
Intensional Sets in CLP

A. Dovier1, E. Pontelli2, and G. Rossi3

1 Univ. di Udine, Dip. di Matematica e Informatica. dovier@dimi.uniud.it
2 New Mexico State University, Dept. Computer Science. epontell@cs.nmsu.edu

3 Univ. di Parma, Dip. di Matematica. gianfr@prmat.math.unipr.it

Abstract. We propose a parametric introduction of intensionally de-
fined sets into any CLP (D) language. The result is a language CLP ({D}),
where constraints over sets of elements of D and over sets of sets of ele-
ments, and so on, can be expressed. The semantics of CLP ({D}) is based
on the semantics of logic programs with aggregates and the semantics
of CLP over sets. We investigate the problem of constraint resolution in
CLP ({D}) and propose algorithms for constraints simplification.

Keywords. Constraint Logic Programming, Sets, Aggregates.

1 Introduction

The literature is rich of proposals aimed at developing declarative programming
frameworks that incorporate different types of set-based primitives (e.g., [13, 2, 5,
6, 1]). These frameworks provide a high level of data abstraction, where complex
algorithms can be encoded in a natural fashion, by directly using the popular
language of set theory. These features make this type of languages particularly
effective for modeling and rapid prototyping of algorithms.

A recognized downside of most of the existing languages embedding sets is the
focus on extensional set constructions [6, 13, 15, 11] and/or the severe restrictions
imposed on the use of intensional set constructions [2, 20]. Intensionally defined
sets (a.k.a. intensional sets) are collections of elements where the membership is
decided by properties instead of enumeration. There is significant evidence that
the ability to handle general intensional sets can drastically simplify the devel-
opment of solutions to complex problems, leading to more convenient languages
and compact programs—e.g., [16] suggests that encodings of traditionally hard
problems in this type of notations are more compact that SAT encodings.

In this work we propose a parametric introduction of intensionally defined
sets into any CLP (D) language—e.g., D can be FD for Finite Domains or R for
Real numbers. Given a language CLP (D) and its interpretation domain D, we
define the domain UD, which is used to construct an intuitive interpretation for
intensional sets and set-based constraints (Section 3). We define a new language,
CLP ({D}), where D-constraints can be expressed, as well as arbitrarily nested
extensional and intensional sets of elements over D and constraints over these
entities. In this new framework the declarative style of constraint-based program-
ming is enhanced by the availability of well-known set-based constructors. The
development of a semantics for CLP ({D}) introduces problems analogous to

those studied in the context of logic programming with aggregates. In Section 2
we explain the relationships between aggregates and intensional sets.

The semantic characterization of CLP ({D}) (Section 4) is provided as a
generalization of Gelfond and Lifschitz stable model semantics; this allows us
to provide a semantics to a larger class of programs than various previously
proposed schemes (e.g., [2, 9])—in particular those relying on the use of stratifi-
cation. E.g., a simple program such as

q(1). q(Z) ← Y = {X : p(X)} ∧ Z ∈ Y.
p(2). p(Z) ← Y = {X : q(X)} ∧ Z ∈ Y.

has the stable model I = {q(1), q(2), p(1), p(2)}, in spite of not being stratified.
In Section 5 we build on our previous research on constraint solving in pres-

ence of sets [6] to provide an incomplete solver for constraints of CLP ({D}). The
proposed solver simplifies constraints to a solved form. In particular, the main
goal is to eliminate occurrences of intensional sets from the constraints without
explicit enumeration of the sets. Some constraints between intensional sets are
easily seen to be undecidable (e.g., {X : p(X)} = {X : q(X)}); this prevents
us from developing a parametric and complete constraint solver. To address this
issue we subdivide the constraint solving process in two phases. The first phase
(propagation) consists of rewriting rules, that take advantage of the semantics of
set operation to avoid the explicit computation of intensional sets. The second
phase (labeling) forces the removal of intensional sets—via translation to formu-
lae containing negation and/or explicit collection of solutions. The intuition is
that, while propagation is transparently performed whenever possible, labeling
should be explicitly requested—being a potentially unsafe and expensive step.

2 Related work

A number of proposals have been made to support the introduction of aggre-
gate functions in deductive databases and logic programming. Among them we
discuss [14, 21, 19, 18, 4], where an aggregate subgoal is a constraint of the form

E = F({[e[X̄, Ȳ , Z̄] : (∃Z̄) p[X̄, Ȳ , Z̄]]}) (1)

whose intuitive semantics is: given values for the variables Ȳ (grouping variables),
collect in a multiset all the expressions involving X̄ such that there are values
for the variables Z̄ (local variables) for which p[X̄, Ȳ , Z̄] holds. The function
F is finally applied to this multiset. The constraint aggregate (1) is written
as: E = Fe[X̄, Ȳ , Z̄] : p[X̄, Ȳ , Z̄] in [18], and as: group by(p[X̄, Ȳ , Z̄], [Ȳ], E =
F(e[X̄, Ȳ , Z̄])) in [14].

In this paper we consider a particular function F: F(S) returns the set of
all elements in the multiset S—i.e., it removes multiple occurrences of the same
element. On one hand, this may appear as a simplification—there is no need to
compute possibly complex functions. On the other hand, this leads to a number
of complications. In particular, sets have to be introduced as first-class citizens
of the language and, hence, they must be properly dealt with.

