
Compiling Intensional Sets in CLP

Paola Bruscoli
Università di Ancona, Ist. di Ingegneria Informatica
ANCONA (Italy)
e-mail: paola@di.unipi.it

Agostino Dovier
Università di Pisa, Dip. di Informatica
PISA (Italy)
e-mail: dovier@di.unipi.it

Enrico Pontelli
New Mexico State University, Dept. of Computer Science
LAS CRUCES (USA)
e-mail: epontell@cs.nmsu.edu

Gianfranco Rossi
Università di Parma, Dip. di Matematica
PARMA (Italy)
e-mail: gianfr@prmat.math.unipr.it

Abstract

Constructive negation has been proved to be a valid alternative to negation
as failure, especially when negation is required to have, in a sense, an ‘active’
role. In this paper we analyze an extension of the original constructive nega-
tion in order to gracefully integrate with the management of set-constraints
in the context of a Constraint Logic Programming Language dealing with
finite sets. We show that the marriage between CLP with sets and con-
structive negation gives us the possibility of representing a general class of
intensionally defined sets without any further extension to the operational
semantics of the language. The presence of intensional sets allows a definite
increase in the expressive power and abstraction level offered by the host
logic language.

1 Introduction

In [7] we have shown that an increase in expressivity and abstraction ca-
pability can be obtained by embedding the basic notion of set in a logic
programming language. By adding simple set constructors ({} and with)
and a limited collection of predicates (∈, =, 6=, and 6∈) we get a language
(called {log}–read ‘setlog’) able to express rather complex set expressions,
allowing to sensibly narrow the gap between problem specification and pro-
gram development. While the construction of a declarative semantics for a

647

logic programming language extended with these new features is quite nat-
ural (thanks also to the many works devoted to set theory axiomatization)
the design of a sound and complete operational semantics presents chal-
lenging problems. In previous works [5, 6, 7] we have developed a suitable
operational framework based on an extended unification procedure (able to
deal with unification between sets) and a constraint manager (used to deal
with the negative distinguished predicates 6=- and 6∈). These results have
been successively refined and integrated in the context of Constraint Logic
Programming [9], where all the new four set-predicates are uniformly ma-
nipulated as constraints. Unfortunately the expressive power of {log} is still
not satisfactory, especially when applied to many real-life problems. This
is due to the lack of a real set grouping capability, i.e. the capability of
defining intensional set expressions of the form {X : p(X)}, where p is an
arbitrary property. Simply put, {log} lacks a setof facility, like the one
used in Prolog.

The purpose of this work is to show how intensional sets can be added to
a CLP language dealing with sets, maintaining soundness and completeness
(which are lost in the setof of Prolog), without imposing too severe restric-
tions on the admissible programs/queries (like in LDL [1], for instance). The
basic idea of our approach is the reduction of the set grouping problem to
the problem of dealing with normal logic programs, i.e. programs containing
negation in the body of the clauses. This creates an interesting line of con-
tact between negation and intensional sets (which was, by the way, already
implicitely exploited by the various works on circumscription and similar
forms of non-monotonic reasoning techniques).

The work is organized in three parts. The first part is dedicated to a
review of the general ideas about logic programming with sets with an em-
phasis on the definitions related to the {log} language. The second part
analyzes the core relationship between intensional sets and negation, show-
ing a detailed algorithm which allows to convert programs containing set
grouping operations into equivalent programs without set grouping (con-
taining negative literals). The third part analyzes an extended CLP-like
operational semantics endowing the management of negative literals. This
extension has been inspired by the various works on constructive negation
[3, 4, 12, 14], which appears to be the most suitable form of negation to be
integrated in the {log} framework.

2 The {log} language

We will first recall the basic CLP concepts as defined in [10]. The CLP
framework is defined using a many-sorted first order language, whereSORT=⋃

SORT i denotes a finite set of sorts. One sort is sufficient for our purposes.
By Σ and Π we denote possibly denumerable collections of function sym-

bols and predicate symbols with their signatures. We assume there is a
denumerable set of variables V . Moreover, Π = ΠC ∪ΠB and ΠC ∩ΠB = ∅,

648

where ΠC and ΠB are the sets of constraint predicate symbols and pro-
gramer defined predicate symbols, respectively. τ(Σ ∪ V) and τ(Σ) denote
the set of terms and ground terms built on Σ ∪ V and Σ (ground terms),
respectively. A (Π, Σ)-atom is an element p(t1, . . . , tn) where p ∈ Π is n-ary
and ti ∈ τ(Σ ∪ V), i = 1, . . . , n. A (Π, Σ)-literal is a (Π, Σ)-atom or its
negation. An atomic constraint is a (ΠC , Σ)-atom. A (ΠC ,Σ)-constraint is
a first order formula of atomic constraints (for a more detailed description
of the form of constraints used see section 5). The empty constraint will
be denoted by true. A (Π, Σ)-normal program is a finite set of clauses of
the form H ← c2B1, · · · , Bn where c is a finite (ΠC , Σ)-constraint, H (the
head) is a (ΠB, Σ)-atom and B1, . . . , Bn (the body) are (ΠB, Σ)-literals (n ≥
0). A normal goal is a program clause with no head and with a non-empty
body. In the following (Π, Σ)-normal programs and (ΠC , Σ)-constraints will
be called normal programs and constraints, respectively.

