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Abstract. Action languages have gained popularity as a means for régivizly
describing planning domains. This paper overviews twooactanguages, the
Boolean languag# and its multi-valued counterpat™V . The paper analyzes
some of the issues in using two alternative logic prograngnaipproaches (An-
swer Set Programming and Constraint Logic Programming Bivete Domains)
for planning with3 andB™" specifications. In particular, the paper provides an
experimental comparison between these alternative ingléation approaches.

1 Introduction

As illustrated by Lifschitz [19], research on planning reega the resolution of two
key problems: development of languages for the descrigifquianning problems—
using declarative and elaboration tolerant notations—ebesign of efficient and scal-
able planning algorithms.

Action languages [15] have gained popularity over the yaarsiable declarative
notations for the description of planning domains. Sineedhginal proposal of the
languagesA, B, andC by Gelfond and Lifschitz [15], a variety of new action lan-
guages have appeared in the literature, with declarataturfes aimed at capturing
important features of real-world planning domains, sucpragerences [27], time and
duration s[1], numerical reasoning [17], and beliefs [13].

In recent years, we have witnessed an increased intereglioreg ways of bridg-
ing the gap between the declarative problem encodingseaffiey action language and
the development of effective implementations. In parficun interesting line of work
has been developed to study the relationships betweemaatiguages anlbgic pro-
gramming.The link between these two paradigms is quite natural, denisig the log-
ical foundations underlying the semantics of most actiowgleges. Furthermore, this
direction of research is fueled by some very attractive ertgs of logic programming,
such as:

o Research in logic programming has significantly enhancegdinformance of mod-
ern logic programming inference engines; for example, anset solvers are cur-
rently competitive with state-of-the-art SAT solvers (egasp in the 2009 SAT
Competition—ht t p: / / www. sat conpeti tion. org.).

o Logic programming implementations of action languagesai the declarative
nature of the original encoding, enabling, for example, &ntain a good level of
elaboration tolerance in the executable encoding.



o The declarative nature of logic programming makes it fdagib envision the use
of user-defined search strategies, expressed as logi@amaogng theories. Further-
more, it facilitates the orthogonal introduction of domé&itowledge, that can be
used to guide the search for solutions during planning.
The advent ofAnswer Set Programming (ASI0, 22] has significantly impacted
the area of logic programming encoding of action languagég-support for non-
monotonic reasoning provided by ASP nicely matches the s1eédction languages
(e.g., facilitating the resolution of the frame problem])21

Over the last few years, we have embarked on a comparatestigation of the fea-
tures of two of the most popular logic programming paradigragswer set program-
mingandconstraint logic programming over finite domains (CLP(F[$]. Some pre-
liminary results have been presented in [3, 4, 6]. Recethilyline of work has focused
to the investigation of the respective strengths and wesdaseof ASP and CLP(FD) in
dealing with planning problems and action languages. We harestigated the relative
performances of the two paradigms on different classesasfriphg problems and on
different types of action languages [5, 10, 7, 8].

In this paper, we continue this line of work with several ¢dnitions:

o We explore some modifications of the encodings in both ASRt{&e 3) and
CLP(FD) (Section 4), leading to significant improvementpénformance;

o We make use of the state-of-the-art systems in ASP and CLP{#Dparticular,
ASP technology has made significant improvements sincereuniqusly published
results (e.g., [10]);

o We expand the pool of benchmarks, including more challepgmoblems like the
reverse folding problem and the tangram (Section 6);

o We emphasize the role of multi-valued fluents in gaining &fficy in planning and
compactness of domain descriptions (Section 5).

2 The Action LanguageBB

In this section, we revisit the syntax and semantics of thi®mcescription language
B. The syntax and semantics presented in the following segi®a slight modification
of the original definitions from the seminal paper of Gelf@mdi Lifschitz [15].