2

The work [18] provides a minimal model semantics for monotonic programs,
i.e., programs for which the TP operator is monotonic. However, monotonicity
is in general undecidable, and the syntactic restrictions they impose to ensure it
are rather strong. For instance, the program:

r(0). r(1).
s(1).

p(1, E) ← E = min {X : r(X)} .
p(1, E) ← E = min {X : s(X)} .

is not accepted—the argument of a predicate defined in terms of an aggregate
is required to depend functionally on the other arguments (cost-consistency).
Moreover, F can be only a simple function of the elements of the aggregate
(such as sum, min, max).

In [14] the authors introduce aggregate subgoals and they investigate both
the 3-valued Well-Founded Semantics and the 2-valued Stable Model Semantics
for programs containing aggregations. In [19] the authors investigate the problem
of checking satisfiability for programs with aggregate subgoals when the func-
tion F is a simple SQL aggregate function. The well-founded and stable model
semantics for logic programs with aggregates has been extended through the use
of approximation theory in [4].

The work that comes closer in spirit to what we propose here is [21], where
Van Gelder provides a treatment of aggregates based on the capability of express-
ing a collection (findall) of answers to a predicate. The idea is that the function
F can be easily programmed on top of this aggregate capability. Similarly to [5,
2], Van Gelder shows how to program findall using negation. The definition of
set-grouping can exploit the following intended semantics of intensional sets [8]:

E = {X : p(X)} ↔ ∀X(X ∈ E → p(X)) ∧ ∀X(p(X) → X ∈ E)
↔ ∀X(X ∈ E → p(X)) ∧ ¬∃X(X 6∈ E ∧ p(X)).

(2)

The first subformula can be computed (for finite sets) using a recursively de-
fined predicate—this corresponds to what authors have called restricted universal
quantification [6, 15]—while the second subformula can be expressed as a negated
predicate, whose single clause definition has X 6∈ E∧p(X) as its body. Semantics
is therefore reduced to the semantics of Prolog programs with negation. In [21]
well-founded semantics is employed to handle negation in this framework, while
in [8] a general form of constructive negation is used. This approach is very
general. Nevertheless, the direct transformation approach used to handle aggre-
gations via negation has drawbacks. Semantic characterization of negation in
logic programming is fairly involved and it is not clear how it reflects on the
corresponding meaning attributed to the aggregate constructs. Furthermore, if
the desire is to allow a general use of sets as first-class citizens of the language,
then one needs to explore the interactions between sets and negation—which
are not straightforward [7]. Moreover, investigating the semantics of aggregation
through translation to other constructs hampers the development of implemen-
tation techniques directly targeted to aggregation—especially implementations
based on constraint solving and delaying techniques.

Our investigation builds on the existing work dedicated to the development
of a CLP language over sets. The language CLP (SET) [6] is an instance of the
CLP framework, whose constraint domain is that of hereditarily finite sets.

3

The language CLP (SET) allows sets to be nested and partially specified,
e.g., set elements can contain unbound variables and sets can be only partially
enumerated. CLP (SET) provides a collection of primitive constraint predicates
sufficient to cover all the basic set-theoretic operations. In [6] we presented a
complete constraint solver capable of deciding the satisfiability of arbitrary con-
junctions of these primitive set constraints. Intensional sets are allowed, but they
are rewritten [8] according to the technique sketched in formula (2). Moreover,
CLP (SET) does not interoperate with other constraints solvers.

3 Syntax

Following the notation of [12], let D be an arbitrary constraint domain and CD
be the class of admissible constraints for D. We assume that CD is closed under
negation. The language we propose has a signature Σ = 〈ΠS , ΠD,ΠP ,F ,V〉 (S
stands for Set, D for Domain, and P for Program). Intuitively, ΠS provides con-
straint predicates to handle sets, ΠD provides the constraint predicates inherited
from the underlying constraint domain D, while ΠP contains the user-defined
predicates. In particular, we assume that ΠS contains ∈,∪3,∩3,⊆, || (these are
the basic set predicates used in [6]). We also assume that = is present in ΠS∩ΠD.
Furthermore, F = FS ∪ FD ∪ FP , where FS contains function symbols used to
create set terms, FD contains the function symbols provided by the language of
D, and FP contains free function symbols. In particular ∅ and the binary set-
constructor {· | ·} [6] are expected to be in FS . The term {s | t} denotes the set
{s}∪t. F and ΠS allow us to write terms and constraints regarding extensionally
defined finite sets, such as ∅, {a, b}, {∅, {a, b}}. The set V contains a countable
number of variables, separated in the three sorts D, P, and S, described below.

Definition 1. We allow three sorts D, P, and S for terms.
− For X ∈ {D,P,S}, constant symbols from FX are terms of sort X.
− We assume that function symbols from FD of arity n have the sort Dn −→ D.
− The sort of {· | ·} is (D ∪ P ∪ S)× S −→ S.
− The sort of a function symbol from FP of arity n is: (D ∪ P ∪ S)n −→ P.

Definition 2. Atoms are defined as follows:
− If p ∈ ΠP with arity n and t1, . . . , tn are terms (of any sort), then p(t1, . . . , tn)
is a P-atom.
− If p ∈ ΠD with arity n and t1, . . . , tn are terms of sort D, then p(t1, . . . , tn)
is a domain constraint atom (or simply a D-atom).
− If p ∈ ΠS with arity n and t1, . . . , tn are terms of sort S, then p(t1, . . . , tn) is
a SET -constraint atom. The only exception is represented by the symbol ∈: if
t is a term of any sort and s is a term of sort S, then t ∈ s is a SET -constraint
atom, as well.
− If E ∈ V, t1, . . . , tn are terms and p ∈ ΠP with arity n, then {X : p(t1, . . . , tn)}
is an intesional set and E = {X : p(t1, . . . , tn)} is an aggregate constraint
atom. The sort of E is S.