As a further notation, the symbol ¯ will denote a finite sequence of sym-
bols. If t is a syntactic object, FV (t) is the set of variables which are not
explicitly quantified in t and by t[x] we mean a term in which x occurs,
except x itself. A sentence is a well formed formula with no free variables.

We can now define the basic {log} syntactic entities. The set of constraint
predicates ΠC is fixed in {log} to be equal to {∈, 6∈, =, 6=}. As shown in [9]
this set of primitive set-theoretic operations suffices to define other usual set
operations (such as union, intersection, . . .).

Definition 2.1 A {log}-term is either an extensional or an intensional
term.
• An extensional term is an element of τ(Σ ∪ V), i.e.

1. X, for each X ∈ V ;
2. f(t1, . . . , tn) s.t. ∀i ∈ {1, . . . , n}, ti is an extensional term and f ∈ Σ;

• an intensional term is
1. {X : c2B1, . . . , Bn} s.t. X ∈ FV (c2B1, . . . , Bn), where c is a con-

junction of (ΠC , Σ)-atoms and B1, . . . , Bn are (ΠB, Σ)-literals;
2. f(t1, . . . , tn) s.t. ∃i, 1 ≤ i ≤ n, ti is an intensional term, f ∈ Σ.

Definition 2.2 A {log}-extended literal is either
• a {log}-literal p(t1, . . . , tn) or ¬p(t1, . . . , tn) (resp. positive, negative),

where t1, . . . , tn are {log}-terms;
• a RUQ-literal1 (∀X1 ∈ t1) . . . (∀Xn ∈ tn)(c2B̄) where c is a conjunction

of (ΠC , Σ)-atoms, B̄ is a finite sequence of (ΠB, Σ)-literals, Xjs are pair-
wise distinct variables, and tis are extensional terms s.t. Xj∩FV (ti) = ∅
for i ≤ j.

A few words about RUQ-literals are in order. First, recall that (∀x ∈ t)ϕ,
ϕ any first order formula, is a shorthand for ∀x (x ∈ t → ϕ). Moreover, ob-
serve that the condition Xj ∩ FV (ti) = ∅ prevents us from writing formulas
such as (∀v ∈ x)(∀x ∈ y)ϕ, where the two occurrences of x would refer to

1RUQ stands for Restricted Universal Quantifier.

649

two distinguished variables. In [6] we have proved the equivalence between
{log} programs containing restricted universal quantifications and {log} pro-
grams which are RUQ-free. Each occurrence of a RUQ may be removed by
performing a simple syntactic translation. Thanks to this we can assume
from now on that the program on which we are working does not contain
any RUQ.

Definition 2.3 A {log}-clause is a normal clause A ← c2B1, . . . , Bn where
A is a positive literal, c is a conjunction of (ΠC ,Σ)-atoms and B1, . . . , Bn

are {log}-extended literals. A {log}-goal is a {log}-clause with empty head.
A {log}-program is a finite set of {log}-clauses.

As a notational convenience we will write {X : B1, . . . , Bn} and A ←
B1, . . . , Bn whenever c is ‘true’ (the empty constraint).

In order to be able to deal with extensional sets, as well as standard
Herbrand terms, the following two functional symbols are assumed to be
always present in Σ [5]:
• ∅, nullary, to be interpreted as the empty set;
• a binary function symbol, with (used as an infix left associative operator),

to be interpreted as follows: s with t stands for the set that results from
adding t as a new element to the set s.
In view of the intended interpretation, an extensional term of any of the

forms, ∅ or X with tn with · · · with t1 or k with tn with · · · with t0, n ≤ 0, X
variable, and k a non variable extensional term with main functor different
from with/2, is called a set term. The term k is the kernel of the set and a
set term where k is not ∅ is intended to designate a colored set based on the
kernel k2. For the sake of simplicity special syntactic forms are introduced
to designate set terms: {t1, . . . , tn|s} stands for swith tnwith · · · with t1 and
{t1, . . . , tn} stands for ∅ with tnwith · · · with t1 where n ≥ 1 and s, t1, . . . , tn
are terms. {} is a syntactic sugar for ∅. For example:
• {}, {1,X,Y,2}, {1,1,{2,{}},f(a,{b})}, and any term {t1, . . . , tn|R} with a

‘tail’ variable R, are set terms;
• f(a,{5}), i.e. f(a,{} with 5), is an extensional term, but not a set term;
• {a | f({b})} is a colored set term based on the kernel f({b});
• {X : X 6= 1 2 p(X)}, f(Y,{Z : Z ∈ Y 2 p(Z,W)}) are intensional set terms.

Here are a few sample {log} programs (the precise meaning of these
programs will be clarified in the next section).
• Checking membership of an element to the set Set1 \ Set2:

in difference(X,Set1, Set2) ← X ∈ Set1 ∧ X /∈ Set2 2.
• Sorting a set into an ordered list:

quicksort({ }, []).
quicksort(S, L) ← X ∈ S 2

2Colored set terms do not designate sets of any conventional kind. Nevertheless, we
deem it convenient to always regard such terms as legal set terms when t1, . . . , tn, k are
legal, to make the language structure absolutely uniform and the inference mechanisms
(e.g. unification) more straightforward.

650

quicksort({Y : Y ∈ S 2 less(X, Y)}, L1),
quicksort({Y : Y ∈ S 2 less(Y, X)}, L2),
append(L1, [X|L2], L).

