
On the Representation
and Management of Finite Sets
in CLP languages

Agostino Dovier
Università di Verona, Italy
dovier@sci.univr.it

Carla Piazza and Gianfranco Rossi
Università di Parma, Dipartimento di Matematica
Via M. D’Azeglio 85/A, 43100 Parma, Italy
gianfr@prmat.math.unipr.it

Enrico Pontelli
New Mexico State University, USA
epontell@cs.nmsu.edu

Abstract
We review and compare the main techniques considered to represent finite sets in
logic languages. We present a technique that combines the benefits of the previous
techniques, avoiding their drawbacks. We show how to verify satisfiability of any
conjunction of (positive and negative) literals based on =,⊆,∈, and ∪,∩, \, and ||,
viewed as predicate symbols, in a (hybrid) universe of finite sets. We also show
that ∪ and || (i.e., disjointness of two sets) are sufficient to represent all the above
mentioned operations.

1 Introduction

We consider the problem of representing and manipulating hereditarily finite
well-founded sets in the framework of CLP languages. Hereditarily finite
means containing a finite number of elements that can be either member-
less objects or hereditarily finite sets. Hybrid means that they can involve
free Herbrand functors, i.e., distinct from the set constructor and the empty-
set symbol ∅.

In the literature two main approaches have been adopted for the (ex-
tensional) representation of sets: ACI-terms [2, 5, 21], and list-like terms
[4, 15, 7, 13]. Each has advantages and disadvantages over the other.

Regarding operations on sets, they include primarily the ability to com-
pare sets. This, when considering the most general case of non-ground and
partially specified sets, amounts to solving a (non trivial) set unification prob-
lem [2, 7, 1, 26]. Besides equality, a number of other basic set operations
are usually required for dealing with sets, like membership (∈), inclusion
and strict inclusion (⊆, ⊂), union (∪), intersection (∩), and difference (\).
These operations are conveniently viewed as constraints. According to this
view, systems of (set) constraints are tested as a whole for satisfiability by
suitable constraint solvers [14]. The need to adopt a constraint-based man-

40

agement of set operations derives from the impossibility or impracticality
of producing extensional representations of the solutions of such operations.
Which operations are provided as constraints and which are programmed in
the language is also an important language design decision.

In this paper we present a technique for representing hereditarily well-
founded sets which combines the benefits of the two above mentioned tech-
niques, avoiding their drawbacks. This technique is based on the use of
the function symbol {· | ·}, interpreted as the element insertion operation,
used as set constructor, along with two predicate symbols, ∪3 and ||, respec-
tively interpreted as union and disjointness, as the only primitive constraints
directly supported by the language. We show that this choice allows to rep-
resent nested sets of any depth (not allowed when sets are represented as
ACI-terms) as well as to represent complex unification problems involving
more than one set variable, such as X1 ∪ X2 ∪ X3 = {a, b} (not allowed
when using the list-like representation). Moreover, it allows all other basic
set operation (such as ∩, ⊆) to be expressed in a quite straightforward way.

The paper is organized as follows. In Sect. 2 we review the main tech-
niques employed to represent finite sets in logic languages. In Sect. 3 we
describe the syntax and semantics of the language we have chosen for our
proposal. In Sect. 4 we show how to implement in the language itself the
main set-theoretical operations. In Sect. 5 we describe in detail the con-
straint solver for our language, first dealing only with non-colored sets, and
then extending the algorithms to the more general case of colored sets.

2 Set representations

We assume all the definitions and notations usually employed in unification
theory (e.g., [18, 22]). Σ = Π ∪ F will be used to denote a signature with
arity function ar : Σ −→ IN. V is a denumerable set of logical variables
disjoint from Σ. If t is a term, then vars(t) denote the set of variables
occurring in t. Capital letters X,Y, Z, etc. are used to represent variables;
f , g, etc. stand for function symbols (i.e., elements of F). We assume the
usual notions (e.g., [11]) of T-unifier, complete set of T-unifiers, and related
notions involved in the general theory of unification w.r.t. an equational
theory T.

There are three main ways of representing sets as terms:1

• using the binary union symbol ∪ as the set constructor, as done, for in-
stance, in [2, 5, 21];

• using the binary element insertion operator {· | ·} as the set constructor,
as done, for instance, in [4, 15, 7, 13];
1A few other proposals for logic programming with sets can be hardly classified as

following one of these approaches. In CLPS [19] all three approaches appear viable, as no
choice is explicitly made. In [12], instead, sets are intended as subsets of a finite domain D
of objects. At the language level, each ground set is represented as an individual constant
(where all constants are partially ordered to reflect the ⊆ lattice).

41

• using an infinite collection of function symbols of different arity [17, 25]—
the set {a1, . . . , an} is encoded by the term {n(a1, . . . , an), using the n-ary
functor {n.

We will concentrate on the first two methods only. The third one, in fact,
does not suit to our purposes. In particular, stating equality in axiomatic
form would require a non-trivial axiom schema like the following one: for
each pair of natural numbers m and n,

{m(X1, . . . , Xm) = {n(Y1, . . . , Yn) ↔
m∧

i=1

n∨

j=1

Xi = Yj ∧
n∧

j=1

m∨

i=1

Xi = Yj .

