent) solutions θ to problem (2) such that S is the
smallest set fulfilling S = {Z : (∀YiYj ∈ Z)(Yiθ = Yjθ)}.

Figure 4.10 illustrates the form of any such θ:

• subsets of {X1, . . . , Xm} consisting of i2, i3, . . . , in elements are
selected;

• for any j = 2, . . . , n, θ connects with a bijection the subset iden-
tified by ij to the subset of S constituted by sets of exactly j
elements.

• Moreover, the remaining m −∑n
j=2 ij elements of {X1, . . . , Xm}

are connected by a surjection with the remaining i1 elements of
{Y1, . . . , Yn}.

Thus, there are(
m

i2

)(
m− i2
i3

)
· · ·

(
m−∑n−1

j=2 ij
i1

)
ways for choosing the elements reflecting the situation described; once
they are fixed, there are

Surj (i2, i2) · · · Surj (in, in)Surj
(
m−

n∑
j=2

ij, i1

)

148 CHAPTER 4. UNIFICATION

X1, . . . , Xm︸ ︷︷ ︸ Y1, . . . , Yn︸ ︷︷ ︸
i2


◦
...
◦

−−−→
Surj (i2, i2)
−−−→

◦◦
...
◦◦

 i2

i3


◦
...
◦

−−−→
Surj (i3, i3)
−−−→

◦ ◦ ◦
...
◦ ◦ ◦

 i3

...
...

...

in


◦
...
◦

−−−→
Surj (in, in)
−−−→

◦ · · · ◦
...
◦ · · · ◦︸ ︷︷ ︸

n

 in

m−
∑n

j=2 ij


◦
...
◦

−−−→
Surj

(
m−

∑n
j=2 ij , i1

)
−−−→

◦
...
◦

 i1

Figure 4.10: The form of a generic solution.

possible situations. Hence, the number of m.g.u.’s we are looking for is

m!(
m−∑n

j=2 ij
)
!
· Surj

(
m−

n∑
j=2

ij, i1

)
=

m! · i1!

(m−∑n
j=2 ij)!

·
{
m−
∑n

j=2
ij

i1

}
.

Finally, given a configuration c ≡ [i1, . . . , in], the number of possible
m.g.u.’s from the set {X1, . . . , Xm} to any partition of {Y1, . . . , Yn}
having configuration c (we call this number ‖c‖m) will be

‖[i1, . . . , in]‖m = ‖[i1, . . . , in]‖ · m!·i1!

(m−
∑n

j=2
ij)!
·
{
m−
∑n

j=2
ij

i1

}
= m!·n!·i1!

(Πnj=2(j!)ij)·(Πnj=1(ij !))·(m−
∑n

j=2
ij)!
·
{
m−
∑n

j=2
ij

i1

}
.

With this alternative point of view, the function Φ can be defined as
Φ(m,n) =

∑
c∈Cn ‖c‖m.

In [103] an interesting approach in finding the solution to prob-
lem (2) using Taylor’s series, is presented. In particular, it is im-
plicitly proved that Φ(m,n) = (∆m

x ∆n
ye

(x(ey−1)+y(ex−1)−xy))〈0,0〉, where
∆k
vf(· · · , v, · · ·) means to derive k times with respect to the variable v.

4.4. A MINIMALITY ANALYSIS 149

The problem (3)

Any solution θ to problem

(3) {X1, . . . , Xm, a1, . . . , ak} .
= {Y1, . . . , Yn, a1, . . . , ak} ,

will map every element of {X1, . . . , Xm, a1, . . . , ak} into an element
of {Y1, . . . , Yn, a1, . . . , ak}. Clearly, for i = 1, . . . , k, ai is implicitly
mapped into itself.

Assume θ has the form [Xi1/a`, . . . , Xiα/a`, Yj1/a`, . . . , Yjβ/a`] ∪ θ′,
where α, β > 1. Such θ is an instance of the substitution θ′′∪θ′, for any
θ′′ solution to the problem of type (2) {Xi1 , . . . , Xiα}

.
= {Yj1 , . . . , Yjβ}.

This means, in particular, that we do not have to count solutions in
which both Xi/a` and Yj/a` occur in the solution, for any i, j, and `.

Any most general solution θ to problem (3) can be obtained as
follows:

• choose two disjoint subsets S0 and S1 of {a1, . . . , ak};

• choose

– a subset T0 of {X1, . . . , Xm} and

– a subset T1 of {Y1, . . . , Yn};

• θ is θ0 ∪ θ1 ∪ θ2;

• θi is a solution to the problem of type (1) Ti
.
= Si, for i = 0, 1;

• θ2 is a solution to the problem of type (2) {X1, . . . , Xm} \ T0
.
=

{Y1, . . . , Yn} \ T1.

Hence, the number of most general and independent solutions to prob-
lem (3) is:

Ψ(m,n, k) =
k∑
i=0

(
k

i

)
k−i∑
j=0

(
k − i
j

)
m∑
a=0

(
m

a

)
n∑
b=0

(
n

b

)
(
Surj (a, i) · Surj (b, j) · Φ(m− a, n− b)

)
.

150 CHAPTER 4. UNIFICATION

The problem (4)

From any solution θ to problem (3) a corresponding solution to problem

(4) {X1, . . . , Xm, Z1, . . . , Zk} .
= {Y1, . . . , Yn, Z1, . . . , Zk} ,

can be obtained replacing any occurrence of ai with Zi, for i = 1, . . . , k.
Problem (4) has a number of solutions strictly greater than problem

(3), since it is consistent to consider solutions containing p-forks, p ≤ k,
proceeding of the unification problems T0

.
= S0 and T1

.
= S1. However

any solution θ = [Zi1/Xi, . . . , Zip/Xi] ∪ θ′, p ≤ k of the form described
above is an instance of any of the solutions θi1 = [Zi1/Xi]∪ θ′, . . .,θip =
[Zip/Xi] ∪ θ′.

Thus, problem (4) has exactly the same number of most general and
independent solutions as problem (3).

The problem (5)

Any solution to the problem

(5) {X1, . . . , Xm |Z} .
= {a1, . . . , an} ,

can be computed as follows: let S be a nonempty subset of {a1, . . . , an}
and let θ1 be a solution to the problem of type (1) {X1, . . . , Xm} .= S;
then any substitution θ extending θ1 with the mapping Z/({a1, . . . , an}\
S) ∪ T , for any T ⊆ S, is a solution to (5). It is easy to see that all
the solutions obtained in this way are independent and, furthermore,
the collection of them is a complete set of unifiers. The total number
of solutions is therefore∑n

i=1

(
n
i

)(
Surj (m, i) · 2i

)
.

The problem (6)

Let S be a nonempty subset of {Y1, . . . , Yn} and let θ1 be a solution
to the problem of type (2) {X1, . . . , Xm} .= S; then any substitution θ
extending θ1 with the mapping

Z = ({Y1, . . . , Yn} \ S) ∪ T
is a solution to problem

(6) {X1, . . . , Xm |Z} .
= {Y1, . . . , Yn} ,

4.4. A MINIMALITY ANALYSIS 151

for any T ⊆ S. However, in this case, solutions are not all pairwise inde-
pendent, as it is shown by the following example: consider the problem
{X1 |Z} .

= {Y1, Y2}. Let S = {Y1, Y2}, then {X1} .
= {Y1, Y2} has the

unique solution [Y1/X1, Y2/X1]. Such a solution can be extended with
[Z/{Y2}]. Let now S = {Y1}, then the problem {X1} .

= {Y1} has
the unique solution [X1/Y1]. Such a solution can be extended with
[Z/{Y2}], a more general solution than the first presented.

A closer analysis of the solutions to the problem {X1, . . . , Xm} .= S
must be performed in order to identify whether a solution is general or
not.

Given a solution θ to {X1, . . . , Xm} .
= S, we want to extend it

with a substitution for Z. Such substitution should be of the form
[Z/({Y1, . . . , Yn} \ S) ∪ T], with T ⊆ S.

Assume an element Yi of S belongs to T . Two cases are possible:

1. θ does not connect Yi with any Yj, for j = 1, . . . , n, i 6= j. In
other words

Xi1θ = · · · = Xikθ = Yiθ , for some i1, . . . , ik ∈ {1, . . . ,m}, k ≥ 1,

Yiθ 6= Yjθ for j = 1, . . . , n, i 6= j.

2. θ connects Yi with some Yj’s, for j = 1, . . . , n, i 6= j. This means
(see problem (2)) that there is a k-fork in the solution θ:

Xhθ = Yiθ = Yi1θ = · · · = Yikθ
for exactly one h ∈ {1, . . . ,m} and

for some i1, . . . , ik ∈ {1, . . . , n}.

In the former case we can insert Yi into T . In fact, if we consider the
sub-problem obtained by removing it from S, there are no possibilities
to map Xi1 , . . . , Xik in a way that subsumes such solution.

In the latter case the situation is radically different. Consider the
the sub-problem obtained by removing Yi from S, we get the solution
θ′ equal to θ except that Yi is not considered (i.e. Xhθ

′ = Yi1θ
′ = · · · =

Yikθ
′). This means that if we inserted Yi into T , we would generate an

instance of a solution already computed. An analogous reasoning can
be performed for any of Yi1 , . . . , Yik and for all k-forks in θ.

152 CHAPTER 4. UNIFICATION

Thus, the number of such solutions can be computed using the
concept of configuration defined to describe solutions to problem (2).
Given a solution θ for the unification problem {X1, . . . , Xm} .

= S, for
some S ⊆ {Y1, . . . , Yn} such that |S| = j, consider its configuration cθ =
[i1, . . . , ij]. There are 2j−forks(θ) possible values for T , where forks(θ) =
2 · i2 + · · ·+ j · ij. Hence,∑n

j=1

(
n
j

)∑
θ is a solution to

{X1, . . . , Xm}
.
= {Y1, . . . , Yj}

2j−forks(θ) .

The problem (7)

Let S0 be a subset of {X1, . . . , Xm} and S1 be a subset of {Y1, . . . , Yn}.
Problem

(7) {X1, . . . , Xm |Z} .
= {Y1, . . . , Yn |Z} ,

can be reduced to the family of problems

S0
.
= S1,

Z ⊇ ({X1, . . . , Xm} \ S0) ∪ ({Y1, . . . , Yn} \ S1)

If θ is a solution to S0
.
= S1, then

θ ∪ [Z/({X1, . . . , Xm} \ S1) ∪ ({Y1, . . . , Yn} \ S2) ∪N] ,

where N is a new variable, whose intended meaning is ‘any set’, is a so-
lution to problem (7). Furthermore, they are all pairwise independent.
The number of most general and independent solutions to problem (7)

is
∑m
i=0

(
m
i

)∑n
j=0

(
n
j

)
Φ(i, j).

The problem (8)

Problem

(8) {X1, . . . , Xm |W} .
= {Y1, . . . , Yn |Z}

can be reduced to the family of problems

S0
.
= S1,

Z
.
= ({X1, . . . , Xm} \ S0) ∪N ∪ T0,

W
.
= ({Y1, . . . , Yn} \ S1) ∪N ∪ T1,

where

4.4. A MINIMALITY ANALYSIS 153

• S0 ⊆ {X1, . . . , Xm} and S1 ⊆ {Y1, . . . , Yn}, and

• Ti is a subset of Si, for i = 0, 1, and

• N is a new variable (whose intended meaning is ‘any set’).

Similarly to problem (6), we need to bound the range of the Tis in order
to avoid the generation of instances of other generated solutions.

As shown in the analysis of the problem (2), any solution θ for the
problem S0

.
= S1 (instance of the problem (2)) can give rise to three

situations.
Xi and Yj of case 1 can be inserted into T0 and T1, respectively, but

not simultaneously. In fact the solution

{Xi = Yj, . . . , Z = {· · · |N},W = {· · · |N}}

is more general than

{Xi = Yj, . . . , Z = {· · · , Xi |N},W = {· · · , Yj |N}} .

Following the identical reasoning to the one performed in the anal-
ysis of problem (6), Xi of case 2 can be inserted into T0, while the
introduction of Yj` , for ` = 1, . . . , k in T1 generates an instance of an-
other solution.

Similarly, Yj of case 3 can be inserted into T1, while Xi` , for ` =
1, . . . , k must not be introduced in T0, if we want to guarantee the
minimality property of the solutions.

To sum up, given a solution θ to S0
.
= S1, we define as vert0(θ)

the sum of number of k-forks for k = 2, . . . , |S1|, and vert1(θ) the sum
of the number of h-forks for h = 2, . . . , |S0|. cones(θ) is defined to be∑|S0|
h=0 h · (# of h-cones), and forks(θ) is the same function defined in

the solution to problem (6).
Clearly, |S0| − cones(θ)− vert0(θ) = |S1| − forks(θ)− vert1(θ); such

number (say p) is the number of elements connected with a bijection
(see case 1 above). As it has already been explained, such elements
can be inserted in T0 and T1 not simultaneously: there are | {〈A,B〉 :
A,B ⊆ {1, . . . , p}, A ∩B = ∅} |= 3p possibilities to extend θ.

154 CHAPTER 4. UNIFICATION

naive(A,B) :−
(var(A); var(B)), !,A = B.

naive(A,B) :−
A =.. [F |Alist],
B =.. [F |Blist],
F 6= ′. ′, !,
naive all(Alist,Blist).

naive([T |Trest], [S | Srest]) :− (i)
naive(T, S), naive(Trest, Srest).

naive([T |Trest], [S | Srest]) :− (ii)
naive(T, S), naive([T |Trest], Srest).

naive([T |Trest], [S | Srest]) :− (iii)
naive(T, S), naive(Trest, [S | Srest]).

naive([T |Trest], [S | Srest]) :− (iv)
naive([T |New], Srest),
naive(Trest, [S |New]).

Figure 4.11: The Prolog code for a naive set unification algorithm

Thus, we are ready to count all the solutions to the problem (8):

m∑
a=0

(
m

a

)
n∑
b=0

(
n

b

) ∑
θ is a solution to

{X1, . . . , Xa} = {Y1, . . . , Yb}

2vert0(θ)2vert1(θ)3a−vert0(θ)−cones(θ) .

Note that if we chose T0 and T1 as any subsets of S0 and S1, respectively,
the total number of computed unifiers would be

∆(m,n) =
∑m
i=0

(
m
i

)∑n
j=0

(
n
j

)(
2i+j · Φ(i, j)

)
.

4.4.2 Solutions computed by a naive algorithm

The Prolog code of Fig. 4.11 is the core of the general set unification
algorithm presented in [55]; as that algorithm, it does not terminate for
problem (7) (same rest variables). The algorithm presented in § 4.2.4
extends it covering also this case. Functional symbols ∅ and {· | ·} are
represented by [] and [· | ·], respectively.

4.4. A MINIMALITY ANALYSIS 155

Predicate naive all is recursively defined on lists in the obvious way.
naive algorithm has a minimal behavior for problem (1) only. This is
stated in the following Theorems.

Problem (1)

Lemma 4.51 The Prolog execution of the goal

:− naive([X1 |N], [a1, . . . , an])

generates 2n solutions. More precisely, for i = 1, . . . , n, they are of the
form

X1 = ai, N = [a1, . . . , ai−1, ai+1, . . . , an] , and
X1 = ai, N = [a1, . . . , an] .

Proof. It follows immediately from an analysis of the SLD tree.
4.51 2

Theorem 4.52 Let f1(m,n) be the number of solutions computed by
the Prolog execution of the goal

:− naive([X1, . . . , Xm], [a1, . . . , an]).

Then
f1(m,n) = 0 if m < n
f1(m, 1) = 1 if m > 0
f1(m,n) = n(f1(m− 1, n− 1) + f1(m− 1, n)) if m ≥ n > 1 .

Proof. The non-deterministic choice (ii) leads always to a failure
situation, due to the fact that a1, . . . , an are distinct constants. For the
same reasons, if m < n, there are no solutions.
If n = 1 the result follows immediately by a simple analysis of the SLD-
tree.
Assume 1 < n ≤ m. Then the non-deterministic choice

(i) reduces to the problem of size (m− 1, n− 1):
:− naive([X2, . . . , Xm], [a2, . . . , an]).

(iii) reduces to the problem of size (m− 1, n):
:− naive([X2, . . . , Xm], [a1, . . . , an]).

156 CHAPTER 4. UNIFICATION

(iv) The goal :−naive([X1 |N], [a2, . . . , an]) is computed. Lemma 4.51
ensures that it generates
n− 1 goals of the form
:− naive([X2, . . . , Xm], [a1, . . . , an]), and
n− 1 goals of the form
:− naive([X2, . . . , Xm], [a1, . . . , ai−1, ai+1, . . . , an]).

4.52 2

Observe that the function f of Theorem 4.52 is exactly the function
Surj . Hence,

Corollary 4.53 The naive set unification algorithm is minimal with
respect to sample problem (1).

Problem (2)

We compute the function f2 : ω2 → ω which returns, for any m and n,
the number of computed solutions by the goal

:− naive([X1, . . . , Xm], [Y1, . . . , Yn]) .

It is easy to see that f2(m, 1) = 1 and f2(1, n) = 1 for any m,n ≥ 1.
For the general case, the following preliminary results are useful.

Lemma 4.54 The number of solutions generated by the Prolog exe-
cution of the goal

:− naive([X1 |N], [Y1, . . . , Yn])

is
∑n
i=1 2i = 2n+1 − 2. Furthermore, let #(n, k) be the number of solu-

tions generated by the execution of the goal above such that N is mapped
to a list of k elements (0 ≤ k ≤ n). Then{

#(n, i) =
(
n+1
i

)
for i = 0, . . . , n− 1,

#(n, n) = n .

Proof. Let g(n) be the function which returns the number of solutions
generated by the Prolog execution of the goal

:− naive([X1, . . . , Xm], [Y1, . . . , Yn]) .

4.4. A MINIMALITY ANALYSIS 157

It is easy to see that g(1) = 2, and that g(n+ 1) = 2 + 2g(n).
By induction on n ≥ 1 we prove that g(n) =

∑n
i=1 2i.

The base case is trivial. For the induction step, g(n+ 1) = 2 + 2g(n) =
2 + 2

∑n
i=0 2i =

∑n+1
i=0 2i.

This ensures that, for any n,∑n
i=0 #(n, i) = 2n+1 − 2 .

Analyzing the SLD-tree for the goal, it is easy to see that #(n, n) = n.
Hence,∑n−1

i=0 #(n, i) + n = 2n+1 − 2, i.e.∑n−1
i=0 #(n, i) + (n+ 1) + 1 = 2n+1 .

Since that property holds for any n, even without entering into the
details of the SLD tree, it is not difficult to become convinced that

#(n, i) =
(
n+1
i

)
for i = 0, . . . , n− 1.

4.54 2

We are ready for the final result

Theorem 4.55 Let f2(m,n) be the number of solutions computed by
the Prolog execution of the goal

:− naive([X1, . . . , Xm], [Y1, . . . , Yn]).

Then
f2(m, 1) = 1
f2(1, n) = 1
f2(m,n) = f2(m− 1, n− 1) + f2(m,n− 1) + m,n > 1

nf2(m− 1, n) +
∑n−2
i=0

(
n
i

)
f2(m− 1, i+ 1) .

Proof. Base cases follow trivially. Assume m,n > 1. f2(m,n) is the
sum of

• f2(m− 1, n− 1): situation (i);

• f2(m,n− 1): situation (ii);

• f2(m− 1, n): situation (iii);

158 CHAPTER 4. UNIFICATION

• in the situation (iv) the solutions to :−naive([X1 |N], [Y2, . . . , Yn])
should be computed (Lemma 4.54 ensures they are 2n − 2). Any
of them comprises a substitution of the form [N/[Yi1 , . . . , Yik]].

Then the goal :− naive([X2, . . . , Xm], [Y1, Yi1 , . . . , Yik]) is com-
puted.

From Lemma 4.54 we have to sum:∑n−1
i=0 #(n− 1, i)f2(m− 1, i+ 1) =∑n−2
i=0

(
n
i

)
f2(m− 1, i+ 1) + (n− 1)f2(m− 1, n).

Summing the four addends, the result follows.
4.55 2

Problem (4)

The naive program treats problems (2) and (4) exactly at the same way.
This means that the number of solutions computed by the Prolog
execution of the goal

:− naive([X1, . . . , Xm, Z1, . . . , Zk], [Y1, . . . , Yn, Z1, . . . , Zk]),

where X1, . . . , Xm, Y1, . . . , Yn, Z1, . . . , Zk are pairwise distinct variables,
is f2(m+k, n+k). For instance, when m = 2, n = 2, and k = 3, 95401
solutions are computed instead of the 56 needed.

Problem (7)

As already sketched, presented naive program is not sufficient to deal
with problem (7) (same rest variables). However, referring to the Pro-
log implementation of the complete algorithm presented in 4.2.4 (as-
sume it is named naive∗), it is easy to prove that

Lemma 4.56 The function f7 returning the number of solutions com-
puted by the Prolog execution of the goal

:− naive∗([X1, . . . , Xm |Z], [Y1, . . . , Yn |Z]),

4.4. A MINIMALITY ANALYSIS 159

where X1, . . . , Xm, Y1, . . . , Yn, Z are pairwise distinct variables, is re-
cursively defined as follows:

f7(0, n) = 1 n ≥ 0
f7(m, 0) = 1 m > 0
f7(m,n) = n · (f7(m− 1, n− 1) + f7(m,n− 1))+ m > 0, n > 0

(n+ 1)f7(m− 1, n) .

Problem (8)

We describe the function f8 : ω2 → ω which returns the number of
answers computed by the Prolog execution of the goal

:− naive([X1, . . . , Xm |W], [Y1, . . . , Yn |Z])

where X1, . . . , Xm, Y1, . . . , Yn,W, Z are pairwise distinct variables.

First the following two technical Lemmata are needed:

Lemma 4.57 The Prolog execution of the goal

:− naive([X1 |W], [Y1, . . . , Yn |Z])

where X1, . . . , Xm, Y1, . . . , Yn,W, Z are pairwise distinct variables re-
turns 3 · 2n − 2 solutions.

Proof. Call g : ω → ω the function returning such number.
It is easy to see that g(1) = 4: the solutions returned to the goal

:− naive([X1 |W], [Y1 |Z])

are the following:

• using clause (i): X1 = Y1,W = Z;

• using clause (ii): X1 = Y1,W = [Y1 |Z];

• using clause (iii): X1 = Y1, [X1 |W] = Z;

• using clause (iv): W = [Y1 |N], Z = [X1 |N].

Analogously, g(n) = 2 + 2g(n− 1), when n > 1: the goal

:− naive([X1 |W], [Y1, . . . , Yn |Z])

is handled as follows:

160 CHAPTER 4. UNIFICATION

• using clause (i) the solution X1 = Y1,W = [Y2, . . . , Yn |Z] is
returned;

• using clause (iii) the solution X1 = Y1,W = [Y1, . . . , Yn |Z] is
returned;

• using clause (ii) the substitution X1 = Y1 is obtained, and the
goal

:− naive([X1 |W], [Y2, . . . , Yn |Z]),
of size n− 1, is computed;

• using clause (iv) the substitution W = [Y1 |N] is obtained, and
the goal

:− naive([X1 |N], [Y2, . . . , Yn |Z]),
of size n− 1, is computed.

It is easy to prove by induction on n, that the unique solution to g(n)
is 3 · 2n − 2.

4.57 2

Lemma 4.58 Let #(n, k) be the number of solutions generated by the
Prolog execution of the goal

:− naive([X1 |W], [Y1, . . . , Yn |Z])

such that W is mapped to a list of k elements (0 ≤ k ≤ n). Then{
#(n, i) =

(
n+1
i

)
+
(
n
i

)
for i = 0, . . . , n− 1,

#(n, n) = n+ 1 .

Proof. It is easy to see (see proof of Lemma 4.57) that the recursive
definition of #(n, k) is the following:

#(m,n) = 0 if m < n or m = 0
#(n, 0) = 2 if 0 < n
#(n, i) = #(n− 1, i) + #(n− 1, i− 1) if 0 < i < n− 1

#(n, n− 1) = 1 + #(n− 1, n− 1) + #(n− 1, n− 2)
#(n, n) = 1 + #(n− 1, n− 1) .

4.4. A MINIMALITY ANALYSIS 161

It is straightforward to prove #(n, n) = n + 1 and, consecutively,

#(n, n − 1) = n + (n+1)n
2

, and so on. However, from Lemma 4.57,
we know that

∑n
i=0 #(n, i) = 3 · 2n − 2. Observe that

3 · 2n − 2 = 2 · 2n + 2n − 2 =

2n+1 + 2n − 2 =
∑n+1
i=0

(
n+1
i

)
+
∑n
i=0

(
n
i

)
− 2 =∑n

i=0

((
n+1
i

)
+
(
n
i

))
− 1 .

It is a matter of routine to complete the proof.
4.58 2

Theorem 4.59 The function f8 described above can be defined as fol-
lows:

f8(1, 1) = 4
f8(m, 1) = 3 · 2m − 2 if m > 1
f8(1, n) = 3 · 2n − 2 if n > 1
f8(m,n) = f8(m− 1, n− 1) + f8(m,n− 1)+ if m,n > 1

(n+ 1)f8(m− 1, n)+∑n−2
i=0

((
n
i

)
+
(
n−1
i

))
f8(m− 1, i+ 1) .

Proof. The proof for f8(1, 1), f8(m, 1), and f8(1, n) is the same as in
Lemma 4.57.
When m and n are both greater than 1, the goal

:− naive([X1, . . . , Xm |W], [Y1, . . . , Yn |Z])

is handled as follows:

• using clause (i) the substitution X1 = Y1 is returned, and the
goal

:− naive([X2, . . . , Xm |W], [Y2, . . . , Yn |Z]),
of size (m− 1, n− 1) is computed;

• using clause (ii) the substitution X1 = Y1 is returned, and the
goal

:− naive([X1, . . . , Xm |W], [Y2, . . . , Yn |Z]),
of size (m,n− 1) is computed;

162 CHAPTER 4. UNIFICATION

• using clause (iii) the substitution X1 = Y1 is returned, and the
goal

:− naive([X2, . . . , Xm |W], [Y1, . . . , Yn |Z]),
of size (m− 1, n) is computed;

• using clause (iv) first the goal
:− naive([X1 |N], [Y2, . . . , Yn |Z])

is computed, reporting solutions θ’s for N of the form described
in Lemma 4.57. After that, the goal

:− naive([X2, . . . , Xm |W], [Y1 |Nθ])
is handled. In particular, n sub-problems of size (m − 1, n) and
#(n− 1, i) (see Lemma 4.58) sub-problems of size (m− 1,#(n−
1, i) + 1) are computed.

From that description, the above recursive definition for f is uniquely
determined.

4.59 2

4.4.3 The algorithm SUA

We now introduce the algorithm SUA (Set Unification Algorithm) which
has been proved to be minimal in [11, 10] for the eight sample problems
presented. Any non-deterministic computation of SUA can be seen as a
particular non-deterministic computation of the execution of algorithm
Unify set presented in § 4.2.4. In particular, actions 1–8 of SUA are
exactly the same as the ones in Unify set. This ensures its correctness
and its termination, and, moreover, the completeness of actions 1–8.
The completeness of the set-to-set actions 9–13 is ensured by the fact
that it returns the required number of solution to the general problems
(1), (6), (7), and (8), which constitute the four templates into which
any set unification problem is comprised (see remark 4.50).

In order to make the description of the algorithm as clear as possible,
some local notation will be defined.

The set-operations ‘| · |’ (cardinality), ‘⊆’ (inclusion), ‘⊂’ (strict
inclusion), ‘∪’, (union) ‘∩’, (intersection) and ‘−’ (set difference) will be
used on terms denoting sets. The meaning of the set operators is purely
syntactical; for instance |{X1, X2}| = 2: we do not need to distinguish

4.4. A MINIMALITY ANALYSIS 163

the two cases X1 = X2∧ |{X1, X2}| = 1 and X1 6= X2∧ |{X1, X2}| = 2.
The function no dup which removes duplicates in a term representing
a set ensures no ambiguity in using them.

SUA takes as input a system of equations E between terms and
returns either fail—E is not unifiable—or, non-deterministically, a sub-
stitution θ. The set of all such θ’s constitutes a complete set of T -
unifiers. In the algorithm, X, W , Z and Z ′ denote generic variables,
t, t1, t2, . . . , s1, s2, . . . denote generic terms, N denotes a new variable in-
troduced by SUA. k and k′ will denote non-variable terms which main
functional symbol distinct from {· | ·}.

FV (`) represents the set of variables occurring in the term `, while
θ|S constraints the domain of θ to the variables contained in S. n.d.
is a denotation for non-deterministically. The algorithm temporarily
generates equations marked by ‘∗’; they are called active equations
and they are immediately removed by action 0. The algorithm SUA is
presented in Fig. 4.12.