• Computing the set of prime numbers less than a given limit N:
primes(N, S) ← S = {X : between(1,N, X), prime(X)}.
prime(X) ← S = {Y : between(1, X,Y)}2(∀Z ∈ S)(non div(Z, X)).
between(A, B,C) ←less(A, C) , less(C, B).

3 Compiling intensional sets

In [5] we argued that intensional sets can be programmed in a logic language
with sets like {log}, provided the language supplies either a set grouping
mechanism or some form of negation in goals and clause bodies. This allows
us, on one hand, to consider intensional sets as a syntactic extension to be
dealt with a simple preprocessing phase, and, on the other hand, not to be
concerned with intensional sets when defining the semantics of our language.

Let us try, first of all, to understand why the negative information rep-
resentable in {log} by the use of 6= and 6∈ is not sufficient for a satisfactory
definition of a set grouping mechanism, and full negation is required instead.

An intensional set S can be defined in the following equivalent ways:
{X : p(X)} = S ↔ ∀X(X ∈ S ↔ p(X))
{X : p(X)} = S ↔ ∀X(X ∈ S → p(X)) ∧ ∀X(p(X) → X ∈ S).

As we can see, a set grouping feature requires the ability to perform
restricted universal quantification as well as universal quantification of the
solutions of an arbitrary predicate.

Though {log} supports restricted universal quantification [6], it is unable
to express the other form of quantification. However, one can observe that:

∀X(p(X) → X ∈ S) ↔ ∀X(¬p(X) ∨X ∈ S) ↔ ¬∃X(X 6∈ S ∧ p(X)).
The outcome shows that what we need is just a form of negation (notice

that the negated formula can be easily expressed by using a new clause with
a local variable).

The correlation between set grouping and negation can be further shown
by the following example. Suppose that given a natural number N we want
to define a predicate returning the greatest prime number X in its decompo-
sition in prime factors. We use an intensional construct to collect the prime
divisors of N as follows:

maxpdiv(N, X) ← max({Y : pdiv(N, Y)}, X).
max(S, M) ← M ∈ S 2 (∀Z ∈ S)(geq(M, Z)).

where pdiv and geq define the divisibility relation and the greatest or equal
relation, respectively.

In order to compute maxpdiv we should be able to collect the set of prime
divisors computed by the predicate pdiv and, at the same time, to reject any
partial solution, namely any element in the powerset of the set of all possible
solutions. This could be implemented as follows:

651

setofpdiv(S, N) ← (∀Y ∈ S)(pdiv(N, Y)),¬partialpdiv(S, N).
partialpdiv(S, N) ← Z 6∈ S 2 pdiv(N,Z).

with the call to max in the clause defining maxpdiv replaced by setofpdiv(S, N),
max(S,X).

Replacement of intensional set terms by the setof predicates which al-
low the corresponding extensional sets to be constructed is performed by
a two steps program transformation. This process will transform a given
(ΠC ∪ ΠB, Σ)-program into the equivalent (ΠC ∪ Π′B, Σ)-program where
Π′B contains ΠB and all the new predicate symbols which are required to ex-
press both the discriminant part of intensional sets and set grouping (along
with the new predicate symbols generated by RUQ’s translation).

The first step leads the source code to a normal form where all variable
instantiations in clauses and goals are expressed as constraints and each
discriminant (c2B̄) of intensional terms is expressed by a unique predicate
symbol. Such a predicate symbol has arity equal to |FV (c2B̄)|, and it is
defined by a unique clause having the corresponding discriminant as its body.

Step 1 - Program normalization

Let C be the {log}-clause
p(s1, . . . , sm) ← c2A1(t11, . . . , t

1
n1

), . . . , Ar(tr1, . . . , t
r
nr

)
where si’s and tij ’s are terms, and Ai(ti1, . . . , t

i
ni

) are {log}-literals (as it
ensues from the discussion following def. 2.2, there is no need here to consider
RUQ-literals).
Repeatedly perform the following actions until none applies.
• Replace C by the equivalent clause

p(X1, . . . , Xm) ← c ∧
∧

i=1,...,m

(Xi = si) ∧
∧

i=1,...,r
j=1,...,ni

(Xi
j = tij)2

A1(X1
1 , . . . , X1

n1
), . . . , Ar(Xr

1 , . . . , Xr
nr

)

where Xi’s, Xi
j ’s and Y i

j ’s are new distinct variables.
• Replace each atomic constraint s π t, where π ∈ ΠC and s and/or t are

intensional terms, by the constraint

s′ π t′ ∧
m∧

i=1

(Si = si) ∧
n∧

j=1

(Tj = tj),

where si’s and tj ’s are all the basic intensional terms occurring in s and
t respectively, s′ and t′ are the extensional terms obtained by replacing
the intensional terms si’s and tj ’s in s and t with the new variables Si’s
and Tj ’s respectively.

• Replace each atomic constraint of the form X = {Y : c2B̄} by the
constraint

X = {Y : δ(Y,Z1, . . . , Zm)},
where {Y, Z1, . . . , Zm} = FV (c2B̄), and δ is a newly generated predicate
symbol, and add to the program the new clause

δ(Y, Z1, . . . , Zm) ← c2B̄.