The two considered methods are compared as concerns the key problem
of (set) unification: given any two F∪V terms ` and r, find a complete set of
T -unifiers of ` = r, where T is an equational theory describing the relevant
properties of the set constructor symbols.

2.1 The ∪-based representation

F contains the binary function symbol ∪ and the constant symbol ∅. ∪
fulfills the equational axioms:

(A) (X ∪ Y) ∪ Z = X ∪ (Y ∪ Z)
(C) X ∪ Y = Y ∪X
(I) X ∪X = X

while ∅ is the identity of the operation ∪:
(1) X ∪ ∅ = X .

Intuitively, ∪ and ∅ have the meaning of the set union operator and empty-
set, respectively.

2.1.1 Set unification algorithm: Flat sets

When F is composed by ∪, ∅, and by an arbitrary number of constant
symbols, the unification problem falls into ACI1-unification with constants.
Various solutions to this problem have been studied in the literature [2, 5,
21]. A viable solution is, for example, the one proposed by Baader and
Büttner [2], based on the use of ACI-matrices. An ACI-matrix is a boolean
matrix which describes a most general unifier (mgu) for a given ACI problem.
The columns of the matrix are associated with the variables present in the
original problem, while the rows are associated with the constants present
in the unification problem as well as to a set of new variables. Mechanical
procedures can be devised [2] to generate a finite collection of ACI-matrices
representing a minimal and complete set of unifiers.

Example 2.1 The matching problem X1∪X2∪X3 = a∪b can be associated
with (23 − 1)2 = 49 ACI-matrices (in each row there must be at least one
1). Two of them, for example, are:

X1 X2 X3

0 1 1 a
1 0 1 b

X1 X2 X3

0 0 1 a
0 1 0 b

42

yielding, resp., the unifiers: [X1/b,X2/a,X3/a ∪ b], [X1/∅, X2/b,X3/a] .

In [2] the number of mgu’s needed to cover the solution space (actually,
exactly the unifiers generated by the algorithm) is made explicit.

2.1.2 Set unification algorithm: Nested sets

ACI1-unification with constants does not distinguish explicitly between sets
and elements of sets. This makes it difficult to handle set unification when
sets are defined by enumerating their elements, especially when elements are
allowed to be variables. For example, the problem

{X1, X2, X3} = {a, b} (1)
(which admits 6 distinct solutions) is difficult to handle using ACI1-unificati-
on. In fact, one could map this into the ACI1-unification problem of Exam-
ple 2.1, by interpreting the constants a and b as the singleton sets {a} and
{b} (both in the formulation and in the unifiers), and then “filtering” the 49
distinct ACI1-unifiers, removing the solutions in which (at least) one of the
Xi’s is mapped to ∅ or to a ∪ b (in general to the union of more than one
distinct constant). This is an impractical way of solving this problem in the
general case.2 Furthermore, this technique does not allow nested sets to be
taken into account at all.

A viable solutions to these problems, still using the ∪-based representa-
tion, is obtained by assuming that a unary (free) operator {·} is present in Σ.
The set {s1, . . . , sm} can be described as {s1}∪. . .∪{sm}. To our knowledge,
the only proposals that have addressed this problem so far are [20, 16, 3]. In
particular, [3] shows how to combine unification algorithms for equational
theories with disjoint signatures and theories. A general ACI1 unification
algorithm (namely, ACI1 dealing also with free symbols, such as {·}) can
be obtained by combining ACI1-unification for ∅, ∪ and constants (as in
Sect. 2.1.1), with unification in the free theory for all other symbols.

The generality of the combination procedure of [3], however, leads to
the generation of a large number of non-deterministic choices.3 In [3] some
optimizations are proposed that allow to take advantage of certain features of
the equational theories involved (e.g., certain non-deterministic choices can
be avoided if one of the theory is a free theory), but it is unclear whether
these optimizations can make the approach more practical.

2.2 The {· | ·}-based representation

The {· | ·}-based representation (or list-like representation) is the approach
used in most papers dealing with sets in logic programming languages, such
as [4, 7, 13, 15, 26].

2E.g., the problem X1 ∪ . . . ∪ X7 = a ∪ b admits 16129 unifiers instead of the 126 of
{X1, . . . , X7} = {a, b} [1].

3 The non-deterministic selection of a partition of the variables in the problem generates
O((n

2
)n) number of choices, while the selection of a given indexing ordering of the variables

is of the order O(n!× 2n).

43

F contains the binary function symbol {· | ·}, the empty-set constant
symbol ∅, and an arbitrary number of constant and function symbols. The
function symbol {· | ·} fulfills the equational axioms [6, 7]:

(Ab) {X | {X |Z}} = {X |Z}
(C`) {X | {Y |Z}} = {Y | {X |Z}}.

Intuitively, {· | ·} is interpreted as the element insertion operation and ∅
as the empty set. For the sake of simplicity, we denote by {t0, . . . , tn | t}
the term {t0 | . . . {tn | t} . . .}; in particular, if t = ∅, then we write it as
{t0, . . . , tn}.

2.2.1 Set unification algorithms

General (i.e., dealing also with free functors) (Ab)(C`)-unification algorithms
have been proposed in [15, 7, 26, 1].