Active equations s
∗
= t should be handled before the others in or-

der to guarantee termination. They are temporarily introduced by ac-
tions 4, 9, 11, 12, and 13. This is sufficient to simulate the termination
strategy imposed by the data structure stack in the algorithm Unify set.

The function unify set takes as input two terms S1 and S2 repre-
senting closed and nonempty sets; it selects non-deterministically which
equalities between elements of S1 and S2 should accompany the system
E in a recursive call to SUA.

function unify set(S1, S2);
Let {t1, . . . , tm} = no dup(S1) ; {s1, . . . , sn} = no dup(S2) ;
1. If {t1, . . . , tm} and {s1, . . . , sn} are syntactically equal then return SUA(E)
2. elseif m = 1 and n > 1 then return {si

.
= t1 : 1 ≤ i ≤ n};

3. elseif m ≥ 1 and n = 1 then return {ti
.
= s1 : 1 ≤ i ≤ m}

4. else Common part := {t1, . . . , tm} ∩ {s1, . . . , sn} ;
Disagr1 := {t1, . . . , tm} − Common part ;
Disagr2 := {s1, . . . , sn} − Common part ;

(a) if Common part = ∅
then fix an i ∈ {1, . . . ,m}: select n.d. one of the following actions:

i. return
1
= (ti, {t1, . . . , tm}, {s1, . . . , sn});

164 CHAPTER 4. UNIFICATION

SUA(E);
If E is in solved form then return E
elseif E∗ is not empty
then choose n.d. one active equation s

∗
= t in E∗; E ′ := E − {s ∗= t};

0. i. s ≡ X: if X occurs in t then fail else return SUA(E ′[X/t]∪{X .
= t});

ii. s ≡ f(s1, . . . , sm) and t ≡ f ′(t1, . . . , tn): if f 6≡ f ′ then fail else
(i.e. f ≡ f ′ and m = n): return SUA({s1

.
= t1, . . . , sn

.
= tn} ∪ E ′);

else choose n.d. one equation e in E ; E ′ := E − {e}; case e of:
1. X

.
= X: return SUA(E ′);

2. t
.
= X and t is not a variable: return SUA({X .

= t} ∪ E ′);
3. X

.
= t, X is a variable not occurring in t: return SUA(E ′[X/t]∪{X .

= t});
4. X

.
= {t1, . . . , tm |X}: return SUA(E ∪ {X ∗

= {t1, . . . , tm |N}});
5. X

.
= {t1, . . . , tm | t}, where t is a variable or t ≡ f(t1, . . . , tn), f 6≡ {· | ·},

and X occurs in t0, or . . ., or in tm, or t is not a variable and
X occurs in t: fail;

6. X
.
= t, and t ≡ f(t1, . . . , tn), f 6≡ {· | ·} and

X is a variable occurring in t: fail;
7. f(s1, . . . , sn)

.
= g(t1, . . . tm), where f, g ∈ Σ, f 6≡ g: fail;

8. f(s1, . . . , sn)
.
= f(t1, . . . tn), f ∈ Σ, f 6≡ {· | ·}:

return SUA(E ′ ∪ {s1
.
= t1, . . . , sn

.
= tn});

9. {t1, . . . , tm | k}
.
= {s1, . . . , sn | k′}:

return SUA(unify set({t1, . . . , tm}, {s1, . . . , sn}) ∪{k
∗
= k′} ∪ E ′);

10. {s1, . . . , sn | k}
.
= {t1, . . . , tm |Z}:

return SUA({{t1, . . . , tm |Z}
.
= {s1, . . . , sn | k}} ∪ E ′);

11. {t1, . . . , tm |Z}
.
= {s1, . . . , sn | k}, choose n.d. ∅ 6= {sl1 , . . . , slk} ⊆

no dup({s1, . . . , sn}): return SUA({Z ∗
= no dup({s1, . . . , sn} −

{sl1 , . . . , slk} ∪ Z ′ ∪ k)} ∪
limit 1({t1, . . . , tm}, {sl1 , . . . , slk}, Z ′, E ′)|FV ([s1,...,sn,t1,...,tm,Z]));

12. {t1, . . . , tm |Z}
.
= {s1, . . . , sn |Z}: select n.d. between:

i. choose n.d. T ⊆ {t1, . . . , tm} and S ⊆ {s1, . . . , sn} such that
T ∪ S 6= {t1, . . . , tm, s1, . . . , sn}: return SUA(unify set(T, S) ∪{Z ∗

=
no dup(({t1, . . . , tm} − T) ∪ ({s1, . . . , sn} − S) ∪N)} ∪ E ′);

ii. return SUA(unify set({t1, . . . , tm}, {s1, . . . , sn}) ∪E ′);
13. {t1, . . . , tm |W}

.
= {s1, . . . , sn |Z}, Z 6≡ W ;

choose n.d. {tp1 , . . . , tpj} ⊆ no dup({t1, . . . , tm}), {sl1 , . . . , slk} ⊆
no dup({s1, . . . , sn}):
return SUA({Z ∗

= no dup({s1, . . . , sn} − {sl1 , . . . , slk} ∪ Z ′),

W
∗
= no dup({t1, . . . , tm}−{tp1 , . . . , tpj}∪W ′)}∪limit 2({tp1 , . . . , tpj},

{sl1 , . . . , slk},Z ′,W ′,E ′)|FV ([s1,...,sn,t1,...,tm,Z,W])).

Figure 4.12: A minimal set unification algorithm

4.4. A MINIMALITY ANALYSIS 165

ii. return
2
= (ti, {t1, . . . , tm}, {s1, . . . , sn});

iii. return
3
= (ti, {t1, . . . , tm}, {s1, . . . , sn});

(b) if Common part 6= ∅
then choose n.d. S0, S1 ⊆ Common part, S0 ∩ S1 = ∅;
choose n.d. T0 ⊆ Disagr1 and T1 ⊆ Disagr2 such that |T0| ≥ |S0|
and |T1| ≥ |S1|: return unify set(Disagr1 − T0, Disagr2 − T1) ∪
unify set2(T1, S1) ∪ unify set2(T0, S0).

Some comments on unify set must be done in order to relate it to
the unification problems (1), (2), (3) and (4). Action 4.(a) is for solving
problems of type (1) and (2). The basic idea is that when an answer

is computed by SUA without using the function
2
=, then such answer

may be considered as a surjective function from the leftmost set to

the rightmost one. On the other hand, the use of
2
= is connected to

the concept of k-fork presented in the analysis of problem (2). For
this reason, action 4.(b) calls the new function unify set2 which avoids

the use of
2
=, since (as commented in the analysis of problem (4)) to

consider k-forks produces redundant solutions to problem (4) (the use

of function
2
= for problem (3) always leads to failure).

function unify set2({t1, . . . , tm}, {s1, . . . , sn});

1. if m = 1 and n > 1 then return {t1
.
= si : i = 1, . . . , n};

2. if m ≥ 1 and n = 1 then return {ti
.
= s1 : i = 1, . . . ,m};

3. if m,n > 1 then fix a value i ∈ {1, . . . ,m}; select n.d. one of the following
actions:

i. return
1
= (ti,no dup({t1, . . . , tm}),no dup({s1, . . . , sn}));

ii. return
3
= (ti,no dup({t1, . . . , tm}),no dup({s1, . . . , sn})).

1
= matches one element ti of the first set with one element sj of the
second one, and combines the two sets deprived of the selected elements.
1
= has the following structure:

function
1
=(ti, {t1, . . . , tm}, {s1, . . . , sn});

choose n.d. one j ∈ {1, . . . , n}:
return {ti

.
= sj}∪

unify set({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sj−1, sj+1, . . . , sn}).

2
= captures the concept of k-fork and is defined as follows:

166 CHAPTER 4. UNIFICATION

function
2
=(ti, {t1, . . . , tm}, {s1, . . . , sn});

choose n.d. S ⊂ {s1, . . . , sn} such that |S| ≥ 2:

return {ti
.
= s : for all s ∈ S}∪

unify set({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sn} − S}).

3
= captures the concept of k-cone and its definition is:

function
3
=(ti, {t1, . . . , tm}, {s1, . . . , sn});

choose n.d. ∅ 6= T ⊂ {t1, . . . , ti−1, ti+1, . . . , tm}:
return {ti

.
= t : for all t ∈ T} ∪ 1

=(ti, {t1, . . . , tm} − T, {s1, . . . , sn}).

The function limit 1 limits the possible values of Z, avoiding the intro-
duction of variables Yj ∈ S when Yj occurs in some h-fork for a solution
to {X1, . . . , Xm} .= S (S ⊆ {Y1, . . . , Yn}—see analysis of problem (6)).

The definitions of
1
=,

2
=, and

3
= are embedded in the definition of limit 1;

in this case extracting those subsets of S does not produce redundant
solutions.

function limit 1(S1,S2, Z,E);
Let {t1, . . . , tm} = no dup(S1) ; {s1, . . . , sn} = no dup(S2) ;
1. If {t1, . . . , tm} and {s1, . . . , sm} are syntactically equal

then return SUA({Z .
= ∅} ∪ E);

2. elseif m = 1 and n > 1 then
return SUA({si

.
= t1 : 1 ≤ i ≤ n} ∪ {Z .

= ∅} ∪ E)
3. elseif m = 1 and n = 1 or m > 1 and n = 1 then choose n.d. T ⊆ {s1}

and return SUA({ti
.
= s1 : 1 ≤ i ≤ m} ∪ {Z .

= T} ∪ E)
4. else fix i ∈ {1, . . . ,m} and choose n.d. one of the following actions:

i. choose n.d. j ∈ {1, . . . , n} and T ⊆ {sj}:
return SUA({ti

.
= sj} ∪ {Z

.
= T ∪ Z ′}∪

limit 1({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sj−1, sj+1, . . . , sn}, Z ′, E));
ii. choose n.d. S ⊂ {s1, . . . , sn} such that |S| ≥ 2:

return SUA({ti
.
= s : for all s ∈ S}

∪ limit 1({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sn} − S,Z, E));
iii. choose n.d. T ′ ⊂ {t1, . . . , ti−1, ti+1, . . . , tm}, j ∈ {1, . . . , n} and

T ⊆ {sj}:
return SUA({t .= sj : for all t ∈ T ′} ∪ {ti

.
= sj} ∪ {Z

.
= T ∪ Z ′}∪

limit 1({t1, . . . , ti−1, ti+1, . . . , tm}−T ′, {s1, . . . , sj−1, sj+1, . . . , sn}, Z ′, E)).

The definition of the function limit 2 is similar to the one of limit 1
but now the values of W and Z are constrained in order to avoid the

4.4. A MINIMALITY ANALYSIS 167

introduction of variables occurring in some h-fork or h-cone respectively,
of any solution θ to S0

.
= S1, for some S0 ⊆ {X1, . . . , Xm}, S1 ⊆

{Y1, . . . , Yn}—see analysis of problem (8). On the other hand, limit 2
must also control that those variables bounded in θ by a simple binding
not be introduced in Z and W simultaneously. Like in limit 1, the

definitions of
1
=,

2
=, and

3
= are embedded in the definition of limit 2.

function limit 2(S1,S2, Z,W ,E);
Let {t1, . . . , tm} = no dup(S1) ; {s1, . . . , sn} = no dup(S2) ;
1. If {t1, . . . , tm} and {s1, . . . , sn} are syntactically equal then

return SUA({Z .
= ∅} ∪ {W .

= ∅} ∪ E);
2. elseif m = 1 and n > 1 then choose n.d. T ⊆ {t1}:

return SUA({si
.
= t1 : 1 ≤ i ≤ n} ∪ {Z .

= T} ∪ {W .
= ∅} ∪ E);

3. elseif n = 1 and m > 1 then choose n.d. S ⊆ {s1}:
return SUA({ti

.
= s1 : 1 ≤ i ≤ m} ∪ {Z .

= ∅} ∪ {W .
= S} ∪ E);

4. elseif m = 1 and n = 1 then choose n.d. T ⊆ {t1}, S ⊆ {s1} such that
T ∪S 6= {t1, s1}: return SUA({ti

.
= s1 : 1 ≤ i ≤ m}∪{Z .

= T}∪{W .
=

S} ∪ E);
5. else fix i ∈ {1, . . . ,m} and choose n.d. one of the following actions:

i. choose n.d. j ∈ {1, . . . , n} and S ⊆ {sj}, T ⊆ {tj} such that
T ∪ S 6= {sj , ti}:
return SUA({ti

.
= sj} ∪ {W

.
= S ∪W ′} ∪ {Z .

= T ∪ Z ′}∪
limit 2({t1, . . . , ti−1, ti+1, . . . , tm},

{s1, . . . , sj−1, sj+1, . . . , sn}, Z ′,W ′E));
ii. choose n.d. S ⊂ {s1, . . . , sn} such that |S| ≥ 2, T ⊆ {ti}:

return SUA({ti
.
= s : for all s ∈ S} ∪ {Z .

= T ∪ Z ′}∪
limit 2({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sn} − S,Z ′,W, E));

iii. choose n.d. T ⊂ {t1, . . . , ti−1, ti+1, . . . , tm}, j ∈ {1, . . . , n} and
S ⊆ {sj}:
return SUA({t .= sj : for all t ∈ T} ∪ {ti

.
= sj} ∪ {W

.
= T ∪W ′}∪

limit 2({t1, . . . , ti−1, ti+1, . . . , tm} − T,
{s1, . . . , sj−1, sj+1, . . . , sn}, Z,W ′, E)).

As already said, termination, correctness and completeness of SUA
follow trivially by the results holding for the algorithm Unify set pre-
sented in § 4.2.4. The very long and technical proof concerning its
minimality for the presented sample problem is here omitted: it can be
found in [10].

168 CHAPTER 4. UNIFICATION

Part II

Logic Programming with
Sets

169

Chapter 5

Constraints

The aim of this Chapter is to introduce techniques for simplifying con-
straints in the theories described in Chapter 3. Such simplification
rewriting will return simple formulae whose satisfiability is easy to
check. We are only interested here in simple constraints (conjunction of
literals); it is in fact well-known (cf., i.e., Theorem 3.7, drawn from [16])
that the satisfiability problem for more complex ‘set’ constraints might
be undecidable. In Chapter 6, dealing with negation, we will face the
problem to extend the simplification of constraint techniques to more
complex formulae.

The techniques to handle conjunctions of (positive) atoms based on
the predicate symbol ‘

.
=’ have been presented in Chapter 4. Here we

will integrate such analysis with negative literals based on ‘
.
=’ and with

positive and negative literals based on the predicate symbol ‘∈’.

In particular, for the theory WF sets of well-founded and hybrid
sets, all the algorithms needed for a sound and complete integration
with the CLP scheme are presented. The same results can be described
for the other theories presented in a similar way.

Results of § 5.3 were presented, using slightly different notations,
in [37, 38, 36], and, in a very similar form, in [33, 42].

171

172 CHAPTER 5. CONSTRAINTS

5.1 Membership

The behavior of the membership predicate ‘∈’ is regulated by axioms
(K), (W), and by the well-foundedness axiom (F3) in its various forms
(cf. § 3.2).

(K) allows to state that a constraint of the form t ∈ f(· · ·), where
f is distinct from all the symbols introduced skolemizing axiom (W)
(namely [· | ·], {[· | ·]}, [[· | ·]], and {· | ·}) is always unsatisfiable, hence
equivalent to false. (Furthermore, for the same reason, the negative
literal t 6∈ f(· · ·) is always equivalent to true.)

(W) allows to saying that a constraint of the form r ∈ [s | t] is
equivalent to the disjunction r

.
= s ∨ r ∈ t. (For the same reason

r 6∈ [s | t] is equivalent to the conjunction r 6 .= s ∧ r 6∈ t.) The same
holds also for {[· | ·]}, [[· | ·]], and {· | ·}.

In § 3.1.2 also the denumerable family of enumerated membership
{∈0,∈1,∈2, . . .}, together with an axiomatization, consisting of the ax-
ioms NW ∈∗ Em aiming to give an alternative equality principle for
bags is provided.

Under such axiomatization,

• the constraint r ∈0 s is equivalent to r 6∈ s (hence r 6∈0 s is
equivalent to r ∈ s);

• the constraint r ∈k+1 s is logically equivalent to

∃N (s
.
= {[r, . . . , r︸ ︷︷ ︸

k+1

|N]} ∧ r 6∈ N) .

Therefore, it can be rewritten as s
.
= {[r, . . . , r︸ ︷︷ ︸

k+1

|N]} ∧ r 6∈ N ,

where N is a new variable.

(In what follows any new variable is implicitly existentially quan-
tified.)

• Its negative counterpart r 6∈k+1 s is logically equivalent to the
infinite disjunction ∨

i 6=k+1

r ∈i s ,

5.2. NEGATED EQUALITY 173

in its turn equivalent to the finite disjunction∨
i≤k

r ∈i s ∨ s .
= {[r, . . . , r︸ ︷︷ ︸

k+2

|N]} ,

where N is a new variable.

In the case of bags and sets, when we are interested in finite struc-
tures only or a removal principle is assumed, a constraint of the form
t ∈ X, with X variable, can be explicitly re-written using equality
as follows: X

.
= {[t |N]} (X

.
= {t |N}), where N is a new generated

variable.

In the case of well-founded theories we can also infer that the con-
straint t[X] ∈ X1 is equivalent to false (hence t[X] 6∈ X is equivalent
to true).

5.2 Negated Equality

First we briefly observe that equality axiom (
.
=1) ensures that for any

variable X, X 6 .= X is equivalent to false.

Freeness axiom (F1) ensures that f(s1, . . . , sn) 6 .= f(t1, . . . , tn)—if f
is different from {[· |]}, [[· | ·]], and {· | ·}—is equivalent to the disjunc-
tion

∨n
i=1 sı 6 .= ti (when n = 0, this reduces to the empty disjunction,

namely, false).

Freeness axiom (F2) allows to saying that the constraint

f(t1, . . . , tn) 6 .= g(s1, . . . , sm) ,

where f is different from g, is always true.

Freeness axioms (F1) ensures that f(s1, . . . , sn) 6 .= f(t1, . . . , tn), f
different from {[· |]}, [[· | ·]], and {· | ·}, is equivalent to the disjunction∨n
i=1 sı 6 .= ti (if n = 0 this is always false).

In the case of a constraint s 6 .= t, where s and t are based on the
same interpreted functional symbol {[· | ·]}, [[· | ·]], or {· | ·}, the equality
principle must be call into play.

1As in § 3.2, t[x] denotes a term having x as its proper subterm.

174 CHAPTER 5. CONSTRAINTS

In the case of compact lists, axiom (Ec
k) (cf. § 3.1.3) states that

[[t1 | s1]] 6 .= [[t2 | s2]]

is equivalent to the formula

¬(t1
.
= t2 ∧ (s1

.
= s2 ∨ s1

.
= [[t2 | s2]] ∨ [[t1 | s1]]

.
= s2)),

namely

t1 6 .= t2 ∨ (s1 6 .= s2 ∧ s1 6 .= [[t2 | s2]] ∧ [[t1 | s1]] 6 .= s2).

In the case of bags and sets, the introduction of a new (existentially
quantified) entity in the equality principle causes a complexity problem
in this kind of rewriting. For instance, in the bag case (cf. axiom (Em

k)),

{[t1 | s1]} 6 .= {[t2 | s2]}
is equivalent to

¬((t1
.
= t2 ∧ s1

.
= s2) ∨ ∃z (s1

.
= {[t2 | z]} ∧ s2

.
= {[t1 | z]})),

namely

(t1 6 .= t2 ∨ s1 6 .= s2) ∧ ∀z (s1 6 .= {[t2 | z]} ∨ s2 6 .= {[t1 | z]})).
The introduced universal quantification generates a constraint difficult
to manipulate.

We need to use a different extensionality principle to handle both
constraints of the form {[· · ·]} 6 .= {[· · ·]} and of the form {· · ·} 6 .= {· · ·}.

We first solve the (finite) set case. Using classical extensionality
axiom (E) extended with kernel entities (cf. § 3.1.4):

(Es) ∀v1v2

(
∀x (x ∈ v1 ↔ x ∈ v2)∧

ker(v1)
.
= ker(v2)

)
→ v1

.
= v2 ,

the constraint

{s1 | s2} 6 .= {t1 | t2}
can be proved to be equivalent to the disjunction

(∃Z ∈ {t1 | s1})(Z 6∈ {t2 | s2})∨
(∃Z ∈ {t1 | s1})(Z 6∈ {t2 | s2})∨
ker(s1) 6 .= ker(s2)

As shown in § 3.2, ker is a meta functional symbol that can be defined
as follows:

5.2. NEGATED EQUALITY 175

ker(f(· · ·)) = f(· · ·)
ker({s1 | s2}) = ker(s2) .

Axiom (Es) is implied by (Es
k) in all models of finite sets (in particular

in models whose domains are subsets of the Herbrand universe—cf.
Theorem 3.33). We can hence use it without affecting the axiomatic
theory. We only need to outline that in this way the constraint solver
uses an ‘internal’ functor symbol that can help the expressiveness of
the computed answer.

The kernel constraint makes sense only if Σ contains free functor
symbols; if this is not the case, then the third disjunct is always false,
and hence it can be removed. Notice that ker(X) cannot be further
simplified when X denotes a variable. In § 5.3 it will be shown in detail
how to handle kernel constraints.

The rewriting of the bag case based on the same stream of ideas
leads to the infinite (hence useless) disjunction

∃z ∨i>0(z ∈i {[t1 | s1]} ∧ z 6∈i {[t2 | s2]})∨
∃z ∨i>0(z ∈i {t2 | s2} ∧ z 6∈i {t1 | s1})∨
ker(s1) 6 .= ker(s2)

Luckily, there is the alternative equivalent rewriting:

(t1 6 .= t2 ∧ t1 6∈ s2)∨
({[t2 | s2]} .= {[t1 |N]} ∧ s1 6 .= N)

The correctness of this rewriting follows from the following

Lemma 5.1 In any model of WF bags or NWF bags in which every ele-
ment of the domain has finitely many occurrences of membership, then
{[t1 | s1]} 6 .= {[t2 | s2]} if and only if (t1 6 .= t2 ∧ t1 6∈ s2) ∨ ∃N ({[t2 | s2]} .=
{[t1 |N]} ∧ s1 6 .= N)

Proof. Let c be the constraint {[t1 | s1]} 6 .= {[t2 | s2]}. Then c is equiv-
alent to (c ∧ t1 6∈ {[t2 | s2]}) ∨ (c ∧ t1 ∈ {[t2 | s2]}), namely c ∧ true.

Since t1 6∈ {[t2 | s2]} implies c, then the first disjunct is equivalent to
t1 6 .= t2 ∧ t1 6∈ s2.

If s2 is a finite bag, then t1 ∈ {[t2 | s2]} is equivalent to

∃N ({[t1 |N]} .= {[t2 | s2]}) .

176 CHAPTER 5. CONSTRAINTS

It remains to prove that the second disjunct is equivalent to ∃N ({[t2 | s2]}
.
= {[t1 |N]}∧s1 6 .= N) . In one direction, assume that s1

.
= N . Then, ap-

plying substitution, we have that {[t1 | s1]} .= {[t2 | s2]} and {[t1 | s1]} 6 .=
{[t2 | s2]}: a contradiction. The other direction follows immediately
from the fact (true for bags) that s1 6 .= N implies {[t1 | s1]} 6 .= {[t1 |N]}.

5.1 2

In the case of well-founded theories, there are other constraints
whose behavior is regulated by axiom (F3) in its various forms. X 6 .=
t[X] is true unless

• t[X] is [[t0, . . . , tn |X]]. In this case the above constraint is equiv-
alent to t0 6 .= t1 ∨ · · · ∨ tn−1 6 .= tn,

• t[X] is {t0, . . . , tn |X}. In this case the above constraint is equiv-
alent to the disjunction

∨n
i=0 ti 6∈ X.

We end this section showing how negative equality and membership
literals for sets can be interchanged:

s 6 .= t ↔ s 6∈ {t} This holds also for [· | ·], [[· | ·]], {[· | ·]}.
t 6∈ s ↔ {t | s} 6 .= s .

5.3 A full system for handling hybrid and

well-founded set constraints

As sketched in the Introduction, the CLP scheme is a family of (Con-
straint) Logic Programming languages that become an effective lan-
guage CLP (X) when a particular domain of computation and con-
straints is assigned to the parameter X . Effectiveness of the extended
resolution procedure is ensured if the chosen domain satisfies a number
of requirements. In this section we will recall such requirements and
we will show that they are fulfilled by the domain of well-founded and
hybrid sets. This allows to obtain a Constraint Logic Programming
language with Sets.

Using a notation close to the one of [54], we will present the instance
CLP (S), where S is the 4-tuple 〈〈ΠC ,Σ ∪ V〉,D,L, T 〉, where

5.3. A FULL SYSTEM FOR HANDLING . . . 177

• ΠC = { .=,∈} is the set of constraint predicate symbols,

• Σ ⊇ {∅, {· | ·} } is the set of functional symbols;

• V is a denumerable set of variables (〈ΠC ,Σ ∪ V〉 together form
the signature);

• D = 〈D, I〉 is the 〈ΠC ,Σ〉-structure defined in § 3.1, deeply ana-
lyzed in § 3.1.4 and denoted by HΣ/ ≡s (the initial model of the
equational theory (E1)(E2));

• the class L of constraint formulae consists of all the conjunctions
of 〈ΠC ,Σ ∪ V〉-literals;

• T is the axiomatic theory of well-founded hybrid sets WF sets

presented in § 3.2.4, and consisting of the axioms (
.
=), (K), (W),

(Es
k), (F ′1), (F2), and (F s

3).

We briefly recall here the definition of the interpretation function I
of the structure HΣ/ ≡s:

aI = a for any constant symbol a in Σ
(f(t0, . . . , tn))I = f(tI0, . . . , t

I
n) for any f in Σ, ar(f) = n+ 1

{t0, . . . , tn | t}I = {s0, . . . , sp | tI} where t is a ur-element,
p ≤ q, and
every si is tIj
for some j = 0, . . . , n, and
s0 ≺ s1 ≺ · · · ≺ sp

where≺ is an ordering relation over the Herbrand universe (for instance
the one presented in § 3.1.4).

The first requirement that S must satisfy is the so-called solution
compactness of the structure D.

Definition 5.2 A structure D = 〈D, I〉 is said to be Solution Com-
pact if for all a ∈ D the following hold:

1. ‘a’ is uniquely definable by a finite or an infinite constraint (namely
‘a’ is the unique solution to such constraint);

178 CHAPTER 5. CONSTRAINTS

2. if ‘a’ is a limit element (namely it is definable by an infinite con-
straint cω), then for any constraint c, cω ∧ c is not solvable if and
only if there exists a finite constraint cf such that c ∧ cf is not
solvable.

The interpretation of WF sets in HΣ/ ≡s is clearly solution compact,
since each element a ∈ HΣ/ ≡s is uniquely definable by the finite
constraint X

.
= a. Moreover, since any element of HΣ/ ≡s is finite,

then no limit elements occur in HΣ/ ≡s.

Moreover, T and D must satisfy the further requirement:

Definition 5.3 Given S = 〈〈ΠC ,Σ ∪ V〉,D,L, T 〉, D and T Corre-
spond if

1. D |= T , and

2. for any constraint c, D |= ∃c implies T |= ∃c.2

Lemma 5.4 WF sets and HΣ/ ≡s correspond.

Proof. First we show that HΣ/ ≡s|= WF sets, by proving that HΣ/ ≡s
|= ϕ for each ϕ axiom of WF sets. The result is trivial for axioms (

.
=),

(F ′1), and (F2).

(K) and (W): Immediate from the definition of HΣ/ ≡s|= tI ∈I sI if
and only if sI is of the form {r1, . . . , rn, t

I | r}.

(Es
k): First we see that every situation of the following four (the right-

most formula of the axiom)

1. yI1 = yI2 and vI1 = vI2 ,

2. yI1 = yI2 and vI1 = {y2 | v2}I ,
3. yI1 = yI2 and {y1 | v1}I = vI2 ,

4. vI1 = {y2 | k}I and vI2 = {y1 | k}I , for some k,

2With the notation ∃c we denote the existential closure of c.

5.3. A FULL SYSTEM FOR HANDLING . . . 179

implies {y1 | v1}I = {y2 | v2}I . The first case is trivial. The second
and the third follows from the fact that {t, t | s}I = {t | s}I , for any
term t and s, by definition of I (D is a model of (E2)). The fourth
follows from the fact that {y1, y2, | k}I = {y2, y1, | k}I , always by
definition of I (D is a model of (E1)).