2.1 Syntax ofB

An action signature consists of a sgtof fluentnames, a sed of action names,
and a set®’ of values for fluents inF. In this section, we consider Boolean fluents,
hencey = {0, 1} (or {false, trué). A fluent literalis either a fluentf or its negation
neg(f). Fluents and actions are concretely representedroynd atomic formulae
p(t1, ..., ty) froman underlying logic languagé—wherep is a predicate symbol and
t1,...,t, are ground terms. We assume that the set of allowed ternisifofinite.

The languagé3 allows us to specify aaction) domain descriptio®. The core
components of a domain description ardlitents—properties used to describe the state
of the world, that may dynamically change in response to @kae of actions—and
actions—denoting how an agent can affect the state of the world.rEfuand actions



are introduced by assertions of the forfsuent ( f) andacti on(a). An action
descriptionD relates actions and fluents using axioms of the following$/p-where
[1'ist-of-conditions] denotes a list of fluent literals:

— causes(a, ¢, [list-of-conditions]): this axiom encodesdynamic
causal law describing the effect (i.e., truth assignment to the flliearal ¢) of the
execution of the action in a state of the world that satisfies all the conditions in
[list-of-conditions];

— caused([list-of-conditions], ¢):thisaxiomdescribesstatic causal
law—i.e., the fact that the fluent literdlis true in any state satisfying all the given
preconditions.

Moreover, preconditions can be imposed on the executabiliactions by means of
assertion of the forms:

— executabl e(a, [list-of-conditions]):thisaxiomassertsthat, forthe
actiona to be executable, all the given conditions have to be satigiithe current
state of the world.

A domain descriptions a set of static causal laws, dynamic laws, and executabili
conditions. A specifiplanning problemD, O) contains a domain descriptidnalong
with a setO of observationglescribing thenitial state and thedesired goalspecified
using the following types of statements:

—initially(¢) asserts that the fluent literdlis true in the initial state of the
world;

— goal (¢) asserts that the goal requires the fluent litétalbe true in the final state
of the world.

In the concrete specification of an action theory, we wilballa Prolog-like syntax to
express in a more succinct manner the laws of the theorynistarice, to assert that in
the initial state of the world all fluents are true, we can dinvrite the following rule:

initially(F) :- fluent(F).

instead of writing afactni ti al | y( f) for each possible fluent.

2.2 Semantics o3

We will rely on sets of fluent literals to describe a state @ world. If ¢ is a fluent
literal, andS is a set of fluent literals, we say thét}= ¢ if and only if ¢ € S. A list

of literalsL = [¢4,...,¢,] denotes a conjunction of literals, heng§e= L if and only

if S E ¢ forallie {1,...,m}. We denote with-S the set{f € F : neg(f) €
Stu{neg(f): f € SN F}. We are interested in considering only sets of literals that
satisfy certain properties:

— A set of fluent literals isconsistentf there is no fluentf s.t.S | f andS =

neg(f).
— If SU-S D FthenS is complete



— A setS of literals isclosedw.r.t. a set of static laws
SL ={caused(Ly,4;),...,caused(Ly, lm)}
if, forall i € {1,...,m}, itholds thatS = L, impliesS | ¢;.

The seClos,(5) is defined as the smallest set of literals contairfirgnd closed w.r.t.
SL.Clos,(S) is uniquely determined and not necessarily consistent.N&frer we are
working with a domain descriptiof, we will also denote witltlop(.S) the result of
Clos.(S) whereSL is the set of all static causal lawsTh

Let D be an action description defined on the action signgdreér, A), composed
of dynamic lawsD L, executability conditiong £, and static causal lanS.L. The se-
mantics ofD is given in terms of a transition systeff, v, R), consisting of a sef of
states, a total interpretation function S — F — V (in this section = {0, 1}), and
atransitionrelatiol C S x A x S.