The algorithm in [15] is weaker than the others since its aim is that
of solving matching problems instead of unification problems. [7] basically
extends it by covering (nested) set unification problems of the form:

{s1, . . . , sm | s} = {t1, . . . , tn | t}
where m,n ≥ 0, si and tj can be generic terms and s, t can be either variables
(possibly identical) or non-set terms (i.e., terms with an outermost symbol
different from {· | ·}, including ∅). [26] solves exactly the same problem
using an elegant algorithm based on (temporarily generated) membership
constraints. Moreover, the algorithm reduces the generation of redundant
(namely, repetitions, instances) solutions of [7]. Finally, the algorithm in [1],
though less elegant than that of [26], further reduces the number of redun-
dancies. In particular, it is proved to be minimal for a number of sample set
unification problems that are proposed as ‘benchmarks’.

Differently from the ∪-based representation, the {· | ·}-based representa-
tion naturally accommodates for nested sets. Thus, for instance, problem
(1) can be rendered directly as {X1, X2, X3} = {a, b} (that is, using the
internal notation, {X1 | {X2 | {X3 | ∅}}} = {a | {b | ∅}}), and all the proposed
algorithms [15, 7, 26, 1] return exactly the 6 mgu’s:

[X1/a,X2/a,X3/b] [X1/b,X2/b,X3/a] [X1/a,X2/b,X3/b]
[X1/b,X2/a,X3/a] [X1/a,X2/b,X3/a] [X1/b,X2/a,X3/b]

without the need of any filtering of solutions.
Therefore, the {· | ·}-based representation allows to solve set unification

problems which cannot be expressed using ACI1-unification with constants.
On the other hand, the ∪-based representation allows to write set terms that
cannot be directly expressed using a list-like representation, as for instance
the term X∪a∪Y (as well as the terms involved in Example 2.1). The {· | ·}-
based representation, in fact, can only represent the union of a sequence of
singletons with, eventually, a single variable.

Thus, the two different representations offer opposite advantages and
disadvantages. One of the main contribution of this work is to define a

44

representation of sets which allows to capture the benefits of both the ap-
proaches.

3 A (new) proposal for set representation

In this section we propose a new language for representing sets which com-
bines the two approaches of Sect. 2.1 and 2.2, as it uses a {· | ·}-based repre-
sentation and it provides ∪3 as a primitive constraint.

3.1 The language

The language is based on a signature Σ = Π ∪ F , which includes
• the predicate symbols ∪3 (ternary) and || (binary);
• the binary function symbol {· | ·}, and the constant symbol ∅.

In view of the intended interpretation, variables and any terms whose outer-
most symbol is {· | ·} are called set terms, whereas all other terms, including
∅, are called non-set terms. As shown in Sect. 2.2, terms denoting sets can
be nested at any depth—e.g., {a, {X, {∅, f(∅)}} |Y }. Observe that sets can
be constructed by adding elements to any arbitrary (non-set) term: we call
this term the color of the set. Sets constructed starting from a non-variable
term different from ∅ are called colored sets [7].4

The primitive constraints are the (positive and negative) literals based on
the predicate symbols ∪3 and ||. A constraint is any conjunction of primitive
constraints. We will use 6π(t1, . . . , tn) to denote ¬π(t1, . . . , tn), for π ∈ Π.

3.2 The Semantics

Different proposals for an axiomatic semantics of terms denoting sets, suit-
able for CLP languages, have been recently presented (e.g., [7, 10, 6, 9]). In
this paper we follow the approach of [9] which has been shown to be well
suited for a parametric approach to the design of CLP languages which in-
tegrates different kinds of aggregate data objects (namely, sets, multi-sets,
lists, and compact-lists).

The set theory, named Set , includes, besides the standard equality ax-
ioms, the axioms for the existence of the empty set (K), the axioms for
the element insertion operation (W), the Clark Equality Theory axioms for
the non-set terms (F ′

1, F2), along with a weak form of the foundation axiom
(F s

3), and a suitable version of the extensionality axiom (Es
k). Set is now

augmented with the axioms for ∪3 and || (see the table below), which pro-
4Colored sets are motivated primarily by “technical” reasons. Actually, we could avoid

considering colored sets by introducing two sorts,“terms” and “set terms”, where the latter
is a sub-sort of the former. This would allow us to restrict admissible solutions to well-
sorted substitutions only. However, we prefer to take the opposite approach, which does
not distinguish between different sorts, allowing colored sets to come into play. Thus the
user can take advantage of the additional expressive power of colors (whose potentialities,
however, still need to be further investigated).