For the converse direction, assume that {y1 | v1}I = {y2 | v2}I ; the
result follows by the fact that a case analysis of the four cases
generated by the combination of (yI1 = yI2 ∨ yI1 6= yI2) ∧ (vI1 =
vI2 ∨ vI1 6= vI2) always produces one of the disjuncts 1–4 above:

yI1 = yI2 ∧ vI1 6= vI2: Since {y1 | v1}I = {y2 | v2}I , this means ex-
actly that yI1 = yI2∧((vI1 = {y2 | v2}I∧(yI2 6∈ vI2))∨({y1 | v1}I =
vI2 ∧ (yI1 6∈ vI1));

yI1 6= yI2: This implies the fourth disjunct.

yI1 = yI2 ∧ vI1 = vI2: This is the first disjunct. Moreover, if yI1 ∈
vI1 , it is also true that vI1 = {y2 | v2}I and {y1 | v1}I = vI2 .
Conversely, if yI1 6∈ vI1 , also the fourth disjunct is implied.

The four results imply immediately the disjunct of the axiom we
were looking for.

(F s
3): IfHΣ/ ≡s|= tI1 ∈I xI∧· · · tIn ∈I xI , thenHΣ/ ≡s|= {t1, . . . , tn |x}I

= xI , by definition of I. It is easy to see that this is the only case
of non monotonicity in the construction of ground terms.

It remains to show that HΣ/ ≡s|= ∃c implies WF sets ` ∃ c, for
each constraint c. It is sufficient to prove the claim for the atomical
constraints:

(a) HΣ/ ≡s|= ∃x̄(s
.
= t),

(b) HΣ/ ≡s|= ∃x̄(s 6 .= t),

(c) HΣ/ ≡s|= ∃x̄(s ∈ t),

(d) HΣ/ ≡s|= ∃x̄(s 6∈ t).

In order to show (a) we will prove the claim: if sI = tI , then
WF sets ` s .

= t, by structural induction on the ground term s.

180 CHAPTER 5. CONSTRAINTS

• s is a constant: sI = s. This implies that tI = s(= t) and, by
(
.
=1), we have that WF sets ` s .

= t.

• s is the ur-element f(s1, . . . , sn). This means that f(s1, . . . , sn)I =
f(sI1, . . . , s

I
n) = tI , and that t is of the form f(t1, . . . , tn), where

for each i = 1, . . . , n, tIi = sIi . By induction hypothesis, for each
i ∈ {1, . . . , n}, it follows that WF sets ` si .= ti. Then, by (

.
=2),

WF sets ` f(s1, . . . , sn)
.
= f(t1, . . . , tn).

• s is the set term {s0, . . . , sm |h}, where h is a ur-element. This
means that

– sI = tI = {r0, . . . , rp | r}, p ≤ m, where the ri’s are pairwise
distinct;

– t has the form {t0, . . . , tn | k}, n ≥ p;

– there exist two surjective functions

π1 : {0, . . . ,m} → {0, . . . , p} , and
π2 : {0, . . . , n} → {0, . . . , p}

such that: sIi = rπ1(i) and tIj = rπ2(j), for i = 0, . . . ,m and
for j = 0, . . . , n.

– Moreover, hI = kI = r.

By induction hypothesis WF sets ` ∧π1(a)=π2(b) sa
.
= tb and

WF sets ` h .
= k. The result follows from (Es

k).

(a) follows immediately. (c) follows from (a) and the fact that HΣ/ ≡s|=
∃x̄ (s ∈ t) ↔ ∃x̄z (t

.
= {s | z}) and WF sets ` ∃x̄ (s ∈ t) ↔ ∃x̄z (t

.
=

{s | z}).
Likewise, to prove (b), we need the to prove the fact if sI 6= tI then

WF sets ` s 6 .= t always by structural induction on the ground term s.

• The base case in which s is a constant, follows trivially by axiom
(F ′2).

• s is f(s1, . . . , sn), f different from {· | ·}. This means that sI =
f(sI1, . . . , s

I
n). sI 6= tI if and only if

5.3. A FULL SYSTEM FOR HANDLING . . . 181

– tI = g(rI1, . . . , r
I
m), f different from g, or

– tI = f(rI1, . . . , r
I
n), and there exists an index i such that

sIi 6= rIi .

The result follows directly by axiom (F2) in the first case and by
axiom (F ′1) and induction hypothesis in the second one.

• s is {s0, . . . , sm |h}, h ur-element. This means that: sI =
{r0, . . . , rp | r}, p ≤ m, where the ri’s are pairwise distinct and
there exists a surjective function π : {0, . . . ,m} → {0, . . . , p}
such that sIi = rπ1(i), for i = 0, . . . ,m. sI 6= tI if and only if

1. tI = f(rI1, . . . , r
I
m), f different from {· | ·} (axiom (F2), or

2. tI = {tI0, . . . , tIn |hI}, h ur-element. Axiom (Es
k) allows to

infer that at least one of the following cases hold:

– r 6= hI , or

– exists an element ri distinct from all tIjs, or

– exists an element tIj distinct from all ris.

In the former case the proof follows from axiom (F2). In the
latter, by induction hypothesis and (Es

k).

This is sufficient for proving (b). To prove (d) it is sufficient to observe
that

s 6∈ t↔ t 6 .= {s | t}

holds both in the structure HΣ/ ≡s and in the theory WH sets.
5.4 2

The constraint solver

In order to produce a constraint solver for the class of formulae we are
interested in, given a a conjunction of literals C, we split it into its
components C.= ∧ C ′6 .= ∧ C

′′
6 .= ∧ C∈ ∧ C 6∈ ∧ C

F , where

• each Cπ is a conjunction of literals of the form sπt;

182 CHAPTER 5. CONSTRAINTS

• C ′6 .=, C
′′
6 .= are respectively composed by atomic constraints not in-

volving the symbol ker at all, and involving it at least once;

• CF is empty (namely true) or false.

The constraint solver is an algorithm which verifies the solvability
in the structure (which implies satisfiability in the theory because of
Lemma 5.4) of a generic conjunction of 〈ΠC ,Σ∪ V〉-atoms. The initial
constraint is successively transformed into an equi-satisfiable disjunc-
tive normal form; each disjunct is in a simplified form for which the
satisfiability is guaranteed.

Here below we describe the actions taken by the algorithm on the
different components of the constraint C.

The equality constraints are handled by the unification algorithm
presented in § 4.2.4.

We eliminate all membership atomic constraints by replacing them
by equivalent equality atomic constraints, using the algorithm member
described in Fig. 5.1.

A constraint C 6∈ is said to be in canonical form if any literal in it
is of the form t 6∈ X, where X is a variable and X does not occur in
t. Function notmember, described in Fig. 5.1, performs the canonical
form reduction.

To handle 6 .=-constraints, we first deal with the constraints in C ′6 .=,

those in which ker does not appear. C ′6 .= is said to be in canonical form
if any constraint in it is of the form X 6 .= t, X a variable not occurring
in t. The algorithm notequal for such rewriting is described in Fig. 5.1.

A few words about constraints involving the functional symbol ker
are in order. We require explicitly that they can not be introduced by
the user but only by the action (8.c) of notequal. Moreover,we fix their
canonical form either as:

• ker(X) 6 .= f(t1, . . . , tn), where X is a variable, f is different from
{· | ·} and from ker or

• ker(X) 6 .= ker(Y), where X, Y are distinct variables.

5.3. A FULL SYSTEM FOR HANDLING . . . 183

member(C)
while C∈ is not empty do
(1) t ∈ f(· · ·) ∧ C 7→ false

(2) t ∈ X ∧ C 7→ X
.
= {t |N} ∧ C

(3) t ∈ {w | v} ∧ C 7→ (3.a) t ∈ v ∧ C
(3.b) t

.
= w ∧ C

return C.

notmember(C)
while C 6∈ is in not in canonical form do
(1) t 6∈ {s | r} ∧ C 7→ t 6 .= s ∧ t 6∈ r ∧ C
(2) t 6∈ f(· · ·) ∧ C 7→ C
(3) t[X] 6∈ X ∧ C 7→ C
return C.

notequal(C)
while C ′6 .= is not in canonical form do

(1)
f(t1, . . . , tn) 6 .= g(s1, . . . , sm) ∧ C

f different from g

}
7→ C

(2) f(t0, . . . , tn) 6 .= f(s0, . . . , sn) ∧ C 7→
(2.0) t0 6 .= s0 ∧ C

...
...

(2.n) tn 6 .= sn ∧ C
(3) f 6 .= f ∧ C 7→ false

(4) X 6 .= X ∧ C 7→ false

(5) t 6 .= X ∧ C 7→ X 6 .= t

(6)

X 6 .= t ∧ C
t is f(· · ·) and

X occurs in it, or
t is {t0, . . . , tn | t} and
X occurs in t0, . . . , tn


7→ C

(7) X 6 .= {t0, . . . , tn |X} ∧ C 7→
(7.0) t0 6∈ X ∧ C

...
...

(7.n) tn 6∈ X ∧ C
(8) {s | r} 6 .= {u | t} 7→

(8.a) N ∈ {s | r} ∧N 6∈ {u | t} ∧ C
(8.b) N ∈ {u | t} ∧N 6∈ {s | r} ∧ C
(8.c) if Σ ⊃ {∅, {· | ·}, ker} then ker(r) 6 .= ker(t) ∧ C

return C.

Figure 5.1: Handling of constraints in a hybrid set context

184 CHAPTER 5. CONSTRAINTS

The constraint C ′′6 .= is in pre-normalized form if all its atomic constraints
are in canonical form; it is in canonical form if it is in pre-normalized
form and kernel sat(C ′′6 .=) = true, where kernel sat is defined below:

kernel analyzer(C)
while C ′′6 .= is not in pre-normalized form do

(1) ker(s) 6 .= {· · ·} ∧ C 7→ C

(2)
ker({s | r}) 6 .= t ∧ C

t is not of the form {· · ·}

}
7→ ker(r) 6 .= t ∧ C

(3)
ker(f(t1, . . . , tn)) 6 .= t

f different from {· | ·}, and
t is not of the form {· · ·}

 7→ f(t1, . . . , tn) 6 .= t ∧ C

(4)
f(t1, . . . , tn) 6 .= ker(t)
f different from ker

}
7→ ker(t) 6 .= f(t1, . . . , tn) ∧ C

(5) ker(X) 6 .= ker(X) 7→ false

if kernel sat(C ′′6 .=)= true

then return C
else return false

The algorithm kernel sat tests the satisfiability of the constraint C ′′6 .=
in pre-normalized form. It is ensured whenever the signature contains
an infinite number of constant symbols, or at least a functional sym-
bol of arity greater than 0, distinct from {· | ·} and ker that C ′′6 .= has

solutions (if these are the cases, we are able to construct an infinity of
different kernels). If the signature contains only a finite number of con-
stant symbols, more than ∅, then satisfiability has to be checked. The
algorithm kernel sat, described below, perform such check suggesting
also a possible solution.

kernel sat(C)
if Σ is infinite or ∃g ∈ Σ s.t. ar(g) > 0 or C is the empty constraint
then return true

else (Σ = {{· | ·}, ker , ∅ = a0, a1, a2, . . . , an}, n > 1)
Let {X1, . . . , Xm} = FV (C);
Consider the non-oriented graph of nodes V and edges E such that

V = {v1, . . . , vm, a0, . . . , an}
{vi, vj} ∈ E if and only if (ker(Xi) 6 .= ker(Xj)) ∈ C

5.3. A FULL SYSTEM FOR HANDLING . . . 185

< vi, aj >∈ E if and only if (ker(Xi) 6 .= aj) 6∈ C
if ∃ an assignment f from {v1, . . . , vm} to {a1, . . . , an} s.t.

1. f(vi) = aj implies {vi, aj} ∈ E, and
2. ∀i, j ∈ {1, . . . ,m}, i 6 .= j no cycles of the form
{vi, f(vi)}, {f(vi), vj}, {vj, vi} occur

then return true

else return false.

In what follows we will prove that any conjunction of literals in the
special form returned by the combination of the rewriting algorithms
presented is satisfiable in the theory of hybrid well-founded sets. First
some preliminary definition is needed.

A constraint C is in canonical form either if it is ‘false’ or its
components C.=, C6∈, C

′
6 .=, C

′′
6 .= are all in canonical form and C∈ is empty.

The function rank, defined as:

rank(x) =

{
0 if x is of the form f(· · ·), f 6≡ {· | ·}
max{rank(s), 1 + rank(t)} if x has the form {t |, s}

returns the ‘depth’ of a ground set. The function find, defined as:

find(x, t) =


{0} if t coincides with x
∅ if t is ∅
{1 + n : n ∈ find(x, y)} ∪ find(x, s) if t ≡ {y | s}

returns the set of ‘depth’ in which a given element x occurs in the set
t.

These two functions will be used in the following proposition to
find a suitable HΣ/ ≡s-solution to atomical constraints. For instance,
consider the atomical constraint x 6 .= {y}. By definition, find(y, {y}) =
{1}. Considering the integer equation vx 6 .= vy + 1, obtained by the
inequation x 6 .= {y}, and picking up one solution (i.e. vy = 0, vx = 2)
we define the substitution: σ = [x/{{∅}}, y/∅] ({{∅}} has ‘depth’ 2,
while ∅ has ‘depth’ 0). (x 6 .= {y})σ is obviously true in the structure
HΣ/ ≡s.

Lemma 5.5 Let C be a constraint in canonical form different from
false. Then C is HΣ/ ≡s-solvable and WF sets-satisfiable.

Proof. To start we assume that C ′′6 .= is empty; successively we will show
how to extend the proof to the general case. Let C = C.= ∧ C 6∈ ∧ C 6 .=,
and assume Cπ is in canonical form for each π in {=, 6∈, 6 .=}.

186 CHAPTER 5. CONSTRAINTS

C.= has the form X1
.
= t1 ∧ . . . ∧ Xm

.
= tm and ∀i = 1, . . . ,m

Xi appears uniquely in Xi = ti and Xi 6∈ FV (ti). We define the
substitution θ1 = [X1/t1, . . . , Xm/tm]. Clearly HΣ/ ≡s|= ∀C.=θ1.

C 6∈ has the form r1 6∈ Y1∧ . . .∧ rn 6∈ Yn (Yi does not occur in ri) and
C 6 .= has the form Z1 6 .= s1 ∧ . . . ∧ Zo 6 .= so} (Zi does not appear in si).
Let W1, . . . ,Wh be the variables occurring in r1, . . . , rn, s1, . . . , so other
than Y1, . . . , Yn, Z1, . . . , Zo. Furthermore, let θ2 = [W1/∅, . . . ,Wh/∅],
and let

CI
6∈ =

∧
{· | ·} and ∅ are

the only functional symbols in t

(t 6∈ X) in C 6∈θ2

CI
6 .= =

∧
{· | ·} and ∅ are

the only functional symbols in t,

and t is not a variable

(X 6 .= t) in C 6 .=θ2

Let s̄ = max({size(t) : (t 6∈ X) in C6∈θ2} ∪ {size(t) : (X 6 .= t) ∈ C 6 .=θ2})
and let V1, . . . , Vk be the variables occurring in C 6 .=θ2 ∧C 6∈θ2 but not in
CI
6 .= ∧ C

I
6∈.

Let θ3 = [V1/{∅}s̄+1, . . . , Vk/{∅}s̄+k] and let r̄ = s̄+ k + 1.

It is straightforward to prove that HΣ/ ≡s|= ∀(C 6∈ \ CI
6∈)θ2θ3 and

A |= ∀(C 6 .= \ CI
6 .=)θ2θ3.3

Let R1, . . . , Rj be the variables occurring in CI
6∈∧CI

6 .=. Let n1, . . . , nj
be auxiliary variables. Build an integer disequation system E in the
following way:

1. E = {ni > r̄ : ∀i ∈ {1, . . . , j}}∪
{ni1 6

.
= ni2 : ∀i1, i2 ∈ {1, . . . , j}, i1 6 .= i2}.

2. For each atomical constraint (Ri1 6
.
= t) in CI

6 .=:

E = E ∪ {ni1 6
.
= ni2 + c : ∀i2 6 .= i1,∀c ∈ find(Ri2 , t)}

3. For each atomical constraint (t 6 .= Ri1) in CI
6∈:

E = E ∪ {ni1 6
.
= ni2 + c+ 1 : ∀i2 6 .= i1,∀c ∈ find(Ri2 , t)}

3Here ‘\’ operates on conjunctions of atoms, but considering them as sets.

5.3. A FULL SYSTEM FOR HANDLING . . . 187

To solve the problem of finding a solution to E is trivial (it is suffi-
cient to choose arbitrarily big solutions satisfying the constraints). Let
{n1 = n̄1, . . . , nj = n̄j} be a solution, define θ4 = [Ri/{∅}n̄i : ∀i ∈
{1, . . . , k}]. Furthermore, let θ5 = [X/∅ : X appears in Cθ1θ2θ3θ4], and
θ = θ1θ2θ3θ4θ5.

First observe that Cθ is a ground constraint. Then we show that
HΣ/ ≡s|= Cθ.

1. Pick (X
.
= t) ∈ C; since Xθ1 coincides with tθ1 = t, HΣ/ ≡s|=

(X = t)θ;

2. Pick (t 6∈ X) ∈ C: three cases are possible:

(a) if a symbol f different from {· | ·} occurs in t, then HΣ/ ≡s
cannot model the membership of tθ (in which f occurs) in
Xθ (term of the form {∅}i);

(b) if t is one of the variables W1, . . . ,Wk, then tθ = tθ2 = ∅
cannot belong to Xθ = {∅}i since i > s̄+ k + 1 > 1;

(c) Otherwise, from the solution to the integer system E, we
obtain
rank(tθ) 6 .= rank(Xθ)− 1.

3. Analogous considerations can be applied to the constraints of the
form X 6 .= t.

By freeness axioms we get rank(s) 6 .= rank(t) → s 6 .= t; if C ′′6 .= is not
empty, kernel sat automatically supplies the elements to be used as
kernels in the sets used to define the θi’s substitutions. Then C is
HΣ/ ≡s-solvable. By Lemma 5.4, C is WF sets-satisfiable.

5.5 2

The canonical form is reached by executing the (non-deterministic)
algorithm sat which computes the minimum fixpoint of the algorithm
step, defined as follows:

step(C) = kernel analyzer(notequal(notmember(unify(member(C))))).

Hence, sat will have the form:

sat(C) = while step(C) 6 .= C do

188 CHAPTER 5. CONSTRAINTS

C := step(C);

return C.

Lemma 5.6 Whatever are the non-deterministic choices performed dur-
ing the execution of step there exists n such that stepn+1(C) = stepn(C)
is a constraint in canonical form (by stepn(C) we mean the iteration n
times of step on an input C - conjunction of (ΠC ,Σ)-literalss).

Proof. In the case of termination, the procedure returns a constraint
in canonical form (otherwise one of the steps of the algorithm would be
applicable). Termination of the algorithm is based on the termination
of each single algorithm at any call. By introducing a measure K of
structural complexity of the constraints relative to a specific predicate
symbol, it is immediate that it decreases every time a new call of the
algorithm is performed. These partial results are combined into a global
termination proof.
(1) Each algorithm terminates at any call:

member. Assume K =
∑

(X∈t)∈C∈ size(t); then, it decreases at every
call;

unify. See Theorem 4.16;

notmember. Assume K =
∑

(X 6∈t)∈C6∈ size(t); then, it decreases at every
call;

notequal. Let K1 =
∑

(s 6 .=t)∈C′
6
.
=

size(s), K2 =
∑

(s 6 .=t)∈C′
6
.
=

(size(s)+size(t));

then the pair 〈K1, K2〉, ordered by the lexicographic order, is the
selected complexity, which decreases at each call.

kernel analyzer. LetK1 = |{(s 6 .= ker(t)) ∈ C ′′6 .=}|, K2 =
∑

(s 6 .=t)∈C′′
6
.
=

size(s).

Due the peculiar form of the inequations containing ker, the se-
lected complexity < K1, K2 >, with the lexicographic order de-
creases at each call.

(2) Suppose C1 is returned by notmember (unify(member(C))).
Then, notequal(C1) may introduce atomic constraints over predicates
other than ‘6 .=’ only in the following cases:

5.3. A FULL SYSTEM FOR HANDLING . . . 189

(7) In the successive call, if X does not occur in ti, the constraint is
in canonical form and then no actions may be performed on it;
otherwise the constraint is eliminated by step (3) of notmember;

(8) An atomic constraint of the form
{s0, . . . , sm |h} 6 .= {t0 . . . , tn | k}, where h, k are variables or

ur-elements, is replaced, according to action (8.a), by the follow-
ing atomic constraints:

Z ∈ {s0, . . . , sm |h}, (i)
Z 6∈ {t0 . . . , tn | k} (ii)

(case (8.b) is analogous to case (8.a); case (8.c) does not generate
a possible increasing of the complexity. By applying member, the
constraint (i) is replaced by one of the following:

– Z = si, for some i ∈ {0, . . . ,m}.
Therefore, unify applies the substitution [Z/si] (only in (ii)),
and notmember deals with the atomical constraint si 6∈
{t0 . . . , tn | k}. Then, notmember replaces the last constraint
with: si 6 .= t0∧ . . .∧si 6 .= tn∧si 6∈ k, where k is a variable and
si 6∈ k is in canonical form, or k is a ur-element (in this case
such constraint will disappear). The new call of notmember
will work on objects having a smaller size and this implies
the full termination.

– h = {Z |N}, where h is a variable.
Then, unify applies the substitution [h/{Z |N}], making the
constraint size bigger. This may be done a number of times
less or equal to the number of occurrences of the variable h
in C ′.

=
.

(3) The total termination follows from the termination of the algorithm
obtained as follows:

1. C1 = notmember(unify(member(C)));

2. C2 = C1θ, where θ = [X/{Z(X)
1 , . . . , Z

(X)
|X| }], in which for every X

occurring in C16
.
=

, we denote by |X | the number of occurrences of

X in C16
.
=

, Z
(v)
j are new distinct variables;

190 CHAPTER 5. CONSTRAINTS

3. C3 = notequal(C2).

The computation restarts from step(C3); termination follows by the
fact that the critical case is never generated in this way.

5.6 2

The termination of step, proved in Lemma 5.6, and the finiteness
of the number of non deterministic choices generated by sat in corre-
spondence of each call of step, ensure the finiteness of the number of
constraints non-deterministically returned by sat. We may then state
the following:

Lemma 5.7 Let C1, . . . , Ck be the constraints non-deterministically re-
turned by sat(C), and N1, . . . , Nm be the variables occurring in C1, . . . , Ck
but not in C. Then

WF sets ` C ↔ ∃N1, . . . , Nm
∨k
i=1 Ci.

Proof. It is sufficient to show that, for each atomical action of each
algorithm for handling constraints, we have WF sets ` C ↔ ∃(C1 ∨
· · · ∨ Cn) where C is the analyzed atomical constraint and C1, . . . , Cn
are the n ≥ 0 constraints produced non-deterministically by the single
action. This fact follows from the considerations of § 5.1 and § 5.2.

5.7 2

As corollary we get:

Corollary 5.8 C is WF sets-satisfiable if and only if there exists a
non-deterministic choice such that sat(C) 6= false.

Corollary 5.9 WF sets is satisfaction complete, namely, for any con-
straint C (a conjunction of literals) it is possible to check whether its
existential closure is derivable or not.

Chapter 6

The CLP language {log} and
the relation between
intensional sets and negation

{log} is a language built over an instance of the general CLP scheme
which supplies well-founded (extensional) set terms and a few basic
set-theoretical operations. Using the notation introduced in § 5.3, that
instance can be named as CLP (S). The development of this kind
of extension raises several interesting theoretical as well as practical
problems (see for instance [42]). In the first part of this Chapter, first
we will briefly analyze some of these problems, trying to motivate our
solutions (§ 6.1), then we will introduce the basic syntactic entities of
the language {log} (§ 6.2). In the second part of this Chapter (§ 6.3),
we will describe how negation can be used to implement intensional set
formers in the language {log}. We will show that negation as failure
(cf. § 6.3.2) allows to deal with ground intensional sets only (it can
be used, for instance, in Database applications); the set of programs
that can be dealt with can be enlarged using constructive negation (cf.
§ 6.3.3, § 6.3.4, § 6.3.5, and § 6.3.6); nevertheless, undecidability results
of set theory (§ 6.3.7) do not allow to freely use intensional set formers
in {log} programs.

All the results of this Chapter can be found in [41]. More in detail,
§ 6.1 can be found also in [42]; the main result of § 6.3 can be found

191

192 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

also in [37]; a preliminary study of § 6.3.3–6.3.6 can be found in [19].

6.1 Preamble

A considerable variety of proposals have been put forward in the area
of the integration between logic-based programming paradigms and set
theory. Most of these proposals, however, limit their expressivity to
extensional sets.

For instance, various works have appeared recently dealing with the
management of set constraints (see e.g. [6, 48, 62, 63]). In such works
set constraints are inclusion relations between expressions denoting sets
of ground terms over a signature. The aim of this stream of works is
to provide effective tools for set-based program analysis.

Two examples of Constraint Logic Programming with finite and
extensional sets are the languages Clps ([69]) and Conjunto ([46]).
In particular, [69] uses a constraint satisfaction mechanism based on
partial consistency techniques, whereas [46] extends the finite domain
approach to allow variable domains to vary on the finite powerset of
the Herbrand Universe. The aim of the authors of such papers is to
provide languages with sets whose primary goal is efficiency. As a side
effect, set terms allowed are very simple.

A step further towards a more ‘intensional’ approach to set defini-
tion can be found in [65, 66], where restricted universal quantification is
introduced as extension of traditional SLD resolution and its semantics
defined in such a way to allow its use as set-builder.

The only proposals have been presented in which the issue of dealing
with intensional sets in a semantically clean way is directly tackled are
LDL (cf., e.g., [15]), Subset-assertion Programming (cf., e.g., [55]) and
its extension Sure ([56]).

In this Chapter we will show how intensional sets can be imple-
mented using a logic language endowed with negation. As sketched
in [15], also the inverse coding is feasible. Namely, if a set grouping
capability is a ‘built-in’ of the language, negation can be removed from
the program, as shown here below:

1. replace any occurrence of a nullary relational symbol p with p̃(∅),
p̃ a new predicate symbol;

6.1. PREAMBLE 193

2. replace any negated occurrence of a n-ary relational symbol (n >
0) ¬p(t1, . . . , tn) in the body of a clause of the program with

[t1, . . . , tn] 6∈ {Y : Y
.
= [s1, . . . , sn] ∧ p(s1, . . . , sn)} .

Although interesting, this translation requires an operational semantics
for the set grouping construct, a problem less analyzed in literature with
respect to the problem of handling negation. Moreover, as discussed
in [18], to have a ‘clean’ semantics for the set grouping constructor is
equivalent to introduce in the theory the full power of the separation
axiom of set theory.

6.1.1 Which representation of sets?

In order to represent an extensional set {t0, . . . , tn}, at least three al-
ternatives are viable:

i. union of singletons, i.e. {t0} ∪ . . . ∪ {tn};

ii. list-like, i.e. {t0 | {t1 | . . . {tn | ∅} . . .}};

iii. {}n(t0, . . . , tn).

Solution i requires three functional symbols to be introduced: ∅, of
arity 0, {.}, of arity 1, and ∪, of arity 2. In a non trivial set theory
(such as ZF), ∪ must be Associative (i.e., A∪ (B ∪C)

.
= (A∪B)∪C),

Commutative (i.e., A ∪B .
= B ∪A) and Idempotent (i.e., A ∪A .

= A).
Moreover ∅ is the identity element with respect to union (i.e., A ∪ ∅ .=
∅ ∪ A .

= A).
Solution ii requires two functional symbols to be introduced: ∅, of

arity 0, and {· | ·}, of arity 2. Again in a significant set theory, {· | ·}
must exhibit the permutativity property , and the absorption property
presented in § 3.1.

Solution iii requires the introduction of an infinite signature, with
a different set-constructor for each possible finite set cardinality. This
approach has been adopted in [99]. In order to use this solution it
is necessary to introduce a non trivial equational theory capable of
specifying unifiability of set-terms with different main functors (like in
{}3(X, Y, Z)

.
= {}2(a, b)).

194 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

Representation ii is quite common when dealing with sets in logic
programming. It is used for instance in [66], in [15] (where {· | ·} is
called scons) and also in the Gödel language [50, 51]. [57] uses the
∪ operator but actually its behavior is that of the {· | ·} operator of
approach ii.

Representation i, on the contrary, is often used when dealing with
the problem of set unification on its own (e.g. [22, 72]) where set uni-
fication is dealt with as a problem of ACI-unification. In [23], such
approach is deeply analyzed, showing how, admitting the power of full
boolean logic, boolean unification admits a unique (but complex to use)
unifier.

A set term of approach ii can always be translated to a correspond-
ing set term of approach i. The converse is not always true. For in-
stance, the term X ∪ {Y } ∪ Z has no correspondent representation in
approach ii. Actually, by taking representation ii we are considering
just a particular case of the general ACI with singleton unification prob-
lem. As Jayaraman and Plaisted note in [57]: ‘Basically, this restriction
permits iteration over the elements of a set, rather than iteration over
the subsets of a sets. While some expressive convenience is sacrificed
by this restriction, most practical cases are unaffected’.1

Approach iii allows only to express set-terms with a known upper-
bound to their cardinality. No partially specified sets can be described
in this language.