Given a transition systers, v, R) and a state € S, let:

Lit(s) = {f € F : v(s)(f) = 1} U{neg(f) : f e F, v(s)(f) =0}

Observe thalit(s) is consistent and complete.
Given the set of all the dynamic causal laws
{causes(a,?1,L1),...,causes(a,lm, Lm)}
for the actiona € A presentinD and a state € S, we define thédirect) effects ot
in s as follows:
Ep(a,s) ={t; : 1 <i < m,Lit(s) &= L;}.

The actiornu is said to beexecutablen a states w.r.t. D if it holds that
h
Lit(s) = \/ Ci, 1)
=1

whereexecut abl e(a,C), ..., execut abl e(a, C}) for h > 0, are the executabil-
ity axioms for the actiom in D. Observe that multiple executability axioms for the same
actiona are considered disjunctively. Hence, for each actipat least one executable
axiom must be present in the action description.

The transition systerS, v, R) described byD is such that:

— Sis the set of all statessuch thatlit(s) is closed w.r.tSZ;
— Ris the set of all triplegs, a, s’) such that: is executable iz and

Lit(s") = Clop(Ep(a, s) U (Lit(s) N Lit(s"))) ()

Let (D, O) be a planning problem instance, whére i nitial l y(¢) € O}isa
consistent and complete set of fluent literaldrdiectoryin (S, v, R) is a sequence
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such that(s;, a;11, s;+1) € Rforalli € {0,...,N —1}.
A sequence of action&, . .., an) is a solution (gplan) to the planning problem
(D, O) if there is a trajectorysg, a1, $1, - - . , an, sn) in (S, v, R) such that:



— Lit(so) = rforeachinitially(r) e O,and
— Lit(sn) = £ for eachgoal (¢) € O.

The plans characterized in this definition aefjuentiat-i.e., we disallow concurrent
actions. Observe also that the desired plan lehgthassumed to be given.

3 Answer Set Planning

The idea of using logic programming to address planning lprob dates back to the
origins of logic programming [28]. The idea of using exteddtsgic programming and
answer set programming can be traced back to the seminaswb&elfond and Lifs-
chitz [14] and Subrahmanian and Zaniolo [25]. The various€eings proposed in the
literature tend to share similar ideas—fluents are repteddyy atoms of a logic pro-
gram, with an additional parameter used to represent the staf a trajectory they
refer to.

3.1 The General Encoding

Let us describe how a domai and a problem instancgD, ©O) can be mapped to
a logic programlIp(N, ©O); the intuition is that the mapping should guarantee that
there is a one-to-one correspondence between plans ohlrfgt (D, O) and answer
sets ofIIp(N, O). In the rest of this section, we illustrate the constructddlp as
performed by a Prolog translator developed by the authorsawailable atww.
di m . uni ud. i t/ CLPASP. The structure of the translation follow the general lines
delineated in [19, 23].

The initial components ofI» (N, O) are facts used to identify actions and fluents
of the domain; for eaclf € F and for eacln € A we assume that the facts

fluent (f). action(a).

are present idip (N, O).

The encoding of the content @ is also immediate: for eadhni ti al | y(¢) and
for eachgoal (¢') in O we assume the presence of analogous fact&diN, O) —i.e.,

O C IIp(N,0).

Auxiliary rules are introduced in order to provide the ddfori of some of the
concepts used in the definition of the semantics of domaicifspetions; in particular,
we introduce inf7p (N, O) rules aimed at defining the notions of literal and complement
of a literal, as follows:

literal (F):- fluent(F). literal (neg(F)):- fluent(F).
conpl enent (F,neg(F)). conpl enent (neg(F), F).

The parameteN is used to denote the length of the desired trajectory; wedlnice
the factst i me(0..N) to identify the range of time points in the desired trajegto

The statess; of a trajectory (fori = 0,...,N) are described by the predicate
hol ds; intuitively, v(s;)(f) = 0 iff hol ds(neg(f),4) is true andv(s;)(f) = 1
iff hol ds(f,7) is true.

