
Operational and Abstract Semantics of the Query Language G-Log

Agostino Cortesi
Dip. di Informatica

Università Ca’ Foscari
Via Torino, 155

30173 Venezia – Mestre (Italy)
cortesi@dsi.unive.it

Agostino Dovier
Dip. di Informatica
Università di Verona
Strada Le Grazie, 15
37134 Verona (Italy)

dovier@sci.univr.it

Elisa Quintarelli and Letizia Tanca
Dip. di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci, 32

20133 Milano (Italy)
quintare|tanca@elet.polimi.it

Abstract

The amount and variety of data available electronically has dramatically increased in the last decade;
however, data and documents are stored in different ways and do not usually show their internal structure.
In order to take full advantage of the topological structure of digital documents, and particularly web
sites, their hierarchical organization should be exploited by introducing a notion of query similar to the
one used in database systems. A good approach, in that respect, is the one provided by graphical query
languages, originally designed to model object bases and later proposed for semi-structured data, like
G-Log. The aim of this paper is to provide suitable graph-based semantics to this language, supporting
both data structure variability and topological similarities between queries and document structures. A
suite of operational semantics based on the notion of bisimulation is introduced both at the concrete level
(instances) and at the abstract level (schemata), giving rise to a semantic framework that benefits from the
cross-fertilization of tools originally designed in quite different research areas (Databases, Concurrency,
Logics, Static Analysis).

1 Introduction

The amount and variety of data available electronically has dramatically increased in the last decade: such
data may be structured, when coming from relational or object-oriented databases, or completely unstruc-
tured, when they consist of simple collections of text or image files. Intermediate situations arise when some
kind of structure is present, as for instance in HTML files, in digital libraries or in XML documents [13].
However, a major drawback which precludes the appropriate benefits of this information richness is that the
data sources stored in different forms do not usually show such internal structure.

A number of research projects are currently addressing the problem of accessing in a uniform way this
plethora of semistructured data. Among these, we can cite LOREL [23], UnQL [5], WebSQL [24], We-
bOQL [3], StruQL [15].

Effectiveness and efficiency are mandatory requirements when accessing semi-structured information.
Therefore, appropriate search techniques are more than necessary. Pure keyword-based search techniques
proved to be ineffective, since in that setting only the document lexicon is taken into account, while the
intrinsic semantics conveyed by the document structure is often lost. In practice, this leads to the retrieval
of too many documents, since also the ones that do not share the required structure are often included into
the result.

1

In order to take full advantage of the document structure, its hierarchical (or topological) organization
should be somehow exploited, by introducing some notion of query like the one used in database systems,
being still aware of the fact that the document structure is far from being as strict as in the usual database
context.

In this paper, we refer to the graphical representation and query style of G-Log, a well-known database
language for complex objects [31, 29].1 The reason of this choice stands on observing that most of the mod-
els and languages for representing and querying semistructured information cited above share an analytical
approach to data representation, lacking a synthetic notion of schema. Conversely, G-Log models semistruc-
tured information by using a concept very close to that of database schema, that in this context enables the
user to formulate a query in an easier way. Nevertheless, the use of a schema-like facility, however desirable,
should not be mandatory, since we may well imagine a situation where the user is not fully aware of the
document’s exact organization. In this case, assuming a strict matching between the document and the
required topological structure may lead to miss some still interesting documents that do not adhere precisely
to the query structure.

Our approach to attack these problems is to make the required topological similarity flexible, in order
to support different similarity levels. Therefore, the aim of this paper is to illustrate effective techniques
that allow the query formulator to relax and restrict topological requirements at his/her choice. Its main
contribution is the design of a suite of operational and logical semantics for G-Log, based on the notion
of bisimulation [27] (see also [22, 5]), given both at the instance and at the schema level. In particular,
we discuss in full detail the benefits of tuning the semantics by enforcing or relaxing requirements on the
bisimulation relation.

The relationship between instances and schemata is investigated using Abstract Interpretation theory [10],
which provides a systematic approach to guarantee the correctness of operating on schemata with respect to
the corresponding concrete computations on instances.

The revisitation of the semantics of G-Log also clarifies some subtle ambiguities in the initial semantics
of G-Log queries. Since the semantics is based on the notion of bisimulation, the implementation of the
language will inherit all the algorithmic properties studied in the literature 2. In particular, Kanellakis and
Smolka in [21] relate the bisimulation problem with the general (relational) coarsest partition problem, and
they propose an algorithmic solution and pointed out that the partition refinement algorithms in [32] can
serve, and more efficiently, to the same task. Applicability of our approach is strongly based on this efficient
implementation of the bisimulation tests.

Alternative approaches to the semantics of graphical languages have been introduced in the literature.
For instance, the semantics of Graphlog is given via rewriting into DATALOG. Our choice of giving directly
a graph-based semantics is not only justified by the fact that this is a typical approach for visual languages,
but also, and more significantly, by the fact that the expressive power of G-Log is higher than that of
DATALOG.

Our work started as a part of the WG-Log project [8], which addresses the problem of Web information
querying by enriching G-Log [31, 29] with constructs typical of hypermedia, like entry points, indexes,
navigational edges, etc. A subsequent project [6, 7, 12], still in the area of semistructured information
querying, addresses the problem of querying XML-specified information, and still investigates the possibilities

1Note that the use of graphs for representing information structure is common in the history of Database theory and
in Artificial Intelligence: recall, for instance, the entity-relationship model [4], the semantic networks, the various graphical
representations of object-oriented data like Good [19], and Graphlog [9], just to name a few. Moreover, computational models
based on graphs transformations are used not only in Database theory: they are used as semantic domains for various kinds of
formalisms and languages like, for example, actor systems, the π-calculus, functional programming, neural networks (see [20]
for a survey on this topic).

2Bisimulation is usually attributed to Park, who introduced the term in [30], extending a previous notion of automata
simulation by Milner ([25]). Milner employs bisimulation as the core for establishing observational equivalence of the Calculus
of Communicating Systems (CCS) ([26, 27]). In the Modal Logic/Model Checking areas this notion was introduced by van
Benthem (cf. [33]) as an equivalence principle between Kripke structures. In Set Theory, it was introduced as a natural principle
replacing extensionality in the context of non well-founded sets [2].

2

of flexible query formulation. To this aim, in [28] the XML-GL language is translated into G-Log, in order to
take advantage of the parametric semantics defined here. The results presented here for G-Log can thus be
easily extended to WG-Log and XML-GL as well. As schemata can evolve gracefully with the evolution of
their instances (applying abstract interpretation theory), in the extended setting of WG-Log and XML-GL,
and more in general in the graph-based languages similar to G-Log, this will allow to trace the evolution of
documents and Web pages by keeping trace of the history of their DTD’s or schemata.

Our approach may remind previous works on Graphlog [9] and UnQL [5]; differences between G-Log and
them are mainly related to expressive power: for instance, G-Log allows to express cyclic information and
queries, and achieves its high expressive power by allowing a fully user-controlled non-determinism. Addition
of entities, other than the addition of relations allowed in Graphlog, is admitted in G-Log which, in its full
form, is Turing complete [29].

This issue is further dealt with in Section 7, where it becomes clear that our results can be extended to
these languages as well, and in general to any graphical language whose main aim is to query and transform
a graph-oriented data model by using graph-based rules.

The paper is organized as follows. Section 2 introduces the language G-Log. Section 3 explains the (con-
crete) operational semantics of the language, showing the three-level semantics which introduces flexibility.
In Section 4 some results for the semantics proposed are given in detail; here different types of rules are
analyzed and the differences between the three semantics are highlighted. In Section 5 the notion of abstract
graphs (corresponding to schemata) is introduced, and the concepts of abstract interpretation are applied; in
some cases query applicability can be tested directly on schemata; this means that they represent instances
correctly. Moreover, this section also shows how schemata can be derived by abstraction (in n log n time)
from instance sets, thus allowing to deduce a common scheme or DTD from a set of documents. Section 6
introduces a logical and model theoretic view of G-Log graphs and the relationships with the concrete oper-
ational semantics are analyzed. In Section 7 we present a comparison with similar previous approaches and
we set the lines for future works. Finally, conclusions are drawn in Section 8.

2 The Language G-Log

2.1 An Informal Presentation

In this section we introduce some intuitive examples of queries in the language G-Log, in order to appreciate
its expressive power and to emphasize some ambiguities we are going to tackle later on.

Consider the graph depicted in Fig. 1 (a). It represents the query ‘collect all the people that are fathers
of someone’. Intuitively, the boldface part of the graph (also called the ‘green part’) is what you try to get
from the DB, while you match the rest of the graph (also called the ‘red part’) with a graph representing
the DB instance.

The query (b) of Fig. 1 can be read as ‘collect all the workers having (at least) one son that works in
some town’.

Also negative requirements can be introduced in a query by means of dashed edges and nodes. This is
depicted by query (c) of Fig. 1 whose meaning is ‘collect all the workers having (at least) one son that works
in a town different from that where his father works’.

The translation of queries (a), (b), (c) into logical formulas is also illustrated in Fig. 1 (with abbreviations
for predicate symbols). As observed in [29], G-Log offers the expressive power of logic, the modeling power
of object-oriented DBs, and the representation power of graphs.

However, the modeling power of G-Log is heavily constrained by some arguable choices in its seman-
tics [29]. Consider, for instance, query (d) of Fig. 2: it can be intuitively interpreted in three different
ways:

• collect the people having two children, not necessarily distinct;

• collect the people having exactly two (distinct) children;

3

?father

Person

Person

?

??
TownTown

works inworks in

father
PersonPerson -

?

works in
works in

R

?
-Person Person

father

works in

Town Town

? ?

(a) (b) (c)

{x : ∃y1p(x)∧
f(x, y1) ∧ p(y1)}

{x : ∃y1y2y3 p(x) ∧ f(x, y1)∧
p(y1) ∧ w(x, y2)∧
w(y1, y3) ∧ t(y2) ∧ t(y3)}

{x : ∃y1y2y3p(x) ∧ f(x, y1)∧
p(y1) ∧ w(x, y2) ∧ w(y1, y3)
∧t(y2) ∧ t(y3) ∧ ¬w(x, y3)}

Figure 1: Sample queries

• collect the people having at least two (distinct) children.

The semantics of G-Log as given in [29] uniquely selects the first option. As a consequence, queries (a)
and (d) become equivalent, so there is no way to express ‘collect the people that have more than one child’
without making use of negative information (negated equality edges in G-Log [29]).

An even deeper problem arises when considering query (e): in G-Log it has exactly the same meaning as
query (b). In other words, it is not possible to express a query like ‘collect the people that work in the same
town as (at least) one of their children’ in a natural fashion. Actually, such a query can be expressed in
G-Log, but not in a straightforward way. Of course, these problems are further emphasized when combined
with negation.

In order to address this kind of ambiguities, in the following sections we revisit the semantics of G-Log
taking advantage of the use of the well-known concept of bisimulation. Furthermore, we apply the abstract
interpretation approach to the operational semantics defined in this way, in order to clarify the relationship
between concrete (instances) and abstract (schemata) data representations.