45

vides the following intuitive meaning for the two new predicates: ∪3(r, s, t)
means t = r ∪ s, whereas s||t stands for s ∩ t = ∅.5

for all m,n, k and for all x0 · · ·xmy0 · · · ynz0 · · · zk:

(∪)

(∪3({x1, . . . , xm |x0}, {y1, . . . , yn | y0}, {z1, . . . , zk | z0})∧
∀w (w /∈ x0 ∧ w /∈ y0 ∧ w /∈ z0)

)
↔

({z1, . . . , zk} = {x1, . . . , xm, y1, . . . , yn} ∧ x0 = y0 ∧ x0 = z0)

(||)
({x1, . . . , xm |x0}||{y1, . . . , yn | y0}∧
∀w (w /∈ x0 ∧ w /∈ y0)

)
↔

(∀z (z ∈ {x1, . . . , xm} → z /∈ {y1, . . . , yn}) ∧ x0 = y0

)

The interpretation domain is the ordinary Herbrand Universe HΣ (or,
equivalently, the set of finite trees over Σ), modulo the smallest congruence
relation ∼= induced by the (Ab) and (C`) axioms (denoted HΣ/∼=).

The interpretation of ∪3 and || on the domain HΣ/∼= is strictly forced by
their axioms. The axiom allows to unite (resp., verify disjointness of) two
sets only if they are based on the same color (note that the colors are those
terms that are forced by axiom (K) to not contain any elements.)

The interpretation HΣ/ ∼= can be proved to be a model of the simple
theory of sets considered above. Therefore:

Proposition 3.1 The axiomatic theory KWEs
kF

′
1F2F

s
3 ∪ || and the inter-

pretation HΣ/ ∼= correspond [14] on the class of formulae constituted by
conjunctions of literals based on =,∈,∪3, ||.

Finally, it must be observed that the possibility to deal with non-set
terms allows one to build (nested) sets with the same elements but different
colors. This fact naturally induces the introduction of a predicate dealing
with colors. Although the theory has been defined without making use of
this predicate, the binary predicate symbol cof (read ‘color of’) is useful
to implement the constraint manager. As a matter of fact, if the color
of a term is not a variable, then it is easy to make it explicit. On the
contrary, a constraint of the form ∪3(X, Y, Z) is satisfiable only if X, Y ,
and Z have the same color. We could make this fact explicit by stating
cof(X, K) ∧ cof(Y, K) ∧ cof(Z,K). For this reason, we will make use of the
predicate symbol cof , to be handled as a constraint. As our aim is to make
the axioms work properly for finite sets only, we do not need to insert directly
cof into the theory, but we expand the language with the definition axioms
(f, g 6≡ {· | ·}):

cof(f(s1, . . . , sm), g(t1, . . . , tn)) iff f(s1, . . . , sm) = g(t1, . . . , tn)
cof({t | s}, k) iff cof(s, k).

The interpretation above can be easily completed to model cof as well.
5The theory deals also with equality (=) and membership (∈). Actually, it would be

possible to restate the theory using only ∪3 and || (see Prop. 4.1 and 4.2): for the sake of
readability, however, we prefer to use this enlarged signature.

46

4 Set operations

In this section we show that the ∪3 constraint, along with the other primitive
constraint, ||, if properly managed, allows to express most of the other usual
set operations in a quite straightforward way (in particular, without having
to resort to any universal quantification).

Proposition 4.1 Literals based on the predicate symbols ∈, =, ⊆, can be
equivalently replaced by literals based only on ∪3.

Proof. (sketch) s ∈ t iff ∪3(t, t, {s | t}); s ⊆ t iff ∪3(s, t, t); s = t iff ∪3(s, s, t). For
the corresponding negative literals, it is enough to replace ∪3 with 6∪3. 2

The operation ∩ (viewed as ternary predicate symbol) could be easily
programmed using (recursive) clauses in the language itself. However, this
approach may cause problems when using ∩3 with insufficiently instantiated
arguments. For this reason, we have introduced the operation || as a basic
constraint symbol; in fact, || allows to express ∩3 literals (and other inter-
esting operations) as simple combination of basic constraints, as shown by
the following proposition.6

Proposition 4.2 Literals based on predicate symbols: ∩, \, and 4 can be
equivalently replaced by conjunctions of literals based on ∪3 and ||.
Proof. (sketch) \(x, y, z) denotes z = x \ y.

∩3(r, s, t) iff ∃R, S(∪3(R, t, r) ∧ ∪3(S, t, s) ∧R||S)
6 ∩3(r, s, t) iff ∃T (∩3(r, s, T) ∧ T 6= t)
\(r, s, t) iff ∃W (∪3(t, r, r) ∧ ∪3(s, t, W) ∧ ∪3(r,W,W) ∧ s||t)
6 \(r, s, t) iff ∃T (\(r, s, T) ∧ T 6= t)

Similarly for 4 (s4t = s \ t ∪ t \ s). 2

5 Constraint solver

Like in CLP (Set) [7], in order to check satisfiability of a given constraint C,
we transform C to an equivalent disjunction of constraints in solved form,
guaranteed to be satisfiable.

The problem we tackle here extends the satisfiability problem for set uni-
fication, shown to be NP -complete in [16]. Thus, it is an NP -hard problem.
NP -completeness ensues from [23]. The algorithm we propose here clearly
does not belong to NP since it is non-deterministic and it applies syntactic
substitutions. However, one could devise implementations of the algorithm
adopting standard techniques (e.g., those of [22]) to avoid problems origi-
nated by substitutions, in order to achieve better complexity results.