For the language {log} ([37, 38, 42, 36]), and in this thesis, approach
ii has been chosen. This was further motivated by the desire to provide
a uniform (parametric) presentation of the axiomatic theories of lists,
multi sets, compact lists, and sets.

However, note that a unification algorithm dealing with set terms
will result NP-complete in all the approaches mentioned above (cf.
§ 4.1, or [38]).

1In [68] sets are represented as in approach i. However, since in this proposal
set operations are evaluated only when applied to ground sets, problems arising
when solving an equation such as X ∪ Y ∪ Z .

= {a} ∪ {b} ∪ {c}—which would
admit 343 independent solutions—are avoided ‘a priori’. Instead, such an equation
is considered as a constraint and possibly returned as part of the computed answer.

6.1. PREAMBLE 195

6.1.2 Which primitive operations/relations on sets?

We focus on the basic operations/relations on sets such as equality
(
.
=), membership (∈), inclusion (⊆), strict inclusion (⊂), union (∪),

intersection (∩) and difference (\).
Let us assume that the language at hand is an Horn clause language

augmented with set terms, represented as in approach ii. Unification
needs to be extended in order to unify set terms respecting the prop-
erties of {· | ·} described above.

We are interested in establishing which of the operations on sets
listed above need to be provided as primitive operations of this language
and which, on the contrary, can be conveniently programmed in the
language itself. The selection should be performed on the basis of a
number of features of the resulting language, such as expressive power,
effectiveness and efficiency.

The following basic predicates can be easily programmed in the
considered language (set predicates are written in infix notation).

• Equality:

X
.
= X ←

• Membership:

X ∈ {X |Y } ←

• Inclusion:

∅ ⊆ Y ←
{X |V } ⊆ Y ←

X ∈ Y ∧ V ⊆ Y.

The considered language (i.e., HCL + extensional set terms + set
unification) is powerful and simple. Nevertheless, (at least) the follow-
ing two issues cannot be adequately tackled:

• effectiveness : if, for instance, the resolution algorithm is applied
to the goal ← A ⊆ {a} then an infinite SLD-tree is generated
trying to compute the (sound) answers [A/∅], [A/{a}], [A/{a, a}],
. . . To solve the problem one would need to add the literal X 6∈ V
to the body of the second clause defining ⊆;

196 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

• expressive power : other basic set-operations, such as 6∈, 6 .=, ∩,
⊂, \ cannot be programmed in the present language unless some
form of negation is introduced.

It turns out that adding either 6∈ or 6 .= as primitive operations to the
considered language would suffice to solve all these problems without
requiring full negation to be introduced in the language.

First, note that 6∈ and 6 .= can be easily defined one in term of the
other:

A 6 .= B ← A 6∈ B ←
A 6∈ {B} {A |B} 6 .= B.

Then, all the remaining basic operations on sets listed above can be
easily and effectively programmed in the extended language, as shown
in [42, 37].

While it is feasible in principle to have either 6 .= or 6∈ as the only
primitive set operations of the language, efficiency considerations lead
us to assume that our language provides both of them as primitive.

6.1.3 CLP (S)

Standard CLP notations and results ([53, 54] and § 5.3) are assumed
hereafter. In particular, Σ and Π denote denumerable collections of
function symbols and predicate symbols with their signatures, respec-
tively. V denotes a denumerable set of variables. Moreover, Π =
ΠC ∪ ΠB and ΠC ∩ ΠB = ∅, where ΠC and ΠB are the sets of con-
straint predicate symbols and the set of user-defined symbols, respec-
tively. τ(Σ ∪ V) and τ(Σ) denote the set of terms and ground terms,
respectively.

As noticed in previous sections, we would like to have a CLP lan-
guage which is able to deal with extensional set terms as well as with
standard Herbrand terms. Sets are represented using the signature
{∅, {· | ·}, . . .} introduced in Chapter 3. Finally, we fix the set ΠC of
constraint predicate symbols of the CLP -scheme to be {∈, .=}.

Here are two sample CLP (S) programs (the precise meaning of
these programs will be clarified in the next section).

6.2. THE LANGUAGE {LOG} 197

• Checking membership of an element to the set Set1 \ Set2:

in difference(X, Set1, Set2)← X ∈ Set1 ∧ X /∈ Set2.

• Selecting subsets of S composed of even numerals only (standard
definition of even is assumed):2

even in(S, ∅)←
even in(S, {A |R})←

A ∈ S ∧ A 6∈ R 2

even(A), even in(S,R).

6.2 The Language {log}
As mentioned at the beginning of this Chapter, our purpose is to define
on top of CLP (S) a more sophisticated language, named {log}, capable
of a higher level of abstraction. {log} is basically CLP (S) enriched with
intensional set formers and Restricted Universal Quantifiers (RUQs).
The set of constraint predicates ΠC is still fixed to { .=,∈}. As shown
in § 6.1.2, this set of primitive set-theoretic operations is sufficient to
define most of the common set operations (such as union, intersection,
. . .).

Let us call τ(Σ ∪ V)-terms, (ΠC ,Σ ∪ V)-literals, and (ΠB,Σ ∪ V)-
literals, simple terms , simple literal constraints , and simple literals ,
respectively.

Definition 6.1 We define an Intensional Term to be either

• {X : c2B1, . . . , Bn} such that X ∈ FV (c2B1, . . . , Bn), where c
is a conjunction of simple literal constraints and B1, . . . , Bn are
simple literals;

• f(t1, . . . , tn) such that ∃i, 1 ≤ i ≤ n, ti is an intensional term,
f ∈ Σ.3

2Following standard CLP notation, the symbol ‘2’, denoting conjunction, is used
to separate the constraint part from the rest of the goal.

3We have already pointed out our desire to restrict attention to finite sets. Guar-
anteeing finiteness in the case of intensional sets requires that predicates in inten-

198 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

A {log}-Term is either a simple or an intensional term.
A {log}-Atom is an atom p(t1, . . . , tn), where t1, . . . , tn are {log}-terms
and p ∈ ΠB.

For example:

• f(a, {5}) is a simple term (not a set term);

• {X : X 6 .= 1 2 p(X)}, f(Y, {Z : Z ∈ Y 2 p(Z,W)}) are intensional terms.

Definition 6.2 A {log}-Extended Literal is either

• a {log}-Literal, i.e. a positive or negative {log}-atom;

• a RUQ-Literal (∀X1 ∈ t1) . . . (∀Xn ∈ tn)(c2B1, . . . , Bm), n ≥
1, m ≥ 0, where c is a conjunction of simple literal constraints,
B1, . . . , Bm is a finite sequence of simple literals, Xj’s are pairwise
distinct variables, and ti’s are extensional terms such that Xj ∩
FV (ti) = ∅ for i ≤ j.

In order to maintain the translation of RUQs and intensional sets
as simple as possible (see § A.4 and § 6.3, respectively), we do not
allow nesting of RUQs and intensional definitions, i.e. no RUQs and
intensional terms may appear inside other RUQs and intensional terms.
These restrictions could be easily relaxed through a suitable enhance-
ment of the translation procedures.

A few words about RUQ-literals are in order. First, recall from § 2.1
that

(∀x ∈ t)ϕ,

ϕ any first order formula, is a shorthand for

∀x (x ∈ t→ ϕ).

In [38] the equivalence between {log} programs containing Restricted
Universal Quantifications and {log} programs which are RUQ-free is

sional set formers define finite relations. However, the problem of ascertaining the
finiteness of a predicate is known to be undecidable in the general case. In this
context we rely on the programmer’s attention to avoid generation of infinite sets
(as done also in [66], for instance).

6.2. THE LANGUAGE {LOG} 199

proved. Such proof can be also found in § A.4. Each occurrence of
a RUQ may be removed by performing a simple syntactic translation.
Thanks to this, we can assume from now on that programs we are
working on do not contain any RUQ.

Definition 6.3 A {log}-Clause is a normal clause A:−c2B1, . . . , Bn,
where A is a positive {log}-literal, c is a conjunction of simple atomic
constraints, and B1, . . . , Bn are {log}-extended literals. A {log}-Goal
is a {log}-clause with empty head. A {log}-Program is a finite set of
{log}-clauses.4

Notice that, following Prolog syntax, {log} clauses use the ‘ :− ’
symbol to distinguish the head from the body of the clauses. CLP (S),
following CLP syntax, uses the ‘←’ symbol.

Here are two sample {log} programs involving intensional set terms
(the precise meaning of the programs will be clarified in next sections).

• Intersection of two sets S1 and S2:

intersection(S1, S2, S3) :− S3
.
= {X : X ∈ S1, X ∈ S2}.

• The set of prime numbers less than a given limit N:

primes(N, S) :− S
.
= {X : between(1,N,X), is prime(X)}

is prime(X) :− S
.
= {Y : between(1,X,Y)}2 (∀Z ∈ S)(non div(Z,X))

between(A,B,C) :− (A < C), (C < B).
non div(A,B) :− 0 = \ = (B mod A).

Given a {log}-goal :−c2B̄ and a {log}-program P , they are rewrit-
ten (cf. § 6.3) into a CLP (S) goal ← c′ 2 B̄′ and a CLP (S) with
negation program P ′. The operational semantics of the language {log}
is therefore based on the standard CLP (plus negation) operational
semantics (cf., e.g., [53]).

More in detail, given a CLP (S) program (without negation) P and
a CLP (S) goal G ≡← c 2 A1, . . . , An, there are two main forms of
derivations:

4As a notational convenience we will write {X : B1, . . . , Bn} and A :−B1, . . . , Bn

instead of {X : c2B1, . . . , Bn} and A :− c2B1, . . . , Bn, respectively, whenever c is
true.

200 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

Algebraic derivation: a goal of the form G̃ ≡← c̃ 2 B̃1, . . . , B̃n is a
HΣ/ ≡s-resolvent of G in P if exist n variants of clauses of P

Ã1 ← c1 2 B̃1, . . . , Ãn ← cn 2 B̃n,

such that

c̃ ≡ c ∧ ∧ni=1 c̃i ∧
∧n
i=1 args(Ai

.
= Ãi),

where args(p(t1, . . . , tn)
.
= p(s1, . . . , sn)) is defined to be the con-

junction of equalities t1
.
= s1 ∧ . . . ∧ tn .

= sn, and c ∪ c̃1 ∪ · · · ∪ c̃n
is satisfiable in HΣ/ ≡s.

Logic derivation: a goal of the form G̃ ≡← (c̃ 2 B̃1, . . . , B̃n)θ is a
WF sets-resolvent of G in P if exist n variants of clauses of P

Ã1 ← c1 2 B̃1, . . . , Ãn ← cn 2 B̃n

such that

c̃ ≡ c ∧ ∧ni=1 c̃i ∧
∧n
i=1 args(Ai

.
= Ãi)

can be split in two parts c̃1 ∧ c̃2 fulfilling the following require-
ments:

• c̃2 is a conjunction of positive literals (equations and mem-
bership literals; θ is a (E1)(E2)-unifier of t ∈ s if and only if θ
is a (E1)(E2)-unifier of s

.
= {t | s}) and it admits a complete

set S of (E1)(E2)-unifiers (namely if γ is a (E1)(E2)-unifier
of c̃2, then exists δ ∈ S such that γ �T δ);
• θ ∈ S;

• c̃1θ is WF sets-satisfiable.

In [53] it is proved that, provided the axiomatic theory (in this case
WF sets) and the structure (in this case HΣ/ ≡s) are related (as, in this
case, they are), the two forms of derivations return the same success
set. The conditions needed are the following:

• the solution compactness of the domain of the structure (cf. Def. 5.2);

6.3. COMPILING INTENSIONAL SETS 201

• the theory and the structure must correspond (cf. Def. 5.3).

Solution compactness of HΣ/ ≡s has been proved in the considerations
following Def. 5.2; correspondence between WF sets and HΣ/ ≡s is
proved in Lemma 5.4.

Concerning with the implementation of the two forms of derivations
(using constraint solving and backtracking),

• the algebraic derivation is therefore algorithmically implementable
using the function sat, described in § 5.3, to test the satisfiability
of the constraint.

• To implement the logic derivation is sufficient to choose one of
the C̃ constraints different from false returned by sat(C) and as
θ the substitution induced by C̃ .=.

6.3 Compiling intensional sets

In [37, 19] it is argued that intensional sets can be programmed in a
logic language with sets like CLP (S), provided the language supplies
either a set grouping mechanism or some form of negation in goals and
clause bodies. This allows us, on the one hand, to consider intensional
sets as a syntactic extension to be dealt with a simple preprocessing
phase, and, on the other hand, not to be concerned with intensional
sets when defining the semantics of the language. In this section we
assume that all intensional sets refer to pure sets (namely sets built
adding elements to the empty set ∅). It is easy (but, perhaps, not
so useful) to extend the translation to colored sets; this makes all the
translation steps syntactically heavier.

Let us try, first of all, to understand why 6 .= and 6∈ are not sufficient
for a satisfactory definition of a set grouping mechanism, and full nega-
tion is required instead. By exploiting the extensionality axiom (E)
(equivalent to (Es

k) for our purposes—cf. § 3.1.4), one can prove that:

{x : p(x)} .= S ↔ ∀x (x ∈ S ↔ p(x))
↔ ∀x (x ∈ S → p(x)) ∧ ∀x(p(x)→ x ∈ S).

202 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

As we can see, a set grouping feature requires the ability to perform re-
stricted universal quantification as well as universal quantification over
the solutions to an arbitrary predicate. Even though CLP (S) can ex-
press restricted universal quantification, it is unable to express the other
form of quantification.

∀X(p(X)→ X ∈ S) ↔
∀X(¬p(X) ∨X ∈ S) ↔
¬∃X(X 6∈ S ∧ p(X)).

where the existentially quantified formula can be rendered in CLP (S)
through a new clause involving a local variable X (cf. the definition of
partialpdiv shown below). Thus, what we really need is just some form
of negation in clause bodies.

The correlation between set grouping and negation is furtherly illus-
trated by the following example. Suppose that, given a natural number
N, we want to define a predicate returning the greatest prime number P
in its decomposition in prime factors. We use an intensional set former
to collect the prime divisors of N as follows:

maxpdiv(N,P) :− max({X : pdiv(N,X)},P)
max(S,Max) :− Max ∈ S 2 (∀X ∈ S)(Max ≥ X)
pdiv(A,B) :− div(A,B), is prime(B)

where is prime(B) is true if B is a prime number and div represents the
divisibility relation.

In order to compute maxpdiv we should be able to collect the set
of all prime divisors computed by the predicate pdiv and, at the same
time, to reject any partial solution, namely any proper subset of the
set of all possible solutions to pdiv. This could be obtained by defining
a new predicate, setofpdiv, which explicitly performs the set-collection
operation:

maxpdiv(N,P) :− setofpdiv(S,N), max(S,P)
setofpdiv(S,N) :− (∀X ∈ S)(pdiv(N,X)),¬partialpdiv(S,N)
partialpdiv(S,N) :− X 6∈ S 2 pdiv(N,X).

The replacement of intensional set terms by the setof predicates, which
allow the corresponding extensional sets to be constructed, is performed
by a two steps program transformation process. This process will trans-
form a given {log} program into the equivalent CLP (S) program with

6.3. COMPILING INTENSIONAL SETS 203

negation, where the set ΠB of predicate symbols of the given program
is replaced by the set Π′B containing ΠB and all the new predicate
symbols required to implement intensional sets, e.g., the setofpdiv men-
tioned in the example (along with the new predicate symbols generated
by translation of RUQs).

The first step of this program-to-program transformation leads the
{log} source code to a normal form where all variable instantiations in
clauses and goals are expressed as constraints and each discriminant
(c2 B̄) of intensional terms is expressed by a unique predicate symbol.
Such a predicate symbol has arity equal to |FV (c2 B̄) | and is defined
by a unique clause having the corresponding discriminant as its body.

Step 1 - Program normalization

Let C be the {log} clause

p(s1, . . . , sm) :− c2 A1(t11, . . . , t
1
n1

), . . . , Ar(t
r
1, . . . , t

r
nr)

where si’s and tij’s are {log} terms, and Ai(t
i
1, . . . , t

i
ni

) are {log} literals
(as it ensues from the discussion in § 6.2, there is no need here to
consider RUQ-literals).
Repeatedly perform the following actions until none applies.

• Replace C by the equivalent clause

p(X1, . . . , Xm) ← c ∧ ∧mi=1(Xi
.
= si) ∧

∧r
i=1

∧ni
j=1(X i

j
.
= tij) 2

A1(X1
1 , . . . , X

1
n1

), . . . , Ar(X
r
1 , . . . , X

r
nr),

where Xi’s and X i
j’s are new distinct variables.5

• Replace each atomic constraint s π t, where π ∈ ΠC and s and/or
t are intensional terms, with the constraint

s′ π t′ ∧ ∧mi=1(Si
.
= si) ∧

∧n
j=1(Tj

.
= tj),

5Observe that the above clause might be not a CLP (S) clause, due to the pres-
ence of intensional sets and/or restricted universal quantifiers. However, due to
the preprocessing computation, if this is the case, it will be removed soon from the
program. For this reason we accept, in this context, the improper use of the symbol
←.

204 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

where si’s and tj’s are all the intensional set terms occurring in
s and t respectively, s′ and t′ are the extensional terms obtained
by replacing the intensional set terms si’s and tj’s in s and t with
the new variables Si’s and Tj’s respectively.

• Replace each atomic constraint of the form Set
.
= {X : c2 B̄} by

the constraint

Set
.
= {X : δ(X,Z1, . . . , Zm)},

where {X,Z1, . . . , Zm} = FV (c 2 B̄) and δ is a newly generated
predicate symbol, and add to the program the new clause

δ(X,Z1, . . . , Zm)← c2 B̄.

Step 2 - Elimination of intensional set terms

The second step is intended to remove intensional set terms from a
normalized program according to the general idea for implementing set
grouping sketched at the beginning of this section. For each predicate
symbol δ generated by the normalization step above, two new predicate
symbols, setofδ and partialδ, are introduced, and their corresponding
CLP (S) definitions added to the generated program. The whole pro-
cess is organized as follows:

• Replace each normalized clause of the form

h(Ȳ)← c ∧ Set1 .
= {X : δ(X, Z̄)}2 B̄

by the set of clauses

h(Ȳ) ← c2 setofδ(Set1, Z̄), B̄
setof δ(Set1, Z̄) ← (∀X ∈ Set1)δ(X, Z̄),¬partialδ(Set1, Z̄)
partialδ(Set1, Z̄) ← X 6∈ Set1 2 δ(X, Z̄).

For example, the definition of the predicate maxpdiv shown above is
first replaced by the following clauses:

maxpdiv(N,P) ← Set1
.
= {X : δ(X,N)}2 ; max(Set1,P)

δ(X,N) ← pdiv(N,X).

6.3. COMPILING INTENSIONAL SETS 205

Then (second step), the normalized definition of the predicate maxpdiv
is replaced by:

maxpdiv(N,P) ← setofδ(Set1,N),max(Set1,N)

adding the clauses defining setofδ(Z,N) to the transformed program.

6.3.1 Intensional sets and Negation

In the previous section we have pointed out the close correlation be-
tween the set grouping mechanism, needed to support intensional sets,
and the availability of negation in clause bodies, needed to define the set
grouping mechanism in the language itself. It is well-known that differ-
ent forms of negation can be introduced in logic programming [9]. Here
we focus our attention on two of the most commonly considered forms
of negation: negation as failure [97] and constructive negation [25, 26].
First we discuss the problems arising when negation as failure is used
to implement intensional sets. Then we illustrate the problems and
results obtained by integrating (an extended version of) constructive
negation in the CLP (S) framework.

We would like to point out that negation in CLP (S) will be consid-
ered exclusively as a tool to implement intensionally defined sets—we
will not deal with general and unrestricted uses of negation.

6.3.2 Negation as Failure

Negation as failure (NAF) [28] is the best known form of negation
adopted in logic programming. It is based on the simple rule

P 6` A→ P ` ¬A

(although it is practically instantiated as negation as finite failure—i.e.
P ` ¬A if A belongs to the finite failure set of P [97]). Negation as fail-
ure has the valuable advantage of simplicity, which easily leads to devise
efficient implementations for it. Conversely, soundness and complete-
ness of the resolution procedure extended with negation as failure (i.e.,
SLDNF-resolution) can be obtained only by applying suitable syntacti-
cal restrictions to programs and goals (cf., for instance, [9]). In particu-
lar, the allowedness property—that is the property that every variable

206 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

in a clause occurs in at least one positive literal—can be used as a suf-
ficient condition for guaranteeing soundness of the SLDNF-procedure
with respect to the completed version of a program. In fact soundness
of SLDNF requires the selection rule to process negative literals only
if they are ground. Allowedness guarantees that the computation does
not flounder, i.e. it does not reach a situation in which all literals are
negative and none of them is ground.

In order to have a sound use of negation as failure in {log}, a viable
approach is to adapt the notion of allowedness to {log} programs [39].
Using this modified notion of allowedness, it is possible to show that all
the results related to soundness and completeness of SLDNF-resolution
still hold in the {log} framework.

In doing this, one must properly take into account the presence of
set constraints as well as of RUQ-literals and intensional sets, and the
way they are dealt with via translation to CLP (S) programs. Unfor-
tunately, the translation of RUQs generates non-allowed clauses. For
example, given the following definition of the subset relation

subset(S1, S2) :−
(∀X ∈ S1)(X ∈ S2)

the generated CLP (S) code will look like (see § A.4)

subset(∅, S2)←
subset({A |R}, S2)←

A /∈ R ∧ A ∈ S2 2 subset(R, S2)

where the first clause is obviously non-allowed. Similar problems come
out with intensional sets, which are implemented using RUQs.

The development of suitable syntactic restrictions for {log} pro-
grams and goals, by adapting those usually applied to conventional
logic programs, though feasible, is far from being satisfactory. Indeed
it seems to overly restrict the class of programs that can be practically
used.

An alternative approach can be devised by taking advantage of the
fact that, as mentioned above, negation is used exclusively to trans-
late intensional set definitions. Thus, in a {log} program, once in-
tensional sets have been removed—using the procedure described in
§ 6.3—negative literals appear only in clauses of the form:

6.3. COMPILING INTENSIONAL SETS 207

setof δ(Set1, Z̄)← (∀X ∈ Set1)δ(X, Z̄),¬partialδ(Set1, Z̄).

Since we are adopting a LDNF-based resolution, the literal

¬partialδ(Set1, Z̄)

will not be selected as long as the computation of the immediately pre-
ceding RUQ has been completed. In this context, soundness of the reso-
lution procedure is guaranteed whenever all the collected sets related to
intensional definitions are finite and ground, and all free variables possi-
bly occurring in such definitions (i.e., the set of variables represented as
Z̄) are grounded by the set grouping operations. For example, the def-
inition of intersection given in § 6.2, even if non-allowed, can be safely
executed whenever sets S1 and S2 are ground terms. Thus it is pos-
sible to extend the class of admissible programs by replacing syntactic
restrictions on programs by simpler dynamic tests on sets constructed
from intensional definitions.

The ability to collect finite and ground sets only, though limiting,
is nevertheless sufficient for a large class of applications (e.g., deduc-
tive databases). In fact, most of the logic languages dealing with sets
described in the literature present such a restriction.

In [41] it is shown that the intensional set formers of the language
LDL ([15, 83]), as well as the set-collection capability of the Subset-
Assertion Programming language ([55, 57]), the two most interesting
approaches of this area, can be implemented in {log} with negation as
failure, since the groundness restriction are practically similar.

6.3.3 From Negation as Failure to Constructive
Negation

Aiming at the development of a general-purpose language with sets (as
opposed to a language for some specific application area, e.g. deductive
databases), we should try to relax as much as possible the restriction
for collected sets to be ground. For instance, the following is a {log}
program requiring the ability to collect a non-ground set:

208 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

r(Y, S) :−
S
.
= {X : X

.
= f(V,Y) 2 q(V)}

q(a).
q(b).

The goal

:− r(Y, S)

should return the constraint

S
.
= {f(a,Y), f(b,Y)} .

associating to S a set which is non-ground , although finite. Actually,
the set-collection operation implied by the intensional set definition
occurring in the given program is performed by executing a subgoal of
the form

← (∀X ∈ S)(X
.
= f(V, Y) 2 q(V)),¬partial(S, Y).

Because of the non-groundness of the sets returned by the restricted
universal quantifier (e.g. {f(a, Y), f(b, Y)}), it is not possible to ob-
tain the desired solution using SLDNF-resolution (some larger and more
meaningful examples requiring collections of non-ground sets are pre-
sented at the end of § 6.3.6).

The approach we take to generalize the framework at hand is based
on the use of constructive negation [12, 25, 43] as an alternative to
negation as failure. In constructive negation the negative literal is not
required to be ground and instantiations of the variables appearing in
it are computed to allow the negative literal to be satisfied (from here
comes the constructive nature of this approach).

The basic idea behind constructive negation goes as follows. Given
a program P , the set σ1, . . . , σn of all the solutions to a goal ← G
(assuming there are finitely many) is such that Comp(P) |= G ↔
σ1 ∨ · · · ∨ σn where Comp(P) is the completed version of the program
P . Given a program P , the completion of P , Comp(P) is the theory
consisting of the ‘closure’ of the clauses in P (denoted iff (P) in [8])
plus a first order theory regarding the signature (equality plus freeness
axioms in ‘standard’ logic programming, WF sets in our approach).
Basically, if a predicate p is defined by the k clauses

p(X1, · · · , Xn)← Bi 1 ≤ i ≤ k,

6.3. COMPILING INTENSIONAL SETS 209

where each Bi contains an explicit existential quantification of the local
variables, then the corresponding clause in the completion of P is

∀X1 · · ·Xn(p(X1, · · · , Xn)↔ B1 ∨ · · · ∨Bk).
6

Taking the negation of the formula, Comp(P) |= ¬G↔ ¬(σ1∨· · ·∨
σn), gives an idea of how to obtain a solution to a negative literal in the
constructive negation approach. The key point is the development of an
effective procedure to extract actual solutions from the negation ¬(σ1∨
· · · ∨ σn). The description given by Chan [25, 26] is an instantiation
of this framework to the case of pure logic programming (each σi is a
simple substitution). The relations between constructive negation and
CLP have been studied in [104].

As we will see later on in this chapter, the integration of a form
of constructive negation in the {log} framework is feasible, and allows
considerable generalizations of the set-collection capabilities of the lan-
guage (in particular, it will enable us to give a satisfactory solution to
the sample program and goal discussed at the beginning of this section).
Nevertheless, a full integration between sets and constructive negation
does not appear to be possible, leading to some situations which are
argued to be undecidable in § 6.3.7.

6.3.4 Constructive Negation: an overview

Let us start considering an overview of constructive negation [43, 93],
adapted to our language and notation. Given a program P and a goal

← C 2 ¬p(x1, . . . , xn),

assume that σ1, . . . , σm are all (assumed to be finite) the answer con-
straints. Each σi can be assumed to have the form (see [19] for further
details)

∃v(i)
1 . . . v

(i)
ki

(c
(i)
1 ∧ . . . ∧ c

(i)
hi
∧ d(i)

1 ∧ . . . ∧ d
(i)
li

), ki, hi, li ≥ 0,

where v
(i)
1 , . . . , v

(i)
ki

are those variables in σi other than x1, . . . , xn, c
(i)
j ’s

are positive atomic constraints, and d
(i)
j ’s are simple formulae of the

6For an overview of the general properties of iff (P) and (standard) Comp(P)
see [8, 97].

210 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

form ∀Y1 . . . Ym(c), c a negative atomic constraint. Moreover the c
(i)
j ’s

and the d
(i)
j ’s are in a simplified canonical form,7 which can be ob-

tained by removing all the redundant variables and equalities and all
the irrelevant negative constraints, according to the following rewriting
rules:

(x
.
= z) ∧ C

x ∈ {x1, . . . , xn} and z 6∈ {x1, . . . , xn}

}
7→ C{z 7→x}

(z
.
= t) ∧ C

z 6∈ {x1, . . . , xn}

}
7→ C

(∀Y1 . . . Ym(s 6 .= t)) ∧ C((
FV (∀Y1 . . . Ym(s 6 .= t) \ {x1, . . . , xn}

)
∩

FV (c1, . . . , chi)
)
6 .= ∅

 7→ C.

Soundness and completeness results can be used to show that

(1) Comp(P) |= ∀x1 . . . xn(p(x1, . . . , xn)↔ σ1 ∨ . . . ∨ σm).