A S-atom is either an SET -constraint or an aggregate constraint atom.

4

Observe that the aggregate constraint atom is exactly the constraint aggre-
gate (1) where F is the function that removes duplicates from a multiset and
the expression e is simply X. It is immediate to see that limiting our attention
to this form of aggregation does not lead to any loss of generality. In particular,
the variables indicated with Ȳ in (1) can appear as arguments of p(t1 . . . , tn),
while the local (existentially quantified) variables can be directly placed within
the program rules defining p.

Definition 3. A D-admissible constraint is any formula belonging to the class
of constraints CD.

A S-admissible constraint is a propositional combination of S-atoms. For
the sake of simplicity we do not allow the use of negation applied to aggregate
constraint atoms. Let us denote with CS the class of S-admissible constraints.

A {D}-admissible constraint is an arbitrary propositional composition of D-
admissible and S-admissible constraints. We will denote with C{D} the class of
all {D}-admissible constraints.

Example 1. Assume that D = FD is the constraint domain for finite domain
constraints. Thus, constraints such as X in 1..5, Y in 2..4, X < Y belong to CD.
An example of {D}-admissible constraint is:

A in 1..2, B in 2..3, E = {X : p(A,X,B)} ,K = {A, E}.
Definition 4. A CLP ({D}) rule is a formula H ← cS , cD|B1, . . . , Bn where
− cD is a D-admissible constraint,
− cS is a S-admissible constraint, and
− H is a P-atom and B1, . . . , Bn are P-literals (i.e., positive or negated P-
atoms).

A CLP ({D}) program P is a finite collection of CLP ({D}) rules.

Example 2. Assume again that D = FD. The following is a CLP ({D}) program:

p(A, X, B) ← A < X, X < B.
q(K) ← A in 1..2, B in 2..3, E = {X : p(A, X, B)} , K = {A, E} | p(A, Z, B).

Let us observe that even if we accept any propositional combination, in our
examples we will deal with conjunctions of {D}-atomic constraints or negated
atomic {D}-constraints. Disjunctions can be removed by introducing new rules.

4 Semantics

In this section we provide the semantics for the language CLP ({D}). In partic-
ular, we propose an interpretation of the aggregate constraint atoms based on a
variation of stable model semantics [10]. A three-valued well-founded semantics
can be also derived from the ideas provided in [21].

Let D be the initial domain constraint, D its interpretation domain, and ID
its interpretation function. We define the domain UD =

⋃
i≥0 Ui where:

5

U0 = D
Ui+1 = Ui ∪ ℘(Ui) ∪{

cf(a1,...,an) : a1 ∈ Ui, . . . , an ∈ Ui, f ∈ FP
}

where for all f and a1, . . . , an, cf(a1,...,an) is a new object in the domain, different
from all other objects. Observe that the Herbrand universe for FP and D are
both contained in UD.

We will use the following partial order on UD: given two elements a, b ∈ UD:
a ≤ b if and only if (1) a, b ∈ D and a = b, or (2) a and b are sets and a ⊆ b,
or (3) a = cf(a1,...,an) and b = cg(b1,...,bn) and f ≡ g, a1 ≤ b1, . . . , an ≤ bn.

Stable model semantics for logic programs is defined for ground programs.
In a CLP context, the notion of grounding has to be properly modified to
accommodate for the properties of the selected interpretation domain.

Definition 5. (Pre-interpretation) Let t be a term and σ : vars(t) 7→ UD be
a valuation function that maps variables of sort D to elements in D, variables
of sort S to elements in UD \ U0, and variables of sort P to elements in UD.
Furthermore, let R be the map that associates to each element f ∈ FP of arity k
a k-ary function from UD

k to UD. R is called the base of the pre-interpretation.
The pre-interpretation tR,σ of a term t w.r.t. R, σ is defined as follows:
− If t is a variable, then tR,σ is σ(t).
− If t is a constant of sort D, then tR,σ = tD (i.e., the standard interpretation
of the constant in the constraint domain D).
− If t is f(t1, . . . , tk) and f ∈ FD, then tR,σ = fD(tR,σ

1 , . . . , tR,σ
k), where fD

is the standard interpretation of f in D.
− If t is f(t1, . . . , tk) and f ∈ FS , then tR,σ = fS(tR,σ

1 , . . . , tR,σ
k), where fS is

the standard set-theoretic interpretation of f . In particular,
∗ If t is ∅, then tR,σ is the empty set.
∗ If t is {a | b}, then tR,σ is the set {aR,σ} ∪ bR,σ.

− If t is a constant in FP then tR,σ is simply tR.
− If t is f(t1, . . . , tk) and f ∈ FP then tR,σ = fR(tR,σ

1 , . . . , tR,σ
k).

In the rest of this discussion we will assume that the base R is fixed and in
particular, that it interprets f ∈ FP using the cf(·,...,·) introduced in UD.

Definition 6. (Grounding) Given an atom A and a pre-interpretation R, σ for
the terms in A (where σ is defined for all variables in A), we define the notion
of grounding of A w.r.t. R, σ as follows:
− If A = p(t1, . . . , tn) is a D-constraint atom, the grounding of p(t1, . . . , tn)
w.r.t. R, σ is true if D |= p(tR,σ

1 , . . . , tR,σ
n), false otherwise.