6 It can be proved that having only ∪3 in the language one cannot define ∩3 in the
same “direct” way as done for =, ⊆, and ∈ in Prop. 4.1. Moreover, it can be proved
that to express ∪ (as well as ⊆,∩) in the language of {∅, {· | ·}, =,∈} universal quantifiers
are needed. This implies that constraints based on ∪3 are more expressive than those
of CLP (Set).

47

In the algorithms (see Fig. 1) s, si, t, ti denote generic terms, f, g function
symbols different from {· | ·}, and X, Xi, Y, Yi,W,Wi, Z, Zi variables. { | }
denotes a generic term which has {· | ·} as its outermost function symbol.
The symbol ≡ denotes syntactic equality. If a variable occurs only in the
r.h.s. of a rewriting rule, then it must be intended as a ‘newly generated’
variable, distinct from all the others.

Although Prop. 4.1 allows one to forget ‘=’ and ‘∈’ literals, we prefer,
for the sake of simplicity, to assume that the constraint solver is capable of
managing also this kind of constraints. Thanks to Prop. 4.1, however, one
can think of them as special cases of the ∪3 constraint handler. Rewriting
procedures for them can be obtained immediately from those of [10, 7] and
are omitted due to lack of space.

Moreover, in order to make the presentation more readable we find it
convenient to split it into two parts. In the first part, we deal only with
non-colored sets, that is, we assume that in {t | s}, s is necessarily either ∅
or a set term, and, that in ∪3(r, s, t) and in s||t, r, s and t are necessarily
either ∅ or set terms. In the second part, this assumption is relaxed and
notions and algorithms presented in the first part are extended to the more
general case of colored sets. This extension allows us to prove correctness
and completeness of the proposed satisfiability checking procedure, without
the restriction on the kind of sets considered.

5.1 Non-colored sets

5.1.1 Solved form

A constraint C, different from false, can be conveniently seen as the con-
junction of the constraints C= ∧ C6= ∧ C∈ ∧ C/∈ ∧ C∪3 ∧ C6∪3 ∧ C|| ∧ C6||,
where each Cπ (C6π) is composed by the positive (negative) literals based on
the predicate symbol π, π belonging to {=,∈,∪3, ||}. A primitive constraint
c of C is in solved form if it is in one of the following forms:

(i) X = t, and X does not occur neither in t nor in the rest of C;
(ii) X 6= t, and X does not occur in t;
(iii) t /∈ X, and X does not occur in t;
(iv) ∪3(X1, X2, X3), X1 6≡ X2, and X1 6= t1, X2 6= t2, X3 6= t3, t1, t2, t3 any

terms, do not occur in C;
(v) X1||X2, X1 6≡ X2.

A constraint C (Cπ) is in solved form if it is empty or all its components
are simultaneously in solved form (observe that the primitive constraints
based on ∈, 6∪3, and 6 || are completely eliminated; hence, C∈, C6∪3 , and C6||
are empty whenever C is in solved form).

For C=, C 6=, C∈, and C/∈ the conditions for the solved forms are the same
as in [7, 10], as they capture the notion of a constraint which cannot be
further simplified. The conditions for C∪3 are aimed at avoiding situations
like ∪3(X, Y, Z) ∧ ∪3(X,Y, W) ∧ Z 6= W , which are not satisfiable. The

48

condition for C|| are aimed at avoiding a situation like X||X ∧X 6= ∅, which
is also clearly not satisfiable in the context of non-colored sets.

The notion of solved form plays a fundamental role in the definition of the
constraint satisfiability procedure, as emerges from the following theorem.

Theorem 5.1 Let C be a constraint in solved form. Then C is satisfiable
in HΣ/ ∼=.

Proof. (sketch) The proof is basically the construction of a mapping for the variables
of C into HΣ. The construction is divided into two parts. In the first part, C= is
not considered. A solution for the other constraints is computed by looking for
mappings of the form

Xi 7→ {· · · {︸ ︷︷ ︸
ni

∅} · · ·}

fulfilling all 6=, ||, /∈, and ∪3 constraints. In particular, the variables appearing in ∪3

are mapped into ∅ (ni = 0) and the numbers ni for the other variables are computed
choosing one possible solution of a trivial integer system of inequations obtained by
analyzing the “depth” of the occurrences of the variables in terms (to this aim, ||
and 6= constraints are treated in the same way). Then, all the variables occurring
only in r.h.s. of equations of C= are bound to ∅ and the mappings for the variables
of the l.h.s. are bound to the uniquely induced (ground) substitution. Complete
proof can be found in [24]. A proof for the simpler cases, C=, C 6=, C∈, C/∈, can be
found in [6]. 2

5.1.2 Rewriting rules

The constraint satisfiability test is performed by a procedure, SATSET ,
which uses a distinct (non-deterministic) rewriting algorithm for each dis-
tinct Cπ. Algorithms for C=, C 6=, C∈, C6∈ can be found in [10, 6]. In this
paper we present the algorithms union for ∪3, disj for ||, not union for 6 ∪3,
and not disj for 6 || (see Figure 1).

5.1.3 Constraint satisfiability

For any given constraint C, the combination of the rewriting procedures
of the previous section allows to compute, through non-determinism, either
false or a finite collection of constraints in solved form, whose disjunction is
equi-satisfiable to C in the theory presented (provided we restrict to non-
colored sets). The constraint satisfiability procedure SATSET uses the fol-
lowing function STEP to call, in the proper order, the rewriting procedures:

STEP(C) : not union(C); not disj(C);member(C);
union(C); disj(C); equal(C); not member(C); not equal(C).