The various axioms lead to the following rules:



— The executability conditions for an actianprovide the definition of a predicate
possi bl e. Let us assume thaxecut abl e(a, L1), ..., execut abl e(a, L)
are all the executability axioms farin D, and let us assume thatfpe {1,...,h}:
L;=10,... ,éij]. Then the following rules are provided iip (N, O):

possi bl e(a,T) : - time(T),hol ds(¢},T),...,hol ds(¢;,,T).

possi bl e(a,T) : - tinme(T),hol ds(¢},T),...,hol ds(¢! . T).

— Each static causal lawaused([¢y, ..., ¢],¢) leads to the introduction of a rule
of the form

hol ds(¢,T): -ti me(T),hol ds(¢1,T),...,hol ds(¢,.,T).

— Each dynamic causal lasauses(a, ¢, [¢1,. .., ¥¢,]) in D introduces the following
rule

hol ds(¢,T + 1): -ti me(T),occ(a,T),hol ds(¢1,T),...,hol ds(¢,,T).
— The constraint that ensures consistency of each staterootest is
c-time(T),fluent (F),hol ds(F,T),hol ds(neg(F),T).
— The rule that provides the solution to the frame problem is
hol ds(L, T +1):- time(T),literal (L),hol ds(L,T),
conpl enent (L, Ly), not hol ds(L,,T + 1).

The following additional rules are needed to model the imst#D:

— In order to model the initial state, we need the additionld ta generate the de-
scription of the state at time

hol ds(L,0): -initially(L).
— In order to model the satisfaction of the goal, we introdineedonstraint
:-goal (L), nothol ds(L,N).
The following final rule is used to support the generation pfaan:
— The rules that generate the sequence of actions conggjithénplan are:

1{occ(A,T) : action(A)}1:-ti me(T),T < N.
:-action(A),ti me(T),occ(A,T), notpossi bl e(A,T).

Proposition 1. Let us consider a planning problem instan@, O) and the program
IIp(N, O) constructed as discussed earliét, . . ., an) is a plan for(D, O) iff there
is an answer sed! of ITp(N, O) such thaf{occ(ay,0),...,0cc(an, N — 1)} C M.



3.2 An Optimized Encoding

If the action theory does not contain any static causal l#ves) it becomes possible to
simplify the translation to ASP. In particular, it becomesgible to avoid the creation of
separate atoms for representing negative literals. Ateheasitic level, we can observe
that, in absence of static causal laws, the formula (2) besom

Lit(s') = (Lit(s) \ (Ep(a,s))) U Ep(a, s)
Practically, this simplification leads to the following atges to the ASP encoding:

— In the encoding of the executability conditions, for eacloax

execut abl e(a, [p1,...,pr,n€Q(q1),-..,NeQ(gs)]).
we can generate the rule

possi bl e(a,T): - ti me(T),hol ds(p1,7T),...,hol ds(p.,T),
not hol ds(q1,T), ..., nothol ds(qgs,T).

— The encoding of the dynamic causal laws of the fermuses(a, f, L), for a fluent
f.is as before, while each law of the form
causes(a,neg(r),[p1,.-.,pr, DOt q,..., notq))
in D introduces the following rules

:- holds(r,T +1),ti me(T),occ(a,T),

hol ds(p1,T),...,hol ds(p,,T),

nothol ds(q;,7),..., nothol ds(gs, T).
non.inertial (r,7+1):-time(T),occ(A,T).

— Finally, the frame problem has a slightly different encadiwe exploit the above
rules, defininghon_i nerti al , together with the rule:

hol d(F,T +1): - time(T),fl uent (F),hol d(F),
notnon_inertial (F,T+1).

The main advantage of this encoding is to reduce the numbaioafs and the size of
the ground version of the ASP encoding. However, considesimr experiments, this
smaller grounding does not always guarantee better pegiocein the solving phase.