Taking the negation of this formula,

Comp(P) |= ∀x1 . . . xn(¬p(x1, . . . , xn)↔ ¬σ1 ∧ . . . ∧ ¬σm),

one can obtain ¬p(x1, . . . , xn) by considering ¬σ1 ∧ . . . ∧ ¬σm where
each ¬σi can be rewritten as

(2) ∀v(i)
1 . . . v

(i)
ki

(¬c(i)
1 ∨ . . . ∨ ¬c

(i)
hi
∨ ¬d(i)

1 ∨ . . . ∨ ¬d
(i)
li

).

Chan’s solution (cf. [25]; for a deeper analysis of the equality prob-
lem in Logic Programming see [98])—which is intended to apply to
standard logic programming, where equality is interpreted as the usual
syntactical equality over Herbrand terms—makes use of the following
result:

Lemma 6.4 [Chan] Given a universally quantified disjunction of the
form

7We are assuming here that the definition of constraint in canonical form is
extended in order to encompass for simple formulae of the form ∀Y1 . . . Ym(c), c a
negative atomic constraint (see [19]).

6.3. COMPILING INTENSIONAL SETS 211

∀X̄Ȳ (y 6 .= t ∨D)

where t is a term, D is a formula, X̄ are variables in t, and Ȳ are the
variables in D not occurring in t, then

|= ∀y(∀X̄Ȳ (y 6 .= t ∨D)↔ (∀X̄(y 6 .= t) ∨ ∃X̄(y
.
= t ∧ ∀Ȳ D))).

This Lemma would allow us to split the disjunction (2) in two cases,

one in which the first disjunct (¬c(i)
1) is actually true for every instanti-

ation of the universally quantified variables, and another one in which
it is possible to detect an instantiation in which ¬c(i)

1 fails (and as con-

sequence c
(i)
1 succeeds) and where the universal quantification of the

remainder of (2) must succeed.
By repeatedly applying this Lemma (along with distributivity of ∧

over ∨) each ¬σi can be transformed into the equivalent formula

(3) γi ≡ (∀Ȳ1¬c(i)
1) ∨

∃Ȳ1 (c
(i)
1 ∧ ∀Ȳ2¬c(i)

2) ∨
...

...

∃Ȳ1 · · · Ȳhi−1 (c
(i)
1 ∧ . . . ∧ c

(i)
hi−1 ∧ ∀Ȳhi¬c

(i)
hi

) ∨
∃Ȳ1 · · · Ȳhi(c

(i)
1 ∧ . . . ∧ c

(i)
hi
∧ d(i)

1) ∨
...

...

∃Ȳ1 · · · Ȳhi(c
(i)
1 ∧ . . . ∧ c

(i)
hi
∧ d(i)

li
),

where Ȳ1, . . . , Ȳhi is a partition of the variables v
(i)
1 , . . . , v

(i)
ki

accordingly
to Lemma 6.4. Therefore,

¬σ1 ∧ . . . ∧ ¬σm ↔ γ1 ∧ . . . ∧ γm.

One can further transform the formula γ1 ∧ . . . ∧ γm by applying dis-
tributivity, and by removing existential quantifiers by suitably renam-
ing variables and moving the quantifiers in front of each disjunct. By
doing this, we obtain the equivalent formula in disjunctive normal form

θ1 ∨ θ2 ∨ . . . ∨ θs
where s ≤ Πi

k=1(hk + lk), and each θj is a conjunction of possibly
universally quantified literals coming from the γi. To sum up,

Comp(P) |= ∀x1 . . . xn(¬p(x1, . . . , xn)↔ θ1 ∨ . . . ∨ θs).

212 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

Thus, each θj represents one of the s possible solutions to the given
goal ¬p(x1, . . . , xn).

Observe that the above rewriting is based on two fundamental prop-
erties:

• the first, stated in Lemma 6.4, that ensures the distributivity of
∨ with respect to ∀;

• the second, guaranteed by the elimination of irrelevant negative
constraints, which ensures that, after hi applications of distribu-
tivity, universally quantified variables disappear.

As we will show later, the first property does not always hold in WF sets.
However, whenever it holds, the second property is a direct consequence
of it.

From an operational point of view the transformation described so
far amounts, for each given goal of the form ← C 2 ¬p(x1, . . . , xn), to
explore non-deterministically s different alternatives

← C ∧ θ1, · · · ,← C ∧ θs
applying to each of them the constraint satisfiability test with respect
to the selected constraint theory. This requires the ability to deal with
simple atomic constraints (e.g. x 6 .= t) as well as with universally quan-
tified literals, i.e. simple formulae of the form ∀X̄(X 6 .= t) (inequality
formulae can also be re-written in this form, using the fact t 6∈ s if and
only if s 6 .= {t | s}).

6.3.5 Constructive Negation in {log}
In the context of {log}, the use of constructive negation amounts, first
of all, to extend the various constraint satisfiability procedures used
by sat (cf. § 5.3) in order to accommodate for the new kind of sim-
ple universally quantified formulae resulting from the transformations
described in the previous section (see [19] for a description of this ex-
tension).

Unfortunately, as we will discuss in details hereafter, Chan’s Lemma
does not always hold in the framework of the theory WF sets.

6.3. COMPILING INTENSIONAL SETS 213

To precisely realize this, we exhibit a case in which the ← part of
the implication of Lemma 6.4 does not hold.8

Let us consider the following {log} clause

p(U) :−
U

.
= {X1, X2} ∧X1 6 .= ∅

and the {log} goal

:−R .
= {X : X ∈ Y 2 p(Y)}

which translates to

← R
.
= S 2 setofp(S, Y)

where

setofp(S, Y)←
(∀X ∈ S)(X ∈ Y 2 p(Y)),
¬partialp(S, Y).

The subsequent goal is therefore

← R
.
= S 2 (∀X ∈ S)(X ∈ Y 2 p(Y)),¬partialp(S, Y).

The first solution to the left-hand part of this goal is R
.
= ∅. Therefore

the new goal becomes

← R
.
= ∅2 ¬partialp(∅, Y).

Solving the goal ← partialp(∅, Y) will require to solve the goal

← X 6∈ ∅ ∧X ∈ Y 2 p(Y)

which returns the two solutions

∃XX1X2 (X
.
= X1 ∧ Y .

= {X1, X2} ∧X1 6 .= ∅)
∃XX1X2 (X

.
= X2 ∧ Y .

= {X1, X2} ∧X1 6 .= ∅)
After removing redundant variables, they become the same answer

∃X1X2 (Y
.
= {X1, X2} ∧X1 6 .= ∅).

Therefore, the answer to ← ¬partialp(∅, Y) will be

(∗) ∀X1X2 (Y 6 .= {X1, X2} ∨X1
.
= ∅).

8Conversely, the → part of this implication is a simple theorem of first order
predicate calculus.

214 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

If Chan’s Lemma would hold, then (∗) could be transformed to the
equivalent formula

(∗∗) ∀X1X2 (Y 6 .= {X1, X2})∨
∃X1X2 (Y

.
= {X1, X2} ∧X1

.
= ∅).

Taking Y = {∅, {∅}} then (∗) is false, whereas (∗∗) is true.

The reason why Chan’s Lemma is failing in our framework is that
this Lemma is implicitly founded on the assumption of the existence of a
unique most general unifier for any unification problem. Unfortunately
this situation may occur in our framework (as shown by the last example
above), since in general a {log} unification problem may admit more
than one distinct solution. This is a reason why Chan’s approach (and
other similar approaches) to constructive negation cannot be directly
applied to the {log} framework.

6.3.6 Generalizing Chan’s Result

In this section we introduce a new rewriting technique which will allows
us to generalize Chan’s approach to the {log} framework and, more in
general, to any framework in which the unification problem admits
finitely many solutions. This is obtained by the following lemma which
generalizes Chan’s Lemma.

Lemma 6.5 Given a term t, and a formula D, let X̄ be variables in
t and Ȳ variables in D not occurring in t. Let X̄ ′ be | {X̄} | new
variables. Let ρ be the substitution [X̄/X̄ ′] and assume the unifica-
tion problem t

.
= tρ admits in (E1)(E2) exactly n most general unifiers

θ1, . . . , θn. Assume moreover that, for i = 1, . . . , n, dom(θi) = {X̄ ′}
and ran(θi) ⊆ {X̄} (i.e. no new variable is introduced by unification),
and that the variables of t not in X̄ nor in Ȳ—if any—do not occur in
the θi’s. Then

WF sets |= ∀y

 ∀X̄Ȳ (y 6 .= t ∨D)↔

∀X̄(y 6 .= t) ∨ ∃X̄
(
y
.
= t ∧

n∧
i=1

∀Ȳ Dρθi

)  .
Proof. It is easy to see that ∀X̄Ȳ (y 6 .= t ∨D) is equivalent to

6.3. COMPILING INTENSIONAL SETS 215

∀X̄(y 6 .= t) ∨ ∃X̄(y
.
= t ∧ ¬∃X̄ ′Ȳ (t

.
= tρ ∧ ¬Dρ)︸ ︷︷ ︸
(∗)

).

Thanks to the assumptions of the lemma. the formula (∗) is equivalent
to

¬∃X̄ ′Ȳ
((∨n

i=1 θ̂i
)
∧ ¬Dρ

)
where θ̂i is the equational representation of the substitution θi. Apply-
ing distributivity the last formula becomes

¬
n∨
i=1

(∃X̄ ′Ȳ θ̂i ∧ ¬Dρ).

The particular form of the substitutions θi guarantees the equivalence
with the following

¬∨ni=1 ∃Ȳ ¬Dρθi .
6.5 2

In particular, Lemma 6.5 allows us to prove that the formula

∀X1X2 (Y 6 .= {X1, X2} ∨X1
.
= ∅)

(cf. example at the beginning of § 6.3.5) is equivalent to

∀X1X2 (Y 6 .= {X1, X2})∨
∃X1X2 (Y

.
= {X1, X2} ∧X1

.
= ∅ ∧X2

.
= ∅).

Using Lemma 6.5 instead of Lemma 6.4 (i.e, Chan’s Lemma) allows
us to effectively exploit constructive negation to implement intensional
sets within the {log} language. The resulting version of this language,
then, enables us to safely deal with a number of cases which, in contrast,
cannot be dealt with in a satisfactory way using negation as failure.

In what follows we show a sample {log} program, i ntended to
demonstrate such an enhancement of the expressive power of our lan-
guage.

Example 6.6 A combination of three or more tones sounded together
in harmony is said to be a chord. There is an unambiguous symbolic
notation, mainly used in rock and jazz scores, for denoting chords. We
deal only with major and minor chords. It is easy to extend the program
to any chord.

216 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

The following numerical mapping for notes is assumed.

a 7→ 0 c], d[7→ s40 f 7→ s80
a], b[7→ s10 d 7→ s50 f], g[7→ s90
b 7→ s20 d], e[7→ s60 g 7→ s100
c 7→ s30 e 7→ s70 g], a[7→ s110

where, as usual, snx denotes the term s(· · · (s︸ ︷︷ ︸
n

(x)) · · ·). Thus, a {log}

program dealing with chords can be defined as follows:

chord({T |R}, [T | S]) :− %%% T for ‘tonic’
rest(R, S,T)

rest({X3,X5}, [min],T) :− %%% min: minor chord
interval(X3,T,s30),
interval(X5,T,s70)

rest({X3,X5}, [],T) :− %%% major chord
interval(X3,T,s40),
interval(X5,T,s70).

where the predicate interval represents the minus operator (modulo 12)
and is defined as follows:

interval(X,Y, S) :−
minus(X,Y, S)

interval(X,Y, S) :−
minus(s12X,Y, S)

minus(X,X, 0) :−
minus(s(X),Y,s(N)) :−

minus(X,Y,N).

Restricting our attention, for the sake of simplicity, to the first clause
defining interval, we can observe that, given a goal like

:− chord(X,Y)

we get the following two answers

X
.
= {T,s3T,s7T},Y .

= [T,min]
X
.
= {T,s4T,s7T},Y .

= [T]

where, as usual, T is intended to be implicitly existentially quantified.
We can further observe that, thanks to the use of the enhanced version
of constructive negation described in this section, {log} is able to answer
correctly also to a goal of the form

:− S
.
= {X : chord(X,Y) }

6.3. COMPILING INTENSIONAL SETS 217

by providing the following solutions

S
.
= ∅,∀T (Y 6 .= [T]),∀T (Y 6 .= [T,min])

S
.
= { {T,s3T,s7T} },Y .

= [T,min]
S
.
= { {T,s4T,s7T} },Y .

= [T].

6.3.7 Undecidability Results

Lemma 6.5, which allows to extend the class of intensional sets handled
using negation, requires that a number of hypothesis hold.

In this section we first show an example for which such conditions
are not fulfilled; later we will present a strong undecidability result
which points out the impossibility of cover all cases opened by the
translation of intensional set formers.

Consider the goal

:− S
.
= {Z : Z ∈ Y }

which holds if and only if S and Y are the same set. According to
the translation-based technique described in § 6.3 the following {log}
program is generated from this goal:

setof ∈(S, Y)← partial∈(S, Y)←
(∀X ∈ S)(X ∈ Y), X 6∈ S,X ∈ Y.
¬partial∈(S, Y)

A possible solution to the subgoal ← (∀X ∈ S)(X ∈ Y) is

S
.
= {X} ∧ Y .

= {X |N} .

By solving ← partial∈({X}, {X |N}) then we get

← X ′ 6∈ {X} ∧X ′ ∈ {X |N} .

By applying sat to this constraint the only disjunct we get is

∃X ′ N ′ (N .
= {X ′ |N ′} ∧X ′ 6 .= X) .

The constructive negation approach performs the negation of such for-
mula, leading to the global (partial) solution

S
.
= {X} ∧ Y .

= {X |N} ∧ ∀X ′ N ′ (N 6 .= {X ′ |N ′} ∨X ′ .= X) ,

which is equivalent to

218 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

S
.
= {X} ∧ Y .

= {X |N} ∧ ∀X ′ N ′ (N .
= {X ′ |N ′} → X

.
= X ′) .

It states that X is the only element of Y , namely Y
.
= {X}. This is a

sound answer.

Unfortunately we are unable to explode the universal quantification
in order to reduce it to a normalized form. Applying the translation
rule of the original constructive negation we obtain the solution:

S
.
= {X} ∧ Y .

= {X |N} ∧ ∀X ′N ′ (N 6 .= {X ′ |N ′}) ∨
S
.
= {X} ∧ Y .

= {X |N} ∧ ∃X ′N ′(N .
= {X ′ |N ′} ∧X .

= X ′) .

The first disjunct implies that N does not contain elements. It is then
equivalent to S

.
= {X} ∧ Y .

= {X}.
The second one simplifies to (see redundant variable elimination in
§ 6.3.4) S

.
= {X} ∧ Y .

= {X,X |N ′}, i.e. S
.
= {X} ∧ Y .

= {X |N ′}.
Any (even non-empty) set can be taken as N ′: a solution that it is
wrong since it has been computed using Chan’s Lemma, proved to be
incorrect for {log}.

Moreover, any set unification algorithm applied to

{X ′ |N ′} .
= {X ′′ |N ′′}

reports the following most general unifiers:

(1) [X ′′/X ′, N ′′/N ′]
(2) [X ′′/X ′, N ′′/{X ′ |N ′}]
(3) [X ′′/X ′, N ′/{X ′′ |N ′′}]
(4) [N ′/{X ′′ |M}, N ′′/{X ′ |M}] .

Only the first unifier satisfies the hypothesis of Lemma 6.5, hence the
extended translation rule presented in such lemma is not applicable.

As mentioned, Vaught in [110] proves the essential undecidability of
the theory NW . This means (see § 6.3.7) that any consistent extension
of NW is undecidable. Hence, the undecidability of WF sets follows,
even when Σ is {∅, {· | ·}}.

Below we present a general technique to translate any formula writ-
ten in the language Π = { .

=,∈ }, Σ = { ∅, {· | ·} } into a CLP (S)
program with negation.

Consider a prenex formula

Ψ = (¬)∃X̄1 ¬∃X̄2 ¬∃X̄3 · · · ¬∃X̄k (ψ1 ∨ · · · ∨ ψk)

6.3. COMPILING INTENSIONAL SETS 219

procedure Buildprogram(Psi);
begin

return(“←”add clauses(0,Psi));
end

function add clauses(i,Psi);
begin

case Psi of
psi1 ∨ · · · ∨ psi k: %% quantifier free formula

for j := 1 to k do assert(“pi(varlist(Psi))← psij”);
¬Phi: %% negated formula

assert(“pi(varlist(Psi))← ¬” add clauses(i+ 1,Phi));
∃X̄ Phi; %% existentially quantified formula

assert(“pi(varlist(Psi))←” add clauses(i+ 1,Phi))
end case;
return(“pi(varlist(Psi))”)

end

Figure 6.1: Rewriting a formula in CLP (S)

such that FV (ψ1, . . . , ψk) = {X̄1, . . . , X̄k}. The procedure Buildprogram,
defined in Fig. 6.1, applied to Φ, generates a recursion-free CLP (S)
program with negation P using less than 2 · k new predicate symbols
and returns a goal G.

The procedure Buildprogram is simply the top-level procedure which
calls the recursive function add clauses. The first parameter of the
latter function is an integer number i which allows to produce clauses
using newly generated predicate symbols. It uses the auxiliary functions
assert, which updates a global set of clauses, and varlist, which returns
the list of free variables of a formula.

For instance, the formula

∃X1 ¬∃X2 ¬∃X3 ((X1 ∈ X2 ∧X1
.
= X3) ∨ (X1 ∈ X3))

220 CHAPTER 6. THE CLP LANGUAGE {LOG} AND . . .

will be translated in the following program P :

p0 ← p1(X1)
p1(X1) ← ¬p2(X1)
p2(X1) ← p3(X1, X2)

p3(X1, X2) ← ¬p4(X1, X2)
p4(X1, X2) ← p5(X1, X2, X3)

p5(X1, X2, X3) ← X1 ∈ X2 ∧X1
.
= X3

p5(X1, X2, X3) ← X1 ∈ X3

together with the goal
← p0

Since the program P obtained by the execution of Buildprogram is
always recursion-free, its refutation tree is always finite; this means that
any CLP implementing constructive negation will return a computed
answer to G with respect to the program P if and only if the formula
is satisfiable in the theory wf sets.

Hence, such a CLP -intepreter would allow us to solve the satisfia-
bility problem w.r.t. NW for quantified formulae, contradicting [110,
89, 16, 80].

Chapter 7

Programming in Logic with
Sets

In this chapter we will present some examples of the high declara-
tiveness style of Logic Programming with Sets. In § 7.1, devoted to
well-founded sets, we will describe {log} programs solving a certain
number of problems. In § 7.1.1 the power of set unification and of the
constraint handling to prune the search tree is mainly used, while, in
§ 7.1.2, the programming style takes advantage of the expressive power
of intensional set formers. In § 7.2 we will analyze the power of hyperset
unification to solve, with a unique computation of the unification al-
gorithm, the equivalence of automata problem, the automata matching
problem, and the type finding problem.

Examples of § 7.1.1 can be found also in [36]; examples of § 7.1.2 can
be found in [36] and [41]. The equivalence of automata problem using
hypersets (a declarative—not computationally competitive—example)
was firstly presented in [35].

7.1 Well founded sets

In this section we will use the CLP language {log}, presented in Chap-
ter 6, to give examples of high declarative style logic programming.

221

222 CHAPTER 7. PROGRAMMING . . . WITH SETS

7.1.1 Programming with extensional sets

Various standard set operations—e.g. union, intersection, difference,
etc.—can be straightforwardly programmed in {log}; the {log} defi-
nition of these operations can be quite similar to the usual Prolog
definition obtainable by representing sets as lists (cf., e.g., [81]). For
instance, the following three {log} clauses can be used to define the
intersection of two sets:

∩({ }, , { }).
∩({X |A},B, {X |C}) :−

X 6∈ A,X ∈ B,∩(A,B,C).
∩({X |A},B,C) :−

X 6∈ A,X /∈ B,∩(A,B,C).

There are, however, a number of new facilities in {log}, especially de-
voted to set manipulation, which can make the behavior of {log} pro-
grams significantly better than that of the corresponding Prolog pro-
grams and which can be exploited to drastically simplify the program
development effort.

A first notable difference with respect to the Prolog solution
comes out when dealing with non-ground sets. Due to the ability to
treat simple set constraints, {log} can provide answers to goals which
are hardly managed in standard Prolog. For example, given the {log}
goal

:− ∩ ({X}, {Y},Z).

we get from the above definition of the predicate intersection the follow-
ing two answers (the second of which containing a negative constraint):

X
.
= Y,Z

.
= {Y}

X 6 .= Y,Z
.
= { } .

Another feature of {log} which strongly enhances the expressive power
of the language, is the availability of Restricted Universal Quantifiers.
Some definitions using such a facility—namely, the subset and disjoint
predicates—have been shown in Chapter 6. Some further usages of
RUQs will be shown in next examples.

A third important feature of {log} is set-unification. There are
several problems—e.g., resource allocation problems and combinatorial

7.1. WELL FOUNDED SETS 223

problems in general—where the non-determinism embedded in the set-
unification mechanism can be advantageously exploited to make pro-
grams simpler to write and more declarative to understand than those
obtainable by using conventional Prolog programming techniques.

We prove this by showing the {log} solutions to two well-known
combinatorial problems, namely the SEND + MORE = MONEY puz-
zle and the coloring of a map.

Cryptarithmetic puzzle. This is the well-known problem of solving
the equation SEND + MORE = MONEY by assigning a distinct
digit between 0 and 9 to each letter appearing in it. A classical
solution to this problem can be developed by adopting a gener-
ate & test approach, i.e., by successively generating assignments
of digits to the letters of the puzzle and then testing, for each
assignment, whether the generated pattern satisfies the required
constraints.

By using sets and the extended resolution procedure (in particu-
lar, set unification), one can avoid the explicit use of a generator
and of mechanisms for backtracking in search for new solutions.

solve puzzle(S,E,N,D,M,O,R,Y) :−
{S,E,N,D,M,O,R,Y, , } = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
M ∗ 10000 + O ∗ 1000 + N ∗ 100 + E ∗ 10 + Y

=:= S ∗ 1000 + E ∗ 100 + N ∗ 10 + D
+ M ∗ 1000 + O ∗ 100 + R ∗ 10 + E .

Clearly, it would be nice to replace the extra-logical literal in-
volving =:= by an integer equation (or by a system of integer
equations and inequalities), assuming that a suitable integer con-
straint solver interacts with the set unifier. As usual, a drastic
reduction of the search space can in fact ensue from the interplay
between two solvers.

Coloring. Given a set {c1, . . . , cm} of Colors, a set {R1, . . . , Rn} of
Regions, m ≤ n, and a set Map = { {Ri1 , Rj1}, . . . , {Rik , Rjk}},
ip 6= jp for all p = 1, . . . , k, of pairs of neighboring regions, the
predicate coloring returns an assignment of colors to the regions
so that no two neighboring regions have the same color and all
colors are used.

224 CHAPTER 7. PROGRAMMING . . . WITH SETS

coloring(Regions,Map,Colors) :−
Regions

.
= Colors,

(∀R ∈ Regions)({R} 6∈ Map).

A sample goal:

:− coloring({R1,R2,R3}, {{R1,R2}, {R2,R3}}, {c1, c2}).

returns the constraint answers

R1
.
= c1 ∧ R2

.
= c2 ∧ R3

.
= c1

R1
.
= c2 ∧ R2

.
= c1 ∧ R3

.
= c2 .

As mentioned in Chapter 6, {log} has been developed as a general-
purpose programming language. Nevertheless, there seem to be certain
application areas in which the use of sets fits more naturally, allow-
ing some definite improvements both in the quality and in the devel-
opment time of the final software product. These ‘interesting’ areas
include database applications (see for instance [66, 83]), combinatorial
problems, graph-related applications and operational research in gen-
eral (e.g., resource allocation problems), as pointed out for instance
in [46, 68].

To conclude, we show also a simple example in a quite unusual
application area, namely music writing, where sets turn out to be a
very natural notation to represent collections of notes.

Music. We give here an alternative definition of the predicate chord,
presented in Example 6.6. A combination of three or more tones
sounded together in harmony is said to be a chord. There is an
unambiguous symbolic notation, mainly used in rock and jazz
scores, for denoting chords.

Writing a program that, given the symbolic denotation, returns
the corresponding chord, is a simple task in any programming lan-
guage. Solving the reverse problem is more difficult, since chords
are genuine sets and each string of symbols usable to denote a
chord is based on only one of the notes in it (the tonic note).
Both problems are solved by the following {log} program, work-
ing for 3-notes chords. It is easy to extend it so as to treat n-notes
chords (in jazz music 7-notes chords are common).

7.1. WELL FOUNDED SETS 225

Note representation: for the sake of simplicity we assume a unique
representative for each altered note (e.g. b[stands also for a]).

note(a, 0). note(b[, 1). note(b, 2). note(c, 3).
note(d[, 4). note(d, 5). note(e[, 6). note(e, 7).
note(f, 8). note(g[, 9). note(g, 10). note(a[, 11).

The {log} program

chord({T |R}, [T | S]) :− %%% T for ‘tonic’
rest(R, S,T).

rest({X3,X5}, [min],T) :− %%% min: minor chord
interval(X3,T, 3),interval(X5,T, 7).

rest({X3,X5}, [],T) :− %%% major chord
interval(X3,T, 4),interval(X5,T, 7).

rest({X3,X5}, [maj5],T) :− %%% maj5: augmented chord
interval(X3,T, 4),interval(X5,T, 8).

rest({X3,X5}, [dim],T) :− %%% dim: diminished chord
interval(X3,T, 3),interval(X5,T, 6).

interval(Y,X,Offset) :− %%% offset determination
note(X,N1),N2 is (N1 + Offset) mod 12,note(Y,N2).

Figure 7.1: A music example

226 CHAPTER 7. PROGRAMMING . . . WITH SETS

Figure 7.1 reports the program; sample goals are the following:

:− chord({g, e[, g, b[},X). :− chord(X, [f,min]).
X← [e[] X← {f, a[, c}

:− chord(X,Y).
X← {a, c, e},Y ← [a,min]

...
X← {a[, b, d},Y ← [a[, dim].

7.1.2 Programming with intensional sets

Let us see a few simple examples aimed at showing the declarative
programming style supported by intensional sets.

As a first example, we show a very straightforward definition of the
intersection predicate (see § 7.1) using intensional sets:

∩(A,B, {X : X ∈ A,X ∈ B}).

Other basic set-theoretic operations can be redefined using intensional
sets in a very similar way.

Prime numbers. Our second example is the definition of a predicate,
primes, that computes all the prime numbers smaller than a given
N:

primes(N, {X : between(1,N,X), is prime(X)}).
is prime(X) :−

(∀Z ∈ {Y : between(1,X,Y)})non div(Z,X).
between(A,B,C) :− A < C,C < B.
non div(A,B) :− 0 =\= (B mod A).

Connected components of a graph. The next example regards undi-
rected graphs. Assuming that every node belongs to at least one
arc, a set Arcs of doubletons suffices to represent a graph.

The set of all nodes of a given graph can be determined as follows:

nodes(Arcs, {X : {X, } ∈ Arcs}).

7.1. WELL FOUNDED SETS 227

To determine the set of all connected components of a given graph
Arcs of cardinality N, we can exploit the following predicate:

components(1,Arcs, {Z : Z
.
= {X}, nodes(Arcs,Nodes),Z ∈ Nodes}).

components(N,Arcs,Comp) :−
N > 1,
N1 is N− 1, components(N1,Arcs,Comp1),
Comp = {Z : Z

.
= {X |C},Y ∈ C,C ∈ Comp1,X /∈ C, {X,Y} ∈ Arcs}.

Finite State Automata. Let us consider an NFSAM = 〈Σ, Q, q0, F, δ〉,
whose transition function δ : Q×Σ→ Pow(Q) we assume to have
been modeled by the relation

A = {[q, s, δ(q, s)] : q ∈ Q, s ∈ Σ} .

We define the predicate delta star that performs the transitive
closure of a given transition function δ on a given input string S.

delta star(SetQ,A, [], SetQ).
delta star(SetQ in,A, [S |R], SetQ out) :−

delta star({Q : step(SetQ in,A, S,Q)},A,R, SetQ out).
step(SetQ,A, S,Q) :−

Q p ∈ SetQ, [Q p, S, SetQ p] ∈ A,Q ∈ SetQ p.

A predicate that checks whether or not a string S is accepted by
an automaton defined by its transition function A, its initial state
q0, and its set Final of final states can be defined as follows:

accepted(S,A,Final) :−
delta star({q0},A, S, States),Z ∈ States,Z ∈ Final.