SATSET repeatedly calls STEP until a fix-point is reached (i.e., the resulting
constraint is in solved form and no further rewriting applies to it):

SATSET (C) : while (STEP(C) 6= C) do C := STEP(C).
Correctness and completeness of SATSET is stated by the following theorem:

49

union(C) :
while C∪3 is not in solved form and C 6= false do

apply any of the following rules to any
(conjunction of) primitive constraint(s) of C:

(1) ∪3(s, s, t)
} 7→ s = t

(2) ∪3(s, t, ∅)
} 7→ s = ∅ ∧ t = ∅

(3) ∪3(s1, s2, {t1 | t2})
} 7→
{t1 | t2} = {t1 |X} ∧ t1 /∈ X ∧ any of

(i) s1 = {t1 |Z} ∧ ∪3(Z, s2, X)
(ii) s2 = {t1 |Z} ∧ ∪3(s1, Z, X)
(iii) s1 = {t1 |Z} ∧ s2 = {t1 |W} ∧ ∪3(Z, W,X)

(4) ∪3(∅, t, X) or
∪3(t, ∅, X)

}
7→ X = t

(5) ∪3({t1 | t2}, t, X) or
∪3(t, {t1 | t2}, X)

}
7→

{t1 | t2} = {t1 |Z} ∧ t1 /∈ Z ∧X = {t1 |Y } ∧ t1 /∈ Y ∧ any of
(i) ∪3(Z, t, Y)
(ii) t = {t1 |W} ∧ t1 /∈ W ∧ ∪3(Z, W, Y)

(6) ∪3(X,Y, Z) ∧ Z 6= t
} 7→ ∪3(X, Y, Z) ∧ any of

(i) Z = {Z1 |Z2} ∧ Z1 /∈ t
(ii) t = {Z1 |Z2} ∧ Z1 /∈ Z
(iii) Z = ∅ ∧ t 6= ∅

(7)
∪3(X, Y, Z) ∧X 6= t or
∪3(Y, X,Z) ∧X 6= t

}
7→ ∪3(X,Y, Z) ∧ any of

(i) X = {Z1 |Z2} ∧ Z1 /∈ t
(ii) t = {Z1 |Z2} ∧ Z1 /∈ X
(iii) X = ∅ ∧ t 6= ∅

disj(C) :
while C|| is not in solved form and C 6= false do
apply any of the following rules to any primitive constraint of C:

(1) ∅ || t or
t || ∅

}
7→ true

(2) {t1 | t2} ||X or
X||{t1 | t2}

}
7→ t1 /∈ X ∧X || t2

(3) {t1 | s1} || {t2 | s2}
} 7→ t1 6= t2 ∧ t1 /∈ s2 ∧ t2 /∈ s1 ∧ s1||s2

(4) X ||X } 7→ X = ∅
not union(C) :

while C 6∪3 is not in solved form and C 6= false do
apply the following rule to any primitive constraint of C:

(1) 6∪3(s1, s2, s3) 7→ any of (i) X ∈ s3 ∧X /∈ s1 ∧X /∈ s2

(ii) X ∈ s1 ∧X /∈ s3

(iii) X ∈ s2 ∧X /∈ s3

not disj(C) :
while C 6|| is not in solved form and C 6= false do
apply the following rule to any primitive constraint of C:

(1) s 6 ||t 7→ X ∈ s ∧X ∈ t

Figure 1: Rewriting Procedures

50

Theorem 5.2 Let C be a constraint not involving any colored sets and C ′
i be

a constraint in solved form returned by SATSET (C) other than false. Then
Set |= C ↔ ~∃∨

i C
′
i .

Proof. (sketch) The proof is by case analysis of all rules of all the algorithms
presented. For the procedures equal, not equal, member, and not member, the result
follows from the corresponding proofs in [10].

Let us analyze briefly the other procedures. Correctness (and completeness)
of rule (1) of union follows directly from Prop. 4.1. Rules (2) and (4) are the
cases in which at least one of the arguments is ∅. Rules (3) and (5) are the cases
in which at least one of the arguments is surely non-empty. Rules (5), (6), and
(7) are needed to reach solved form. Their correctness and completeness derive
from axioms (∪), (K), (Es

k), (W). The same holds for the single rule of not union.
Correctness and completeness of rules (2) and (3) of disj follow immediately from
axiom (||). The same consideration holds for the unique rule of not disj. Correctness
and completeness of rules (1) and (4) of disj follow from axiom (||) and from (K),
instantiated to the constant symbol ∅. 2

The termination of SATSET and the finiteness of the number of non-
deterministic choices generated during its computation ensure the finiteness
of the number of constraints non-deterministically returned by SATSET .

Theorem 5.3 The SATSET procedure terminates for every constraint C.