652

Step 2 - Eliminating intensional set terms

The second step is intended to remove intensional set terms from a normal-
ized program according to the general idea for implementing set grouping
sketched at the beginning of this section. For each predicate symbol δ gen-
erated by the normalization step to represent discriminants in intensional
set terms, two new predicate symbols setofδ and partialδ are introduced,
and their corresponding {log} definitions added to the generated program,
according to the following transformation rule:
• Replace each normalized clause of the form

h(Ȳ) ← c ∧X1 = {X : δ(X, Z̄)}2B̄

by the set of clauses
h(Ȳ) ← c2setofδ(X1, Z̄), B̄.
setof δ(X1, Z̄) ← (∀X ∈ X1)δ(X, Z̄),¬partialδ(X1, Z̄).
partialδ(X1, Z̄) ← V 6∈ X12δ(V, Z̄).

For example, the definition of the predicate maxpdiv shown above is first
replaced by the following clauses:

maxpdiv(N, X) ← Z = {Y : δ(Y, N)}2max(Z, X).
δ(Y, N) ← pdiv(N, Y).

Then (second step), the normalized definition of the predicate maxpdiv is
replaced by:

maxpdiv(N, X) ← setofδ(Z, N), max(Z, X).
adding the clauses defining setofδ(Z, N) to the transformed program.

4 Negation

Different forms of negation can be introduced in logic programming, most
of them based on the notion of Completed Program [13]. In particular, the
well-known negation as failure technique could be used to handle negation
in {log} programs. Negation as failure has various advantages, related in
particular to its simplicity: it is quite easy to come up with a reasonable
and fairly efficient implementation. On the other hand, negation as failure
has various drawbacks, mostly related to the strict requirements necessary
in order to maintain soundness and completeness results. Just to point
out one of such restrictions: soundness of the SLD + negation as failure
resolution rule is guaranteed only if the program and the goal are allowed.
Allowedness requires that every variable occurring in a clause occurs in a
positive literal in the body of the clause. While this restriction may be
acceptable in many contexts (e.g. deductive databases), in our framework it
may create some serious complications. Just to mention one, the algorithm
which translates Restricted Universal Quantifiers to pure {log} programs
[5, 6] generates clauses which do not satisfy the allowedness restriction.

Various proposals have been made in the last few years to get around the
inability of providing computed answers to non-ground negative literals in
negation as failure. The approach that we are following here is the one called

653

constructive negation [3, 4]. As we will see later on, this approach gracefully
integrates with {log}. The basic idea behind constructive negation is the
following. Given a program P the set of all the solutions to a goal (← G),
σ1, . . . , σn, is such that Comp(P) |= G ↔ σ1 ∨ · · · ∨ σn where Comp(P)
is the completed version of the program P . Taking the negation of the
formula, Comp(P) |= ¬G ↔ ¬(σ1∨· · ·∨σn), gives an idea of how to obtain a
solution to a negative literal. The key point is the development of an effective
procedure to extract actual solutions from the negation ¬(σ1 ∨ · · · ∨ σn).
The description given by Chan [3, 4] is specialized for the case of pure logic
programming (each σi is a substitution). The relations between constructive
negation and CLP have been studied in [14].

5 Constraints

In [9] we have shown that {log} can be conveniently viewed as an instance
of the general CLP scheme [10]. To this purpose first we have fixed Σ and
ΠC to be equal to {∅, with, . . .} and {=, 6=,∈, 6∈}, respectively, and then we
have defined a suitable algebraic structure S, whose domain S is defined as
the quotient set of the Herbrand universe w.r.t. a suitable congruence over
τ(Σ) to abstract from the ordering of the elements of with-based terms [9].

Also we have characterized the kind of sets to be handled via axioms
of a suitable set theory Set [6, 9], from which it is easy to derive, among
others, the two fundamental properties of the set construct with, namely
Right permutativity (i.e. (X withY)withZ = (X withZ)withY) and Right
absorption (i.e. (X with Y) with Y = X with Y).

It has been proved that the structure S is solution compact. Moreover, it
has been proved that the satisfaction complete theory Set and the structure
S correspond. Thus, having developed also a suitable constraint satisfaction
procedure (cf. [9]), we have been in the position of using the ordinary ma-
chinery of the general CLP scheme to implement both the algebraic and the
logical derivation (actually, the implementation of {log} described in [8] is a
specialized version of the CLP logical derivation for {log} programs).

In this section we show how the {log} constraint satisfiability procedure
and the general CLP operational semantics need to be modified in order
to accommodate for constructive negation. More precisely, the resolution
procedure needs to deal with positive atoms as well as with the negative
ones (i.e. literals of the form ¬p(t̄), where p is a user-defined predicate),
whereas the constraint solver needs to deal with positive atomic constraints
of the form t1 ∈ t2 or t1 = t2, as well as with negative constraints of the form
∀X̄ (t1 6∈ t2) or ∀X̄ (t1 6= t2) where X̄ represents some (eventually none) of
the variables in t1, t2.

Indeed the latter kind of constraints, though not present in the program
generated by the transformation process described in the previous section,
may be generated during the computation due to the presence of negation
(i.e. dealing with negation leads to explicit universal quantifications).

654

We first examine the constraint satisfaction procedure and then the ex-
tended resolution procedure, devoting special care to the way constructive
negation is dealt with.

The key notion of the constraint satisfiability procedure developed for
{log} [9] is represented by the concept of normal form (or, following the
nomenclature used in [6, 7, 9], canonical form) for a constraint.

Definition 5.1 Given a constraint C, an atomic constraint c in C is in
normal form whenever it satisfies one of the following conditions:
a. c ≡ X = t and X is a variable which does not occur elsewhere in C;
b. c ≡ t 6∈ X and X is a variable which does not occur in t;
c. c ≡ X 6= t and X is a variable which does not occur in t.3

A constraint C is in normal form if either it is ‘false’ or all the atomic
constraints in it are in normal form.