2.2 Syntax of G-Log

In this section we introduce the basic aspects of the syntax of the G-Log language. Definitions are based on
the concept of directed labeled graph, and, differently from [29, 31], rules, programs, and queries are defined
independently of the context in which they are used. This simplifies the notation and allows the study of
algebraic properties of programs. However, the semantics (cf. Section 3) will be given in such a way that the
practical use is coherent with that of [29, 31].

Z
Z~

½
½=

fatherfather

Person Person

Person

?

works inworks in

father

Town

PersonPerson -

¡
¡ª

@
@@R

?

(d)
{x : ∃y1y2p(x) ∧ f(x, y1) ∧ p(y1)∧

f(x, y2) ∧ p(y2)} (e)
{x : ∃y1y2p(x) ∧ f(x, y1) ∧ p(y1)∧

w(x, y2) ∧ w(y1, y2) ∧ t(y2)}

Figure 2: Problematical queries

4

Definition 2.1 A G-Log graph is a directed labeled graph 〈N,E, `〉, where N is a (finite) set of nodes, E
is a set of labeled edges of the form 〈m, label , n〉, where m,n ∈ N and label is a pair of C × (L ∪ {⊥}), while
` : N −→ (T ∪ {⊥})× C × (L ∪ {⊥})× (S ∪ {⊥}). ⊥ means ‘undefined’, and:

• T = { entity, slot } is a set of types for nodes;

• C = { red, green, black } is a set of colors;

• L is a set of labels to be used as entity, slot, and relation names;

• S is a set of strings to be used as concrete values.

` is the composition of four single-valued functions `T , `C , `L, `S . When the context is clear, if e = 〈m, 〈c, k〉, n〉,
with abuse of notation we say that `C(e) = c and `L(e) = k. Moreover, we require that:

• (∀x ∈ N)(`T (x) 6= slot → `S(x) = ⊥) (i.e., values are associated to slot nodes only),

• (∀〈m, label , n〉 ∈ E)(`T (m) 6= slot) (i.e., slot nodes are leaves).

Observe that two nodes may be connected by more than one edge, provided that edge labels be different.
Red (RS) and black edges and nodes are graphically represented by thin lines (this does not originate

confusion, since there can not be red and black nodes and edges in the same graph), while green (GS) by
thick lines. Red and green nodes are used together in queries.

Colors red and green are chosen to remind traffic lights. Red edges and nodes add constraints to a query
(= stop!), while green nodes and edges correspond to the data we wish to derive (= walk!).

Result nodes play a particular rôle in queries: they have the intuitive meaning of requiring the collection
of all objects fulfilling a particular property. Moreover, result nodes can occur in (instances of) web-like
databases to simulate web pages connecting links. In this paper, if an entity node is labeled by result3 it will
be simply represented by small squares, and its outcoming edges implicitly labeled by ‘connects’. In general,
an entity (slot) node n will be represented by a rectangle (oval) containing the label `L(n).

As an instance, consider the graph (d) of Figure 2. Let 1 be the topmost node, 2 the center node, 3 the
leftmost, and 4 the rightmost node. Then

G = 〈 N = { 1, 2, 3, 4},
E = { 〈1, 〈GS, connects〉, 2〉,

〈2, 〈RS, father〉, 3〉,
〈2, 〈GS, father〉, 4〉} ,

` = { 1 7→ 〈entity , GS, result ,⊥〉,
2 7→ 〈entity , RS,Person,⊥〉,
3 7→ 〈entity , RS,Person,⊥〉,
4 7→ 〈entity , RS,Person,⊥〉} 〉

Definition 2.2 Let G = 〈N, E, `〉 and G′ = 〈N ′, E′, `′〉 be G-Log graphs. We say that G is a labeled
subgraph of G′, denoted G v G′, if N ⊆ N ′, E ⊆ E′, and ` = `′|N (i.e., for all x ∈ N it holds that
`(x) = `′(x)).

With ε we denote the (empty) G-Log graph 〈∅, ∅, ∅〉. It is immediate to see that given a G-Log graph G,
then

〈{G′ is a G-Log graph : G′ v G},v〉
is a complete lattice, where > ≡ G, ⊥ ≡ ε. Moreover, given two G-Log graphs G1 = 〈N1, E1, `1〉 v G and
G2 = 〈N2, E2, `2〉 v G, where `1|N2 = `2|N1 , their l.u.b. and g.l.b. can be computed as4

G1 tG2 = 〈N1 ∪N2, E1 ∪ E2, `1 ∪ `2〉
G1 uG2 = 〈N1 ∩N2, E1 ∩ E2, `1 ∩ `2〉

3[11] uses entry point nodes for this purpose.
4As a side remark, notice that, if G is the (complete) graph 〈N, N × {⊥} × N, `〉 and n = |N |, then the lattice contains:Pn

i=0

�n
i

�
2i2 = O(n2n2

) subgraphs. If G is not of this form, it is difficult to find the exact number; however, if |E| = O(|N |2),
then the upper bound remains the same as the complete case.

5

Definition 2.3 Given a G-Log graph G = 〈N, E, `〉, and a set C of colors, C ⊆ C, consider the sets
N ′ = N ∩ `−1

C (C) and E′ = {〈m, 〈c, k〉, n〉 ∈ E : c ∈ C}. The restriction of G to the colors in C, denoted
G|C is defined as G|C = 〈N ′, E′, `|N ′〉.

Observe that G|C is not necessarily a graph, since, for instance, it may contain only edges and no nodes.

We introduce the notions of concrete graph, rule, and program. Through them, we aim at characterizing
the instances of a semi-structured database like a WWW site.

Definition 2.4 A G-Log concrete graph is a G-Log graph such that:

1. (∀x ∈ N ∪ E)(`C(x) = black), and

2. (∀n ∈ N)(`T (n) = slot → `S(n) 6= ⊥).

With Gc we denote the set of G-Log concrete graphs.

Definition 2.5 A G-Log rule R = 〈N, E, `〉 is a G-Log graph such that:

1. (∀x ∈ N ∪ E)(`C(x) 6= black),

2. R|{GS} 6= ∅, and

3. (∀n, n′ ∈ N)((`C(n) = GS ∧ `C(n′) = RS) → (`L(n) 6= `L(n′) ∨ `T (n) 6= `T (n′))).

The third condition is introduced to avoid the possibility of infinite generation of nodes (cf. Remark 4.11).5

Notice that it can be the case that R|{RS} = ∅. This corresponds to an unconditional query or update. In
general, we can split the notion of rule in two concepts: query and update. Basically, queries are expected to
extract information from a graph (i.e., no existing class of objects is modified), whereas updates are expected
to build up new instances of the graph (i.e., classes and relationships can be modified).

Remark 2.6 Observe that no restriction is imposed on the structure of the graphs. Graphs can contain
cycles of any kind.

Definition 2.7 Given a G-Log rule R = 〈N,E, `〉 and a graph G = 〈N ′, E′, `′〉, The rule R is a query with
respect to G if the following conditions hold:

1. (∀n ∈ N)(`C(n) = GS → (∀n′ ∈ N ′)(`L(n) 6= `L(n′) ∨ `T (n) 6= `T (n′))),

2. (∀e ∈ E)(`C(e) = GS → (∀e′ ∈ E′)(`L(e) 6= `L(e′))).

The rule R is an update with respect to G if it is not a query.

As a matter of fact, this formal notion does not correspond exactly to the common usage of the word
“query”: we further distinguish two kinds of queries: generative queries retrieve some objects and relation-
ships and, based on them, construct new concepts. For instance, from the notion of parent, a generative
query (the transitive closure) can construct the notion of ancestor. Pure retrieval queries associate links to
a number of objects enjoining a common property. The last notion captures the common intuition of query.
The previous one is more related to the usual notion of view.

A computation can be seen as a sequence of applications of a sequence of rules to a graph. This leads to
the following definition of program.

Definition 2.8 A G-Log program is a finite list of sets of G-Log rules.

Examples of G-Log programs can be found in Section 3.2.
5This corresponds to the well-known problem of OID generation in logical object oriented DB’s [1].

6

P

P

f
?

P

P

f
?
@

@R
f

P P

P

f
?

¡
¡ª

P

f

Q

P

f
?

P

P

f f
?
6

(G0) (G1) (G2) (G3) (G4)

Figure 3: Bisimilar and not bisimilar graphs

3 Operational Semantics of G-Log

We present a three-level semantics, based on the concept of bisimulation. In Section 7.2 we compare this
approach with that based on the the concept of embedding of a graph used in [29].6

First, let us remind the well-known concept of bisimulation [30, 27] adapted to our setting:

Definition 3.1 Given two G-Log graphs G0 = 〈N0, E0, `
0〉 and G1 = 〈N1, E1, `

1〉, a relation b ⊆ N0 × N1

is said to be a bisimulation between G0 and G1 if and only if:

1. for i = 0, 1, (∀ni ∈ Ni)(∃n1−i ∈ N1−i)n0 b n1,

2. (∀n0 ∈ N0)(∀n1 ∈ N1)(n0 b n1 → `0T (n0) = `1T (n1) ∧ `0L(n0) = `1L(n1) ∧ `0S(n0)
.= `1S(n1)) (where .=

means that if both labels are defined—i.e., different from ⊥—they must be equal), and

3. for i = 0, 1, (∀n ∈ Ni), let Mi(n) =def {〈m, label〉 : 〈n, 〈color , label〉,m〉 ∈ Ei}.
Then, (∀n0 ∈ N0)(∀n1 ∈ N1) such that n0 b n1, for i = 0, 1 it holds that

(∀〈mi, `i〉 ∈ Mi(ni))(∃〈m1−i, `1−i〉 ∈ M1−i(n1−i))(m0 b m1 ∧ `i = `1−i) .

We write G0
b∼ G1 (G0 6 b∼ G1) if b is (not) a bisimulation between G0 and G1. We write G0 ∼ G1

(G0 6∼ G1) if there is (not) a bisimulation between G0 and G1: in this case we also say that G0 is bisimilar
to G1.

A brief explanation of the conditions above may be useful. Conditon 1 is obvious: no node in the two
graphs can be left out of the relation b. Condition 2 states that two nodes belonging to relation b have same
type and same label, exactly. Moreover, if they are just slots, then either one of their values is undefined,
or they have also the same value. Finally, condition 3 deals with edge correspondences. If two nodes n0, n1

are in relation b, then every edge having n0 as endpoint should find as a counterpart a corresponding edge
with n1 as endpoint.

As an example, consider the graphs in Fig. 3:

• G0 ∼ G1 ∼ G2, as well as the reflexive, symmetric and transitive closure of this fact, since ∼ is an
equivalence relation (cf. Lemma 3.3);

• G0 6∼ G3 since it is impossible to ‘bind’ a node labeled by P with one labeled by Q. Thus, condition
(2) cannot be verified;

• G0 6∼ G4 since it is impossible to verify condition (3).