Proof. In [7] it is shown that the iteration of the procedures member, not member,
equal, and not equal on a system of {=, 6=,∈, 6∈}-constraints always terminates. We
can use this result to provide an argument for the termination of the SATSET
procedure proposed here. The proof is divided into two parts:
(i) show that each individual rewriting procedure terminates;
(ii) show that SATSET globally terminates.
Step (i) is straightforward. In step (ii), we can safely ignore not union and not disj,
as they are going to be applied only once. Let us assume that an infinite computa-
tion can occur; for the time being let us ignore rules (6), (7) of the procedure union.
The body of SATSET is organized as union(disj(equal(not member(not equal(C))))).

From [7] we know that the sequence equal(not member(not equal(C))) cannot
lead to non-terminating executions. Thus, a non-terminating execution must con-
tain infinite activations of at least one of union and disj. The disj by itself cannot
cause infinite executions. This case can be easily ruled out observing that:
• since no new || are ever created, an infinite computation must originate from

infinite reductions of one ||-constraint;
• the two rules which can be applied repeatedly (without removing the constraint

from the system) are the rule (2) and (3). They both create only negative knowl-
edge which cannot further feed the production of bindings.

Thus an infinite computation will require infinite activations of union. This implies
that there is a ∪3-constraint which is reduced infinite times, using either rule (3)
or (5). But, if this is the case, then it will be possible to produce (by fixing one
argument) a constraint system not involving any ∪3-constraints which will involve
the same infinite computation, and which would contradict the results in [7].

In the previous discussion we have ignored the rules (6) and (7) of the union
procedure. It can be shown [24] that their presence does not endanger the global
termination. 2

51

5.2 Colored sets

In order to deal with colored sets, we first need to update the notion of
solved form, in order to properly reflect the presence of colored sets. This is
obtained by adding, in cases (iv) and (v), the further condition that all the
involved sets must have the same color t. This means that C must contain
the primitive constraints cof(Xi, t), i = 1, 2, (3), t term not of the form { | }.

Moreover, a new solved form for cof constraints must be introduced.
This solved form requires the verification of two special conditions, the suf-
ficient wideness of F condition and the acyclicity condition. The first con-
dition, formally introduced in [24], is used to guarantee the ability of the
language to generate a sufficient number of distinct colors to satisfy all the
cof atoms and 6= literals present in the constraint. For example, assume
F = {{· | ·}, ∅, c1, . . . , cn−1} and C has the form:

∧n
i=0 cof(Xi, Yi) ∧

∧n
j,k=0,j 6=k Yj 6= Yk .

This constraint is not satisfiable, as F allows the creation of at most n
different colors. A single function symbol of arity greater or equal to 1
guarantees the sufficient wideness of F .

The acyclicity condition represents a generalization of the concept of
occur-check. Testing the acyclicity condition means checking that C does
not contain any chain of the form cof(X1, f1(X2)) ∧ cof(X2, f2(X3)) ∧ . . . ∧
cof(Xn, fn(X1)) which is clearly unsatisfiable. Therefore, the following case
is added to the definition of a constraint C in solved form:

(vi) cof(X, t), X /∈ vars(t), t 6≡ { | }, and cof(X, s), s 6≡ t, does not occur
in C, and the sufficient wideness and the acyclicity conditions hold.

A constraint in solved form involving cof primitive constraints is still sat-
isfiable. To prove this fact one can extend proof of Theorem 5.1 to deal
with this kind of constraints. In the second part of the proof, the solution
computed in the first part is refined by mapping the variables occurring in
Ccof , C 6cof in different colors fulfilling the constraints and modifying the colors
of the images of the mappings computed in the first step.

A new constraint rewriting algorithm, called colors, is developed for deal-
ing with the Ccof and the C6cof parts of a given constraint C. Accordingly,
the STEP function is extended by including a call to colors after the call
to not equal. The colors procedure reduces cof and 6 cof constraints, possibly
generating some = and 6= constraints, and possibly returning false if F is
not wide enough.

Algorithms of Sect. 5 must be revised in order to correctly manipulate
the colors of sets. For instance, rule (4) of union is modified as follows:

(4.1) ∪3(f(s1, . . . , sm), g(t1, . . . , tn), X)
} 7→

f(s1, . . . , sm) = g(t1, . . . , tn) ∧X = f(s1, . . . , sm)

(4.2)
∪3(f(s1, . . . , sm), t,X) or
∪3(t, f(s1, . . . , sm), X)

t ≡ { | } or t ∈ V

 7→ X = t ∧ cof(t, f(s1, . . . , sm))

52

Similar technical variations are applied to rules (2), (6), and (7) of the
union, and for rules (1) and (4) of disj. A new rule (rule (8)) is added to
union for imposing that, given the constraint ∪3(X, Y, Z), X, Y , and Z have
the same color. Finally, a few non-deterministic choices dealing with cof

are added to the single rule of not union and not disj. (Complete constraint
handling algorithms, as well as the colors procedure, can be found in [8].)

These extensions allow us finally to obtain the same results of Theo-
rem 5.2 (correctness and completeness of SATSET) and Theorem 5.3 (ter-
mination of SATSET), but relaxing the restriction to non-colored sets.

To conclude this section, we point out that the ACI1 unification problem
of Example 2.1, X1 ∪X2 ∪X3 = {a, b}, as well as other similar unification
problems, can be written as a conjunction of primitive constraints:

∪3(X1, X2, X) ∧ ∪3(X, X3, {a, b}).
The execution of SATSET on this constraint will return the desired answers.