4 Planning Using CLP

In this section, we illustrate the main aspects of the emmpdf the languagé® into
constraint logic programming for the purpose of planninge&fically, the target of
the encoding is a constraint logic program over finite dom&CELP(FD)). The model
presented here is an evolution of the pioneering work desdrin [10], with several
modifications aimed at enhancing performance.

As for the ASP encoding, we are interested in computing plaitis N action
occurrences, relating a sequenceNoft 1 statessy,...,sy. For each state; and



for each fluentf, we introduce a Boolean variab to describe the truth value of
f in s;. The value of the literaheg(F?) is simply 1 — F. A list of literals o =
[p1,-..,pk,n€Q9(q1),...,Nneg(qn)] interpreted as a conjunction of literals in a state
is described by a variabl&’ defined by the constraint:

i = /\Pz—l/\/\Ql—O

We will also introduce, for each actiom, a Boolean variabled?, representing
whether the action is executed or not in the transition fspm to s;.

Let us consider a state transition betweero s;1; we develop constraints that
relate the variableB*+!, F?, andA**! for each fluentf and for each actiod. This is

repeated foi = 0,..., N — 1. Moreover, constraints regarding initial state and goal ar
added.
Let us consider a fluent, and let
causes(at,, f,al) causes(at,,, f,am)
causes(a.,,neg(f), ) causes(a.,,neg(f),sp)
caused(dy, f) caused(5h, )
caused(yi,neg(f)) caused(yg, neg(f))

be all of the dynamic and static laws that hgver neg(f) as their consequences. For
each actionu; let us assume that its executability conditions are thefohg:

execut abl e(a;,n,,) .-+  executabl e(a;,n.,)

Figure 1 describes the Boolean constraints that can be nsekbding the relations
that determine the truth value of the fluent liteRtt!. A fluent f is true in state + 1
(see rule (3)) if a dynamic rule or a static rule explicitlydes it to be true (captured by
PosFi r edy) or if it was true in staté and no dynamic or static rule forces it to be false
(expressed bilegFi r ed ;). The constraint (4) forbids the execution of static/dyi@am
rules with contradictory consequences, thus ensuringdhsistency of the states being
created. The constraints (5) and (8) defines the conditimaisrhake a fluent true or
false in the following state, either as effect of an actioa@iion (constraints (6) and
(9)) or as result of static causal laws being triggered (tairgs (7) and (10)). Two ad-
ditional constraints on actions are also added. The cans(fd) states that at least one
executability condition must be fulfilled in order for aniactto occur. The constraint
(12) states that exactly one action per transition is althwe

As a technical consideration, differently from older vers of the solver (e.qg.
[5, 10]) conjunction and disjunction constraints are inmpémted using the built-in
CLP(FD) predicaten ni rumandmaxi num respectively. Moreover, constraints (3)
and (4) regarding four variables, are dealt with the contoima constraintt abl e
(only six 4-tuples are candidate solutions). This allowsougstrict the search to ttte
solutions of the two combined constraints, instead of ijircploring thel6 possible
combinations of values at each state transition. Sevenal ohinor code optimizations
have been implemented.



F'™' =1 = PosFired} v (-NegFi red} A F' = 1) )

—PosFi red’ v —-NegFi r ed’ @)

PosFi red}; = PosDyn’ v PosStat ;™ (5)
PosDyn} = /7o, (45 A A =1) (6)
PosStaty = \/!_, 3 @
NegFi red; = NegDyn’ v NegStat ;™ (8)
NegDynj = V?_, (B; A AL = 1) ©
NegStat ' = \/_, 4; (10)
AT =1 Vi, (11)
Dajeadi=1 (12)

Fig. 1. Constraints for the fluenf and for all the actions; in the transition(s;, s;y1)

5 From Boolean to Multi-valued

We have investigated several extension8dbee, e.g., [10]). In this section, we sum-
marize the extension which allows the use of multi-valuedrfts in the description of
a domain and references to values of fluents in past stateseféfeto this extended
version of the language &V