− If A = p(t1, . . . , tn) is a SET -constraint atom, then the grounding of the
atom w.r.t. R, σ is the atom true if pUD (tR,σ

1 , . . . , tR,σ
n) is true (where pUD

is the traditional set-theoretic interpretation of the predicate p on the domain
UD), the atom false otherwise. In particular, given R and σ:
• ∪3(s1, s2, s3) is pre-interpreted as sR,σ

3 = sR,σ
1 ∪ sR,σ

2

6

• s ∈ t is pre-interpreted as sR,σ ∈ tR,σ

• s ⊆ t is pre-interpreted as sR,σ ⊆ tR,σ

• s||t is pre-interpreted as sR,σ ∩ tR,σ = ∅
• ∩3(s1, s2, s3) is pre-interpreted as sR,σ

3 = sR,σ
1 ∩ sR,σ

2

− If A = p(t1, . . . , tn) is a P-atom, then its grounding w.r.t. R, σ is the object
p(tR,σ

1 , . . . , tR,σ
n).

− If A is an atom of the form E = {X : B} and B[X/X ′] is B with X renamed
to X ′ (X ′ a new variable), then its grounding w.r.t. R, σ is the equality ER,σ ={
X ′ : B[X/X ′]R,σ

}
.

Given an atom A and a pre-interpretation base R, a grounding of A w.r.t. R is a
grounding of A w.r.t. R, σ for an arbitrary σ such that R, σ is a pre-interpretation
for A. The notion of grounding can be extended to rules and to programs.

Let ID = 〈D, (·)D〉 be the standard interpretation for the constraint domain D.

Definition 7. An interpretation I is a pair 〈UD, (·)I〉, where the interpretation
function (·)I is defined as follows:

– I coincides with ID on the interpretation of atoms built using FD and ΠD.
– ∈,⊆,∪3, and the other symbols in ΠS are interpreted in UD according to

their standard set-theoretical meaning.
– = is interpreted as the identity over UD.
– (·)I interprets each predicate symbol in ΠP as a predicate over UD.
– for each grounding R, σ of E = {X : B}, (·)I interprets (E = {X : B})R,σ

to true if ER,σ is equal to the set {X ′ : (B[X/X ′]R,σ)I} (where X ′ is a new
variable), to false otherwise.

If the variable X does not occur in B, then the semantics of {X : B} is the
empty set if there is no σ s.t. (BR,σ)I is true; it is the universe UD otherwise.

Example 3. Let A in 1..2 and B in 2..3 be two FD variables, R be an arbitrary
base and σ = {A/2, B/3, E/{2}} be a valuation function. The pre-interpretation
tR,σ of the term t ≡ {X : p(A,X, B)} is {2} = {X ′ : p(2, X ′, 3)}.

Let I and J be two interpretations on UD. We say that I ¹ J if for each
atom P ≡ p(t1, . . . , tn) and for each grounding R, σ of P there exists a an atom
Q ≡ p(s1, . . . , sn) and a grounding R, θ of Q such that (PR,σ)I → (QR,θ)J and
(tR,σ

i)I ≤ (sR,θ
i)J for i = 1, . . . , n. Given an atom P and a grounding R, σ of

P , we define an interpretation I to be a model of PR,σ if (PR,σ)I is true. We
denote this fact with I |= PR,σ. Similarly, we can extend the definition of |= to
conjunctions of atoms. We define an interpretation I to be a model of a grounded
rule head ← cS , cD | body if I |= cS ∧ cD ∧ body implies I |= head. I is a model
of a rule if it is a model of each grounding of the rule.

Example 4. A model for the CLP ({FD}) program of the Example 2 is
I = {p(a, b, c) : a, b, c ∈ inf..sup, a < b < c} ∪ {q({1, {2}})}.

In this case D is the set of integer numbers between inf and sup.

7

4.1 Stable Model Semantics

Let P be a CLP ({D}) program and let I be an interpretation (built on the
pre-interpretation base R). Let P ′ contain all possible R, σ groundings of the
rules in P . Following the principle used in [10], we define the intensional stable
model transformation G(P, I). The transformation is achieved in two steps, i.e.,
G(P, I) = Gset(Gneg(P, I), I). The first transformation, Gneg is defined as fol-
lows: for each rule in P ′

head ← cS , cD | A1, . . . , An,¬B1, . . . ,¬Bm

if for all Bi, 1 ≤ i ≤ m we have that I |= ¬Bi, then the rule grounding
head ← cS , cD | A1, . . . , An

is added to Gneg(P, I) (otherwise the rule is erased). Observe that Gneg(P, I) is
the grounding of a program without negation.

The transformation Gset is defined as follows; for each rule head ← cS , cD |
A1, . . . , An in Gneg(P, I) (i.e., a grounding of a program rule without negation),
if for all atoms A in cS it holds that I |= A then the rule

head ← cD | A1, . . . , An

is added to Gset(Gneg(P, I), I) (otherwise the rule is erased). Gset(Gneg(P, I), I)
is the grounding of a program with neither negation nor set atoms.

Definition 8. I is a stable model of P if I is the least UD-model of the program
Gset(Gneg(P, I), I).