It is now straightforward to define procedures capable of testing
common properties of FSA. For example, the following fragment
of {log} program is intended to verify the equivalence between two
deterministic FSA (it is just a direct application of the classical
pumping lemma for DFSA, and we are not concerned here with
the efficiency of the resulting code):

228 CHAPTER 7. PROGRAMMING . . . WITH SETS

equivalent(A1,Final1,A2,Final2, Sigma) :−
states(A1,N1), states(A2,N2),maximum(N1,N2,N),
S
.
= {X : string(Sigma,N,X)},
{X : X ∈ S, accepted(X,A1,Final1)} =
{X : X ∈ S, accepted(X,A2,Final2)}.

where

• states(A,N) holds if N is the number of states of the automa-
ton A;

• maximum(N1,N2,N) states that N is the maximum between
N1 and N2;

• string(Sigma,N,X) holds if X is a string on the alphabet
Sigma of length less than or equal to N.

Abstract Interpretation An Abstract Interpreter is a static analysis
tool used to extract information on properties of the program
to be analyzed. Its main goal is to rewrite the original pro-
gram substituting the actual operations (which implicitly work
on the Herbrand universe) with their abstract equivalents on the
abstract domain. In particular, the various operations performed
during standard resolution (e.g., unification, application of sub-
stitutions) need to be properly abstracted. In the Ms system [32],
for instance, each clause for a predicate p in the original program
is rewritten according to a suitable translation scheme and stored
with a modified head p$cl. Moreover, an additional clause with
head p$pred is introduced as a driver for the execution of a p-based
goal, with the task of allowing the test of all the different possi-
ble paths (i.e., all the matching clauses) explicitly, without using
a failure-driven loop. The result of the analysis of the different
paths is obtained by taking the least upper bound of the results
obtained from every individual path—i.e. the value of the studied
property for a predicate is obtained by taking the ‘upper bound’
among the values obtained from the different clauses defining the
predicate.

In the Ms system the explicit iteration over the different clauses
defining a predicate requires a considerably complex mechanism.

7.2. NON-WELL-FOUNDED SETS 229

The same process can be described in a one-line {log} clause using
intensional sets:

p$pred(InMode,OutMode)←
lub({Out | p$cl(I, InMode,Out) ∧ 1 ≤ I ≤ m},OutMode).

where I is the index of the considered clause, sfm is the number
of clauses defining p, InMode is the input value for the consid-
ered property (e.g., the set of modes previously computed), and
OutMode will be instantiated to the output value for the consid-
ered property.

Considering that the description of the property is extracted from
the source program itself, and as such it can contain variables, the
collection of the intensional set in the p$pred clause requires the
use of constructive negation (i.e., it does not belong to the cases
covered by the use of negation as failure).

7.2 Non-well-founded sets

One of the most common exploitations of hypersets is as a means to
model deterministic finite state automata (cf., e.g., [14]). As we will
now see, the hyperset universe and unification algorithms are suffi-
ciently powerful to offer algorithmic support to such modeling task.

A deterministic finite automaton (DFA for short) consists of a set
Q = {Q0, . . . , Qn} of states, a set S = {s1, . . . , sk} of symbols, and a
transition function d : Q×S → Q∪{⊥}. One of the states—say Q0—is
called initial state, and there is a set F ⊆ Q of accepting states (for a
complete definition of DFAs see, for instance, [52]).

Given a DFA A, one may define a corresponding Herbrand system
EA in the signature Σ = {∅, {· | ·},⊥, δ, δ′}, where ⊥ is a constant
symbol and δ, δ′ are functional symbols of arity k, as follows:

EA = A
.
= {Q0, . . . , Qn}∧∧
Qi in Q\F Qi

.
= δ(d(Qi, s1), . . . , d(Qi, sk))∧∧

Qi in F Qi
.
= δ′(d(Qi, s1), . . . , d(Qi, sk))

230 CHAPTER 7. PROGRAMMING . . . WITH SETS

This can easily be re-expressed as an equivalent flat system, or, if one
prefers, as a graph bearing the same information. Other techniques
to simulate DFAs by hypersets have been proposed in the literature.
For example, in [14], one such technique is presented, and it is shown
that the notion of bisimulability between graphs ≈ (cf. Def. 3.24)
corresponds exactly to equivalence between automata.

Given two DFAs A and B, it is easy to determine whether or not
they accept the same language, as is shown by the following simple
example. Consider the two DFAs

���� �����
�� �����
�� ���� �
������
q0 q1 q2 q′0 q′1- -b -b

�
a

- -b

��
?

a ��
?

b ��
?

b

	6
a

DFA A DFA B

where the sets of accepting states are FA = {q1, q2} and FB = {q′1},
respectively. In our framework these automata can be modeled by the
following graphs:

?• {· | ·}

•δ • {· | ·}

•
⊥

•
δ′

• {· | ·}

•
δ′

•
∅

�
�
�	

@
@
@R

�
�
�	

@
@
@R

�
�
�	

@
@
@R
�

�
�	

@
@
@R

@
@
@R

�
��-

@
�����

6

?• {· | ·}

•δ • {· | ·}

•
⊥

•
δ′

•
∅

�
�
�	

@
@
@R

�
�
�	

@
@
@R

�
�
�	

@
@
@R

@
������-

DFA A DFA B

or by means of the two systems

EA = A
.
= {Q0 |X1} ∧X1

.
= {Q1 |X2} ∧X2

.
= {Q2 |X3} ∧X3

.
= ∅∧

Q0
.
= δ(⊥, Q1) ∧Q1

.
= δ′(Q1, Q2) ∧Q2

.
= δ′(Q1, Q2) ,

EB = B
.
= {Q′0 |Y1} ∧ Y1

.
= {Q′1 |Y2} ∧ Y2

.
= ∅∧

Q′0
.
= δ(⊥, Q′1) ∧Q′1

.
= δ′(Q′1, Q

′
1) .

7.2. NON-WELL-FOUNDED SETS 231

The function call Unify(EA ∧ EB ∧ A .
= B ∧ Q0

.
= Q′0) has (at least)

one satisfactory branch, reporting the system in solvable form Q1
.
=

Q2∧Q′1
.
= Q2∧ . . .; hence the two automata are unifiable (bisimulation

≈ holds between their graphs).

7.2.1 Automaton matching

The problem we have considered in the above example could have been
solved with more efficient algorithms (cf. [4]). However, notice that the
actual question we can answer using a unification algorithm for hybrid
hypersets, is that of determining whether two partially defined DFAs
can be completed in the same automata. Hence, the former problem
stands to the latter as ground comparison stands to matching. As
an example, one may be interested if the following partially defined
automata,

���� �����
�� ����
q0 q1 Q- -b -

X
�
Y

��
?

a

DFA C

where X, Y , and Q are unknowns, can be completed so as to accept
the same language as above defined DFA B. This problem is in fact
NP-complete (cf. § 4.1); in order to prove its NP-hardness, consider
the following reduction. Given the formula (instance of 3-SAT)

Φ = (`1
1 ∨ `1

2 ∨ `1
3) ∧ · · · ∧ (`m1 ∨ `m2 ∨ `m3)

with

`ji = aji or `ji = ¬aji , where

aji ∈ {d1, . . . , dk},∀i ∈ {1, 2, 3},∀j ∈ {1, . . . ,m}, k ≤ 3 ·m,

we introduce distinct variables X1, Y1, . . . , Xk, Yk, and define the trans-
formation function f as follows:

f(`) =

{
Xi if ` ≡ di,
Yi if ` ≡ ¬di,

Thus, for solving the instance Φ of 3-SAT, it is sufficient to check
whether there exists a substitution for the variables in the automaton

232 CHAPTER 7. PROGRAMMING . . . WITH SETS

�
�� �
�� �
�� ���
 �
�	q0 q1 qk qk+m
- - · · · - - · · · -X1|Y1 X2|Y2 Xk|Yk 0|f(`11)

f(`12)|f(`13)

0|f(`m1)

f(`m2)|f(`m3)

that makes it equivalent to the fully specified automaton below:

�
�� �
�� �
�� ���
 �
�	q0 q1 qk qk+m
- - · · · - - · · · -0|1 0|1 0|1 0|1 0|1

NP-completeness ensues from the encoding of the automata completion
problem into the hyperset unification one (presented above), proved to
be NP-complete in § 4.1.

7.2.2 Type finding

This section is devoted to describe how non-well-founded set unification
is suitable for type checking and type finding. Adapting the definition
in Chapter 6 of [5], an example of type expression can be inductively
defined as follows:

1. a basic type (boolean, char, integer, real) is a type expression;

2. a (type) variable is a type expression;

3. if t is a type expression and n1, n2 are natural numbers, then
array(〈n1,n2〉,t) is a type expression;

4. if t11, . . . , t
1
k1
, . . . , tn1 , . . . , t

n
kn are type expressions and i1, . . . , in are

field names (i.e. identifiers), then

record({〈i1, {t11, . . . , t1k1
}〉, . . . ,〈in, {tn1 , . . . , tnkn}〉})

is a type expression;

5. if t is a type expression, then pointer(t) is a type expression.

Most Pascal type declarations uniquely define type expressions. For
instance,

vector = array [1..10] of char

defines the type expression

array(〈1, 10〉, char) .

7.2. NON-WELL-FOUNDED SETS 233

Furthermore, in order to infer data types from a program without type
declaration, also non ground (i.e. partially specified) data types are
allowed to be type expressions.

Notice that the data structure ‘{· · ·}’ (set) used as argument in
record captures the semantics of the record data type better than the
list one, since ordering of fields is immaterial. For instance, the Pascal
definition

t one = record
next : list;
data : char

end

defines the same data types as

t two = record
data : char;
next : list

end

Moreover, sets was conveniently used to introduce multiple valued fields,
namely the union data type.

When data types are recursively defined, a rational infinite tree rep-
resentation is needed. In this case, the Herbrand system representation
is, clearly, more suitable.

A type constraint is a system of equations between type expressions.
A type system is a collection of rules for assigning type constraints to
the various parts of a program.

Fig. 7.2 illustrates how a type system works. For the sake of sim-
plicity, assume that different procedures/functions use different variable
names (such problem can be overcome via renaming). We will make
use of the following assumptions:

• next is a keyword with the meaning: the data type of 〈id〉 ↑ .next
is the same as 〈id〉, and

• the data type of the keyword nil matches with any pointer data
type.

234 CHAPTER 7. PROGRAMMING . . . WITH SETS

Pascal-like program Type constraint

new(p); ⇒ P
.
= pointer(P1),

p ↑ .next := nil; ⇒ P1
.
= record({〈next,{P}〉 |R1}),

p ↑ .mode := true; ⇒ P1
.
= record({〈mode, {boolean |C1}〉 |R2}),

p ↑ .data := 1965; ⇒ P1
.
= record({〈data, {integer |C2}〉 |R3}),

new(q); ⇒ Q
.
= pointer(Q1),

q ↑ .mode := false; ⇒ Q1
.
= record({〈mode, {integer |D1}〉 |S1}),

q ↑ .data := p; ⇒ Q1
.
= record({〈data, {P |D2}〉 |S2}),

q ↑ .next := p; ⇒ Q1
.
= record({〈next,{Q}〉 |S3}), P

.
= Q

Figure 7.2: A type system action

P
.
= pointer(record({

〈next, {P}〉,
〈mode, {boolean |C1}〉,
〈data, {integer, P |C4}〉,

|R}))

next
mode
data

◦→
boolean(true)
integer(1965)

next
mode
data

◦→
boolean(false)

◦→

Figure 7.3: A solution to the type constraint

P and Q represent the type of p and of q, respectively.
One of the possible solvable form systems returned by the non-

well-founded set unification algorithm over the type constraint above
is represented in Fig. 7.3. Observe that recursive types are modeled by
circular memberships.

Appendix A

The first part of the Appendix (§ A.1–A.3) deepens marginal aspects
of the theoretical foundations of the aggregate theories analyzed in this
thesis.

§ A.4, drawn from [36], shows how restricted universal quantifiers
are a purely syntactical extension of the language {log}.

In § A.5, presented in [34], it is shown how to rewrite an hybrid
(well-founded or not) set unification problem into a pure set unification
one. § A.6, appendix also of [11], reports the number of independent
unifiers that a minimal unification algorithm (cf. § 4.4) should return
to given set unification problems.

A.1 Flatland

All aggregate theories presented in the thesis are, in a sense, two-
dimensional. Namely, a list (bag, compact list, set) can grow either
in length (number of elements) or in depth (nesting). In this section
we will presented minimal theories of set using objects that develops in
one direction (§ A.1.1) or in no direction (§ A.1.2).

A.1.1 Mono-dimensional theories

First a brief remark about set theories in which sets can grow only in
length (flat sets): they have sense only in hybrid contexts, in which
only ur-elements (cf. Def. 3.35) can take the role of elements of sets.
In other words, we need to add an axiom of the form:

235

236 APPENDIX A.

∀x
(
(∃y ∈ x)→ (∀y ∈ x)(∀z (z 6∈ y))

)
to the theory WF sets, which ensures that no nesting of sets is allowed.

In the rest of the section we present a theory of sets which can grow
only in depth; as a starting point we consider the standard structure
for 〈ω, 0, S〉. Γ0S is the (complete) theory identified by the signature
Π = { .=} and Σ = {0, S}, where ar(0) = 0 and ar(S) = 1, and by the
recursive set of axioms

(1) ∀x y
(
S(x)

.
= S(y)→ x

.
= y

)
(2) ∀x

(
0 6 .= S(x)

)
(3.1) ∀x

(
x 6 .= S(x)

)
(3.2) ∀x

(
x 6 .= S(S(x))

)
(3.3) ∀x

(
x 6 .= S(S(S(x)))

)
...

...

(4) ∀x
(
x
.
= 0 ∨ ∃y(x

.
= S(y))

)
Note that axioms (1) and (2) are exactly freeness axiom (F1) and
(F2), respectively. Axioms (3.1), (3.2), (3.3), . . . represent the infinite
expansion of axiom schema (F3) (cf. § 3.2). Axiom (4) is exactly
(DCA). We will use the notation Snt for S(· · · (S︸ ︷︷ ︸

n

(t)) · · ·) (in particu-

lar, S0(t) = t). For instance, (F3) can be written as for any positive
integer n, ∀x (x 6 .= Snx).

Let M = 〈D, I〉 be a model of Γ0S. Then

• D should provide a distinct element (numeral) 0, 1, 2, 3, . . . for all
the terms

S00, S10, S20, S30, . . .;

• assume d ∈ D be such that d 6= S00, d 6= S10, d 6= S20, d 6=
S30, By (DCA), exist y1 such that d

.
= S(y1), and y2 such

that y1
.
= S(y2), and so on. We refer to such yi as to S−id (hence

d = SnS−nd). Clearly, also an element witnessing Snd should
belong to D, for any n. It is easy to see that Sid is different from
Sj0 for any i and j.

A.1. FLATLAND 237

Note that axiom scheme (F3) forces any pairs of elements in the same
chain to be distinct.

Any domain D contains always an isomorphic copy of ω and, pos-
sibly, a number of isomorphical copies of the set of integer numbers
ZZ:

◦ S← • S← • S← • · · ·
· · · • S← • S← • S← • S← • S← • S← • · · ·
· · · • S← • S← • S← • S← • S← • S← • · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...

The particular form of the models of Γ0S ensures that two models hav-
ing the same uncountable infinite cardinality are isomorphical. Hence,
thanks to the test of 6 Loś-Vaught (cf. [27]), Γ0S is complete. How-
ever, a direct proof of this fact can be given by describing a quantifier
elimination procedure (cf. [44]).1 The only thing to prove is

Theorem A.1 Let L = 〈Π,Σ〉; then for any formula ∃x (`0∧ · · ·∧ `n),
where `i’s are literals, exists an open formula ψ such that

Γ0S ` ∃x (`0 ∧ · · · ∧ `n)↔ ψ .

Proof. We describe an algorithm that, accepting a conjunction `0 ∧
· · · ∧ `n as input, returns an open formula ψ as output. The empty
conjunction is viewed as the generic tautology (i.e. 0

.
= 0).

1. removing of tautologies:
Smx

.
= Smx ∧ C 7→ C

Smx 6 .= Snx ∧ C 7→ C
Smx

.
= Snx ∧ C 7→ false

Smx 6 .= Smx ∧ C 7→ false

2. x goes on the left:
t

.
= Smx ∧ C 7→ Smx

.
= t ∧ C

t 6 .= Smx ∧ C 7→ Smx 6 .= t ∧ C

1A similar result concerning with a stronger theory can be found in [94].

238 APPENDIX A.

3. substitution application (based on the fact s
.
= t↔ Sms

.
= Smt):

Smx
.
= t ∧ C 7→ t 6 .= 0 ∧ · · · ∧ t 6 .= Sm−10 ∧ C ′

where C ′ is obtained from C replacing
Skx

.
= t′ with Skt

.
= Smt′

Skx 6 .= t′ with Skt 6 .= Smt′

4. elimination of x (if no substitution has been applied):
Smx 6 .= t ∧ C 7→ C

The correctness of the algorithm is easy to prove.
A.1 2

As example of application of the technique described in the proof of
theorem A.1, let us analyze axiom (DCA) , i.e. ∀y

(
y
.
= 0∨∃x(y

.
= Sx)

)
.

The disjunct ∃x(y
.
= Sx) becomes (action 2) Sx

.
= y, (action 3) y 6 .= 0.

The complete formula becomes ∀y (y
.
= 0∨y 6 .= 0), namely, a tautology.

We extend the language described by introducing the membership
relation symbol ∈, whose behavior is controlled by the axiom

(∈) x ∈ y ↔ y
.
= S(x) .

It is easy to see that the theory remains complete and, for instance,
that the extensionality axiom

(E) x
.
= y ↔ ∀z (z ∈ x↔ z ∈ y)

is derivable from Γ0S(∈). This can be proved using the quantifier elim-
ination technique described in the proof of theorem A.1.

In the rest of this section we will illustrate as such theory can be
seen as a nested (set) theory of singletons. The first two axioms are

(N) ∃z ∀x (x 6∈ z)

(S) ∀y∃z
(
y ∈ z ∧ (∀x ∈ z)(x

.
= y)

)
,

that can be skolemized into

(N) ∀x (x 6∈ ∅)
(S1) x ∈ {x}
(S2) x ∈ {y} → x

.
= y .

The theory NS1S2 is strong enough to prove lemma 3.1; this means, in
particular, that axiom (1) above holds for NS1S2.

A.1. FLATLAND 239

Let us define the predicate singleton as follows

singleton(x) if and only if ∃y
(
y ∈ x ∧ (∀z ∈ x)(z

.
= y)

)
.

It is easy to prove the following weak form of extensionality

NS1S2 ` singleton(x) ∧ singleton(y)→(
x
.
= y ↔ ∀z (z ∈ x↔ z ∈ y)

)
.

However, the existence of non-singleton sets is consistent for NS1S2.
In order to re-state S0 as a set theory, we need to introduce another
axiom:

(S3) ∀x
(
∃y (y ∈ x)→ singleton(x)

)
In this case we can prove

NS1S2S3 ` x
.
= y ↔ ∀z (z ∈ x↔ z ∈ y)

or, in other words

NS1S2S3 ` {x} .= {y} → x
.
= y ,

which is the counterpart of axiom (2) above.

Until nothing has been stated about well-foundedness of the single-
tons of the theory, a non-well-founded model of NS1S2S3 in which, in
particular, Ω = {Ω} can be described (see [3]). This means that axiom
(F3) (and hence axiom schema (ϕ)) can be falsified. The regularity
(foundation) axiom

(R) ∃z ∀y
(
y ∈ x→ (z ∈ x ∧ y 6∈ z)

)
,

ensures, in particular, that an element d such that d = {d} cannot ex-
ists. However, because of the singleton axiom S3, it cannot exclude
the existence of a circle of membership of the form x1 ∈ x2, x2 ∈
x3, . . . xn−1 ∈ xn, xn ∈ x1, if n > 1. We need then to introduce the
counterpart of axiom schema (F3): for any positive integer n

(F3) x 6= {· · · {︸ ︷︷ ︸
n

x} · · ·} .

An isomorphism between NS1S2S3F3 and F1F2F3 ∈ (DCA) is evident.

240 APPENDIX A.

A.1.2 Zero-dimensional theories

In this section we present a zero-dimensional theory. Only one indi-
vidual k̄2 belongs to the interpretation domain D of any model 〈D, I〉.
Let, as usual, Π = { .=,∈}; two interpretation are possible:

(i) Ii |= k̄
.
= k̄ Ii |= k̄ 6∈ k̄

(ii) Iii |= k̄
.
= k̄ Iii |= k̄ ∈ k̄ .

(i) is a well-founded interpretation, while (ii) is non-well-founded.
The (non skolemized) theory which has 〈{k}, Ii〉 as unique model

(modulo isomorphism) is the following:

(K) ∃x
(
x
.
= x ∧ ∀y (y 6∈ x) ∧ ∀y (y

.
= x)

)
;

in other words, when Σ = {∅} the above axiom can be re-written as

(K1) ∀y (y 6∈ ∅)
(K2) ∀y (y

.
= ∅) .

Conversely, the theory which has 〈{k}, Iii〉 as unique model (modulo
isomorphism) is the following:

(K ′) ∃x
(
x
.
= x ∧ ∀y (y ∈ x) ∧ ∀y (y

.
= x)

)
.

When Σ = {Ω} the above axiom can be re-written as

(K ′1) ∀y (y ∈ Ω)
(K ′2) ∀y (y

.
= Ω) .

Both the theories K1K2 and K ′1K
′
2 are decidable. The elimination

of quantifier theorem is a consequence of the simplicity of the theory:

Theorem A.2 Let L = 〈Π, {∅}〉 (L′ = 〈Π, {Ω}〉); then for any for-
mula ∃x (`0 ∧ · · · ∧ `n), where `i’s are literals, exists an open formula ψ
such that

K1K2(K ′1K
′
2) ` ∃x (`0 ∧ · · · ∧ `n)↔ ψ .

Proof. Thanks to axiom K2 (K ′2), ∃x (`0 ∧ · · · ∧ `n) is equivalent to
(`0 ∧ · · · ∧ `n)[x/∅] ((`0 ∧ · · · ∧ `n)[x/Ω]).

A.2 2

2k̄ stands for the king—see [1].

A.2. THE FOUNDATION AXIOM 241

Deciding the satisfiability of an open conjunction of literals `0∧· · ·∧
`n is straightforward: first map all the variables to ∅ (Ω).

Then, in the case of K1K2, if a conjunct of the form ∅ 6 .= ∅ or of
the form ∅ ∈ ∅ occurs in the disjunction then return unsatisfiable, else
return satisfiable.

In the case of K ′1K
′
2, if a conjunct of the form ∅ 6 .= ∅ or of the form

∅ 6∈ ∅ occurs in the disjunction then return unsatisfiable, else return
satisfiable.

This is the proof for

Theorem A.3 K1K2 and K ′1K
′
2 are both decidable. 2

A.2 The foundation axiom

In this section we will illustrate relations among various axioms stat-
ing the well-foundedness of sets. In particular, we will deal with the
acyclicity axiom schema:3 for any n ∈ ω

(A) ¬∃x0 · · · ∃xn
(
n−1∧
i=0

xi ∈ xi+1 ∧ xn ∈ x0

)
,

the regularity axiom:

(R) ∀x∃z∀y
(
y ∈ x→ (z ∈ x ∧ y 6∈ z)

)
,

and the syntactical axiom schema (F s
3), introduced in § 3.2.4: if x is a

proper subterm of t[x], then

(F s
3) x 6= t[x]

unless t ≡ {s1, . . . , sn |x} and
x is not a subterm of s1, . . . , sn.

Remark A.4 A few remarks about regularity axiom (R) are due. In
classical references (see e.g. [2, 64]) it is stated as follows:

(FA) ∀x
(
∀y (y 6∈ x) ∨ (∃y ∈ x)(∀z ∈ y)z 6∈ x

)
.

Developing restricted quantifiers, it becomes

3As usual, the empty conjunction
∧−1

i=0 ϕ is considered a tautology.

242 APPENDIX A.

(FA) ∀x
(
∀y (y 6∈ x)∨
∃y∀z

(
(y ∈ x ∧ z 6∈ x) ∨ (y ∈ x ∧ z 6∈ y)

))
,

while rewriting the implication in (R) as a disjunction, the latter axiom
is rewritten as

(R) ∀x∃y ∀z
(
z 6∈ x ∨ (y ∈ x ∧ z 6∈ y)

)
.

The equivalence between (R) and (FA) ensues trivially from the follow-
ing semantical considerations:

• if x is empty, then (FA) holds trivially thanks to the first disjunct.
(R) holds since z 6∈ x is always true;

• let x be non-empty. An element y such that (FA) is satisfied,
satisfies also (R). For the other direction, let y be the element
satisfying (R). Since x is non-empty, the disjunct y ∈ x ∧ z 6∈ y
must hold. Hence, since y ∈ x, it satisfies (FA).

Remark A.5 We recall that a relation π on a set A is well-founded
if and only if the following axiom holds

(WF) (∀x ⊆ A)
(
∀y(y 6∈ x) ∨ (∃y ∈ x)(∀z ∈ x)¬πzy

)
Replacing π with ∈ it is possible to see the similarity with above axiom
(FA) (or (R)).

If ¬(FA) then an infinite chain A 3 y0 3 y1 3 · · · of elements of A,
exists.
Conversely, if (FA) holds, then we are not sure that such an infinite
chain does not exist (i.e., when A = {∅, y0, y1, · · ·}: ∅ is the ∈-minimal
element). However, from the assumption that the property hold for all
x (hence for all the subset of A), we can infer the well-foundedness of
the membership relation for all the sets considered.

The following technical lemmata will generate a lattice of relations
regarding the axioms just presented.

Lemma A.6 In any model of (W), then (R) implies (A).

Proof. LetM = 〈D, I〉 be a model of (W) and (A), and let a0, . . . , an ∈
D be such that a0 ∈I a1 ∈I · · · ∈I an ∈I a0.

A.2. THE FOUNDATION AXIOM 243

v = {a0, . . . , an} belongs to D since M is a model of (W), but there is
no z in v such that no y in v belongs to it.

A.6 2

Lemma A.7 In any model of (W) such that the objects of the domain
contains only finitely many elements, then (A) implies (R).

Proof. Let M = 〈D, I〉 be a model of (W) and ¬(R) whose elements
are all finite.
Since M is a model of ¬(R), exists an x in D such that, for any z ∈ x,
there exists an element y of x such that y ∈I z.
Since all elements of D are finite, then such x will have the form
{v0, . . . , vm}.
This means that exists an n ≤ m, and a function j : {0, . . . , n} →
{0, . . . ,m} such that

∧n−1
i=0 vji ∈I vji+1

∧ vjn ∈I vj0 .
A.7 2

As corollary from Lemmata A.6 and A.7, we can obtain that, in
any model of (W) in which all elements are finite, then (A) and (R)
are equivalent.

This is not true in general, as it ensues from:

Lemma A.8 There are models of (W) in which (A) does not imply
(R).

Proof. Let M = 〈D, I〉 be a model of (A) such that a and ω(a) belongs
to D, and ω(a) ∈I a, where ω(a) is meta-mathematically defined as
follows: {

u0 = a
ui+1 = ui ∪ {ui}

ω(a) =
⋃
i∈ω ui

Observe that there is a membership cycle, but, since it has an in-
finite length, it does not affect the validity of axiom (A). Conversely,
(R) is not satisfied, since no element of ω(a) has empty intersection
with ω(a) itself.

A.8 2

To deal with axiom F s
3 , we first define the sub(x, y, n), i.e. x is a

subterm of y at depth n, as follows:

244 APPENDIX A.


sub(x, y, 0) ⇐⇒ y = {y1, . . . , ym |x},m ≥ 0

sub(x, {y0, . . . , ym}, n+ 1) ⇐⇒
∃i ∈ {0, . . . ,m} suchthat sub(x, yi, n) .

(F s
3) can be re-stated as follows: if sub(x, y, n) holds for some n > 0,

then x 6 .= y.

Lemma A.9 (A) implies (F s
3).

Proof. We first observe that if x is a non-empty-set and sub(x, y, n)
holds for some n > 0, then exist y1, . . . , ym, for some integer m, and
z0, . . . , zn such that

{y1, . . . , ym |x} = z0 ∈ z1 ∈ · · · ∈ zn−1 ∈ zn = y .

If x and y were equal, we would have

zn−1 ∈ {y1, . . . , ym |x} = z0 ∈ z1 ∈ · · · ∈ zn−1 ∈ zn = x ,

which contradicts (A).
A.9 2

Lemma A.10 In any model of (W) such that the objects of the domain
contains only finitely many elements, then (F s

3) implies (A).

Proof. Let M = 〈D, I〉 be a model of (W) whose elements are all
finite.
Assume x0 ∈I x1 ∈I · · · ∈I xn ∈I x0. Since x ∈ y ↔ ∃z (y

.
= {x | z}) is

a theorem for any finite y (see § 3.1.2), we will have

∃z0 · · · zn
(
x1 = {x0 | z0} ∧ x2 = {x1 | z1} ∧ . . .∧
xn = {xn−1 | zn−1} ∧ x0 = {xn | zn}

)
.