6 Conclusions

In this work we have compared existing proposals for handling finite sets
in CLP languages, and proposed a novel technique, that captures the ben-
efits of the existing ones. The new representation scheme uses {· | ·} as
set-constructor and ∪3 as basic constraint predicate. We have described the
syntactic and semantics components of the language and presented sound
and complete operational semantics and constraint handlers.

Acknowledgements

We wish to thank Klaus U. Schulz for his kindness in suggesting interesting ref-
erences and results, Alberto Policriti and Desh Ranjan for the comments in Foot-
notes 6 and 3, respectively. A. Dovier is partially supported by MURST project:
Tecniche formali per la specifica, l’analisi, la verifica, la sintesi e la trasformazione
di sistemi software. E. Pontelli is partially supported by NSF grants HRD 93-53271,
INT 95-15256, and CCR 96-25358. The work is partially supported by CNR Grant
97.02426.CT12.

References

[1] P. Arenas-Sánchez and A. Dovier. A Minimality Study for Set Unification. J.
of Functional and Logic Programming, No. 7, Volume 1997.

[2] F. Baader and W. Büttner. Unification in commutative and idempotent
monoids. Theoretical Computer Science, 56:345–352, 1988.

[3] F. Baader and K. U. Schulz. Unification in the Union of Disjoint Equa-
tional Theories: Combining Decision Procedures. J. of Symbolic Computation,
21(2):211–243, 1996.

[4] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic
Database Language. J. of Logic Programming, 10(3):181–232, 1991.

[5] W. Büttner. Unification in the Data Structure Sets. In J. K. Siekmann, ed.,
Proc. of CADE’86, vol. 230, 470–488. Springer-Verlag, 1986.

53

[6] A. Dovier. Computable Set Theory and Logic Programming. PhD thesis, Uni-
versità degli Studi di Pisa, March 1996. TD–1/96.

[7] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Language for
Programming in Logic with Finite Sets. J. of Logic Programming, 28(1):1–44,
1996.

[8] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. On the Representation and
Management of Finite Sets in CLP-Languages. NMSU-CSTR-97-18, Depart-
ment of Computer Science, Las Cruces, New Mexico, USA, December 1997.

[9] A. Dovier, A. Policriti, and G. Rossi. Integrating lists, multisets, and sets in a
logic programming framework. In F. Baader and K. U. Schulz, eds., Proc. of
FROCOS’96, vol. 3 of Applied Logic, 213–229. Kluwer A. P., 1996.

[10] A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. In Proc.
of ILPS’93, 540–556. The MIT Press, 1993.

[11] F. Fages and G. Huet. Complete sets of unifiers and matchers in equational
theories. Theoretical Computer Science, 43:189–200, 1986.

[12] C. Gervet. Conjunto: Constraint Logic Programming with Finite Set Domains.
In Proc. of ILPS’94, 339–358. The MIT Press, 1994.

[13] P. Hill and J. Lloyd, The Gödel Programming Language. The MIT Press, 1994.

[14] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. J. of
Logic Programming, 19–20:503–581, 1994.

[15] B. Jayaraman and D. A. Plaisted. Programming with Equations, Subsets and
Relations. In Proc. of NACLP’89, 1051–1068. The MIT Press, 1989.

[16] D. Kapur and P. Narendran. Complexity of Unification Problems with
Associative-Commutative Operators. J. of Automated Reasoning, 9:261–288,
1992.

[17] G. M. Kuper. Logic Programming with Sets. J. of Computer and System
Science, 41(1):44–64, 1990.

[18] J. L. Lassez, M. J. Maher, and K. Marriot. Unification revisited. In LNCS,
vol. 306, 1986.

[19] B. Legeard and E. Legros. Short overview of the CLPS system. In J. Maluszyn-
sky and M. Wirsing, eds., Proc. of PLILP’91, vol. 528 of LNCS, 431–433.
Springer-Verlag, 1991.

[20] P. Lincoln and T. Christian. Adventures in associative-commutative unifica-
tion. J. of Symbolic Computation, 8(1,2):217–240, 1989.

[21] M. Livesey and J. Siekmann. Unification of Sets and Multisets. Technical
report, Institut für Informatik I, Universität Karlsruhe, 1976.

[22] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4:258–282, 1982.

[23] E. G. Omodeo and A. Policriti. Solvable set/hyperset contexts: I. Some deci-
sion procedures for the pure, finite case. Communication on Pure and Applied
Mathematics. 9–10:1123–1155, 1995.

[24] C. Piazza. Analisi e Definizione di Linguaggi di “Set Constraint”. Master
Thesis, Università di Parma, Dip. di Matematica,
http://prmat.math.unipr.it/∼gianfr/tesi/union.ps.gz.

[25] O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of Set Terms in the Logic
Data Language (LDL). J. of Logic Programming, 12(1):89–120, 1992.

[26] F. Stolzenburg. Membership-Constraint and Complexity in Logic Program-
ming with Sets. In Proc. of FROCOS’96, vol. 3 of Applied Logic, 285–302.
Kluwer A. P., 1996.

54