Example 5. Consider the program: r(1).p(X) ← X = {Y : r(Y)} . and let us
consider Gset(P, I) for I = {r(1), p({1})}. With X = ∅ the constraint aggregate
becomes: ∅ = {1} which is an atom false in its interpretation in UD. This ground-
ing is removed. The only true grounded clause is: p({1}) ← {1} = {Y : r(Y)}.
Thus, Gset(Gneg(P, I), I) = {r(1), p({1})}. I is a stable model of P .

Proposition 1. Let P be a CLP ({D}) program.
1. if I be a stable model of P , then I is a model of P .
2. if I is the unique stable model of P , then I is the ¹-minimal model of P .

We cannot claim minimality in general. Consider:

r(1).
r(2).

q(1).
q(2) ← Z = {X : r(X)} , p(Z).

p(Y) ← Y = {X : q(X)} .

This program has two stable models: I1 = {q(1), q(2), p({1, 2}), r(1), r(2)} and
I2 = {q(1), p(1), r(1), r(2)}. Observe that I1 ¹ I2. The fact that non-minimal
models can be stable models is a common problem in the use of stable model
semantics for handling of aggregates (without restrictions on aggregations) [14].
Similar problems are present for the limited set aggregations described in [17].

Example 6. Consider the program

r(1).
s({1}).

p(X) ← q(X), s(X).
q(X) ← X = {Y : r(Y)} .

This program has the unique stable model: {r(1), s({1}), q({1}), p({1})}.

8

Example 7. Simple recursive constructions may lead to infinite intensional sets.
For example, consider the program

p(1). p(X) ← X = {Y }, p(Y).
q(X) ← X = {Y : p(Y)}.

The stable model contains: {p(1), p({1}), p({{1}}), . . .}. Additionally, it should
contain q({1, {1}, {{1}}, . . .}).
Example 8. Intensional definitions may also lead to situations that cannot be
justified according to our treatment of intensional sets. E.g., the program

p(a). p(S) ← S = {X : p(X)} .
does not admit any stable model.

5 Constraint solver

A {D}-constraint (Def. 3) is a propositional combination of D and S constraints.
In the language CLP ({D}) we recognize different classes of constraints:
− D-constraints. We assume that this class is decidable, and we denote with
SATD the procedure used to solve this class of constraints.

− Extensional S-constraints. these are S-constraints that do not involve any
occurrence of intensional sets. This class of constraints is decidable and it cor-
responds to the class of constraints supported by the language CLP (SET).
In [6] an effective procedure to solve constraints in this class is proposed—we
denote with SATSET such procedure. Traditional equality and disequality
constraints between terms of the sort P are also treated in this procedure.

− Intensional S-constraints. These are S-constraints that contain occurrences
of intensional sets (aggregate constraints). A procedure to handle this type
of constraints is described in Sect. 5.1; we refer to this procedure as SATS .

In order to accomplish the goal of resolving constraints in CLP ({D}), we de-
velop a constraint solver, called Solve{D}. This solver repeatedly simplifies the
constraint until no further simplifications are possible. The overall structure is
shown in Fig. 1. Since constraint solvers can be non-deterministic, with c′ =
SATX (c) we mean one of the possible non-deterministic solutions returned.
Thus, Solve{D}(C) is a non-deterministic procedure. In addition, for a program P
we also introduce another function, called SolvegoalP . The predicate SolvegoalP

Solve{D}(C) :
repeat

select c in C;
if c is a D-constraint then c′ = SATD(c);
if c is an Extensional S-constraint then c′ = SATSET (c);
if c is an Intensional S-constraint then c′ = SATS(c);
replace c by c′ in C;

until no rewriting is possible;

Fig. 1. Overall structure of Solve{D}

9

applied to a P-atom or formula means that the solving of its argument is de-
layed at the end of the constraint solving and it will be done by the general
(constraint) resolution procedure. Let us observe that the non-deterministic
result c of Solve{D}(C) is the conjunction of a constraint with possibly some
atoms SolvegoalP (G). At this time, the only requirement we impose is that:
SolvegoalP (G) ⇔ G. The intuition is that the SolvegoalP will encode the lan-
guage mechanisms required to support the explicit removal of intensional sets—
e.g., through the use of negation (as in Sect. 2).

In this section we develop constraint solvers for intensional constraints, show-
ing the generality of some rewriting rules (propagation) and the difficulties in-
troduced by other rewriting rules (labeling). We also discuss the cooperation
between the three solvers. We allow intensional terms to occur freely as terms
in programs—it is simple to transform a program into the flat form of Def. 4.

5.1 Propagation Procedures

In this subsection we present some rewriting rules for S-constraints of CLP ({D})
that can be easily implemented starting from any initial domain D; these rules
allow us to deal finitely with intensional sets (without any restriction on the
finiteness of the intensional sets). The application of these rewriting rules to a
S-constraint C leads to a disjunction of constraints that is equisatisfiable to C.
However, the rewriting rules are incomplete, since constraints obtained might
be unsatisfiable, but unsatisfiability could be not detected right away. Thus, the
behavior is not dissimilar from that of incomplete constraint solvers used in other
CLP systems—e.g., arc and bound consistency employed in FD-solvers (e.g., in
SICStus Prolog) are insufficient to detect unsatisfiability of a constraint such as

X in 1..2, Y in 1..2, Z in 1..2, X 6= Y,X 6= Z, Y 6= Z.
A complete constraint solver can be called into play by the user with a procedure
analogous to the labeling used in CLP (FD). We discuss this enhanced capability
in the following subsection 5.2.