Hence, for instance,

∃z0 · · · zn (x0 = {{· · · {{x0 | z0} | z1} · · · } | zn})

which contradicts (F s
3).

A.10 2

As final corollary of this section, we can state that in all models of
(W) such that the objects of the domain contains only finitely many
elements, (in particular in HΣ/ ≡s), (A), (R), and (F s

3) are equivalent.

A.3. FINITENESS 245

A.3 Finiteness

In all the thesis the word finite has been used with an intuitive meaning.
In this section we briefly touch the problem of formally defined such
entity.

In ‘classical’ Zermelo-Fraenkel set theory (see e.g. [64]) there is an
axiom ensuring the existence of an infinite set:

(Inf) ∃x
(
∅ ∈ x ∧ (∀y ∈ x)({y | y} ∈ x)

)
(the logically simplest form of the infinity axiom can be found in [90,
91]). However, its negation

(¬Inf) ∀x
(
∅ ∈ x→ (∃y ∈ x)({y | y} 6∈ x)

)
is not equivalent to saying that all sets are finite.4 For instance, consider
the model M = 〈D, I〉 of NWE1E2 in which D ⊇ {[t] : t ∈ τ(Σ)} and
a representative for the infinite set even ≡ {0, 2, 4, 6, . . .} belongs to D.
Any element of even is a candidate for being the ‘y’ able to validate
(¬I). Since M is a model of (W) and 1, 3, 5, . . . all belong to D, any
subset of ω which extends even with a finite number of odd numerals
must belong to D itself. However, it is consistent to assume that ω
does not belong to D.

In other words, the negation of (I) only states the non-existence of
the set ω. If (I) gets modified so as to ensure the existence of some
other infinite set, a similar example can easily be found.

There are a wide number of proposals in literature for stating the
finiteness of any set (for a deep investigation see [76]). We analyze
the one proposed by Tarski in [105]. First the following notions are
introduced:

irreducible(a, k) if and only if a ∈ k ∧ (∀b ∈ k)(b ⊆ a→ b
.
= a) ;

saturated(a, k) if and only if a ∈ k ∧ (∀b ∈ k)(a ⊆ b→ a
.
= b) .

irreducible(a, k) –read: a is an irreducible element of k– states that no
subset of a belongs to k.
saturated(a, k) –read: a is a saturated element of k– states that a is a
subset of no element of k.

For instance
4We recall here numerals are defined as 0 = ∅, n+ 1 = {n |n}.

246 APPENDIX A.

• for any set x, x is either irreducible or saturated in {x};
x is saturated in P(x);

• 0 and n are the irreducible and the saturated elements of {0, 1, . . . , n},
respectively;

• there is no a saturated in ω = {0, 1, 2, . . .}; 0 is the only irreducible
element;

• any {i}, for i = 1, . . . , n, is either irreducible or saturated in
{{1}, . . . , {n}}; similarly, any element of the infinite set {{1}, {2},
{3}, . . .} is either irreducible or saturated.

Definition A.11 A set x is Finite if any non-empty collection k of
its subsets admits at least one irreducible element. Briefly,

(Fin) ∀k
((

(∀e ∈ k)(e ⊆ x) ∧ (∃e ∈ k)
)
→ ∃a (irreducible(a, k))

)
.

Assume x be a set with an (intuitively) infinite number of ele-
ments. Pick e1, e2, e3, · · · ∈ k. The set k = {x, x \ {e1}, x \ {e1, e2}, x \
{e1, e2, e3}, . . .} has no irreducible elements.
On the other hand, the set k′ = {∅, {e1}, {e1, e2}, {e1, e2, e3}, . . .} has
no saturated elements.

In [105] it is shown

Theorem A.12 A set x is finite (in the sense of definition A.11) if and
only if any non-empty collection of its subsets has at least a saturated
element.

In the proof of Theorem A.12, separation axiom and \ operator are
used. If the set theory is rich enough to provide an axiomatization for
such constructs, then definition A.11 can equivalently be given using
the predicate saturated. This has been done, for instance, in [106].

A.4. RUQS ELIMINATION 247

A.4 RUQs elimination

Restricted Universal Quantifiers (RUQs) are formulae of the form

(∀X ∈ s) ϕ,

with F an arbitrary formula. This form stands for the quantified im-
plication

∀X((X ∈ s)→ ϕ).

The usefulness of providing RUQs as part of the representation lan-
guage has been demonstrated by several authors (e.g. [24, 66]). In
fact, RUQs allow basic set-theoretic operations (such as subset, union,
intersection and so on) to be expressed in a clear and concise way. In
what follows we will show how the language presented so far can be ex-
tended in order to encompass RUQs. To wit, RUQs will be introduced
in {log} only at the syntactic level, as a convenient notation, without
any extension at the semantic level.

Definition A.13 An Extended CLP (S) Clause is a formula:

p(t1, . . . , tn)← c2B1 , · · · , Bm

where each Bi can be either

• an atom, or

• a RUQ formula of the form (∀X1 ∈ s1) · · · (∀Xk ∈ sk)G, G con-
junction of atoms, satisfying the following properties:

– the variables X1, . . . , Xk can occur only in G (in particular,
they are not allowed to occur in s1, . . . , sk);

– if i 6= j then Xi 6= Xj.

The two last restrictions ensure that a Bi of the form

(∀X1 ∈ t1) · · · (∀Xk ∈ tk)G

is logically equivalent to ∀X1 · · · ∀Xk(X1 ∈ t1, · · · , Xk ∈ tk → G). (Note
that the first restriction, motivated (cf. [24]) by the set finiteness re-
quirement, is implicitly present in [66] since nesting of sets is not al-
lowed there.)

248 APPENDIX A.

To ease notation, we will not explicitly consider here the separator
2, viewing it as a ‘,’ operator. Moreover, for the same reason, we will
deal with sets based on ‘∅’; translation of RUQs with different colors is
presented in [36].

For example, by using RUQs, it is easy to define the following set-
theoretic operations:

(a) subset(S1, S2)←
(∀X ∈ S1)(X ∈ S2) .

(b) disj(S1, S2)←
(∀X ∈ S1)(∀Y ∈ S2)(X 6= Y) .

where predicate subset tests whether S1 is a subset of S2 and predicate
disj tests whether S1 and S2 are disjoint sets.

One might proceed as in [66, 20], by enhancing resolution to deal
directly with RUQs. However, both for conceptual simplicity and for
soundness concerns we prefer to transform extended Horn clauses into
equivalent {log} clauses without RUQs:

RUQs Elimination Algorithm

Let C = H ← B1 , · · · , Bk , Bk+1 , · · · , Bn be an extended CLP (S))
clause, where B1, . . . , Bk (k ≤ n) are ΠC literals or ΠB atoms, and
Bk+1, . . . , Bn are formulae containing RUQs.

1. Replace C by the set of clauses

I = {H ← c2B1 , · · · , Bk , D1 , · · · , Dn−k
D1 ← Bk+1

. . . ,
Dn−k ← Bn }

where each Dj is an atom qnewj (Xj
1 , . . . , X

j
kj

) with qnewj brand new

predicate symbol and {Xj
1 , . . . , X

j
kj
} are all the variables in Bk+j

which are not quantified by any RUQ of Bk+j.

2. Replace each element in I of the form

p(t1, . . . , tn)← (∀X1 ∈ s1)(∀X2 ∈ s2)G

A.4. RUQS ELIMINATION 249

by the two clauses:

p(t1, . . . , tn)← (∀X1 ∈ s1)r(Y1, . . . , Yk)
r(Y1, . . . , Yk)← (∀X2 ∈ s2)G

where Y1, . . . , Yk are all the variables (different from X2) occurring
in s2 or free in G, and r is a new predicate symbol. This step is
repeated as long as there are clauses with nested quantifiers in I.

3. Replace each extended Horn clause of the form

p(t1, . . . , tn)← (∀X ∈ {t′1, . . . , t′m|h})G

by

p(t1, . . . , tn)← G[X/t′1], · · · , G[X/t′m]

if h is a member-less term, or by

p(t1, . . . , tn)← G[X/t′1] , · · · , G[X/t′m] , D
D ← (∀X ∈ h)G

if h is a variable, where D is built as described in step 1.

4. Replace each simple extended Horn clause

p(t1, . . . , tn)← (∀X ∈ Y)G[X,Z1, . . . , Zm] ,

where Y is a variable and X,Z1, . . . , Zm (m ≥ 0) are all the
variables occurring in G, by the following three {log} clauses:

p(t1, . . . , tn)← r(Y, Z1, . . . , Zm)
r(∅, Z1, . . . , Zm)←
r({A|R}, Z1, . . . , Zm)← (A /∈ R), G[X/A], r(R,Z1, . . . , Zm)

where r is a new predicate symbol.

For example, the extended Horn clause (a) for the subset opera-
tion given at the beginning of this section will be transformed into the
equivalent three CLP (S) clauses:

subset(S1, S2)← r(S1, S2).
r(∅, S2)←.
r({A |R}, S2)←(A /∈ R), (A ∈ S2), r(R, S2).

250 APPENDIX A.

A.5 Translation of hybrid unification into

pure set unification

· · · Indeed, one possible view is that integers are atoms and
should not be viewed as sets. Even in this case, one might
still wish to prevent the existence of unrestricted atoms. In
any case, for the ‘genuine’ sets, Extensionality holds and the
other sets are merely harmless curiosities. · · · P. J. Cohen,
from [29]

This section establishes a correspondence between systems of equa-
tions over nested sets that involve free Herbrand functors (constants, in
particular, playing the role of atoms) of the form described and solved
in § 4.3.3, and systems over ‘genuine’ sets. Clearly, solutions are pre-
served in the translation.

‘Genuine’ sets—named pure sets by us—are those whose construc-
tion is ultimately based on the empty set. Such sets have in fact su-
perseded sets with atoms in the early history of set theory, when the
Zermelo axiomatization was first subjected to critique (cf. [109]).

We start with a reduction technique by which the classic unification
problem can be translated into a purely set-theoretic one. Finite, as well
as infinite rational terms, can be handled by the proposed technique; in
either case, by decoding the solution scheme found after the translation,
one can retrieve the most general answer to the original problem.

Careful inspection of the proofs of the Theorems in this section
reveals that unification can be performed in polynomial determinis-
tic time in the special case when the sets to be unified are images of
standard terms, even though the full unification problem for sets is
NP-complete (see § 4.1).

The very same technique can be exploited when the source language
itself comprises a set constructor.5

We will characterize below a family of ‘translations’ tr : τ(Σ∪V)→
U(C ∪ V) enforcing the properties of {· | ·}, in the following sense: the

5The transfer principle that emerges from the proposed translation, carries over
to the abstract realm of infinite, even irrational, set terms. In this case, however, the
target domain is to comprise sets of infinite rank. Moreover, infinite substitutions
would forcibly enter into play.

A.5. TRANSLATION OF . . . 251

identities tr({x, y | z}) .
= tr({y, x | z}) and tr({x, x | z}) .

= tr({x | z})
will hold for all x, y, z ∈ τ(Σ ∪ V). As a consequence, x =s y (cf.
§ 2.2) will always imply tr(x) = tr(y). We will manage to have that,
conversely, tr(x) = tr(y) imply x =s y; thus, tr will canonically induce
a one-to-one function from τ(Σ ∪ V)/=s into U(C ∪ V).

Since every x will involve the same variables that occur in tr(x)
(in particular, x will be left fixed when it is a variable), the inclusion
tr [τ(Σ)] ⊆ U(C) will hold.

In view of the computability of tr (as well as of =s and of tr−1), all
of this can be summarized by saying that tr constitutes a set-theoretic
semantics for the terms over Σ. A most important by-product of our
definition of tr , however, will go beyond that: it will turn out that any
instance of the unification problem concerning τ(Σ ∪ V) can be solved
with reference to U(C∪V). Given arbitrary t1, t2 from τ(Σ∪V), one can
determine an exhaustive set {µ1, . . . , µn} of mgus of tr(t1)

.
= tr(t2). If

this set is empty, t1, t2 are not unifiable; else {tr−1(µ1), . . . , tr−1(µn)}
is a complete set of unifiers for t1

.
= t2, where tr−1(µ) denotes the

substitution sending each variable X into the counter-image tr−1(Xµ).

For any f ∈ Σ \ {{· | ·}} let cf be a distinctive non-negative integer.
A family of monomorphisms from τ(Σ ∪ V)/=s to U(C ∪ V), indexed
by a non-negative integer k, can be defined as follows:

tr(X) = X ,
tr(f(t1, . . . , tn)) = {k + cf , {1, {· · · {︸ ︷︷ ︸

k

tr(t1) } · · ·}︸ ︷︷ ︸
k

}, . . . ,

{n, {· · · {︸ ︷︷ ︸
k

tr(tn) } · · ·}︸ ︷︷ ︸
k

}} ,

tr({t1 | t2}) = tr(t2) ∪ { {· · · {︸ ︷︷ ︸
k

tr(t1) } · · ·}︸ ︷︷ ︸
k

} ,

In the rest of the section, we will prove that tr satisfies the required
isomorphism property for mgus, be the starting universe well founded
or not.

First we want to point out the meaning of the parameter k. If the
set of generators C is the set {0, 1, 2, . . .} then k can be left free to take
any non-negative value.

If, on the contrary, C is empty, then we take as 0, 1, 2, . . . the nu-
merals defined à la von Neumann: 0 = ∅ , n+ 1 = n∪{n}; moreover,

252 APPENDIX A.

in this case we require k to be at least 2 in order that tr be one-to-one.
In particular we prove all the claims in this framework and assuming k
to be exactly 2.

We will use t1, t2 to denote the terms to be unified, and, in general
t, t1, t2, . . . as generic (Σ ∪ V)-terms. `i and ri will be used to denote
(Σ ∪ V)-terms when they occur as left-hand and right-hand side of
an equation, respectively. We will use s, s1, s2, . . . to denote sets, and
standard operators on sets will be employed with their usual meaning.

The following technical Lemma, whose proof is straightforward, is
the key for proving that tr is one-to-one.

Lemma A.14 The following facts hold:
(a) 1 (i.e. {∅}) is the only singleton numeral;
(b) {{s}} is not a numeral, for any set s;
(c) if n > 0 then neither {n} nor {n, {{s}}} is a numeral;
(d) if n 6= 1 then {n} 6= {{s}} for any set s.

As corollary of Lemma A.14, it is easy to see that there is no way to
confuse:

• a numeral with a set {n, {{s}}}, if n > 0;

• {n1, {{s1}}} with {n2, {{s2}}}, provided n1, n2 > 0, n1 6= n2;

• a numeral greater than 1 with a set {{s}};

• {n} with {{s}} for any set s.

This suggests the following unambiguous decoding procedure imple-
menting tr−1: let s be a set;

if s is a variable then s is its own image
elseif a set s2 such that {{s2}} ∈ t exists then
• s should be of the form tr({t2 | t1});
• decode s2 in order to find t2;
• decode s \ { {{s2}} } in order to find t1,

elseif a numeral 2 + cf ∈ s exists and it is the only numeral in s then

A.5. TRANSLATION OF . . . 253

• s should be of the form tr(f(t1, . . . , tn)), where n = ar(f);
• s \ { 2 + cf } should be of the form {{1, {{s1}}}, . . . , {n, {{sn}}}};
• decode si in order to find ti, for i = 1, . . . , n,

else the term is not of the form tr(t).

Each ‘decode’ call stands for ‘if it is possible then decode else fail’.

It is easy to verify by structural induction that for any term t and
any grounding substitution γ tr−1(tr(t))γ =s tγ. Assume, moreover,
that tr(t1) = tr(t2); since tr−1 uniquely determines a term, this means
that tr is one-to-one.

Since tr(X) = X for all variables, it is obvious to see that, in any
of the above-mentioned cases, if µ is an mgu of t1 and t2, then tr(µ) is
an mgu of tr(t1) and tr(t2). The converse is discussed below.

The standard (well-founded) case

We will prove below the desired isomorphism for mgus induced by the
function tr , when the domain of tr is exactly the universe HΣ/ ≡s (cf.
§ 3.1).

Theorem A.15 For any t1, t2 ∈ τ(Σ ∪ V) and for any mgu µ of
tr(t1)

.
= tr(t2) in a well-founded set theory with extensionality, tr−1(µ)

is an mgu of t1
.
= t2.

Proof. We prove a stronger claim:
If E is a system of equations tr(`1)

.
= tr(r1) ∧ . . . ∧ tr(`k)

.
= tr(rk) and

µ is an mgu of E, then tr−1(µ) is an mgu of `1
.
= r1 ∧ . . . ∧ `k .

= rk.
Let p be the number of occurrences of functional symbols ∅ and

{· | ·} needed to write tr(`1), tr(r1), . . . , tr(`k), tr(rk) (here we make a
‘meta’ use of ∅ and {· | ·}). If E is satisfiable, it is easy to see (cf. 4.2.4)
that there exists a function lev : FV (E) → ω, extended to terms as
follows

lev(∅) = 0
lev({t1 | t2}) = max{lev(t2), 1 + lev(t1)}

and fulfilling the condition

(∗) 0 ≤ lev(tr(`))
.
= lev(tr(r)) ≤ p for any tr(`)

.
= tr(r) in E .

254 APPENDIX A.

We prove the claim by induction on the parameter ŝ(E), defined to be
the (finite) (p+ 1)-tuple of non-negative integers

[| {e in E : lev(e) = p} |, · · · , | {e in E : lev(e) = 0} |]

ordered lexicographically.
For any equation tr(`)

.
= tr(r) in E , tr(`) and tr(r) can be in one

of the forms

1. X;

2. {cf + 2, {1, {{s1}}}, . . . , {n, {{sn}}}}, n = ar(f);

3. {{{s1}}, . . . , {{sh}} |R} (i.e. {{{s1}}, . . . , {{sh}}} ∪R);

4. {{{s1}}, . . . , {{sh}}, cf + 2, {1, {{s′1}}}, . . . , {n, {{s′n}}}}, k > 0,
n = ar(f).

Let E be tr(`1)
.
= tr(r1) ∧ . . . ∧ tr(`k)

.
= tr(rk). Suppose, without

loss of generality, that tr(`1)
.
= tr(r1) is selected.

Base) 〈1, 1〉. E has the form X
.
= Y . Trivially tr−1(µ) = µ = [X/Y].

Step)

Cases 〈1, 2〉, 〈1, 3〉, 〈1, 4〉. tr(`) is the variable X.

Suppose X does not occur in tr(r). Then ŝ(tr(`2)
.
= tr(r2)∧ . . .∧

tr(`k)
.
= tr(rk)[X/tr(r)]) is strictly less than ŝ(E). Note that

tr(t)[X/tr(r)] = tr(t[X/r]), hence for any mgu σ of 4tr(`2)
.
=

tr(r2) ∧ . . . ∧ tr(`k)
.
= tr(rk))[X/tr(r)], by induction hypothesis,

tr−1(σ) is an mgu of (`2
.
= r2 ∧ . . . ∧ `k .

= rk)[X/r].

Since any mgu µ of E has the form [X/tr(r)σ]∪σ then tr−1(µ) =
[X/rtr−1(σ)] ∪ tr−1(σ) is an mgu of `1

.
= r1 ∧ . . . ∧ `n .

= rn.

If X occurs in tr(r) then the latter should have the form (3) with
R ≡ X and X does not occur elsewhere in tr(r). By renaming
the occurrence of X in tr(r) with a new variable N we can repeat
the above reasoning. Note that N is a subset of X, hence we can
extend lev to N fulfilling lev(N) ≤ lev(X).

If X occurs elsewhere in tr(r), then E is not satisfiable; hence the
claim trivially holds.

A.5. TRANSLATION OF . . . 255

Case 〈2, 2〉. tr(`) ≡ {cf + 2, {1, {{s1}}}, . . . , {n, {{sn}}}}, n = ar(f),
and
tr(r) ≡ {cf ′ + 2, {1, {{s′1}}}, . . . , {n′, {{s′n′}}}}, n′ = ar(f ′).

If f is different from f ′ or n is different from n′, then Lemma A.14
and extensionality ensure that tr(`) and tr(r) cannot be unified.

If f ≡ f ′ and n ≡ n′, by Lemma A.14, γ is a unifier of tr(`)
.
=

tr(r) if and only if it is a unifier of s1
.
= s′1∧. . .∧sn

.
= s′n. Consider

E ′ = s1
.
= s′1∧dots∧sn

.
= s′n∧tr(`2)

.
= tr(r2)∧. . .∧tr(`k)

.
= tr(rk);

it may be the case that lev does not fulfill condition (∗) for E ′;
however it is easy to see that, if E is satisfiable, an initial level
function satisfying (∗) also for E does exists. Since ŝ(E ′) is fewer
than ŝ(E) we can apply induction hypothesis.

Case 〈3, 3〉. tr(`) ≡ {{{s1}}, . . . , {{sh}} |R},
tr(r) ≡ {{{s′1}}, . . . , {{s′h′}} |R′}.
By Lemma A.14, γ is a unifier of tr(`)

.
= tr(r) if and only if it is

a unifier of

• si1
.
= s′j1 ∧ . . . ∧ sim

.
= s′jm∧

R
.
= {{{s′h′1}}, . . . , {{s

′
h′
l
}} |N}∧

R′
.
= {{{sh1}}, . . . , {{shp}} |N},

with m, l, p ≥ 0, if R is different from R′;

• si1
.
= s′j1 ∧ . . . ∧ sim

.
= s′jm ∧R

.
= {{{s′h′1}}, . . . , {{s

′
h′
l
}},

{{sh1}}, . . . , {{shp}} |N}
with m, l, p ≥ 0, if R ≡ R′.

If we replace tr(`)
.
= tr(r) in E with si1

.
= s′j1 ∧ . . . ∧ sim

.
= s′jm

and apply the substitution
[R/{{{s′h′1}}, . . . , {{s

′
h′
l
}} |N}, R′/{{{sh1}}, . . . , {{shp}} |N}], or

[R/{{{s′h′1}}, . . . , {{s
′
h′
l
}}, {{sh1}}, . . . , {{shp}} |N}],

respectively, eventually adapting the level function as shown in
the previous case and extending it for N fulfilling

lev(N) ≤ min{lev(R), lev(R′)},

we can apply the induction hypothesis to the obtained system.

256 APPENDIX A.

Case 〈3, 4〉, 〈4, 4〉. Proof are similar (just a bit longer) than the ones
of the previous two cases.

〈2, 3〉, 〈2, 4〉. In this case there are no unifiers for tr(`1)
.
= tr(r1), hence

there are no mgus for E .

Remaining cases. For any other case 〈i, j〉, refer to the corresponding
case 〈j, i〉.

A.15 2

Analyzing the proof of the Theorem, it ensues that for any mgu µ =
[X1/s1, . . . , Xn/sn] of tr(t1)

.
= tr(t2), then s1 = tr(r1), . . . , sn = tr(rn)

for some terms r1, . . . , rn. The corresponding mgu

tr−1(µ) = [X1/tr−1(s1), . . . , Xn/tr−1(sn)]

can be easily obtained using the described procedure for computing
tr−1.

The rational (non-well-founded) case

The definition of tr makes sense even for infinite Σ-terms. Among them,
the class of rational terms (i.e. infinite terms that can be represented
by a finite number of equations between Σ ∪ V-terms).

Assume {· | ·} does not belong to Σ and consider the rational tree
theory presented in [74] (there named E∗r), consisting of the axiom
schemata

(1) f(x1, . . . , xn)
.
= f(y1, . . . , yn)→ x1

.
= y1 ∧ · · · ∧ xn .

= yn
(2) f(x1, . . . , xm) 6 .= g(y1, . . . , yn)
(3) ∀ȳ ∃!x1, . . . , xn (x1

.
= t1[x̄, ȳ] ∧ · · · ∧ xn .

= tn[x̄, ȳ]) .

(that is, axioms schemata (F1), (F2), and (F4) of § 3.2). Axiom schema
(3) reinforces (with uniqueness) the corresponding axiom of [31]:

A system of equations of the following form6 has at least
one tree-solution: X1

.
= t1 ∧ . . . ∧Xn

.
= tn, where the Xi’s

are distinct variables and the ti’s are any terms.

6Defined as solved form.

A.5. TRANSLATION OF . . . 257

A few considerations about the meaning of mgu of two rational trees
are due.

The mgu of e ≡ X
.
= f(X) is the substitution µ = [X/f(f(f(· · ·)))].

In other words we assign the rational term represented by e to X.
Analogously, the mgu of tr(e) ≡ X

.
= {cf + 2, {1, {{X}}}} is the

substitution

µ′ = [X/{cf + 2, {1, {{
{cf + 2, {1, {{
{cf + 2, {1, {{ · · · }}}} · · · }].

µ′ is the function assigning the non well-founded set represented by e
to X (µ′ is, in a sense, tr(µ)).

Notice that the uniqueness forced by axiom schema (3) has as
counter-part the anti-foundation axiom AFA. For instance,

µ = [X/f(f(f(· · ·))), Y/f(f(f(· · ·)))]

is an mgu for the system

E = X
.
= f(Y) ∧ Y .

= f(X).

This means (existence and uniqueness) that X = Y . Moreover,

tr(E) = X
.
= {cf + 2, {1, {{Y }}}} ∧ Y = {cf + 2, {1, {{X}}}}

forces X to be equal to Y by AFA.

We recall here the solved form algorithm for rational terms described
in [31]

1. X
.
= X ∧ E ⇒ E

2. X
.
= Y ∧ E ⇒ E [X ← Y]

3. t
.
= X ∧ E ⇒ X

.
= t ∧ E

4. X
.
= t1 ∧X .

= t2 ∧ E ⇒ X
.
= t1 ∧ t1 .

= t2 ∧ E
5. f(t1, . . . , tm)

.
= g(t′1, . . . , t

′
n) ∧ E ⇒ fail

6. f(t1, . . . , tn)
.
= f(t′1, . . . , t

′
n) ∧ E ⇒ t1

.
= t′1 ∧ · · · ∧ tn

.
= t′n ∧ E

where X and Y denote variables, t denotes any non variable term, ti, t
′
i

denote any term, f and g are different functional symbols.

Let Σ be a signature and V a set of variables.

258 APPENDIX A.

Theorem A.16 Let t1 and t2 be Σ ∪ V-terms. µ is the (unique) mgu
of t1 and t2 with respect to E∗r iff tr(µ) is the (unique) mgu of tr(t1)
and tr(t2) with respect to any theory having the universe of hypersets
([3]) as a model.

Proof. We prove that if E0, . . . , Em is a (terminating) computation
of the unification algorithm above, then tr(E0), . . . , tr(Em) is the cor-
responding deterministic computation performed by a unification algo-
rithm for hypersets. We prove the claim by induction on m.

In the base case (m = 0, i.e. E0 is in solved form) the relations
between axiom (3) of [74] and the anti-foundation axiom AFA are
discussed. A few preliminaries are due.

Let E = X1
.
= t1∧. . .∧Xn

.
= tn be a solved form system of equations

(i.e. Xi 6≡ Xj when i 6= j); Xi may occur in tj for any i, j ∈ {1, . . . , n}.
Let Y1, . . . , Yk (abbr. Ȳ) be the variables in t1, . . . , tn (abbr. t̄)

distinct from X1, . . . , Xn (abbr. X̄). With [X̄/X̄(k)] we denote the

substitution [X1/X
(k)
1 , . . . , Xn/X

(k)
n], where for any i, j, k Xi and X

(k)
j

are distinct variables, and, moreover, if 〈i, j〉 6= 〈h, k〉, then X
(i)
j 6= X

(h)
k .

Let Eω be the system X̄
.
= t̄[X̄/X̄(1)] ∧ X̄(1) .

= t̄[X̄/X̄(2)] ∧ X̄(2) .
=

t̄[X̄/X̄(3)]∧. . .. Equivalence between E and Eω holds by standard equal-
ity axioms. Let θEω be the substitution

[X̄(1)/t̄[X̄/X̄(2)], X̄(2)/t̄[X̄/X̄(3)], . . .] .

E0 is a solved form system. For any tuple of trees r̄ assigned to Ȳ ,
axiom (3) ensures existence and uniqueness of a (tree) solution γ for
X̄. Such a solution should be exactly

γ = Eω0 θEω0 θEω0 θEω0 · · · |X1···Xn

Consider tr(E0); as shown in example (1.8) of [3], for any set assign-
ment to Ȳ , the existence and uniqueness of a (set) solution for (tr(E0))ω,
is a simple consequence of AFA. It is easy to see that (tr(E0))ω is the
same as tr(Eω0). As above, the (unique) solution to the last system will
be

δ = (tr(E0))ωθ(tr(E0))ωθ(tr(E0))ωθ(tr(E0))ω · · · |X1···Xn

A.5. TRANSLATION OF . . . 259

It is a matter of routine to see that, provided γ is computed mapping
Ȳ into r̄, if δ is computed mapping Ȳ into tr(r̄), then δ is exactly tr(γ).