6In this paper we do not face the problem of negation (dashed nodes and edges). A line for future work is drawn in
Section 7.3.

7

Notice that colors (represented by the `C function) are not taken into account in the bisimulation defi-
nition, while the value fields of the label are considered only when they are defined. The last feature will
allow to apply bisimulations between schemata and instances (see Section 5).

The bisimulation relation can be further refined by introducing additional conditions:

Definition 3.2 Given two G-Log graphs G0 = 〈N0, E0, `0〉 and G1 = 〈N1, E1, `1〉, and b ⊆ N0 ×N1 we say
that

• b is a directional bisimulation, denoted by G0

b

~∼ G1, if G0
b∼ G1 and b is a function from N0 to N1.

We say that G0~∼G1 if there is a b such that G0

b

~∼ G1.

• b is a bidirectional bisimulation, denoted by G0
b≡ G1, if G0

b∼ G1 and b is a bijective function from

N0 to N1. We say that G0 ≡ G1 if there is a b such that G0
b≡ G1.

Again in Fig. 3, we have that:

• G1~∼G0, G2~∼G0, while the converse is not true.

• Gi ≡ Gi for i = 0, 1, 2, 3, 4, while Gi 6≡ Gj for i 6= j.

The three relations defined above will be used to define the semantics that we are going to study in the
rest of the paper:

∼ is used to build a semantics based on bisimulation;

~∼ is used to build a semantics based on the concept of bisimulation that is also a function;

≡ is used to build a semantics based on graph isomorphism (injective embeddings [29] or, equivalently,
bisimulations that are bijections).

Some basic properties of these relations are emphasized in the following lemma.

Lemma 3.3 1. ∼, ~∼, and ≡, are reflexive and transitive relations;

2. Both ∼ and ≡ are symmetric relations and thus, equivalence relations;

3. ~∼ is a preorder (and not an ordering).

4. G ≡ G′ if and only if G~∼G′ and G′~∼G.

Proof. Follows immediately from the definition for 1 and 2. For 3, consider the graphs:

AA

A

@@R¡¡µ¾ AA

A

¡¡ª @@I
-

G1 G2

It holds that G1~∼G2 and vice versa. However, the two graphs are not the same graph. For proving statement
(4), it is sufficient to observe that, by the requirement (1) of the definition of bisimulation (Definition 3.1),
the two functions ensuring that G~∼G′ and G′~∼G are onto. This means that |N | = |N ′| and, thus, both
functions are bijections. 2

Remark 3.4 The operational semantics of the original definition of the language G-Log [29] is based on a
different notion of matching of graphs: the so-called embedding. Relationships between our proposals and
the embedding are explained in Section 7.

8

3.1 Semantics of Rules

The first two notions that we define are the applicability of a rule and the satisfiability of a graph, given a
rule.

Definition 3.5 Let G be a concrete graph and R a rule. For ξ in {∼, ~∼,≡}, R is ξ-applicable in G if
(∃G1 v G)(R{RS}ξG1).

Definition 3.6 Let G be a concrete graph and R a rule. For ξ in {∼, ~∼,≡}, G ξ-satisfies R (G |=ξ R) if for

all G1 v G such that there is b1 with R{RS}
b1
ξ G1, there exist G2 v G and b2 ⊇ b1 that satisfy the following

conditions:

(i) G1 v G2;

(ii) R{RS,GS}
b2
ξ G2;

(iii) (∀G3 v G2)(G1 v G3 ∧R{RS}ξG3 → G3 = G1).

Intuitively, G satisfies R if for any subgraph G1 of G matching (with respect to ξ) the red part of the
rule (i.e. the pre-condition), there is a way to ‘complete’ G1 into a graph G2 v G such that the whole rule
R matches G2. Condition (iii) is necessary to avoid the possibility of using other parts of G, matching with
R{RS} independently, to extend G1.

Example 3.7 For instance, consider the graphs below.

2

1

?
P QR

A
AU

¢
¢®

PP 54

3

P

?
P

(R) (G1) (G2) (G3)

Rule R is not ξ-applicable to G1 (so G1 ξ-satisfies R trivially) and G2 ξ-satisfies R, for ξ in {∼, ~∼,≡}.
Observe the necessity of condition (iii), in the case of ∼, to ensure that G3 does not ∼-satisfy R. As a
matter of fact, with b1 = {〈2, 5〉} RRS

b1∼ G′ where G′ consists of the unique node 5. However, with b2 =
{〈2, 4〉, 〈2, 5〉, 〈1, 3〉} it holds that R

b2∼ G3. To achieve this bisimulation, however, b1 has been ‘unnaturally
extended’. This is avoided by the last condition of Definition 3.6.

Problems like those seen in Example 3.7 come from the fact that functions can be extended to rela-
tions. This is not possible for ~∼, and ≡ because their extensions must be functions, by definition. Thus,
Definition 3.6 can be significantly simplified for ~∼ and ≡:

Lemma 3.8 Let G be a concrete graph and R a rule. For ξ in {~∼,≡}, G ξ-satisfies R (G |=ξ R) if and

only if for all G1 v G and for all b1 such that R{RS}
b1
ξ G1 ∃G2 v G and ∃b2 ⊇ b1:

1. G1 v G2 and

2. R{RS,GS}
b2
ξ G2.

2

The notion of applicability is a pre-condition for an effective application of a rule to a concrete graph,
whose precise semantics is given below:

9

father

father

name

name

name

¾

¾

¾
Mondo

Ago

Carlo

®

©
ª

®

©
ª

®

©
ª

?

?

Person

Person

Person

grandf.

'

&-

father

father

?

?

Person

Person

Person

grandch.

6
grandf.

?
Person

Person

(G) (R1) (R2)

Figure 4: Non commutativity of rule applications

?
Person

StringString

namename ??
PersonPerson

®

©
ª

®

©
ª

@@R¡¡ª

StringString

namename ??
PersonPerson

®

©
ª

®

©
ª

? ?

StringString

namename ??
PersonPerson

®

©
ª

®

©
ª

?

StringString

namename ??
PersonPerson

®

©
ª

®

©
ª

(R) (G) (G1) (G2) (G3)

Figure 5: Application of a rule R to a graph G

Definition 3.9 Let R be a rule. Its operational semantics [[R]]ξ ⊆ Gc × Gc is defined as follows: for ξ in
{∼, ~∼,≡}, 〈G, G′〉 ∈ [[R]]ξ if and only if :

1. G v G′, G′ |=ξ R, and

2. G′ is minimal with respect to property (1), namely there is no graph G′′ such that G v G′′, G′′ @ G′,
and G′′ |=ξ R.

Intuitively, a rule, if applicable, extends G in such a way that G satisfies R. Moreover, it is required that
the extension be minimal. If R is not applicable in G, then G satisfies R trivially and 〈G,G〉 ∈ [[R]]ξ.

Example 3.10 Consider the graph G and the rules R1 and R2 of Fig. 4. The application of Rule R2

leaves the graph G unchanged. The application of Rule R1 uniquely adds the grandfather relation. The
application of Rule R2 after that of Rule R1 furtherly adds the grandchild relation. Thus, rule application is
not commutative.

Example 3.11 Consider graphs of Fig. 5. It holds that 〈G,G1〉 and 〈G,G2〉 belong to [[R]]∼. 〈G,G3〉 /∈
[[R]]∼ since G3 6|=∼ R: this is due to condition (iii) in the Definition 3.6. Notice that G1 ∼ G2 ∼ G3.

Definition 3.12 If G is a G-Log graph, then for ξ in {∼, ~∼,≡}, [[·]]ξ(G) is a function from the set of the
rules to the powerset of the set of G-Log graphs, defined as follows:

[[R]]ξ(G) =def {G′ : 〈G,G′〉 ∈ [[R]]ξ}

Rules can be combined to build programs according to Definition 2.8:

Definition 3.13 Let S = {R1, . . . , Rn} be a set of rules. Then, for ξ in {∼, ~∼,≡}, 〈G,G′〉 ∈ [[S]]ξ if

1. G v G′, G′ |=ξ Ri, for i = 1, . . . , n, and

2. G′ is minimal with respect to property (1).

10

Let P be a program 〈S1, . . . , Sn〉. For ξ in {∼, ~∼,≡}, 〈G0, Gn〉 ∈ [[P]]ξ if and only if there are
G1, . . . , Gn−1 such that 〈Gi, Gi+1〉 ∈ [[Si+1]]ξ, for i = 0, . . . , n− 1.

The following notion is useful in practical querying:

Definition 3.14 Let R be a rule and G be a concrete graph such that G |= R. For ξ in {∼, ~∼,≡}, the
ξ-view of G using R, denoted by G|R is the union of all the graphs G′ v G such that R ξ G′. The unfolded
ξ-view of G using R (G]|R) is the disjoint union of all the G′.

?

name name

stringstring

?®

©
ª

®

©
ª

?

f- PP

J
JĴ

À

AgoCarloMondo

Male
sex

age

name name name

number

33

string

stringstringstring

¾
6

??

®

©
ª

®

©
ª

®

©
ª

®

©
ª

®

©
ª

?

ff -- P PP

R G

P PP- -f f

?®

©
ª

®

©
ª

®

©
ª

? ?
string string string

namenamename

Mondo Carlo Ago

À

J
JĴ ??

AgoCarlo

name name

stringstring

??®

©
ª

®

©
ª

f-P PP P-f

?®

©
ª

®

©
ª

?
string string

namename

Mondo Carlo

| {z }
G|R G]|R

Figure 6: Rules, concrete graphs, and views

Figure 6 shows a concrete graph G satisfying a rule R, its view using R (in this case there is no difference
adopting different semantics), and its unfolded view.

3.2 Programming in G-Log

Let us show now how to build up a database using the G-Log language and then, how to query it.
Suppose we want to create a new database which contains informations about students, the courses they

attend and teachers. We use an unconditional rule, i.e. a rule without red part, since we wish to build up
the database and not to modify an existing one.

For example, the graph G0 depicted in Fig. 7 is a G–Log generative unconditional query (its color is only
green solid); it creates a simple database with three entities: John is a student who attends the Database
course and Dr. Smith is the teacher of the same course. If we apply G0 to the initial empty concrete graph,
we build up the G-Log concrete graph G1 of Fig. 7 which ξ-satisfies G0. Given G1 we can either querying
it or add more information to it.

Now, suppose we apply the rule R of Fig. 8 ‘if a person teaches a course and a student attends that course
then the person is a student’s teacher’ to G1. R is ξ-applicable to G1 for ξ in {∼, ~∼,≡}. As a matter of fact,
for each ξ there is a ξ-relation between the red solid part of R and a subgraph of G1; therefore, for each ξ,
there is a way to expand the concrete graph in order to obtain a new graph G′1 of Fig. 8 that matches the
whole rule. In this particular case, the extension is the same.