Some propagation rewriting rules are presented in Fig. 2. These rules are
meant to complement the rewriting rules that have been proposed in our previous
works to handle constraints over extensionally defined sets—due to lack of space
we omit reproducing these rewriting rules [6, 3]. We give only the rewriting rules
for some of the predicates involved, in particular for those assumed primitive
in [6] and ⊆. No rules are needed for 6∪3 since the unique rule in [6] applies to
intensional sets as well.

All the propagation rules presented in Fig. 2 do not actually compute the in-
tensional sets—i.e., they do not force the explicit enumeration of the elements of
the intensional set; thus, they can work without any assumption on the finiteness
of these sets. Moreover, they do not introduce negation, but negated constraint
literals that are treated as constraints—this can be seen, for example, in case =-2
in Fig. 2. In addition, some of the propagation rules are non-deterministic—see,
for example, the case 6=-3. The presence of non-determinism leads to a family
of formulas (consisting of constraints and SolvegoalP atoms) that are returned
at the end of the processing, whose disjunction is equisatisfiable to the initial

10

constraint C. In the rewriting rules we also omit the explicit description of the
steps used to verify violation of the sorts of the predicates (with the exception,
for the sake of clarity, of the =-1 and 6=-1 cases).

We use some syntactic sugars in the rewriting rules. We make use of the no-
tation {X : ϕ1 ∨ ϕ2} to represent

{
X : p(Ȳ)

}
, where {Ȳ } = FV (ϕ1)∪FV (ϕ2)

and p is defined as: p(Ȳ) ← ϕ1. p(Ȳ) ← ϕ2. Another syntactic sugar is
less(X,Y, Z), defined as

∀X, Y, Z(less(X, Y, Z) ↔ Y = {X | Z} ∧X 6∈ Z).
namely, Z is the set Y without the element X. Further rewriting rules for prop-
agation can be easily defined; for instance,

∩3({X : ϕ1} , {X : ϕ2} , s) 7→ s = {X : ϕ1 ∧ ϕ2}
Other rewriting rules can be considered if we accept the use of negation.

Negation is allowed in CLP ({D}) programs. However, it is clear that it might
introduce new problems. In particular, it introduces requirements on the capa-
bilities of the D constraint solver to handle more difficult constraints. Observe
that the rules in Fig. 3 produce a negated version of the property employed
to construct the intensional set. It is important to observe that the interaction
between the constraint solvers may actually facilitate the handling of negated
constraints—e.g., by grounding its argument and thus making it easier to solve.
Although the rules for 6∈- and ||-constraints make use of negation, the intensional
sets (that could be infinite) do not need to be explicitly generated (using the
process described in equation (2) of Sect. 2).

Correctness and completeness of the rewriting rules are immediate conse-
quences of the semantics of the set-based operators involved. These results can
be formally proved in the theory Set [6], a minimal set theory that deals with
∅, {· | ·}, =,∈,∪3, || (and also with ∩3 and ⊆, that can be easily defined in terms
of the previous ones). The theory has to be extended by adding the well-known
comprehension scheme of the ZF set theory

∀s ∀y (y ∈ {X ∈ s : ϕ[X]} ↔ (y ∈ s ∧ ϕ[X/y])) for any f.o.f. ϕ .

Condition ‘X ∈ s’—introduced by Zermelo in 1908—is used to overcome Rus-
sell’s famous paradox (pick ϕ as X /∈ X). In the syntax for intensional sets this
condition is not required. We assume that X ∈ UD.

With c ∈ Solve{D}(C) we mean one of the possible non-deterministic solu-
tions returned by Solve{D}(C). Each of them is a conjunction of {D}-constraints
and SolvegoalP atoms. In the second result, the introduction of negation requires
to call into play the completion comp(P) of a program P .

Proposition 2. (Non-negative Simplification) Let CD be a decidable class of
D-constraints; let Solve{D} be defined as in Fig. 1, with SATS composed of the
rules in Fig. 2. Let C be a CLP ({D}) constraint and P be a CLP ({D}) program.
Then Set,D, P |=

(
C ⇔ ∨

c∈Solve{D}(C)
c
)
.

Proposition 3. (Negative Simplification) Let CD be a decidable class of D-
constraints; let Solve{D} be defined as in Fig. 1, with SATS composed of the
rules in Fig. 2–3. Let C be a CLP ({D}) constraint and P be a CLP ({D})
program. Then Set,D, comp(P) |=

(
C ⇔ ∨

c∈Solve{D}(C)
c
)
.

11

=-constraints

=-1.
{X : ϕ} = t

sort(t) 6= S

ff
7→ false

=-2. {X : ϕ} = {t | s}¯ 7→ (i) t ∈ {X : ϕ} ∧ {X : (ϕ ∧X 6= t)} = s
(ii) t ∈ {X : ϕ} ∧ {X : ϕ} = s

6=-constraints

6=-1.
{X : ϕ} 6= t
sort(t) 6= S

ff
7→ true

6=-2. {X : ϕ} 6= ∅ 7→ SolvegoalP (∃Xϕ)

6=-3. {X : ϕ1} 6= {X : ϕ2} 7→ (i) Z ∈ {X : ϕ1} ∧ Z 6∈ {X : ϕ2}
(ii) Z ∈ {X : ϕ2} ∧ Z 6∈ {X : ϕ1}