It can be proved that if C is in normal form and other than ‘false’ then C
is satisfiable in the theory Set (or, equivalently, solvable in the structure S).

The approach used in {log} to detect satisfiability of a generic constraint
C, therefore, is based on the use of a procedure, called SAT , which tries to
transform C into an equisatisfiable disjunction of constraints in normal form
(whose satisfiability is guaranteed). The transformation of C to a normal
form is performed by using the following non-deterministic function

step(C) = if ‘false’ in C then ‘false’
else notequal(notmember(unify(member(C)))).

Each of the functions unify, notmember, and notequal (see [9]) reduces
=-constraints, 6∈-constraints, and 6=-constraints to their normal forms, re-
spectively, whereas ∈-constraints are completely eliminated by member by
replacing them with suitable =-constraints. Since each of these functions
may produce constraints of a different form (for example notequal may pro-
duce ∈-constraints), then step needs to be iterated as long as a fixpoint is
reached: SAT (C) = while step(C) 6= C do

C = step(C);
return C.

It has been proved [9] that this fixpoint is always reached in a finite
number of steps and that each constraint that SAT non-deterministically
computes is in normal form.

The key result proved in [9] is that given a constraint C, then
Set ` C ↔ ∃(C1 ∨ · · · ∨ Cn),

where C1, · · · , Cn is the collection of constraints in normal form computed
by SAT . Therefore, C is satisfiable if and only if there exists a non-determi-
nistic choice such that SAT (C) 6= ‘false’.

3For the sake of simplicity, hereafter, we will not consider set terms based on a kernel
other than ∅. Actually, the results proved here are still valid when considering colored sets,
too, provided the constraint satisfiability procedure is suitably extended to accommodate
for this more general case as shown in [9].

655

When dealing with negation we need to update these definitions, due to
the possibility, as announced before, of generating explicit universal quan-
tification over negative constraints.

First of all, a constraint C may contain not only (ΠC ,Σ)-atoms but also
universally quantified formulae of the of the form ∀Z̄(X 6= t) or ∀Z̄(t 6∈ X).
Thus the previous definition of normal form (def. 5.1) must be updated by
replacing cases (b) and (c) with the following new ones:
b’. c ≡ ∀Z̄(t 6∈ X), X does not occur in t nor in Z̄ and, if t ≡ Y , Y variable,

then Y should not occur in Z̄;
c’. c ≡ ∀Z̄(X 6= t), X and t as above.

Dealing with constraints of the form ∀Z̄(X 6= t) requires the ability
to manage disjunctions of constraints as well as conjunctions. Indeed, to
solve a constraint of the form ∀Z̄ (f(t0, . . . , tn) 6= f(s0, . . . , sn)), where f is
different from with and {Z̄} ⊆ FV (t0, . . . , tn, s0, . . . , sn), one needs to solve
the disjunction ∀Z̄(t0 6= s0 ∨ · · · ∨ tn 6= sn).

Unfortunately, the following general result, used for instance by Chan
[3], does not hold in our theory Set.

Let t be a term such that FV (t) = {x1, . . . , xn}(= {x̄}), and D
be a f.o.f. such that {y1, . . . , ym} = FV (D)\{x1, . . . , xn, u}, then
`EQ ∀u (∀x̄ȳ (u 6= t ∨D) ↔ ∀x̄ (u 6= t) ∨ ∃x̄ (u = t ∧ ∀ȳ D)). (1)

In particular, the ← part of (1) is not true in our theory4. As an ex-
ample, the formula ∀xyvw ({∅, {∅}} 6= {x, y} ∨ x 6= {w|v}) (equivalent to
∀xy ({∅, {∅}} 6= {x, y} ∨ ∀vw(x 6= {w|v}))) is not true in Set (e.g., by
taking x = {∅}, y = ∅), while ∀xy ({∅, {∅}} 6= {x, y}) ∨ ∃xy ({∅, {∅}} 6=
{x, y} ∧ ∀vw(x 6= {w|v})) is true in Set (e.g., by taking x = ∅, y = {∅}).

The problem here originates from the fact that the uniqueness property
of the mgu which holds in the standard theory EQ and is exploited to prove
(1), does not hold in our theory Set. The following lemma that can be proved
to hold in Set will provide us an alternative to (1).

Lemma 5.2 Let t be a term such that FV (t) = {x1, . . . , xn}(= {x̄}), and
D be a f.o.f. such that {y1, . . . , ym} = FV (D) \ {x1, . . . , xn, u}, then
`Set∀u

(
∀x̄ȳ(u 6= t ∨D) ↔ ∀x̄(u 6= t) ∨ ∃θ1 · · · θk

∧
1≤i≤k(u = tθi ∧ ∀ȳ Dθi)

)

where θ1 · · · θk are independent substitutions and {x̄} ⊆ dom(θi).

As an effective application of this lemma, one can prove, for instance,
that the following equivalence holds:

∀u
(∀xy(u 6= {x, y} ∨ ϕ) ↔
∀xy(u 6= {x, y}) ∨ ∃xy

(
u = {x, y} ∧ ϕ ∧ ϕ{x 7→y,y 7→x}

)
)

This result will be exploited in the constraint satisfiability procedure, in
particular in that part of the procedure aimed at simplifying 6=-constraints
(function notequal), and in the extended resolution procedure. The function

4For the other direction, notice that ∀x, y (ϕ(x) ∨ ψ(x, y)) → ∀x ϕ(x) ∨ ∃x (¬ϕ(x) ∧
∀y ψ(x, y)) is a theorem of predicate calculus.