11

?? ?
String

Database

®

©
ªString

John

®

©
ª String

Dr. Smith

®

©
ª

name namename

Attends Teaches
CourseStudent Person- �

?? ?
String

Database

®

©
ªString

John

®

©
ª String

Dr. Smith

®

©
ª

name namename

Attends Teaches
CourseStudent Person- ¾

(G0) (G1)

Figure 7: An update and a concrete graph

AttendsTeaches@
@R

¡
¡ª

Course

Person Student-Teacher

?? ?
String

Database

®

©
ªString

John

®

©
ª String

Dr. Smith

®

©
ª

name namename

Attends TeachesCourse

Student Person

Teacher

@
@

@@R

¡
¡

¡¡ª

¾

(R) (G′1)

Figure 8: A G-Log rule and a concrete graph

This way, using G-Log rules, we can query a database to obtain information and complete its concrete
graph adding new nodes or edges.

Moreover, G-Log allows the expression of complex queries by means of programs which are sequences of
rules. Sometimes it is worthwhile to have the possibility of expressing transitive properties: in G-Log a set
of two rules is enough.

For instance, the program of Fig. 9 expresses the following transitive property: ‘if two students attend
the same course, they are schoolfellows. And, if a student x is a schoolfellow of a student y and y is a
schoolfellow of a student z then x is z’s schoolfellow’.

AttendsAttends@
@R

¡
¡ª

Course

Student Student-schoolfellow

schoolfellowschoolfellow
@

@R ¡
¡µ

Student

Student Student-schoolfellow

(R1) (R2)

Figure 9: A G–Log program

12

f

¾

f¾ ¯
°±

G1

R1 P

f

PP
-

?

G2

P Q

QQ

f-

f @@R¡¡ª f

R2 P

?

∼ ∼, ~∼

Figure 10: Applicability differences

4 Basic Semantic Results

In this subsection we analyze the main results concerning the proposed parametric semantics, in order to
point out G-Log rules of a form ensuring desirable properties, first of all program determinism.

4.1 Applicability

Proposition 4.1 For each G-Log rule R,

1. if R is ≡-applicable, then it is ~∼-applicable;

2. if R is ~∼-applicable, then it is ∼-applicable.

Proof. Immediate, by definition. 2

Relations ∼, ~∼, and ≡ have different expressivity and thus they can be compared to form an ordering
(cf., also, Section 7). The ordering is strict, as follows from Figure 10: R1 is ξ-applicable to G1 only when ξ
is ∼. R2 is ξ-applicable to G2 for ∼ and ~∼, but not for ≡.

4.2 Satisfiability

The situation is a bit more intricate as far as the concept of satisfiability is concerned:

Proposition 4.2 There are rules R such that the sets {G : G |=∼ R}, {G : G |=~∼ R}, and {G : G |=≡ R}
are pairwise distinct.

Proof. Consider rule R1 and the graph G1 below. G1 does not satisfy R for ∼ and ~∼. However, since R1 is
not ≡-applicable in G1, trivially G1 |=≡ R1.

On the other hand, rule R1 is ≡-applicable (hence, ∼- and ~∼-applicable, thanks to Proposition 4.1) to
graph G2. However, it only holds that G2 |=∼ R1.

��	 @@R
PP P

? ?
PP

(R1) (G1) (G2)

Now we prove that for some R, {G : G |=~∼ R} may contain elements that are not in the other two sets.
Consider rule R2 and graph G3 below:

13

¡¡ª@@R

-
? f

P P

l l

TT

ll

PP
f?
-

@@R ¡¡ª ??
T T

ll

PP -

@
@R

¡
¡ª

¡¡ª@@R

f- f
P P

l l

TT

ll

PP
f-

@@R ¡¡ª

(R2) (G3)

R2 is ≡-applicable to G3 but it is not ≡-satisfied. Similarly, R2 is ∼-applicable to G3 but it is not
∼-satisfied, due to the rightmost subgraph. Instead, G3 ~∼-satisfies R2. 2

Thus, none of the three sets is included in the other.

Proposition 4.3 Let G be a G-Log graph and R a G-Log rule. For ξ in {∼, ~∼,≡}, if R is ξ-applicable to
G, then there is a G′ such that 1) G v G′, and 2) G′ |=ξ R, and G′ is minimal with respect to the properties
(1) and (2).

Proof. Consider a rule R ξ-applicable to G. The existence of a G′ fulfilling (1) and (2) is clearly ensured:
for each Gi v G such that GiξRRS (existing by hypothesis), consider G′i obtained by augmenting Gi with
new nodes and edges ‘copying’ RGS . Consider G′ = G ∪⋃

i G′i. The assumption (3) of the definition of rule
(Definition 2.5) ensures that the process cannot enter into loop, thus ensuring the finiteness of the graph G′.

To get one (among the various possible) minimal graph it is sufficient to remove some of the new edges
and nodes (possibly collapsing them) while the satisfiability property still holds. 2

In other words, if R is ξ-applicable to G, then [[R]]ξ(G) is not empty.

Corollary 4.4 For ξ ∈ {∼, ~∼,≡}, for any rule R and graph G, [[R]]ξ(G) 6= ∅.
Proof. If R is not ≡-applicable in G, then [[R]]ξ(G) = 〈G,G〉 by definition. Otherwise, the result follows
from Proposition 4.3. 2

4.3 Simple Edge-Adding Rules

We analyze now the effect of some simple rules, edge-adding rules, and prove the determinism of their
semantics. First of all we point out an ambiguity hidden in the graphical language.

Consider the following rule in which the green part is composed only by one edge connecting two nodes
with the same label:

A

A

p
?

Its intuitive meaning is: any time you have two entity nodes labeled by A (necessarily distinct if we are using
the ≡ semantics) add an edge labeled p between them, unless one edge of this form is already present. The
meaning is exactly the same as that of the following rule:

A

A

p p
?
6

14

The first rule, in a sense, hides a cycle of green edges. Notice that this happens even if the two rules are
not bisimilar: the existence of a bisimulation between two rules is not required for the two rules to have the
same expressive power.

Table 1 shows the differences of the operational semantics of rules R1, R2, R3 admitting cycles of green
edges involving equivalent nodes on simple concrete graphs G1, G2, G3.

We observe that:

1. The three semantics are all equivalent with respect to rule R1;

2. For the other rules, there are always differences;

3. Rules R2 and R3 may be non-≡-applicable for graphs with too few nodes. This is due to the constraint
on cardinality required by the graph isomorphism relation ≡;

4. The semantics based on bisimulation (∼) does not distinguish the three rules R1, R2, and R3. This is
due to the possibility given by bisimulation (a relation in general—not necessarily a function) to bind
one node with a family of nodes.

5. The semantics based on ~∼ can not distinguish rules R2 and R3;

6. The semantics based on ≡ distinguishes all the rules.

7. In all the examples, the application of rules is a function.

Actually, the same conclusions can be drawn whenever all the nodes belonging to a cycle are roots of
ξ-equivalent and disjoint G-Log graphs. R1 and R2 are:

• ∼-equivalent if R1 ∼ R2,

• ≡-equivalent if R1 ≡ R2, and

• ~∼-equivalent if for all I, R1~∼I if and only if R2~∼I.

Let us study some more general properties of rule application for simple rules. We begin with the simple
cases in which RGS consists only of edges.

Lemma 4.5 For each G-Log rule R, if RGS consists only of one edge and no nodes, then [[R]]ξ is a function,
for ξ in {∼, ~∼,≡}.
Proof. We need to prove that for each G-Log graph G, there is exactly one G′ such that 〈G,G′〉 ∈ [[R]]ξ.

If R is not ξ-applicable, then the result holds by definition choosing G′ as G.
Assume R is ξ-applicable in G, for any ξ in {∼, ~∼,≡}. By hypothesis, R can have only one of the

following two forms:

β

B-

@
@@

¡
¡¡

α

p
A

@
@@

¡
¡¡

α

p

A

@
@@

¡
¡¡

?
² ¯

(1) (2)

where the nodes labeled by A and B in (1) are distinct nodes (but not necessarily label A is different from
label B) or in (2) they are the same node. We prove first the fact when ξ is ∼.

Let R be of the form (1). Its semantics is exactly that of introducing all possible edges labeled by
p connecting subgraphs bisimilar to A,α and B, β of G, unless they are already present. This kind of
extension of G is clearly unique.

15

Rule Graph Semantics
∼ ~∼ ≡

A ¯
°±6

A A ¯
°±6

A ¯
°±6

A ¯
°±6

(R1) (G1) ∼ ~∼ ≡

A

A

A ¯
°±6

A ¯
°±6

A ¯
°±6

A ¯
°±6

A ¯
°±6

A ¯
°±6

(G2) ∼ ~∼ ≡

A A ¯
°±6

A ¯
°±6

A

(G1) ∼ ~∼ ≡

A

A

?
6

A

A

A ¯
°±6

A ¯
°±6

A ¯
°±6

A ¯
°±6

?
6

A

A

?
6

(R2) (G2) ∼ ~∼ ≡

AA

A

6

6

6ªª

ª
AA

A

6

6

6ªª

ª
AA

A

¡¡ª @@I@@R¡¡µ¾
- AA

A

¡¡ª @@I@@R¡¡µ¾
-

(G3) ∼ ~∼ ≡

A A ¯
°±6

A ¯
°±6

A

(G1) ∼ ~∼ ≡

AA

A

��	 @@I
- A

A

A ¯
°±6

A ¯
°±6

A ¯
°±6

A ¯
°±6

?
6

A

A

(R3) (G2) ∼ ~∼ ≡

AA

A

6

6

6ªª

ª
AA

A

6

6

6ªª

ª
AA

A

¡¡ª @@I@@R¡¡µ¾
- AA

A

¡¡ª @@I@@R¡¡µ¾
-

(G3) ∼ ~∼ ≡

Table 1: Effects of ‘cyclic’ rules

16

Let R be of the form (2). As shown in Example 3.7, condition (iii) in Definition 3.6 ensures that the only
(minimal) way to generate a graph satisfying the rule is that of adding a self-loop for each node matching
with A,α.

When ξ is ~∼ or ≡, the situation is similar (and easier than for ∼ as concerns case (2)). 2

Now we extend the above lemma to the case in which R contains several edges.

Proposition 4.6 For each edge-adding rule R, [[R]]ξ is a function, for ξ in {∼, ~∼,≡}.
Proof. R contains n green edges, with n > 0, by definition of rule. Consider the rules Ri, i = 1, . . . , n,
obtained by removing from R the green edges 1, . . . , i − 1, i + 1, . . . , n. Each Ri is of the form analyzed by
Lemma 4.5. Let G be a G-Log graph. Consider the following procedure, parametric with respect to ξ in
{∼, ~∼,≡}:

G′′ := G;
repeat

G′ := G′′;
for i = 1 to n do

let G′′ be the result of Ri applied to G′′ with respect to ξ
until G′′ = G′;

The procedure is clearly terminating. Moreover, by induction on the number n of green edges, it is easy
to prove that the procedure is ensured to return a unique graph G′ (use Lemma 4.5), that G′ ξ-satisfies R
and it is the minimum graph extending G fulfilling such a property. 2

4.4 Very Simple Queries

We consider simple rules, actually very used in practice:

Definition 4.7 A rule R is said to be a very simple rule if RGS consists in one node µ and one edge
〈µ, lab, ν〉, with `C(ν) = RS.