6=-4. {X : ϕ} 6= {s | t} 7→ (i) Z ∈ {X : ϕ} ∧ Z 6∈ {s | t}
(ii) Z ∈ {s | t} ∧ Z 6∈ {X : ϕ}

∈-constraints

∈-1. t ∈ {X : ϕ} 7→ SolvegoalP (ϕ[X/t])

∪3-constraints

∪3-1. ∪3({X : ϕ}, ∅, s) 7→ s = {X : ϕ}
∪3-2. ∪3({X : ϕ} , s, ∅) 7→ ∅ = {X : ϕ} ∧ ∅ = s

∪3-3. ∪3({s | t}, r, {X : ϕ}) 7→ s ∈ {X : ϕ} ∧ less(s, {s | t}, N)∧
∪3(N, r, {X : ϕ ∧X 6= s})

∪3-4. ∪3({X : ϕ1} , {X : ϕ2} , s) 7→ s = {X : ϕ1 ∨ ϕ2}
∪3-5. ∪3({X : ϕ1} , r, {X : ϕ2}) 7→ r ⊆ {X : ϕ2} ∧ {X : ϕ1} ⊆ {X : ϕ2}∧

{X : ϕ2} ⊆ {X : ϕ1 ∨X ∈ r}
∪3-6. ∪3({X : ϕ} , r, {s | t}) 7→

less(s, {s | t}, N) ∧
(i) s ∈ {X : ϕ} ∧ s 6∈ r ∧ ∪3({X : ϕ ∧X 6= s} , r, N)
(ii) s ∈ {X : ϕ} ∧ less(s, r, N1) ∧ ∪3({X : ϕ ∧X 6= s} , N1, N)
(iii) s 6∈ {X : ϕ} ∧ less(s, r, N1) ∧ ∪3({X : ϕ} , N1, N)

||-constraints

||-1. ∅|| {X : ϕ} 7→ true

6 ||-constraints

6 ||-1. ∅ 6 || {X : ϕ} 7→ false

6 ||-2. {X : ϕ} 6 ||{s | t} 7→ (i) SolvegoalP (ϕ[X/s])
(ii) less(s, {s | t}, N) ∧ {X : ϕ} 6 ||N

6 ||-3. {X : ϕ} 6 || {X : ψ} 7→ SolvegoalP (∃X(ϕ ∧ ψ))

⊆-constraints

⊆-1. ∅ ⊆ {X : ϕ} 7→ true

⊆-2. {X : ϕ} ⊆ ∅ 7→ ∅ = {X : ϕ}
⊆-3. {s | t} ⊆ {X : ϕ} 7→ s ∈ {X : ϕ} ∧ t ⊆ {X : ϕ}

⊆-4. {X : ϕ} ⊆ {s | t} 7→
(i) s ∈ {X : ϕ} ∧ less(s, {s | t}, N) ∧

{X : ϕ ∧X 6= s} ⊆ N
(ii) s 6∈ {X : ϕ} ∧ less(s, {s | t}, N) ∧

{X : ϕ} ⊆ N

Fig. 2. Propagation Rewriting Rules

12

6∈-constraints

6∈-1. t 6∈ {X : ϕ} 7→ SolvegoalP (¬ϕ[X/t])

||-constraints

||-2. {X : ϕ} || {X : ψ} 7→ SolvegoalP
`∃X(ϕ ∧ ¬ψ) ∨ ∃X(¬ϕ ∧ ψ))

´∨
{X : ϕ} = ∅ ∧ {X : ψ} = ∅

||-3. {X : ϕ} ||{s | t} 7→ SolvegoalP (¬ϕ[X/s]) ∧ less(s, {s | t}, N) ∧ {X : ϕ} 6 ||N

Fig. 3. Propagation with negation

5.2 Labeling

As mentioned in the previous subsection, the propagation rules allow us, given
an original constraint C, to determine a disjunction of constraints that is equi-
satisfiable to C. Each constraint belonging to the disjunction is “simpler” than
C—e.g., it may contain fewer occurrences of intensional constraints. On the other
hand, these rewriting rules do not constitute a complete solver—in particular,
there is no guarantee that unsatisfiable constraints are reduced to false and
tautologies are reduced to true. This situation makes the rewriting procedure
weaker than, e.g., the procedures used in CLP (SET), where each set constraint
can be always reduced to false or to a satisfiable constraint in solved form.

In order to approximate a similar behavior in the context of CLP ({D}) it
is necessary to force the removal of intensional sets from the constraint. This
process can be seen as a sort of labeling of the variables in the constraint. More
in detail, intensional sets must be expanded (and, possibly, D-constraints may
have to be subjected to a similar transformation). We show in Fig. 4 how the
labeling can be accomplished in the various cases left. See also the formula
(2) for computing a single intensional sets. Observe that the right-hand side
of the transformation can be encoded either through the use of negation or by
introducing an explicit construct to collect solutions to a goal (e.g., findall).
The additional rewriting rules satisfy the following properties:

− the new rules cannot guarantee completeness, as the problem we are trying
to solve is undecidable in general (e.g., intensional sets build on properties
with an infinite number of solutions);

− the rules rely on the ability to handle negated computations.