The syntax of the action language is modified to allow theatation of a domain
for each fluent—the domain indicates the set of values thatbeaassigned to each
fluent. Thedomain declarationkave the form

fluent (f,{vi,...,u})

For the sake of simplicity, we restrict our attention to d@msacontaining integer num-
bers. If the domain is an intervét . . . b] of integer numbers, one is allowed to write
simply:f | uent (f,a,b).
Fluents can be used Fluent ExpressionsHE), which are defined inductively as
follows:
FE:=n | f' | FE® FE | rei (FC)

wheren € Z, ® € {+,—,%,/,mod}, t € Nwith¢ < 0, andf € F. The notation
f° will be often written simply asf, and it refers to the value of in the current
state; the notatiorf’ denotes the value the fluefithad in thei*” preceding state. The
expression ei (C) denotes the reification of a the constraihfi.e., 1 if C'is entailed,
0 otherwise) FC areFluent Constraintand they are defined as follows:

FC:=FErel FE| -FC| FCAFC | FCVFC

whererel € {=,#,>, < >, <}. We will also refer to fluent constraints of the type
FE r el FEasprimitive fluent constraints



The languag&™V allows one to specify an action domain description, which re
lates actions, states, and fluents using predicates of tlusviiog forms ¢ denotes a
primitive fluent constraint, whil€' is a fluent constraint):

o Axioms of the formexecut abl e(a, C), stating that the fluent constraiat has
to be entailed by the current state for the actaim be executable.

o Axioms of the formcauses(a, ¢, C') encode dynamic causal laws. When the ac-
tion a is executed, if the constraint is entailed by the current state, then state pro-
duced by the execution of the action is required to entaiptimaitive constraint.

o Axioms of the formcaused(C, ¢) describe static causal laws. If the fluent con-
straintC is satisfied in a state, then the constrainust also hold in such state.

For example, a dynamic causal law can have the form:

causes(pour(X,Y), contain(Y) = contain(Y)~! + contain(X) ™!,
[Y — contain(Y)°? > contain(X)]).

The description of the semantics of this modified versiorheflanguage is beyond
the scope of this paper; it requires two major chan(fB=sa state is now a function that
assigns to each fluent a value drawn from the fluent’s dong2jrihe truth of a fluent
constraint is expressed with respect to a trajectory, ireiotd enable the resolution
of the time references on the fluents. For example, a traye¢tg, a1, s1,- - , ag, Sk)
entails the constrainf® = f~! + =2 if the value of f in s is equal to the sum
of the value off in s;_; and the value off in s;_5. The translation to CLP(FD) is
also a relatively simple extension of what discussed eatlie main changes arét)
the variables* are no longer Boolean variables, but they are finite domaiiabies,
whose domain is derived from the domain declarations in thiemalanguage(2) the
constraints of Figure 1 need to map annotated flught® corresponding variables
F+t The interested reader is referred to [10] for more details.

6 Experiments and Evaluation

We report here the results on experiments performed on aatih of domains used
as benchmarks. Some of these domains (and instances) tevediected from prob-
lems presented in the last ASP competitidh &i . cs. kul euven. be/ event s/
ASP- conpet i ti on/) and in some of the past International Planning Compestion
(e.g.,i pc.informatik. uni-freiburg.de/).

For problems modeled i we used the following two approaches:

e ASP: WEe first translated the domain, given the desired plan lengting the trans-
lator described in Section 3. The result of the translati@s wrocessed by the
gringo grounder [12] and the answer sets computed usinddbp f11] answer set
solvers!

e CLPFD: In this case we compile the solver CSpl an presented in Section 4 to-
gether with the domain and ask for the existence of a plan ®éfendengthN. In