In this section we are interested in very simple rules that are queries (very simple queries—VSQ). In
general, [[R]]ξ applied to a concrete graph G is not a function, even when R is a very simple query with
respect to G. Consider the following diagrams:7

?
P

l

T

?
PP

? ?

l

T

?
PP

¡¡ª @@R

l

T

?
PP

(R1) (G1) (G′1) (G′′1)

Then, [[R1]]ξ(G1) = {G′1, G′′1}. However, the views of G′1 and G′′1 with respect to R1 (see Definition 3.14)
are bisimilar. So we could guess that [[·]]ξ is a function modulo bisimulation, at least with respect to a
‘structured’ subgraphs of G, i.e., graphs filtered by a rule. This does not hold in general, as follows from the
following example concerning grandfathers, fathers, and sons:

f

-P P

?
- P

ff

-P P - P
ff

-P P

? ?
- P

ff

-P P

@@R¡¡ª

(R2) (G2) (G′2) (G′′2)

7As usual, square nodes can be read as Result nodes and outgoing edges as connects edges.

17

It holds that [[R2]]ξ(G2) = {G′2, G′′2}. However, G′2 and G′′2 are not bisimilar. The uniqueness (modulo
bisimulation) is ensured only when the various parts of G matching with RRS are all independent (unfolded
views).

However, a sort of regularity of the semantics of rule application can be obtained by considering

GR
ξ =def

⊔

G′∈[[R]]ξ(G)

G′

Such a graph is unique (up to isomorphism) and it is a sort of skeleton from which all elements of [[R]]ξ(G)
can be obtained. As an instance, for the examples above:

? ?
PPPPq

³³³³)

l

T

?
PP

- P
ff

-P P

PPPPq?
³³³³) ?

(G
R1
1) (G

R2
2)

Lemma 4.8 Let G be a G-Log graph and R be a VSQ with respect to G. Then, for ξ in {∼, ~∼,≡}, there is
a unique graph (up to isomorphism) GR

ξ such that:

1. GR
ξ |= R,

2. ∀G′ ∈ [[R]]ξ(G) it holds that G′ v GR
ξ , and

3. GR
ξ is minimal with respect to properties (1) and (2).

Proof. If R is not ξ-applicable to G, then choose GR
ξ as G. Otherwise since, by definition of query, no node

labeled by result and edge labeled by connects is in G, whenever there is a subgraph G′ of G such that
RRSξG′, add a node µ and an edge 〈µ, lab, ν〉. Moreover, keep track of all nodes µ, ν of this kind. When all
the G′ of that form have been processed, add edges from all nodes µ to all nodes ν, uniquely obtaining the
graph GR

ξ . 2

Proposition 4.9 Let G be a G-Log graph and R be a VSQ with respect to G. For ξ in {∼, ~∼,≡}, define

views(G,R, ξ) = {G′]|R : ∃G′ ∈ [[R]]ξ(G)}
Then for each I1, I2 ∈ views(G,R, ξ), it holds that I1 is isomorphic to I2.

Proof. Assume I1, I2 ∈ views(G,R, ξ), I1 and I2 distinct graphs. This means that there are two graphs G1

and G2 in [[R]]ξ(G) such that I1 = G]1 |R and I2 = G]2 |R. Since Gi ∈ [[R]]ξ(G) it holds that for each G′ v G
such that RRSξG′ there is an edge between a Result node (not occurring in G) and a node of G. This means,
by definition of unfolded view, that a graph exactly composed by G′ and the just mentioned node and edge
is both in I1 and in I2, and, moreover, this is an isolated subgraph of both I1 and I2. Nodes and edges are
introduced in I1 and I2 only in this way. This ensures that I1 ≡ I2. 2

To reach a more convincing deterministic result for the semantics, we suggest to add determinism to the
definition: we define the deterministic semantics of R:

[[R]]det
ξ (G) = G′

for G′ ∈ [[R]]ξ(G) and G′ contains at most one node more than G.

18

Proposition 4.10 Let G be a G-Log graph and R be a VSQ with respect to G. For ξ in {∼, ~∼,≡}, then
[[R]]det

ξ (G) is well-defined, i.e., [[R]]det
ξ (G) is a function.

Proof. Assume, by contradiction, that G1, G2 ∈ [[R]]ξ(G) and that they differ by G for at most one node.
If R is not ξ-applicable, then G1 = G2 = G by definition.
Assume R is ξ-applicable. Since R is a query with respect to G, no result nodes are in G. Thus both G1

and G2 contains exactly one (result) node µ more than G. Without loss of generality, we can assume that
it is the same node in the two graphs. New (connects) edges have been introduced from µ to the various
subgraphs equivalent to RRS . It is immediate to check that an edge of this form belongs to G1 if and only
if it belongs to G2, unless one of them is not in [[R]]ξ(G). 2

[[R]]det
ξ (G) can therefore be seen as a privileged answer to a query. Actually, it contains exactly all the

information we need and does not introduce redundant nodes.

We conclude this section with a consideration that explains the rationale behind the condition (3) of
being a rule.

Remark 4.11 Consider the graph R in Figure 11, that does not fulfill requirement (3) of being a rule. It
intuitively says that for all nodes labeled A you need to have a node labeled by A connected with it by an
edge labeled by p. The application of R to the trivial graph G generates a denumerable family G′′, G′′′, . . . of
graphs satisfying R. However, none of them is minimal. Moreover, notice that the graph G′ does not satisfy
R, as condition (3) of the definition of bisimulation is not satisfied.

A

A

?
p

A A

p² ¯
°¾

6
?

p p

A

A

?

p p

p

A

6
?

A

A

p

p

p

¾ $

%?
A

?

A

A

. . .

(R) (G) (G′) (G′′) (G′′′) (G′′′′) . . .

Figure 11: Infinite generation

5 Abstract Graphs and Semantics

In order to represent sets of instances sharing the same structure, we introduce now the notion of abstract
graph. Following the Abstract Interpretation approach [10, 16], we see that abstract graphs can be used as
a domain to abstract the computation of G-Log programs over concrete graphs. This can also be seen as an
alternative view of reasoning on schemata and instances of a database or a WWW site, coherently with the
Dataguide approach of [18].

Definition 5.1 A (G-Log) abstract graph is a G-Log graph such that:

1. (∀x ∈ N ∪ E)(`C(x) = black),

2. (∀x ∈ N)(`S(x) = ⊥), i.e., an abstract graph has no values.

With GA we denote the set of G-Log abstract graphs.

19

String

namename ?
PPPPPq®

©
ª

father

Town

lives-
-

works

-
¦§

¨ Person

Bob

NY

String
name-

®

©
ªPerson

@
@@R

-

Andy

String

String
name

name?®

©
ª

®

©
ª

father

Town-works
Person

Money

earns?

Person

?

(S) (I) (R′)

Figure 12: A schema, an instance, and a rule

Let us use once more the notion of bisimulation to re-formulate the G-Log concepts of instance and
schema. Intuitively, an abstract graph represents a concrete graph if it contains its skeleton while disregarding
multiplicities and values.

Definition 5.2 A concrete graph I is an instance of an abstract graph G if (∃I ′ w I)(G ∼ I ′) . In this case
G is said to be a schema for I. I ′ is said to be a witness of the relation schema-instance.

In Fig. 12 there is an example of application of the definition above. (S) represents (I). To build the
witness (I ′), add to (I) an edge labeled by works linking the entity node Person of Bob with the entity
node Town. Moreover, add edges labeled by lives from the two nodes labeled Person to the node labeled
Town, and add also an edge reverse to the father edge. It is easy to check that a bisimulation from S to I ′

is uniquely determined.
The notions of applicability and satisfiability for abstract graphs are the same as in Definitions 3.6 and 3.8.

This also holds for the operational semantics definitions for rules and programs. Anyway, the semantics based
on bisimulation ∼ is, in a sense, the less precise and, thus, it is the most suited for abstract computations.

The following properties can be immediately derived from the definitions above.

Lemma 5.3

(a) If I is an instance of G with witness I ′, then for all I ′′ such that I v I ′′ v I ′ it holds that I ′′ is an
instance of G.

(b) If I is a concrete graph, G is an abstract graph, with I ∼ G, then I is an instance of G.

(c) If I is a concrete graph, G, G′ are abstract graphs, with G ∼ G′, then I is an instance of G if and only
if I is an instance of G′.

We have already observed after Definition 2.2 that given a G-Log graph G0, the set 〈{G is a G-Log graph :
G v G0},v〉 is a complete lattice.8 In the rest of this section we assume that every (concrete and abstract)
graph belongs to this lattice. Under this hypothesis we may properly deal with the v relation between
graphs.

A Galois connection ([10]) between GA and ℘(GC) can be obtained by considering the concretization
function γ : GA/∼ −→ ℘(GC) :

γ(G) = {I : I is an instance of G}
and its adjoint abstraction function α : ℘(GC) −→ GA/∼ defined by

α(S) = t{G ∈ GA : γ(G) ⊆ S}.
8Assume, for instance, to deal with Web sites. G0 can be chosen as the graph obtained by disjoint union of all the instances

and schemata of all Web sites.

20

Algorithmically, given a set of instances S, we may build up its abstraction α(S) by taking the union of
all their nodes and edges. Moreover, applying standard techniques, we can build the minimum graph ∼-
equivalent to that graph. This graph is unique up to isomorphism, and it can be computed without knowning
G0. Using the techniques in [32], this simplification can be performed in time O(m log n + n), where m is
the number of edges and n the number of nodes.

The abstraction function for rules can be obtained exactly in the same way as for concrete graphs. Thus,
when R is a rule, α(R) denotes the graph obtained by deleting values (i.e., `S = ⊥) from R and then
computing the minimum graph ∼-equivalent to it.

The following two auxiliary results will be useful in order to prove monotonicity and injectivity of the function
γ just defined.

Lemma 5.4 If G1 = 〈N1, E1, `1〉 v G2 = 〈N2, E2, `2〉 and G1 ∼ G′ = 〈N ′, E′, `′〉, then there is G′′ w G′

such that G′′ ∼ G2.

Proof. Without loss of generality, assume that N ′ ∩ N2 = ∅. Let b′ such that G1
b′∼ G′. Let N ′′ = N ′,

E′′ = E′, `′′ = `′, b′′ = b′.

• for all n ∈ N2 \N1 let N ′′ = N ′′ ∪ {n}, b′′ = b′′ ∪ {(n, n)}, and `′′ = `′′ ∪ {(n, `2(n))};
• for all 〈m,λ, n〉 in E2 \ E1, let E′′ = E′′ ∪ {〈µ, λ, ν〉 : mb′′µ, nb′′ν}.

It is immediate to check that G2
b′′∼ G′′ = 〈N ′′, E′′, `′′〉. 2

Lemma 5.5 If G v G1 ∼ G2 v G3 ∼ G, then G ∼ G1 ∼ G2 ∼ G3.