=-constraints

=-3. {X : ϕ} = ∅ 7→ SolvegoalP (¬(∃Xϕ))

=-4. {X : ϕ1} = {X : ϕ2} 7→ SolvegoalP (∀X(ϕ1 ↔ ϕ2))

⊆-constraints

⊆-5. {X : ϕ1} ⊆ {X : ϕ2} 7→ SolvegoalP (∀X(ϕ1 → ϕ2))

Fig. 4. Labeling using negation

13

5.3 Further Considerations

Negation handling in this context deserves special attention. Negation as failure
in the context of a language with sets has been studied only for programs that are
stratified and meet restrictive allowedness requirements to avoid floundering [2].
Constructive negation in the context of Constraint Logic Programming with Sets
has been studied in [8]. However, the class of programs that can be dealt with
successfully does not enlarge significantly the class of those that can be dealt
with negation as failure and stratification.

We are currently investigating how these mechanisms can be employed in
the context of Answer Set Programming (ASP) [16]. For instance, the negative
reductions required in 6∈-1 and ||-2 of Fig. 3 can be encoded as ASP rules:

6∈-1. ← ϕ[t].
||-2. p1 | p2 | p3 ←

q1 ← domϕ(X), domψ(X), ϕ, not ψ.
q2 ← domϕ(X), domψ(X), ψ, not ϕ.
← p1, not q1. ← p2, not q2.
← p3, q1. ← p3, q2.

where p1, p2, p3, q1, q2 are brand new atoms. The predicates domϕ and domψ

are domain predicates as required by smodels [17]. Similar constructions can be
employed to handle rules =-3, =-4, and ⊆-5:

=-3. p ← domϕ(X), ϕ.
← p.

=-4. ← ϕ1, not ϕ2.
← ϕ2, not ϕ1.

⊆-5. ← ϕ1, not ϕ2.

6 Conclusions

In this paper we presented preliminary ideas on how to extend any CLP (D) lan-
guage with set-based primitives and constraints. The novelty of the framework is
not only the presence of intensional sets but the ability to develop (extensional
and intensional) sets on top of arbitrary constraint domains D. We developed a
syntactic and semantics specification of the new language (called CLP ({D})).
We also developed rewriting algorithms to simplify constraints containing inten-
sional sets—possibly relying on the use of negation.

In the immediate future we plan to effectively implement the technique at
least for some largely used constraint domains, such as finite domain constraint.
A preliminary result in this direction is [3] where the CLP (SET) constraint
solver is integrated with the CLP (FD) constraint solver of SICStus Prolog. In
this preliminary work intensional set constraints are allowed but currently solved
via explicit enumeration.

14

Acknowledgments. The work is partially supported by MIUR projects: Auto-
matic Aggregate—and number—Reasoning for Computing and Constraint-based
Verification of Reactive systems and NSF grants EIA-0220590, EIA-0130887,
CCR-9875279, and CCR-9820852.

References

1. P. Arenas-Sánchez and M. Rodŕıguez-Artalejo. A General Framework for Lazy
Funct’l Logic Programming with Algebraic Polymorphic Types. TPLP, 2(1), 2001.

2. C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic Database
Language. Journal of Logic Programming, 10(3):181–232, 1991.

3. A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Integrating Finite Domain
Constraints and CLP with Sets. In PPDP’03, pp. 219–229. ACM Press, 2003.

4. M. Denecker et al. Ultimate well-founded and stable semantics for logic programs
with aggregates. In ICLP, pp. 212–226. Springer, 2001.

5. A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Logic Programming
Language with Finite Sets. In ICLP, pages 111–124. MIT Press, 1991.

6. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and Constraint Logic Pro-
gramming. ACM TOPLAS, 22(5):861–931, 2000.

7. A. Dovier, E. Pontelli, and G. Rossi. A Necessary Condition for Constructive
Negation in Constraint Logic Programming. IPL, 74(3-4):146–156, 2000.

8. A. Dovier, E. Pontelli, and G. Rossi. Constructive Negation and Constraint Logic
Programming with Sets. New Generation Computing, 19(3):209–255, 2001.

9. M. Gelfond. Representing Knowledge in A-Prolog. In Computational Logic: Logic
Programming and Beyond, pages 413–451. Springer Verlag, 2002.

10. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In JICSLP, pages 1070–1080. MIT Press, 1988.

11. C. Gervet. Interval Propagation to Reason about Sets: Definition and Implemen-
tation of a Practical Language. Constraints, 1:191–246, 1997.

12. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19–20:503–581, 1994.

13. B. Jayaraman. Implementation of Subset-Equational Programs. Journal of Logic
Programming, 12(4):299–324, 1992.

14. D. B. Kemp and P. J. Stuckey. Semantics of Logic Programs with Aggregates. In
ILPS, pages 387–401. MIT Press, 1991.

15. G. M. Kuper. Logic Programming with Sets. JCSS, 41(1):66–75, 1990.
16. V. W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Pro-

gramming Paradigm. In The Logic Programming Paradigm. Springer Verlag, 1999.
17. I. Niemela and P. Simons. Extending Smodels with Cardinality and Weight Con-

straints. In Logic-Based Artificial Intelligence, pp. 491–521. Kluwer, 2000.
18. K. A. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Databases. Journal

of Computer ans System Science, 54:79–97, 1997.
19. K. A. Ross, D. Srivastava, P. J. Stuckey, and S. Sudarshan. Foundations of aggre-

gation constraints. Theoretical Computer Science, 193(1–2):149–179, 1998.
20. J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming

with Sets: an Introduction to SETL. Springer, 1986.
21. A. Van Gelder. The Well-Founded Semantics of Aggregation. In 11th Principles

of Database Systems, pages 127–138. ACM Press, 1992.

15