! We used the combination of gringo and clasp since it providesastest ASP solver currently
available. Other systems such as Iparse+smodels/cmaatelsecused as well.
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this case different search heuristics have been used. Itaktively simple exer-
cise to use different CLP(FD) systems—e.g., translationB-Prolog have been
investigated.
All the domains, the instances, the compiler, and the sslaee available atww.
di mi . uni ud. it/ CLPASP.?
For the problems modeled in ti@"" language, we used théL P(F D) solver
Sl cSpl anMv. TheBMY domains have been also translated to the corresponding&ool
versions, where each multi-valued flugnwith domain{ay, . . ., ax } has been replaced
by k propositional fluentg, . . ., fx, and the axioms changed accordingly. Let us make
some observations about the drawbacks of this translatidimet Boolean case. Let us
consider, for instance, two fluenfsandg, each with the interval . .. 100 as domain;
let us also assume that a dynamic causal law has the follosffagt:

f=r"1+g"

This is a unique constraint on three variables in8€" encoding. In its propositional
version, this constraint becomes:

for (X,Y,Z} C{1,...,100} st.Z = X +Y: fx ' Agy' — [z
This implies the use dd00 fluents andt, 950 ground constraints:

i Ag = fo fiingt = fs - i Agsy — fioo

foot Agrt = fioo

More in general, if the domain contaiksvalues and the constraint includg$luents,
the Boolean encoding will requiredk Boolean fluents and the ground version of the

constraint will lead taD(k?) constraints.

An alternative encoding can be realized using a logaritlenéoding of numbers. In
the example above, for each fluent we can introduBeolean fluents, says,, - - - , b,
each representing one bit of the binary encoding of the vafube fluent. Then, the
various rules will have the form:

neg(fb;i) A neg(fb;i) AR S NFE NSNS it
neg(g,.) Aneg(g,.) A fol Afp Al ANt A Tyt =
neg(fos) A fos A fou A foz A foy A for AN€Q(fr,)

This is the the rule for the suBl + 31 = 62. In general, for domains with elements,
we will need for each fluerit= [log, k| Boolean fluents, and the number of constraints
become®)(2°2%) = O(k?), which leads to the same overall complexity of encoding.

6.1 Domains used

We briefly describe here the domains used for testing the ppooaches to handle
planning domains.

2 A slightly adapted version of the solver, tailored to be exed by B-Prolog, is available too.
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Fig. 2. Reverse folding problem. Four foldings wika=9: The initial (straight line) folding, the
result of a clockwise pivot move on the 4th element, a zigeédjrig, and a spiral folding.

From the 2009 Answer Set Competition, We encodedPtiteSolitaire the classical
Sam Lloyd’s 15 puzzlend theTowers of Hanoproblems, drawn from the Asparagus
repository? We also include thélydraulic planningproblem by Michael Gelfond, Ri-
cardo Morales, and Yuanlin Zhang. This is a simplified vergibthe hydraulic system
on a space shuttle, that is modeled with a directed graphrentiedes are labeled as
tanks, jets, or junctions, and every link between two nodéalieled by a valve. Tanks
can be full or empty. Valves can be opened or closed. A nodeisfpBessurizedf it

is a full tank or if there exists a path from some full tank testhode such that all the

valves on the edges of this path are open. The problem is t@fsitbrtest sequential

plan to pressurize a given node.

Instead of looking for a solution exploiting graph algonith (as done, e.g., by the

Potassco group in the ASP competition), we modeled the enolds a domain ex-

pressed in3 and left the search to the solvers. We also developed a rallied nu-

merical extension of this problem that points out the besefitnulti-valued modeling
language.