Proof. It is sufficient to prove that G ∼ G1; the remaining part of the claim follows by the fact that ∼ is an
equivalence relation. Let a and b be the two bisimulations such that G1

a∼ G2 and G3
b∼ G. By Lemma 5.4,

there is G0 such that G1 v G0 and G0
a′∼ G2, where a′ extends a as in the proof of that lemma. We will

refer to a′ simply as a and we call c = a ◦ b. It is easy to verify that c is monotonic; thus we can build two
infinite descending chains:

G1 w c(G1)(w G) w c(c(G1)) w c(c(c(G1))) . . .
G0 w c(G0)(= G) w c(c(G0)) w c(c(c(G0))) . . .

Since the graphs are finite, there must be an integer n such that

cnG1 = cn+1G1 ∧ cnG0 = cn+1G0

(assuming that the graph G is nonempty, the fixed points above must be non empty). Moreover, by con-
struction, it holds that:

G1 ∼ c(G1) ∼ c(c(G1)) ∼ c(c(c(G1))) . . .
G0 ∼ c(G0)(= G) ∼ c(c(G0)) ∼ c(c(c(G0))) . . .

In particular, G1 ∼ cn(G1) and G ∼ cn(G0). Since the application of relation c is monotonic, it holds that

ci(G1) v ci(G0),

Thus, in particular, cn(G1) v cn(G0). On the other hand, since c(G0) = G and G v G1, it holds that

ci+1(G0) v ci(G1) .

Thus, cn(G0) = cn+1(G0) v cn(G1). This means that cn(G1) = cn(G0) and, moreover, that G ∼ cn(G1) ∼
G1. 2

21

Theorem 5.6 Function γ is monotonic, i.e. for any pair of abstract graphs G,G′, G v G′ implies γ(G) ⊆
γ(G′).

Proof. Let I ∈ γ(G). By definition of γ, there exists I ′ w I such that I ′ ∼ G v G′. By applying Lemma 5.4,
there exists I ′′ w I ′ such that I ′′ ∼ G′. By transitivity of the ordering relation, we get I ′′ w I. Hence,
I ∈ γ(G′). 2

Theorem 5.7 Function γ is injective, i.e. for any pair of abstract graphs G, G′, G 6∼ G′ implies γ(G) 6=
γ(G′).

Proof. Assume that γ(G1) = γ(G2), and let I1 ∈ γ(G1) with I1 ∼ G1. By the assumption, I1 ∈ γ(G2) too.
Hence, by the definition of γ, ∃I ′1 w I1 such that I ′ ∼ G2. Therefore,

G1 ∼ I1 v I ′1 ∼ G2.

Now, let I2 ∈ γ(G2) with I2 ∼ G2. By the same reasoning, there exists I ′2 w I2 such that I ′2 ∼ G1. Therefore

G1 ∼ I1 v I ′1 ∼ G2 ∼ I2 v I ′2 ∼ G1.

By lemma 5.5 we immediately get G1 ∼ G2, concluding the proof.
2

Theorem 5.8 (Correctness) Let G,G′ be abstract graphs and R a rule such that 〈G,G′〉 ∈ [[α(R)]]∼. If
I ∈ γ(G) and 〈I, I ′〉 ∈ [[R]]∼, then I ′ ∈ γ(G′), i.e., the following diagram commutes:

G
α(R)→ G′

↓ γ ↓ γ

I
R→ I ′

Proof. By the hypotheses and by Lemma 5.4, there exist Î and Î ′ such that the following diagram holds:

R =| I ′ Î ′ ∼ G′ |= α(R)
t t t

R|{RS} v I v Î ∼ G w α(R)|{RS}

By the definition of satisfiability of the rule R, we may build I ′′ such that I ′ v I ′′ ∼ Î ′. In order to build
such a I ′′, extend I ′ only with arcs and nodes belonging to Î ′; minimality conditions on G′ (and thus on Î ′)
avoid redundancies. Hence, from the diagram above we get I ′ v I ′′ ∼ Î ′ ∼ G′, i.e. I ′ ∈ γ(G′).

2

Theorem 5.8 guarantees the correctness of abstract computations: the application of a rule abstraction to
an abstract graph safely represents the application of the corresponding concrete rule to any of its instances.
The practical impact of this result is quite interesting. Consider the abstract graph S and the rule R′ in
Fig. 12. Since α(R′) is not applicable to S, we can immediately conclude that the same rule is not applicable
to any instance of S. Therefore, we may apply rules to abstract graphs in order to build complex queries,
and then, once checked that they are applicable to the abstract graph we can turn to the concrete cases to
get the desired answer. This is particularly interesting when the instance resides on a remote site.

Moreover, suppose we use G-Log rules to specify site instance evolution during the site life. Then, the
application of the same rule to the site schema returns automatically the schema corresponding to the new
site instance.9

9Of course, in this context we are interested in those site updates that would affect the schema, since schema-invariant
updates do not need to be traced.

22

Remark 5.9 According to standard definition of schema, Definition 5.1 may be further enforced with the
condition:

3. (∀x, y ∈ N)(`T (x) 6= `T (y) ∨ `L(x) 6= `L(y)), i.e. there is no repetition of nodes.

In this case, given a set S of instances, we may build up its abstraction α′(S) computing α(S) and then by
collapsing all the nodes in it having the same type and label. The same technique can be applied to a rule R.
α′ can be seen as an abstraction less precise than α; by construction, it holds that α′(α(S)) = α′(S). The
concretization function γ remains the same.

When R is a query, Theorem 5.8 still holds using α′ in place of α. In Figure 13 we present the concrete
graph I, the abstract graph G = α(I) and the schema S = α′(I). For each rule Ri, α(Ri) = α′(Ri) is
obtained by removing the concrete value label (in these cases, Udine and Verona). It holds that:

• {I ′} = [[R1]](I), {I} = [[R2]](I) = [[R3]](I);

• {G′} = [[α(R1)]](G) = [[α(R2)]](G), {G} = [[α(R3)]]G;

• {S′} = [[α′(R1)]](S) = [[α′(R2)]](S) = [[α′(R3)]](S).

When, as in this case, rule application is deterministic, the two levels of abstractions can be summarized by
the following diagram:

S
α′(R)−→ Sf

t p
↑ α′ α′(Gf)

↑ α′

G
α(R)→ Gf

t p
↑ α α(If)

↑ α

I
R→ If

This leads to a hierarchy of abstraction in the spirit of [16].

6 Logical Semantics of G-Log

Aim of this section is to provide a model theoretic characterization of the language G-Log. First, we show
how to automatically extract a first-order formula from a G-Log graph. Then we show that G-Log concrete
graphs are simply representations of Herbrand structures: they are models of the formulae associated with
the rules they satisfy.

As said in Section 2.2, result nodes and their outgoing edges labeled by connects are represented without
writing explicitly the labels. We write φ(x1, . . . , xn) to denote that φ is a first-order formula with free
variables among x1, . . . , xn. Moreover, [`N (n)](x1, . . . , xn) denotes the atom p(x1, . . . , xn) where p is `N (n).
Similarly for `L and `S .

6.1 Formulae for G-Log Rules

In this subsection we describe how to obtain a first-order formula from each G-Log rule.

Definition 6.1 A G-Log formula is a closed first-order formula of the following form:

∀x1 · · ·xh (B1(x1, . . . , xh) → ∃z1 · · · zk B2(x1, . . . , xh, z1, . . . , zk))

where xi, zi are variables and the Bi are conjunctions of atoms.

23

works
Q

QQslives ?
holidays ©©©©¼

Person

TownTown Town

UdineGrado

?®

©
ª

®

©
ª

?
string string

namename

?
works

Q
QQslives?

holidays

Person

Town

®

©
ª

?
string

name

Town

?
works

?lives?
holidays

Person

Town

®

©
ª

?
string

name

I G = α(I) S = α′(I) = α′(α(I))

-

works
Q

QQslives ?
holidays ©©©©¼

Person

TownTown Town

UdineGrado

?®

©
ª

®

©
ª

?
string string

namename

¾

?
works

Q
QQslives?

holidays

Person

Town

®

©
ª

?
string

name

Town

¾

?
works

?lives?
holidays

Person

Town

®

©
ª

?
string

name

I′ G′ S′

Udine

?

lives
?

Person

Town

®

©
ª

?
string

name

Verona

?

lives
?

Person

Town

®

©
ª

?
string

name

works

Verona

?

?

Person

Town

®

©
ª

?
string

name

(R1) (R2) (R3)

Figure 13: Two levels of abstraction

24

Remark 6.2 Observe that the existential quantification of the variable on the r.h.s. of the implication causes
that the formula can not be encoded as a simple Horn clause of DATALOG.

We show how to associate a G-Log formula to every G-Log rule. We begin with the semantics based on
directional bisimulation ~∼; then we show how to modify the technique according to the other two semantics.

Definition 6.3 Let R = 〈N, E, `〉 be a G-Log rule; we define the G-Log formula Φ~∼
R and the formula Ψ~∼

R as
follows:

1. ∀n ∈ N associate a distinct variable ν(n).

2. ∀n ∈ N let ϕn be the formula: [`L(n)](ν(n)) ∧ [`T (n)](ν(n)) ∧ [`S(n)](ν(n)). If `S(n) = ⊥, then the
last conjunct is omitted.

3. ∀e = 〈m, 〈c, `L(e)〉, n〉 ∈ E let ϕe be the formula: [`L(e)](ν(m), ν(n)).

4. Let n1, . . . , nh be the nodes of N such that `C(e) = RS,

5. Let n′1, . . . , n
′
k be the nodes of N such that `C(e) = GS,

6. The formula Φ~∼
R is:

∀ν(n1) · · · ν(nh)

 ∧

n∈N,`C(n)=RS

ϕn ∧
∧

e∈E,`C(e)=RS

ϕe

 →

∃ν(n′1) · · · ν(n′k)

 ∧

n∈N,`C(n)=GS

ϕn ∧
∧

e∈E,`C(e)=GS

ϕe

7. The formula Ψ~∼
R is:

∃ν(n1) · · · ν(nh)

 ∧

n∈N,`C(n)=RS

ϕn ∧
∧

e∈E,`C(e)=RS

ϕe

StudiesLives ¡¡ª @@R
TownTown

Person

?

(R)

Figure 14: G–Log rule

For instance, the formula Φ~∼
R associated to the rule R of Fig. 14 is:10

∀x1x2x3

(
Person(x1) ∧ Town(x2) ∧ Lives(x1, x2) ∧ Town(x3) ∧ Studies(x1, x3) →
∃z1(result(z1) ∧ connects(z1, x1))

)

10We omit the type information for the sake of readability.

25

AttendsTeaches@
@R

¡
¡ª

Course

Person Student-Teacher ? ?

? ?

AttendsTeaches

®

©
ª

Person Student

®

©
ª

CourseCourse

Data BasePhysics

StringString

NameName

(R) (G)

Figure 15: A G–Log rule and a concrete graph

Logical formulae corresponding to G-Log graphs are different if we study the other two semantics. With
the semantics based on the concept of graph isomorphism ≡, rule R of Fig. 14 represents the query ‘collect
all the people living and studying in two different towns’.