For the induction step, let E0 = e1 ∧ . . .∧ ek; assume that the unifi-
cation algorithm terminates in m + 1 step. Without loss of generality,
assume moreover that the first equation is the one selected at the first
step. The only two non trivial cases are the following:

• e1 ≡ f(t1, . . . , tm)
.
= g(t′1, . . . , t

′
n). In this case it follows from the

freeness axioms that E0 is equivalent to false. On the other hand,
it is a simple consequence of Lemma A.14 that tr(f(t1, . . . , tm))
cannot be unified with tr(g(t′1, . . . , t

′
n)).

• e1 ≡ f(`1, . . . , `n)
.
= f(r1, . . . , rn). By induction hypothesis tr(Em)

is the solved form of tr(E1) = tr(`1)
.
= tr(r1) ∧ . . . ∧ tr(`n)

.
=

tr(rn)
.
= tr(e2)

.
= . . .

.
= tr(ek). We only need to prove that tr(E1)

is equivalent, from the hyperset point of

view, to tr(E0). This follows from Lemma A.14 which ensures, in
particular, that

{cf + 2,

{1, {{tr(`1)}}},
...

{n, {{tr(`n)}}}}

.
=

{cf + 2,

{1, {{tr(r1)}}},
...

{n, {{tr(rn)}}}}

if and only if
tr(`1)

.
= tr(r1),
...

tr(`n)
.
= tr(rn)

A.16 2

To complete this part we briefly discuss the case in which t1 and
t2 are (blended) terms written in an enriched language containing the
binary set-theoretic operator {· | ·}.

A unification algorithm for such case has been presented in § 4.3.3;
as already said, its skeleton is the same as that of [31] and the most
peculiar feature is the treatment of equations of the form

260 APPENDIX A.

{t0, . . . , tm | t} .
= {t′0, . . . , t′n | t′}

This kind of equations can be solved adapting the technique employed
to deal with the other cases. In practice we want to reduce

{t0, . . . , tm | t} .= {t′0, . . . , t′n | t′}

to a list of equations involving t0, . . . , tm, t, t
′
0, . . . , t

′
n, t
′ only. To this

end turns out to be convenient to introduce a certain amount of non-
determinism taking special care of the following cases:

1. t and t′ are both of the form f(. . .), f different from {· | ·};

2. one from t and t′ is f(. . .) with f different from {· | ·} and the
other is a variable;

3. t and t′ are both variables.

As we have seen in Chapter 4, the last case is the most challenging one,
since a wrong sequence of non-deterministic choices can easily cause
non-termination.

Moreover, even without entering any detail of a specific unification
algorithm based on the above outlined ideas, we can argue that a result
corresponding to Theorem A.16 holds also for the blended case. The
main motivation for this fact is the observation that whatever is the
choice made to reduce

{t0, . . . , tm | t} .
= {t′0, . . . , t′n | t′}

in E , the corresponding choice to reduce

{ {{tr(t0)}}, . . . , {{tr(tm)}} | tr(t) } .
=

{{{tr(t′0)}}, . . . , {{tr(t′n)}} | tr(t′) }.

in tr(E) can be performed. The correspondence between the mgus µ
for E and tr(µ) for tr(E) continues to hold in view of Lemma A.14.

A.5. TRANSLATION OF . . . 261

An alternative 3-step reduction

We present below another injective mapping from τ(Σ ∪ V) to U(V).
Let Σ be {{· | ·}, f1, . . . , fk}. We split such a definition into three steps:
this creates two interesting intermediate equivalence results.

Colored Sets of Colored Sets. As first step we define the function

tr 1 : τ(Σ ∪ V)→ τ({{· | ·}, c0, . . . , cA, cA+1, . . . , cA+k} ∪ V)

where A = max{ar(f) : f ∈ Σ \ {{· | ·}} }.

tr 1(X) = X
tr 1(fi(t1, . . . , tn)) = {{tr 1(t1)}c1 , . . . , {tr 1(tn)}cn}cA+i

tr 1({t | s}) = {{tr 1(t)}c0 | tr 1(s)}

Observe that any element in tr 1[τ(Σ)] is the concrete form of a
hereditarily finite set based on a color. c0, . . . , cA+k are the pos-
sible (distinct) colors of such sets. Note that such new constants
can occur in a set only as colors, not as elements.

Pure Sets with ur-elements. The second translation step is to en-
code the above objects into a another universe of terms represent-
ing sets. This time sets are not colored; however non-sets (atoms)
can also occur as elements:

tr 2(X) = X
tr 2(ci) = {ci}

tr 2({t | s}) = {tr 2(t) | tr 2(s)}

Observe that tr 2 is defined from τ({{· | ·}, c0, . . . , cA, cA+1, . . . ,
cA+k} ∪ V) into itself.

Pure Sets. In the third step we perform the elimination of the A+ k
urelements in a similar way to the one used in early works on
set theory. Briefly, we raise the rank of any set by A + k and
assign to each constant ci the set {· · · {︸ ︷︷ ︸

i

∅ } · · ·}︸ ︷︷ ︸
i

. In this way all

the constants are forced to remain distinct. Moreover, any other
set cannot be identified with such objects since its rank has been
sufficiently raised.

262 APPENDIX A.

tr 3(X) = X
tr 3(∅) = ∅
tr 3(ci) = {· · · {︸ ︷︷ ︸

i

∅ } · · ·}︸ ︷︷ ︸
i

tr 3({t | s}) = {· · · {︸ ︷︷ ︸
A+k+1

{tr 3(t) | tr 3(s)} } · · ·}︸ ︷︷ ︸
A+k+1

The complete coding function tr is simply the composition of tr 1, tr 2,
and tr 3.

A.6 Benchmark tables

The following tables report some numerical values for the functions
computing the minimal number of m.g.u.’s for the sample problems
presented in § 4.4. The number on the ‘x’ axis denotes the value for m
(the first argument). Partially defined matrices are symmetrical.

(1) 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 2 6 14 30 62 126
3 6 36 150 540 1806
4 24 240 1560 8400
5 120 1800 16800
6 720 15120
7 5040

(2) 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 2 6 14 30 62 126
3 15 48 165 558 1827
4 184 680 2664 11032
5 2945 13080 59605
6 63756 320292
7 1748803

Problem (3) (numerically equal to problem (4)) would require a three-
dimensional matrix to represent its values. Assume k = 3:

(3) 1 2 3 4 5 6 7

1 7 19 61 223 877 3559 14581
2 56 195 746 3093 13808 65391
3 705 2859 12681 60231 302829
4 12226 56891 284286 1510483
5 277091 1448325 8044117
6 7888698 45590823
7 273498973

A.6. BENCHMARK TABLES 263

(5) 1 2 3 4 5 6 7

1 2 2 2 2 2 2 2
2 4 12 28 60 124 252 508
3 6 30 126 462 1566 5070 15966
4 8 56 344 1880 9368 43736 195224
5 10 90 730 5370 36250 228090 1359130
6 12 132 1332 12372 106452 856212 6505812
7 14 182 2198 24710 259574 2562182 23928758

(6) 1 2 3 4 5 6 7

1 2 2 2 2 2 2 2
2 5 12 28 60 124 252 508
3 10 42 144 486 1596 5106 16008
4 19 126 584 2584 11208 48248 205864
5 36 360 2200 11930 63000 330450 1733000
6 69 1016 8118 52740 325812 1983084 12073836
7 134 2870 29876 231518 1641444 11310530 77511140

(7) 1 2 3 4 5 6 7

1 2 4 8 16 32 64 128
2 11 30 85 248 735 2194
3 103 356 1269 4678 17735
4 1441 5940 25237 110668
5 27631 131142 640513
6 685507 3660958
7 21169037

(8) 1 2 3 4 5 6 7

1 4 9 18 35 68 133 262
2 39 131 413 1185 3459 10071
3 652 2811 11402 44983 175224
4 15937 82499 409897 1997795
5 524056 3133773 18217350
6 21998671 148144723
7 1136372140

Solutions Computed by a Naive Algorithm (see § 4.4.2)

(2) 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 5 13 29 61 125 253
3 73 301 1081 3613 11953
4 2069 11581 57749 268381
5 95401 673261 4306681
6 6487445 55213453
7 610093513

(7) 1 2 3 4 5 6 7

1 4 10 22 46 94 190 382
2 13 67 265 931 3073 9787 30505
3 46 424 2692 14356 69436 316324 1386172
4 193 2845 26689 201637 1343353 8259805 48109009
5 976 21046 273946 2785306 24436786 194636506 1449663106
6 5869 173215 2982457 39232711 437961529 4380170455 40526990857
7 41098 1582372 34748680 573495616 3913855304 65037766320 834652259744

264 APPENDIX A.

(8) 1 2 3 4 5 6 7

1 4 10 22 46 94 190 382
2 52 208 736 2440 7792 24328
3 1372 7516 37012 170668 754132
4 60316 418996 2653036 15780916
5 3964684 33340420 258420172
6 363503932 3587040388
7 44280657292

Bibliography

[1] Abbott, E. A. Flatland. A Romance of Many Dimensions.
(Italian edition) Adelphi, Milan, 1993.

[2] Abian, A. The Theory of Sets and Transfinite Arithmetic. W.
B. Saundners Company, Philadelphia and London, 1965.

[3] Aczel., P. Non-well-founded sets., vol. 14 of Lecture Notes,
Center for the Study of Language and Information. Stanford,
1988.

[4] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The
Design and Analysis of Computer Algorithms. Addison-Wesley,
1974.

[5] Aho, A. V., Sethi, R., and Ullman, J. D. COMPILERS:
Principles, Techniques, and Tools. Addison-Wesley, 1985.

[6] Aiken, A. Set Constraints: Results, Applications and Future
Directions. Technical report, University of California, Berkeley,
1994.

[7] Aliffi, D., Dovier, A., Omodeo, E. G., and Rossi, G.
Unification of hyperset terms. Unpublished proc. of Workshop
on Logic Programming with Sets, in conjunction with ICLP’93,
June 1993.

[8] Apt, K. R. Introduction of Logic Programming. In Handbook
of Theoretical Computer Science, vol. B: Formal Models and Se-
mantics, J. van Leeuwen, Ed. Elsevier and The MIT Press, 1990.

265

266 BIBLIOGRAPHY

[9] Apt, K. R., and Bol, R. Logic Programming and Negation:
a Survey. Journal of Logic Programming 19,20 (1994), 9–71.

[10] Arenas-Sánchez, and Dovier, A. Minimal Set Unification.
Tr 6/95, Dipartimento di Informatica, Univ. di Pisa, April 1995.

[11] Arenas-Sánchez, P., and Dovier, A. Minimal Set Unifica-
tion. In Proc. Seventh Int’l Symp. on Programming Language Im-
plementation and Logic Programming (1995), M. Hermenegildo
and S. D. Swierstra, Eds., vol. 982 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 397–414.

[12] Barbuti, R., Mancarella, P., Pedreschi, D., and
Turini, F. A transformation approach to negation in logic pro-
gramming. Journal of Logic Programming 8 (1990), 201–228.

[13] Barwise, J., and Moss, L. Hypersets. The Mathematical
Intelligencer 13, 4 (1991), 31–41.

[14] Barwise, J., and Moss, L. Applying AFA. Notes for a Tutorial
on Non-Wellfounded Sets, 1993.

[15] Beeri, C., Naqvi, S., Shmueli, O., and Tsur., S. Set
Constructors in a Logic Database Language. Journal of Logic
Programming 10, 3 (1991), 181–232.

[16] Bellé, D., and Parlamento, F. Undecidability of Weak
Membership Theories. In Proceedings of the International Con-
ference on Logic and Algebra (in memory of R. Magari) (1994).
Siena.

[17] Bernays, P. A system of axiomatic set theory. Part I. The
Journal of symbolic logic 2 (1937), 65–77.

[18] Börger, E., and Rosenzweig, D. The Mathematics of Set
Predicates in Prolog. In Computational Logic and Proof Theory
(1993), D. Mundici, G. Gottlob, and A. Leitsch, Eds., Lecture
Notes in Computer Science, Springer-Verlag, Berlin.

BIBLIOGRAPHY 267

[19] Bruscoli, P., Dovier, A., Pontelli, E., and Rossi., G.
Compiling Intensional Sets in CLP. In Proc. Eleventh Int’l Conf.
on Logic Programming (1994), P. Van Entenryck, Ed., The MIT
Press, Cambridge, Mass., pp. 647–661.

[20] Burckert, H.-J. A resolution principle for a logic with re-
stricted quantifiers. Springer-Verlag, Berlin, 1991.

[21] Bürckert, H.-J., Herold, A., Kapur, D., Siekmann,
J. H., Stickel, M. E., Tepp, M., and Zhang, H. Opening
the AC-Unification Race. Journal of Automated Reasoning 4, 4
(1988), 465–474.

[22] Büttner, W. Unification in the Data Structure Sets. In Proc.
of the Eight International Conference on Automated Deduction
(1986), J. K. Siekmann, Ed., vol. 230, Springer-Verlag, Berlin,
pp. 470–488.

[23] Büttner, W., and Simonis, H. Embedding Boolean Expres-
sions into Logic Programming. Journal of Symbolic Computation
4 (1987), 191–205.

[24] Cantone, D., Ferro, A., and Omodeo., E. G. Computable
Set Theory, Vol. 1. International Series of Monographs on Com-
puter Science. Clarendon Press, Oxford, 1989.

[25] Chan, D. Constructive Negation Based on the Completed
Database. In Proc. Fifth International Conference and Sympo-
sium on Logic Programming (1988), R. Kowalski and K. Bowen,
Eds., The MIT Press, Cambridge, Mass., pp. 111–125.

[26] Chan, D. An Extension of Constructive Negation and its Appli-
cation in Coroutining. In Proc. North-American Conference on
Logic Programming 89 (1989), E. Lusk and R. Overbeek, Eds.,
The MIT Press, Cambridge, Mass., pp. 477–493.

[27] Chang, C. C., and Keisler, H. J. Model Theory. Studies in
Logic. North Holland, Amsterdam, 1973.

268 BIBLIOGRAPHY

[28] Clark, K. L. Negation as Failure. In Logic and Databases,
H. Gallaire and J. Minker, Eds. Plenum Press, 1978, pp. 293–
321.

[29] Cohen, P. J. Set Theory and the Continuum Hypothesis. W.
A. Benjamin, New York, 1966.

[30] Colmerauer, A. Equations and inequations on finite and infi-
nite trees. In Proceedings of the 2nd Int’l Conf. on Fifth Genera-
tion Computer Systems (1984), pp. 85–99.

[31] Colmeraurer, A. Prolog and Infinite Trees. In Logic Program-
ming, K. L. Clark and S.-A. Tarnlund, Eds. Academic Press, New
York, 1982, pp. 231–251.

[32] Debray, S., Hermenegildo, M., and Warren, R. Global
Flow Analysis as a Practical Compilation Tool. Journal of Logic
Programming 13, 4 (1992).

[33] Dovier, A. A Language with Finite Sets Embedded in the CLP
Scheme. In Selected papers from 4rd Int’l Workshop on Exten-
sion of Logic Programming (1994), R. Dyckhoff, Ed., vol. 798 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin,
pp. 77–93.

[34] Dovier, A., Omodeo, E. G., and Policriti, A. Hyperset
constraint handling. Rr 21/94, Dipartimento di Matematica ed
Informatica, Univ. di Udine, December 1994.

[35] Dovier, A., Omodeo, E. G., Policriti, A., and Rossi,
G. Solving Systems of Equations over Hypersets. In GULP–
PRODE’94 1994 Joint Conf. on Declarative Programming (1994),
M. Alpuente, R. Barbuti, and I. Ramos, Eds., pp. 403–417.

[36] Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G.
{log}: A Language for Programming in Logic with Finite Sets.
To appear in the Journal of Logic Programming.

[37] Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi., G.
{log}: A Logic Programming Language with Finite Sets. In Proc.

BIBLIOGRAPHY 269

Eighth Int’l Conf. on Logic Programming (1991), K. Furukawa,
Ed., The MIT Press, Cambridge, Mass., pp. 111–124.

[38] Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G.
Embedding Finite Sets in a Logic Programming Language. In
Selected papers from 3rd Int’l Workshop on Extension of Logic
Programming (1993), E. Lamma and P. Mello, Eds., vol. 660 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin,
pp. 150–167.

[39] Dovier, A., and Pontelli., E. La Programmazione Logica
con Insiemi. Master’s thesis, Università di Udine, 1991. In italian.

[40] Dovier, A., and Pontelli., E. A WAM based Implementa-
tion of a Logic Language with Sets. In Proc. Fifth Int’l Symp. on
Programming Language Implementation and Logic Programming
(1993), M. Bruynooghe and J. Penjam, Eds., vol. 714 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, pp. 275–290.

[41] Dovier, A., Pontelli, E., and Rossi, G. The CLP lan-
guage {log}, and the relation between Intensional sets and Nega-
tion. NMSU-CSTR-9503, Department of Computer Science, Las
Cruces, New Mexico, USA, March 1995.

[42] Dovier, A., and Rossi, G. Embedding Extensional Finite
Sets in CLP. In Proc. of Int’l Logic Programming Symposium,
ILPS’93 (1993), D. Miller, Ed., The MIT Press, Cambridge,
Mass., pp. 540–556.

[43] Drabent, W. What is Failure? An Approach to Constructive
Negation. Tech. rep., Linkoping University, october 1993.

[44] Enderton, H. B. A mathematical introduction to logic. Aca-
demic Press, 1973. 2nd printing.

[45] Garey, M. R., and Johnson, D. S. Computers and In-
tractability – A Guide to the Theory of NP-Completeness. W.
H. Freeman and Company, New York, 1979.

270 BIBLIOGRAPHY

[46] Gervet, C. Conjunto: Constraint Logic Programming with
Finite Set Domains. In Proc. of International Logic Program-
ming Symposium, ILPS’94 (1994), M. Bruynooghe, Ed., The
MIT Press, Cambridge, Mass., pp. 339–358.

[47] Gogol., D. The ∀n∃-completeness of Zermelo-Fraenkel set the-
ory. Zeitschr. f. Logik und Grundlagen d. Math. 24, 4 (1978),
289–290.

[48] Heintze, N., and Jaffar, J. Set Constraints and Set-Based
Analysis. Technical report, Carnegie Mellon University, 1994.

[49] Herbrand, J. Recherches sur la theorie de la demonstration.
Master’s thesis, Université de Paris, 1930. Also in Ecrits logiques
de Jacques Herbrand, PUF, Paris, 1968.

[50] Hill, P. M., and Lloyd, J. W. The Gödel report. Tech. Rep.
TR-91-02, Computer Science Department, University of Bristol,
1991.

[51] Hill, P. M., and Lloyd, J. W. The Gödel Programming
Language. The MIT Press, Cambridge, Mass., 1994.

[52] Hopcroft, J. E., and Ullman, J. D. Introduction to Au-
tomata Theory, Languages and Computations. Addison-Wesley,
1979.

[53] Jaffar, J., and Lassez, J.-L. Constraint Logic Programming.
Tech. rep., Department of Computer Science, Monash University,
June 1986.

[54] Jaffar, J., and Maher, M. J. Constraint Logic Program-
ming: A Survey. The Journal of Logic Programming 19–20
(1994), 503–581.

[55] Jayaraman, B. Implementation of Subset-Equational Pro-
grams. Journal of Logic Programming 12, 4 (1992), 299–324.

[56] Jayaraman, B., and Moon, K. Implementation of Subset
Logic Programs. Technical report, 95–14, Department of Com-
puter Science, SUNY Buffalo, March 1995.

BIBLIOGRAPHY 271

[57] Jayaraman, B., and Plaisted, D. A. Programming with
Equations, Subsets and Relations. In Proceedings of NACLP89
(1989), E. Lusk and R. Overbeek, Eds., The MIT Press, Cam-
bridge, Mass., pp. 1051–1068. Cleveland.

[58] Jech, T. J. Set Theory. Academic Press, 1978.

[59] Kapur, D., and Narendran, P. NP-completeness of the set
unification and matching problems. In 8th International Con-
ference on Automated Deduction (1986), J. H. Siekmann, Ed.,
vol. 230 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, pp. 489–495.

[60] Kirk Snyder, W. The SETL2 Programming Language. Re-
search report, Courant Institute of Mathematical Sciences, New
York, January 1990.

[61] Knuth, D. E. The Art of Computer Programming, vol. 1–
Fundamental Algorithms. Addison-Wesley, 1968.

[62] Kozen, D. Logical Aspects of Set Constraints. In Proceedings
1993 Conference on Computer Science Logic) (1993), E. Börger,
Y. Gurevich, and K. Meinke, Eds., vol. 832 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp. 175–188.

[63] Kozen, D. Set Constraints and Logic Programming. Technical
report 94-1467, Computer Science Department, Cornell Univer-
sity, 1994.

[64] Kunen, K. Set Theory. An Introduction to Independence Proofs.
Studies in Logic. North Holland, Amsterdam, 1980.

[65] Kuper, G. M. On the Expressive Power of Logic Programming
with Sets. In Proc. 7th ACM SIGMOD Symposium (1988).

[66] Kuper, G. M. Logic Programming with Sets. Journal of Com-
puter and System Science 41, 1 (1990), 66–75.

[67] Lassez, J. L., Maher, M. J., and Marriot, K. Unification
revisited. In Lecture Notes in Computer Science (1986), vol. 306.

272 BIBLIOGRAPHY

[68] Legeard, B., and Legros, E. CLPS: A Set Constraints Logic
Programming Language. Tech. rep., Laboratoire d’Automatique
de Besançon, Institut de Productique, Besançon, France, Febru-
ary 1991.

[69] Legeard, B., and Legros, E. Short overview of the CLPS
system. In Proc. Third Int’l Symposium on Programming Lan-
guage Implementation and Logic Programming (august 1991),
J. Maluszynsky and M. Wirsing, Eds., vol. 528 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, pp. 431–433. Passau,
Germany.

[70] Levy, A. Basic Set Theory. Perspectives in Mathematical Logic.
Springer Verlag, 1979.

[71] Lewis, H. R. Unsolvable Classes of Quantificational Formulas.
Advanced book Program. Addison–Wesley Publishing Company,
Inc., 1979.

[72] Livesey, M., and Siekmann, J. Unification of Sets and Mul-
tisets. Technical report, Institut für Informatik I, Universität
Karlsruhe, 1976.

[73] Lloyd, J. W. Foundations of Logic Programming. Springer-
Verlag, Berlin, 1987. Second edition.

[74] Maher, M. J. Complete Axiomatizations of the Algebras of
Finite, Rational and Infinite Trees. In Proceedings of 3rd Sympo-
sium Logic in Computer Science (Edinburgh, 1988), pp. 349–357.

[75] Mal’cev, A. Axiomatizable Classes of Locally Free Algebras of
Various Types. In The Metamathematics of Algebraic Systems,
Collected Papers. North Holland, Amsterdam, 1971, ch. 23.

[76] Marchini, C. Difficoltà del concetto di finito in Teoria degli
insiemi. Cultura e Scuola (1991).

[77] Martelli, A., and Montanari, U. An efficient unification
algorithm. ACM Transactions on Programming Languages and
Systems 4 (1982), 258–282.

BIBLIOGRAPHY 273

[78] Martelli, A., and Rossi, G. Stepwise Development of an
Algorithm for Unification over Infinite Terms. Computers and
Artificial Intelligence 9(3) (1990), 209–239.

[79] Mendelson, E. Introduction to Mathematical Logic. Van Nos-
trand, Princeton, N. J., 1979.

[80] Montagna, F., and Mancini, A. A minimal predicative set
theory. Notre Dame Journal of Formal Logic 35 (1994), 186–203.

[81] Munakata, T. Notes on implementing sets in prolog. CACM
35, 3 (1992).

[82] Naftalin., M. An experiment in practical semantics. In
ESOP86 (1986), vol. 213 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin.

[83] Naqvi, S., and Tsur., S. A Logical Language for Data and
Knowledge Bases. Computer Science Press, NY, 1989.

[84] Omodeo, E. G., Parlamento, F., and Policriti., A. De-
cidability of ∃∗∀-sentences in Membership Theories. Research
Report 6, University of Udine, may 1992.

[85] Omodeo, E. G., Parlamento, F., and Policriti, A. A
derived algorithm for evaluating ε-expressions over abstract sets.
J. Symbolic Computation 15 (1993).

[86] Omodeo, E. G., and Policriti, A. Solvable set/hyperset
contexts: I. some decision procedures for the pure, finite case.
Communication on Pure and Applied Mathematics Special issue
dedicated to J. T. Schwartz . To appear.

[87] Omodeo, E. G., and Policriti, A. Decision procedures for
set/hyperset contexts. In Design and implementation of symbolic
computation systems (1993), vol. 722, Springer-Verlag, Berlin,
pp. 192–215.

274 BIBLIOGRAPHY

[88] Omodeo, E. G., Policriti, A., and Rossi., G. F. Che
genere di insiemi/multi-insiemi/iperinsiemi incorporare nella pro-
grammazione logica? In Proc. Eighth Italian Conference on Logic
Programming (1993), D. Saccà, Ed., pp. 55–70.

[89] Parlamento, F., and Policriti, A. Decision Procedures for
Elementary Sublanguages of Set Theory IX. Unsolvability of the
Decision Problem for a Restricted Subclass of δ0-Formulas in Set
Theory. Communications of Pure and Applied Mathematics 41
(1988), 221–251.

[90] Parlamento, F., and Policriti, A. The logically simplest
form of the infinity axiom. American Mathematical Society 103
(1988).

[91] Parlamento, F., and Policriti, A. Note on “The logically
simplest form of the infinity axiom”. American Mathematical
Society 108, 1 (January 1990), 285–286.

[92] Paterson, M. S., and Wegman, M. N. Linear unification.
Journal of Comuter System Science 16, 2 (1978), 158–167.

[93] Przymusinski, T. On constructive negation in logic program-
ming. Tech. rep., University of Texas in El-Paso, 1989.

[94] Rabin, M. O. Elements of recursion theory. In Handbook of
Mathematical Logic, J. Barwise, Ed. North Holland, Amsterdam,
1977.

[95] Robinson, J. A. A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM 12 (1965), 23–41.

[96] Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., and
Schonberg., E. Programming with sets, an introduction to
SETL. Springer-Verlag, Berlin, 1986.

[97] Shepherdson, J. C. Negation in Logic Programming. In
Foundations of Deductive Databases and Logic Programming,
J. Minker, Ed. Morgan Kaufmann, 1988, pp. 19–88.

BIBLIOGRAPHY 275

[98] Shepherdson, J. C. Language and equality theory in logic
programming. Research Report PM-91-02, University of Bristol,
1991.

[99] Shmueli, O., Tsur, S., and Zaniolo, C. Compilation of
Set Terms in the Logic Data Language (LDL). Journal of Logic
Programming 12, 1 (1992), 89–120.

[100] Shostak, R. E. Deciding Combinations of Theories. In 6th
Conference on Automated Deduction (1982), D. W. Loveland,
Ed., vol. 138 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 209–222.

[101] Siekmann, J. H. Unification theory. In Unification, C. Kirchner,
Ed. Academic Press, 1990.

[102] Spivey., J. M. The Z Notation: A reference Manual, 2nd edition.
International Series in Computer Science. Prentice Hall, 1992.

[103] Stolzenburg, F. An Algorithm for General Set Unification and
its Complexity. In Unpublished proc. of Workshop on Logic Pro-
gramming with Sets, in conjunction with ICLP’93 (June 1993),
E. G. Omodeo and G. Rossi, Eds. Budapest.

[104] Stuckey, P. J. Negation and Constraint Logic Programming.
Information and Computation 1 (1995), 12–33.

[105] Tarski, A. Sur les ensembles fini. Fundamenta Mathematicae
VI (1924), 45–95.

[106] Tarski, A., and Givant, S. A Formalization of Set Theory
without Variables, vol. 41 of Colloquium Publications. American
Mathematical Society, 1986.

[107] Tarski, A., Mostowski, A., and Robinson, R. M. Unde-
cidable Theories. North Holland, Amsterdam, 1953.

[108] Turner, D. An overview of MIRANDA. SIGPLAN Notices 21,
12 (1986).

276 BIBLIOGRAPHY

[109] van Heijenoort, J. From Frege to Gödel, A Source Book in
Mathematical Logic, 1879–1931. Harvard University Press, Cam-
bridge, Massachusetts, London, England, 1977.

[110] Vaught, R. L. On a Theorem of Cobham Concerning Undecid-
able Theories. In Proceedings of the 1960 International Concress
(1962), E. Nagel, P. Suppes, and A. Tarski, Eds., Stanford Uni-
versity Press, Stanford, pp. 14–25.