656

notequal is shown in detail in the following (notice that C6= is used in the func-
tion to denote the part of the given constraint C containing 6=-constraints
only). 6∈-constraints can be dealt with in a similar, though simpler way, so
the pertaining function notmember is not shown here. Nothing needs to be
changed w.r.t. [9] in the treatment of = and ∈ constraints.
function notequal(C);
if C 6= is in canonical form then return C
else choose any c not in canonical form in C 6=; let C = C ′ ∧ c;

case c of
1. ∀Z1 . . . Zn (s 6= t), and Z1, . . . , Zk do not belong to FV (s 6= t), k > 0:

return notequal(C ′ ∧ ∀Zk+1 . . . Zn(s 6= t));
2. ∀Z̄ (f(t1, . . . , tn) 6= g(s1, . . . , sm)), f and g are different function sym-

bols: return notequal(C ′);
3. ∀Z̄ (f(t0, . . . , tn) 6= f(s0, . . . , sn)), f is different from with, and {Z̄} ⊆

FV (t0, . . . , tn, s0, . . . , sn):
return notequal(C ′ ∧ ∀Z̄(t0 6= s0 ∨ · · · ∨ tn 6= sn));

4. ∀Z̄ (s 6= t ∨ D), and {Z̄} ⊆ FV (s 6= t ∨ D), {Z̄} = {Z̄D} ∪ {Z̄C},
{Z̄D} = {Z̄} ∩ FV (D), {Z̄C} ∩ {Z̄D} = ∅:
if unify(s, t) fails then return C ′

else let θi, i = 1, . . . , k be the mgu’s of s and t such that
{Z̄C} ⊆ dom(θi) and Zi = FV (sθi 6= tθi) \ {Z̄C}:
return notequal(C ′ ∧∧k

i=1 ∀Z̄iZ̄DDθi);
5. f 6= f , f is a constant: return false;
6. X 6= X or ∀X(X 6= X), X is a variable: return false;
7. ∀Z̄ (t 6= X) and t is not a variable: return notequal(C ′ ∧ ∀Z̄(X 6= t));
8. ∀Z̄1XZ̄2 (X 6= t) and t is not a variable, or ∀XY (X 6= Y) or ∀XY (Y 6=

X): return false;
9. ∀Z̄(X 6= f(t1, . . . , tn)), f is different from with and X ∈ FV (f(t1, . . . ,

tn)), or ∀Z̄ (X 6= h with sm . . . with s0), h is a variable or ∅ and
X ∈ FV (s0) ∪ . . . ∪ FV (sm): return notequal(C ′);

10. ∀Z̄ (X 6= X with tn . . . with t0):
return notequal(C ′ ∧ ∀Z̄ (t0 6∈ X ∨ · · · ∨ tn 6∈ X));

11. ∀Z̄ (r 6= s), where s ≡ h with tn . . . with t0 and s ≡ k with t′m with · · ·
with t′0, h, k terms with main functor different from with:
select non-deterministically one of the following actions (let X and N
denote new variables):
i. take a solution θ for the constraint X ∈ r; case θ of

a. {X 7→ ti}, i = 0, . . . , n: return notequal(C ′ ∧ ∀Z̄ (Xθ 6∈ s))
b. {h 7→ N with X}, h variable not in Z̄:

return notequal(C ′ ∧ (h = N with X) ∧ ∀Z̄ (X 6∈ s))
c. {h 7→ N with X}, h variable in Z̄:

return notequal(C ′ ∧ ∀Z̄ ′N (X 6∈ s{h7→N with X}))
where Z̄ ′ is the list of variables obtained by eliminating h from Z̄.

ii. take a solution θ for X ∈ s; symmetrical to the previous case.

657

A remark on action 4 of the function notequal. If the unification between
s and t fails then ∀Z̄C(s 6= t) is always true and the selected constraint c can
be deleted. If, on the contrary, the unification between s and t terminates
successfully, yielding the complete set of unifiers {θ1, . . . , θk}, then lemma 5.2
is applied to simplify the selected constraint c. Actually, notice that a weaker
form of this lemma is used here where the variable u is instantiated to the
specific term s and the equation (s = t)θi has been deleted being necessarily
true (the full power of lemma 5.2 will be exploited, instead, in the extended
resolution procedure to be discussed in the next section).

6 Resolution Procedure

The resolution procedure adopted represents an extension of the classical
CLP operational semantics. The main difference is related to the explicit
management of negative atoms. We express the resolution procedure follow-
ing the rewriting model proposed for AKL [11]. A resolvent at each step is
represented by a goal , defined as follows.

< goal > ::= < and− box >|< or − box >
< and − box > ::= and(< literals > 2 < constraint >)
< or − box > ::= or(< sequence of goals >).