In the construction of Φ≡R we need to force the fact that the two towns must be distinct. This can be
done by adding an inequality constraint between the variables identifying the nodes x2 and x3:

∀x1x2x3

(
Person(x1) ∧ Town(x2) ∧ Lives(x1, x2) ∧ Town(x3) ∧ Studies(x1, x3) ∧ x2 6= x3 →
∃z1(result(z1) ∧ connects(z1, x1))

)

More generally, we will require that all nodes of the graph are distinct:

Definition 6.4 Given a G-Log rule R = 〈N, E, `〉, and the formula

Φ~∼
R = ∀ν(n1) · · · ν(nh) (B1 → ∃ν(n′1) · · · ν(n′k)B2) ,

then the formula Φ≡R is:

∀ν(n1) · · · ν(nh)

B1 ∧

∧

1≤i<j≤h

ν(ni) 6= ν(nj)

 →

∃ν(n′1) · · · ν(n′k)

B2 ∧

∧

1≤i<j≤k

ν(n′i) 6= ν(n′j) ∧
∧

1≤i≤h,1≤j≤k

ν(ni) 6= ν(n′j)

Similarly, formula Ψ≡R can be obtained by adding
∧

1≤i<j≤h ν(ni) 6= ν(nj) to the conjuncts of Ψ~∼
R.

Consider now the semantics based on ∼, the rule R, and the concrete graph G of Fig. 15. R is ∼-applicable
(Definition 3.5) to (G) but is not ξ-applicable for ξ in {≡, ~∼}.

The G-Log formula Φ~∼
R:

∀x1x2x3

(
Person(x1) ∧ Student(x2) ∧ Course(x3) ∧ Teaches(x1, x3) ∧Attends(x2, x3) →
Teacher(x1, x2)

)

represents the query ‘if a person teaches a course and a student attends the same course, then the person is
that student’s teacher’. The semantics based on bisimulation requires a weaker condition, since the constraint
‘the same’ cannot be forced. This means that, in the ∼-semantics the rule requires that whenever a student
attends a course and a person teaches some (other?) course, the person is that student’s teacher.

Definition 6.5 Given a G-Log rule R, we define the unfolding of R, briefly unf (R), to be the graph obtained
by replacing every subgraph of R of the form

A

C

B

@@R ¡¡ª

26

with the subgraph:

A

C C

B

? ?

Then we set Φ∼R = Φ~∼
unf (R) and Ψ∼R = Ψ~∼

unf (R).

For instance, the formula Φ∼R for the rule R of Figure 15 is:

∀x1x2x3x4

Person(x1) ∧ Student(x2) ∧ Course(x3)∧
Course(x4) ∧ Teaches(x1, x3) ∧Attends(x2, x4) →
Teacher(x1, x2)

that does not constraint the courses to be the same.
In Section 6.3 we formally prove that the logical semantics of rules we are describing is consistent with

the operational semantics.

6.2 Concrete Graphs as Models

In this subsection we show, independently of the operational rule, how to obtain a first-order formula, from a
concrete graph; in particular, we show that concrete graphs are representations of the least Herbrand model
(modulo isomorphism) of the Skolemization of that formula.

Definition 6.6 Let G = 〈N, E, `〉 be a concrete graph. As in Definition 6.3, to every n ∈ N = {n1, . . . , nh}
associate a variable ν(n) and to every node n and edge e associate the formulae ϕn and ϕe, respectively.
Then, the formula ΦG associated to G is:

∃ν(n1) · · · ν(nh)
∧

n∈N

ϕ(n) ∧
∧

e∈E

ϕ(e)

Definition 6.7 Let G = 〈N, E, `〉 be a concrete graph. We associate to G the structure MG = 〈D, I〉 built
as follows:

1. for every node n ∈ N introduce a constant cn; let D = {cn : n ∈ N}.
2. I(p(cn)) = true if and only if p(ν(n)) is a conjunct of ΦG.

3. I(p(cm, cn)) = true if and only if p(ν(m), ν(n)) is a conjunct of ΦG.

MG is the least Herbrand model of the Skolemization of the formula ΦG.
For example, let G be the concrete graph of Fig. 15, and ci, i = 1, . . . , n the constants introduced for the

nodes of the concrete graph. Then MG can be expressed by the set of facts that are true:

Person(c1), entity(c1), Course(c2), entity(c2)
String(c3), slot(c3), Physics(c3), Student(c4), entity(c4),
Course(c5), entity(c5) String(c6), slot(c6), Data Base(c6),
Teaches(c1, c2),Name(c2, c3), Attends(c4, c5), Name(c5, c6)

27

6.3 Model Theoretic Semantics

In this subsection we highlight the relationships between the operational semantics of Section 3 and the
logical view of G-Log graphs presented in Subsections 6.1 and 6.2.

Proposition 6.8 (Applicability) Let G be a concrete graph and R a rule. Then R is ξ-applicable to G if
and only if MG |= Ψξ

R.

Proof. We prove first the claim when ξ is ~∼. R is ~∼-applicable to G means that there is G1 v G such that
RRS ~∼G1. Thus, there is a function f from the nodes of RRS to those of G1 fulfilling the requirements of
~∼. Using that f we find exactly the constants ci of the domain D obtained by skolemization of ΦG to be
assigned to the existentially quantified variables ν(ni) of Ψ~∼

R to ensure that MG |= Ψ~∼
R. Similarly, starting

from an assignment ensuring MG |= Ψ~∼
R we can build a function f such that RRS ~∼G1 for some G1 v G.

To conclude the proof, notice that when computing Ψξ
≡ and Ψξ

∼ we have kept into account the constraint
to map distinct nodes into distinct objects, and the possibility given by the unfolding of a node to be mapped
into distinct objects, respectively. 2

Proposition 6.9 (Satisfiability) Let G be a concrete graph and R a rule. Then G ξ-satisfies R if and
only if MG |= Φξ

R.

Proof. We prove first the claim when ξ is ~∼. G ~∼-satisfies G when for all G1 v G such that RRS ~∼G1 there
is a G2 w G1 such that R~∼G2. But this is exactly the meaning of the formula Φ~∼

R.
To conclude the proof, notice that the way to compute Ψξ

R when ξ is ∼ or ≡ ensures that the result
holds. 2

Proposition 6.10 (Rule application) Let G be a G-Log concrete graph and R a rule. Then, for ξ ∈ {∼
~∼,≡},

G′ ∈ [[R]]ξ(G) → (MG 6|= Ψξ
R ∧G = G′)∨

(MG |= Ψξ
R ∧MG |= Φξ

R ∧G = G′)∨
(MG |= Ψξ

R ∧MG 6|= Φξ
R ∧G′ 6= G ∧MG′ |= ΦR)

Proof. The proof is by case analysis. Assume G′ ∈ [[R]]ξ(G).

1. If R is not ξ-applicable to G then G′ = G by definition. From Proposition 6.8 it holds that MG 6|= Ψξ
R.

Since the l.h.s. of the implication of Φξ
R is false, then trivially MG |= Φξ

R.

2. If, conversely, R is ξ-applicable to G (and from Proposition 6.8 MG |= Ψξ
R) either:

(a) G ξ-satisfies R (and thus, by Proposition 6.9, MG |= Φξ
R), or

(b) G does not ξ-satisfy R (and thus, by Proposition 6.9, MG 6|= Φξ
R).

In the former case G′ = G; in the latter there is a G′ w G such that G′ ξ-satisfies R. Thus, by
Proposition 6.9, MG′ |= Φξ

R.

2

Notice that it can be the case that

MG |= Ψξ
R ∧MG 6|= Φξ

R ∧G′ 6= G ∧MG′ |= ΦR

but G′ /∈ [[R]]ξ(G). This happens when G′ is not a minimal extension of G. Thus, the converse direction of
th above proposition is not always true. However:

28

Corollary 6.11 Let G be a G-Log concrete graph and R a rule. Then, for ξ ∈ {∼ ~∼,≡},

∃G′(G′ ∈ [[R]]ξ(G) ∧G′ 6= G) ↔ MG |= Ψξ
R ∧MG 6|= Φξ

R ∧ (∃G′ w G)(MG′ |= ΦR)

Proof. The (→) direction follows immediately from Proposition 6.10. Assume now that MG |= Ψξ
R ∧MG 6|=

Φξ
R∧(∃G′ w G)(MG′ |= ΦR). From Propositions 6.8 and 6.9 we know that R is ξ-applicable to G and G does

not ξ-satisfy R. Then, by Proposition 4.3 this is sufficient to ensure that there is a minimal G′ extending G
and ξ-satisfying R. 2

To sum up, given a rule R and a graph G, the model-theoretic interpretation of the rule application is
that of finding a (minimal) G′ w G such that MG′ |= Φξ

R.
More generally, the effect of the application of the consecutive rules R1, . . . , Rn to an initial concrete

graph G is that of producing a (non-deterministic) path of the form:

G
R1⇒ G1

R1⇒ · · · Rn⇒ Gn

where MGi
|= Φξ

Rj
for all j ≤ i.

As a final remark, also for abstract graphs it is possible to develop a logical semantics. However, while a
concrete graph leads to an existential formula, an abstract graph leads to universally quantified formulae in
which a lot of closure properties are to be stored. The difficulty of handling those formulae requires further
work.

7 Comparisons and Future Work

7.1 Related proposals

A graphical language that shows many similarities with G-Log is Graphlog [9], a declarative language with
graph-based data model and rules. Graphlog is a deterministic language intended for the relational model, it
is not Turing-complete, and allows no sequences of rules. Moreover, Graphlog query graphs are acyclic and
the queries, which require patterns to be present in (or absent from) the database graph, are supposed to
extend databases only with new edges (i.e. can only define new relations). Conversely, G-Log was originally
developed as a language and data model for complex objects with identity [1], and in its full form it is Turing
complete ([31]). The structure and the meaning of queries in the two languages are rather similar, but
cycles are allowed in G-Log, and G-Log rules enable the user to extend the databases both with entities and
relations.

Similarities can also be found between our approach and previous works on UnQL [5], where the notion of
bisimulation is used for investigating query decomposition. However, differences between G-Log and UnQL
are quite deep. For instance, when assigning semantics to the language basic blocks, we allow information
to be located in graph nodes, while UNQL locates information on edges; more importantly, G-Log queries
are written directly in the graph formalism, while UNQL describes data instances graphically, and the query
language of UNQL is SQL-like. Moreover, G-Log allows to express cyclic information and queries, and
achieves its high expressive power by allowing a fully user-controlled non-determinism.

Anyway, keeping in mind these differences the results of our work can be also applied to Graphlog and
UNQL, and in general to any graphical language whose main aim is to query and transform a graph-based
data model by using graph-based rules.

For further comparisons between graphical query languages see [29].

7.2 Relationship with the Original G-Log Semantics

In this subsection we wish to point out the connections of a bisimulation-based semantics with the embedding-
based semantics of [31, 29]. To complete the Definition 3.2, b is a directional pseudo-bisimulation, denoted

29

f¾ ¯
°±

G

R

P

f

PP
-

?

Figure 16: R is ¿∼-applicable to G

by G0

b¿∼ G1, if there is a function b from the nodes of G0 to the nodes of G1 fulfilling conditions 1 and 2
of the definition of bisimulation and, moreover, condition 3 for i = 0. We say that G0¿∼G1 if there is a b

such that G0

b¿∼ G1. ¿∼ is used to build a semantics based on the notion of embedding as given in [29].
It is immediate to extend the Proposition 4.1 proving that if R is ~∼-applicable, then it is ¿∼-applicable.

However, also this implication is strict: in Figure 16 it is represented a rule R applicable to a graph G only
by this semantics.

Thus, the naturally induced ordering among relations is depicted by:

≡
↓
~∼

↙ ↘
¿∼ ∼

↘ ↙
⊥∼

The bottom element, say ⊥∼, of the above graph exists: G⊥∼G′ if there is a relation (not necessarily
a function!) b fulfilling conditions 1 and 2 of the definition of bisimulation and, moreover, condition 3 for
i = 0. The first Example of Fig. 10 denotes a case of applicability for ∼ but not for ¿∼ .

7.3 G-Log Graphs with Negation

Among the future work (and actually, under development) we plain to extend the semantics in order to deal
with rules and programs with negation (i.e., containing red dashed nodes and edges—c.f. Section 2.1).

Intuitively, dashed edges express negative information; consider, for instance, R and G as in Fig. 17. R
intuitively means ‘collect all the people that do not live in a town named Verona’. The fact that graphs G′

and G′′ satisfy R can be formalized by extending the definitions of [29] concerning negation according to our
semantics. However,

• G′ can be obtained from G by using a sort of failure rule or, almost equivalently, by applying the
Closed World Assumption: we infer that ‘Ago does not live in Verona’ from the fact that we cannot
derive that this fact is true.

• G′′ is obtained by adding the hypothesis ‘Ago lives in Verona’ that ensures that no subset of G fulfills
R.

This kind of non-determinism is dealt with in [29] and [31] by limiting the G-Log programs to queries.
We plan to study this and the related issues in the near future.

30

Verona

name?

Town

Lives?

Person

?

Ago

²
±

¯
°

name?

Person

²
±

¯
°Ago

?
Person

?name

Verona

name²
±

¯
°

?

Town-
Lives

²
±

¯
°Ago

Person

?name

(R) (G) (G′) (G′′)

Figure 17: Negation as failure

7.4 Computational Issues

During the implementation of the operational semantics of the language G-Log, two typical graph problems
must be faced: given two graphs G1 and G2,

1. to verify if G1ξG2, and

2. to verify if there is G3 v G1 such that G3ξG2.

In the case of the relation ≡, problem 1 is known as graph isomorphism, while problem 2 is the subgraph
isomorphism. The former is in NP but still it is not known whether it is NP -complete or it is in P .11 The
latter in NP -complete [17].

In the case of bisimulation (∼), problem 1 is polynomial (O(m log n+n), where m is the number of edges
and n the number of nodes.; see, e.g. [32]).

An interesting work is to characterize all the remaining problems from a computational point of view,
and then use these results to improve the performances of the old implementation of the languages G-Log
and WG-Log based on the notion of embedding (cf. Section 7.2).

8 Conclusions

We have presented a new version of the semantics of the language G-Log, a graph-based query language
originally designed for the representation and querying of object-based data. G-Log embodies the formal
basis of the WG-Log system, which proposes a language and an architecture for querying and restructuring
Web site data and, more generally, semistructured information. The results obtained in this paper allow a
deeper understanding of some subtle ambiguities of the original semantics of G-Log, while proposing three
alternative semantics which improve on the complexity of query computation in a significant way. Moreover,
given that we use WG-Log schemata in order to represent sets of sites having the same structure, the results
on abstraction provide the following important applicative consequences in the WG-Log context:

• graceful tolerance of data dynamics, i.e. an easy mechanism for schema updates resulting from instance
evolution over time (Correctness Theorem);

• efficient checking of instance correctness with respect to a given schema (abstraction and concretization
processes, functions α and γ);

• efficient checking (i.e. at the schema level) of query applicability to a certain instance (Correctness
Theorem);

11Actually, it is one of the candidates for membership in the (hypothetical) intermediate class NPI [17].

31

• semi-automatic integration of heterogeneous datasources: components of a heterogeneous database can
be translated into a language similar to G-Log, by a standard wrapper at the instance level, and later
a unified, schematic representation of the whole set of data can be automatically derived (abstraction
process, function α).

As a conclusion, we believe that all the advantages afforded by the adoption of the bisimulation semantics
perspective well account for the choice of working directly on the graph-based representation of G-Log, rather
that on its logical counterpart.

Some important issues are only tackled in this paper; noticeably, queries involving negation have not been
deeply examined yet: this is an issue for future research, together with the study of appropriate algorithms
to implement efficiently the various semantics. Recently it has been shown how to implement in linear time
the task of finding a subgraph bisimilar to a given one (one of the key actions to be implemented for the
operational semantics) for a wide family of graphs [14].

Acknowledgements

This work has benefited from discussions with Sara Comai, Ernesto Damiani, Barbara Oliboni, and Roberto
Posenato, all of whom we would like to thank. We thank the anonymous referees for their helpful comments.

The work has been partially supported by the MURST projects Tecniche formali per la specifica, l’analisi,
la verifica, la sintesi e la trasformazione di sistemi software, Interpretazione Astratta, Type Systems e Analisi
Control-Flow, and Metodologie e tecnologie per la gestione di dati e processi su reti Internet e Intranet, and
by the CNR Progetto Coordinato MIDA.

References

[1] A. Abiteboul and P. Kanellakis. Object Identity as a Query Language Primitive. In Proceedings of the
1989 SIGMOD International Conference on the Management of Data, Sigmod Record, vol. 19, June
1990.

[2] P. Aczel. Non-well-founded sets. Vol. 14 of Lecture Notes, Center for the Study of Language and
Information. Stanford, 1988.

[3] G. Arocena and A. Mendelzon. WebOQL: Restructuring documents, databases, and webs. In Proceedings
of the Fourteenth International Conference on Data Engineering. IEEE Computer Society Press, pages
24–33, 1998.

[4] P. P. Chen. The entity-relationship model: toward a unified view of data. ACM Trans. on DB systems,
1(1):9–36, 1976.

[5] P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. In In H. V. Jagadish, I. S. Mumick (Eds.): Proceedings of the 1996
ACM SIGMOD Int. Conf. on Management of Data, Montreal, Canada, 1996.

[6] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a Graphical
Language for Querying and Restructuring XML Documents. In Proceedings of the Eight International
World Wide Web Conference WWW8”, Toronto, Canada, May, 1999.

[7] S. Comai. Graphical Query Languages for Semi-structured Information. PhD Thesis, Politecnico di
Milano, 1999.

[8] S. Comai, E. Damiani, R. Posenato, and L. Tanca. A Schema-based Approach to Modeling and Querying
WWW Data. In Proceedings of Int. Conf. on Flexible Query Answering Systems, FQAS’98, Roskilde,
Denmark, May 13–15, 1998.

32

[9] M. P. Consens and A. O. Mendelzon. Graphlog: a Visual Formalism for Real Life Recursion. In
Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Nashville, Tennessee, April 2–4, 1990.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified framework for static analysis of programs
by construction of approximation of fixpoints. In Proceedings of Fourth ACM POPL, pp. 238–252, 1977.

[11] E. Damiani and L. Tanca. Semantic Approches to Structuring and Querying Web Sites. In Proceedings
of Seventh IFIP Work. Conf. on Database Semantics (DS-97), 1997.

[12] E. Damiani, L. Tanca. Blind Queries to XML Data. In Proceedings of 11th International Conference,
DEXA 2000, Lecture Notes in Computer Science, Vol. 1873 pp. 345–356, 2000.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language for XML.
In Proceedings of QL’98 — The Query Languages Workshop, December, 1998.

[14] A. Dovier and E. Quintarelli. Model-Checking Based Data Retrieval. Technical Report, Politecnico di
Milano, May 2000. Available at www.sci.univr.it/∼quintare/Papers/DQ01-RR.ps.gz.

[15] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a web-site management system.
SIGMOD Record, 26(3):4–11, Sept. 1997.

[16] G. Filè, R. Giacobazzi, and F. Ranzato, A Unifying View on Abstract Domain Design, ACM Computing
Surveys, 28(2):333–336, 1996.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New York, 1979.

[18] R. Goldman and J. Widom. Dataguides: enabling querying formulation and optimization in semi-
structured databases. In VLDB’97, Proceedings of 23rd Int’l Conf. on Very Large Data Bases, pp.
436–445, 1997.

[19] M. Gyssens, J. Paredaens, J. V. den Bussche, and D. Van Gucht. A graph-oriented object database
model. IEEE Transactions on Knowledge and Data Engineering, August 1994.

[20] R. Heckel, and G. Engels. Graph Transformation and Visual Modeling Techniques. Bulletin of EATCS,
71:186–202, June 2000.

[21] P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and Three Problems of
Equivalence. Information and Computation, 86(1):43–68, 1990.

[22] A. Lisitsa and V. Sazanov. Bounded Hyperset Theory and Web–like Data Bases. Research report,
97–21, DIMACS, 1997.

[23] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: a database management system
for semistructured data. SIGMOD Record, 23(3):54–66, Sept. 1997.

[24] A. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. In Proceedings of Fourth
Conference on Parallel and Distributed Information Systems, Dec. 1996.

[25] R. Milner. An algebraic definition of simulation between programs. In Second International Joint
Conference on Artificial Intelligence, pages 481–489. London, 1971.

[26] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science, volume 92,
Springer-Verlag, Berlin, 1980.

[27] R. Milner. Operational and Algebraic Semantics of Concurrent Processes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 19. Elsevier Science 1990.

33

[28] B. Oliboni, and L. Tanca. Querying XML specified WWW sites: links and recursion in XML-GL.
In Proceedings of Sixth International Conference on Rules and Objects in Databases, pp. 1167–1181.
London, July 2000.

[29] J. Paredaens, P. Peelman, and L. Tanca. G–Log: A Declarative Graphical Query Language. IEEE
Trans. on Knowledge and Data Eng., 7:436–453, 1995.

[30] D. Park. Concurrency and automata on infinite sequences. In Theoretical Computer Science, Number
104 of Lecture Notes in Computer Science. Springer Verlag, 1980.

[31] P. Peelman. G-Log: a deductive language for a graph–based data model. PhD thesis, Antwerpen Uni-
versity, 1993.

[32] R. Paige and R. E. Tarjan. Three Partition Refinements Algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

[33] J. van Benthem. Modal Correspondence Theory. PhD dissertation, Universiteit van Amsterdam,
Instituut voor Logica en Grondslagenonderzoek van Exacte Wetenschappen, pages 1–148, 1978.

34