The resolution procedure assumes that the constraints to be dealt with
are always transformed into a simplified normal form which is obtained by
removing from a constraint C in normal form all the redundant variables
and equalities and all the irrelevant negative constraints which can possibly
occur in it, as described by the following procedure.

function nored(C, vars);
select a constraint c in C enabling one of the following actions;
if no such c exists then return C; let C = C ′ ∧ c;
1. (remove redundant variables and equalities)

if c ≡ X =Z and X∈vars and Z 6∈vars then return nored(C ′{Z 7→X},vars);
if c ≡ Z = t and Z 6∈ vars then return nored(C ′,vars);

2. (remove irrelevant inequalities)
if c ≡ ∀Y1 · · ·Yh(s 6= t) and FV (∀Y1 · · ·Yh(s 6= t)) \ (vars ∪ FV (C=)) 6= ∅
then return nored(C ′,vars);

3. (remove irrelevant non-memberships)
if c ≡ ∀Y1 · · ·Yh(s 6∈ t) and FV (∀Y1 · · ·Yh(s 6∈ t)) \ (vars ∪ FV (C=)) 6= ∅
then return nored(C ′,vars).

Lemma 6.1 If Di = nored(Ci, FV (C)), and Ci is one of the constraints
returned by SAT (C), then Ci and Di are equi–satisfiable.

Function nored is used in the definition of the normalization procedure
N , which takes a constraint C and performs the following two actions:
• call SAT(C) to obtain a disjunction of normal form constraints C1, . . . ,Ck.
• if k > 0 (i.e. C is satisfiable), then for each i = 1, . . . , k call the procedure

nored(Ci, FV (C)) to obtain the constraint C ′
i in simplified normal form.

658

Thus N (C) non-deterministically returns the constraints C ′
1, . . . , C

′
k.

The resolution procedure is essentially based on two rewriting rules,
called Fork and Negate rule, used to deal respectively with positive and
negative atoms.

Rule 1. (Fork) if p(si
1, . . . , s

i
n) ← Ci2B̄i, for i = 1, . . . , m, are the clauses

defining a given predicate p, then
and(A1, . . . , Ai−1, p(t1, . . . , tn), Ai+1, . . . , An2C) 7→
or(and(A1, . . . , Ai−1, B̄1, Ai+1, . . . , An2N (C∧ C1∧

∧n
j=1(tj = s1

j))), · · · ,
and(A1, . . . , Ai−1, B̄m, Ai+1, . . . , An2N (C ∧ Cm ∧∧n

j=1(tj = sm
j))))

For the sake of simplicity we have indicated a unique and-box for each
of the possible resolvents. In the actual system the procedure N is non-
deterministic and may lead to multiplication of the relative and-boxes. Anal-
ogously, we have not indicated the cases in which the procedure N fails to
report a normalized form (due to unsatisfiability of the original constraint).
In this case the corresponding and-box is removed.

Rule 2. (Negate) if a negative literal ¬A occurs in an and-box and(A1, . . . ,
Ai−1,¬A,Ai+1, . . . , An2C), a subcomputation is started, by applying the
derivation rules to the goal and(A2C) and producing a resulting or-box
or(C1, . . . , Cm). If {C ′

1, . . . , C
′
r} is the solution returned by the procedure

NegateSolution(C1 ∨ · · · ∨ Cm) (defined below), then the Negate rule acts in
the following way:

and(A1, . . . , Ai−1,¬A,Ai+1, . . . , An2C) 7→
or(and(A1, . . . , Ai−1, Ai+1, . . . , An2C ∧ C ′

1), · · · ,
and(A1, . . . , Ai−1, Ai+1, . . . , An2C ∧ C ′

r)).
The rewriting system is composed by these two basic rules together with

some auxiliary rules used to simplify goals such as5,
Alternatives−Promotion : or(Ā1,or(B̄), Ā2) 7→ or(Ā1, B̄, Ā2)
Fail−Propagation and(Ā1, fail, Ā22C) 7→ fail
Choice−Elimination : or(Ā1, fail, Ā2) 7→ or(Ā1, Ā2).

The NegateSolution procedure represents the key of the implementation
of constructive negation. Let us see, briefly, how it works.

By the assumption that the resolution tree for the goal and(G) in P is
finite the resolution procedure will return a number k of computed answers
C1, . . . , Ck, such that Comp(P) `Set ∀(G ↔ ∃C1 ∨ · · · ∨ ∃Ck). Now let us
consider each of the Cis. Firstly we may simplify it by using the procedure
nored, i.e. by calling nored(Ci, FV (G)). As corollary of lemma 6.1, we have
that Comp(P) `Set ∀(G ↔ ∃w̄1D1 ∨ · · · ∨ ∃w̄kDk), hence Comp(P) `Set

∀(¬G ↔ ∀w̄1¬D1 ∧ · · · ∧ ∀w̄k¬Dk).
NegateSolution then proceeds as follows:
1. simplify each ∀w̄i¬Di using the transformation defined in lemma 5.2 so

as to obtain a disjunction of normal form constraints Ei;
5the symbol fail is used to denote an empty or-box.

659

2. perform all the boolean operations over the Eis so as to obtain a con-
straint in disjunctive normal form F1 ∨ · · · ∨ Fp;

3. apply the satisfiability algorithm SAT to each Fi, obtaining the disjunc-
tion F i

1 ∨ · · · ∨ F i
ki

;
4. finally, let C ′

1, . . . , C
′
r (output of the function) be the non-‘false’ con-

straints in F 1
1 , . . . , F 1

k1
, . . . , F p

1 , . . . , F p
kp

.

Consider the following example (read w for wife, h for husband):
proper pair(U) ← proper pair(U) ←

U = {X,Y} ∧ X = w(Y)2. U = {X, Y} ∧ X = h(Y)2.
Suppose to call the goal and(¬proper pair(U), ε): from Comp(P) we get:

∀ U

(
¬proper pair(U) ↔ ∀X1Y1(U 6= {X1, Y1} ∨ X1 6= w(Y1))∧

∀X2Y2(U 6= {X2, Y2} ∨ X2 6= h(Y2)))

)

By applying step 1 the r.h.s. is equivalent to:
∀X1Y1(U 6= {X1, Y1})∨ ∃X1Y1(U = {X1, Y1}∧ X1 6= w(Y1)∧ Y1 6= w(X1))∧
∀X2Y2(U 6= {X2, Y2}) ∨ ∃X2Y2(U = {X2, Y2} ∧ X2 6= h(Y2) ∧ Y2 6= h(X2))
After performing steps 2–4, we have:
C ′

1 ≡ ∀X1Y1(U 6= {X1, Y1}) ∧ ∀X2Y2(U 6= {X2,Y2}), and
C ′

2 ≡ U = {X1, Y1}∧X1 6= h(Y1) ∧ Y1 6= h(X1) ∧ X1 6= w(Y1) ∧ Y1 6= w(X1).

7 Conclusions and Future Works

This work represents the natural continuation of our previous studies on
embedding sets in logic programming. In fact it supplies a sound and com-
plete technique to deal with both extensional and intensional sets. This has
been obtained by slightly modifying the standard CLP operational seman-
tics (through the use of a negation rule) and by supplying a new constraint
manager capable of dealing with constraints containing explicit universal
quantifications. As a side-effect of this study, we have shown how the prob-
lem of performing set grouping operations can be reduced to the problem of
dealing with negation.

Various issues are still open. First of all, the relations between set group-
ing and negation need to be studied in more depth. We are currently investi-
gating also the inverse reduction, i.e. reducing the management of negative
literals to set grouping operations. Moreover, we are planning to consider
forms of negation different from the constructive one (like the intensional
negation proposed in [2]), comparing the kind of requirements that they im-
pose on the admissible programs in order to obtain soundness and complete-
ness results. Finally, the marriage of negation and CLP seems to provide a
very promising framework to support some more general forms of sets (like
hypersets or other forms of infinite sets).

Acknowledgements

The research presented in this paper has benefited from discussions with
D. Aliffi, M. Carro, G. Gupta, G. Levi, E. G. Omodeo, and A. Policriti all

660

of whom we would like to thank. E. Pontelli is partially supported by NSF
Grant CCR92-11732 and by a fellowship from Phillips Petroleum.

References

[1] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic
Database Language. Journal of Logic Programming, 10:181–232, 1991.

[2] P. Bruscoli, F. Levi, G. Levi, and M. C. Meo. Compilative Constructive Nega-
tion in Constraint Logic Programs. In Proc. 1994 Coll. on Trees in Algebra
and Programming. To appear in LNCS , Springer-Verlag, Berlin, 1994.

[3] D. Chan. Constructive Negation Based on the Completed Database. In R. A.
Kowalski and K. A. Bowen, eds., Proc. Fifth Int’l Conf. on Logic Programming,
pp. 111–125. MIT Press, 1988.

[4] D. Chan. An Extension of Constructive Negation and its Application in Corou-
tining. In E. Lusk and R. Overbeek, eds., Proc. North American Conf. on Logic
Programming’89, pp. 477–493. MIT Press, 1989.

[5] A. Dovier, E. G. Omodeo, E. Pontelli and G. Rossi. {log}: A Logic Program-
ming Language with Finite Sets. In K. Furukawa, ed., Proc. of the Eighth Int’l
Conf. on Logic Programming. MIT Press, 1991.

[6] A. Dovier, E. G. Omodeo, E. Pontelli and G. Rossi. Embedding Finite Sets
in a Logic Programming Language. In E. Lamma and P. Mello, eds., ELP92,
volume 660 of LNAI. Springer-Verlag, Berlin, 1993.

[7] A. Dovier, E. G. Omodeo, E. Pontelli and G. Rossi. Embedding Finite Sets
in a Logic Programming Language. RAP.04.93, Università di Roma: “La
Sapienza”, May 1993.

[8] A. Dovier, E. Pontelli. A WAM-based Implementation of a Logic Language
with Sets. In M. Bruynooghe and J. Penjam, eds., PLILP’93, volume 714 of
LNCS, Springer-Verlag, Berlin, 1993.

[9] A. Dovier, G. Rossi. Embedding extensional finite sets in CLP. In Proceedings
of 1993 Int. Logic Programming Symp., (D. Miller ed.), MIT Press, 1993.

[10] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Technical report,
Dept. of Computer Science, Monash University, June 1986.

[11] S. Janson, S. Haridi. Programming Paradigms of the Andorra Kernel Lan-
guage. In Proc. 1991 Int. Logic Programming Symp., MIT Press, 1991.

[12] T. Przymusinski. On Constructive Negation in Logic Programming. In Proc.
North American Conf. on Logic Programming’89, Addendum to the volume,
MIT Press, 1989.

[13] J. C. Shepherdson. Language and equality theory in logic programming. Tech-
nical Report PM-91-02, School of Mathematics, University of Bristol, 1991.

[14] P. J. Stuckey. Constructive Negation for Constraint Logic Programming. In
Proc. Sixth IEEE Symp. on Logic In Computer Science, pp. 328–339. IEEE
Computer Society Press, 1991.

661