We also encoded the following additional problems:

e Thetrucksdomain from the IPC5 planning competition;

e A generalized version of the classical barrels problempgeralization uses the
parameterk/k + 1/k — 1, for k € N: there are three barrels of capaciy/k +
1/k — 1. At the beginning, the largest barrel is full of wine whiletather two are
empty. We wish to reach a state in which the two larger baoefgain the same
amount of wine and the third is empty. The only permissibtéads to pour wine
from one barrel to another, until the latter is full or therfaar is empty.

e The Gas Diffusion problemoriginally proposed in [10]. A building contains a
number of rooms. Each room is connected to (some) other ratemgates. Ini-
tially, all gates are closed and some of the rooms contaireatify of gas—while
the other rooms are empty. Each gate can be opened or clageer{x, y) and
cl ose(x, y) are the only possible actions, provided that there is a getteden
roomx and roony. When a gate between two rooms is open, the gas contained in
these rooms flows through the gate. The gas diffusion coedimuntil the pressure

% asparagus. ¢s. uni - pot sdam de/ cont est
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Fig. 3. Tangram solution, “base” position of the seven blocks, gpats discretization using
triangles.

reaches an equilibrium. The only condition to be alwayssfat is that a gate in
a room can be opened only if all the other gates are closedgdales to move a
desired quantity of gas to one specified room.

o A simplified version of theeverse folding problenGiven a string (e.g., represent-
ing a protein) composed df consecutive elements, we wish to place it on a 2D
plane (e.g., a 2D grid). The only admissible angleslafgtraight line),—90° (left
turn) and+90° (right turn). Different elements must occupy differentiioss. We
refer to each placement of the string aflling. A pivot moveis obtained by se-
lecting an element e {2,...,k — 1} and turning clockwise or counter-clockwise
the part of the string related to the elemeintst, ... k.

The simplified reverse folding problem we propose is theofeihg: given two
foldings in a plane, such that points 1 and 2 are set in thetiposi(k, k) and
(k,k + 1) of the grid, we wish to find the sequence of pivot moves thaisfi@ams
the first folding into the second. In our tests, we set theaihiblding as a straight
line, while the final foldings is set either as a sort of staigtag) or as a spiral (see
Figure 2).

e The Tangrampuzzle: there are seven blocks of different forms (see Ei@)rand
a form to be reconstructed (we just focus on the big squate.challenge for its
representation is that the sizes of the blocks are relatetidoyrrational number
/2 and therefore cannot be easily discretized. We encoded3tiased on a dis-
cretization of the space in small triangles. Each move pbteck in a certain point
and with a certain rotation—we allow 8 anglés; 180°, +£45°, +135°, £90°. Our
implementation is inherently Boolean and does not beneiih fmulti-valued rep-
resentations.

6.2 Experimental results

We experimented with several instances for each of the dsscribed earlier. The
B encodings have been translated into ASP, as describediio®8¢and solved using
gringo 2. 0.5 andcl asp 1. 3. 3. The CLP-based planners fsrand 3M"V (named
B-SICSplan and3™Y-SICSplan, resp.) have been executed in SICStus Prologwers
4.1.1. All planners have been executed on an AMD Opteroni22iGnux machine.

An excerpt of the experimental results is reported in theeXpix. Tables 1-3 show
the results for theB-solvers while those regardirig *-SICSplan are reported in Ta-
ble 4. For the ASP solver, we separately report the time reddor grounding the ASP

13
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Fig. 4. Qualitative comparison of the ASP- and CLP-based solvar®BfoEach bar shows the
percentage of instances solved BYSICSplan, clasp, both solvers, or left unsolved within the
fixed time limits. When part of the instances are solved by lsolvers, the thickness of the bars
reflects their relative efficiency (i.e., the larger, theidas

program and the time for solving the instances. Similady,the CLP-based solvers,
we separately report the time spent in imposing the comgtaaid the time to perform

the search for solution (using labeling). The symbol “M” d&s that the solver ran out
of memory (a bound of 2GB was imposed for each instance); €fades that the prob-
lem could not be solved within a fixed period of time (a time bdwf 60 minutes was

imposed for the instances of the Towers of Hanoi domain, thentd was 30 minutes
for all other domains).

The experiments confirmed that action languages sudh, ase suitable for ex-
pressing highly declarative specifications of planning dors. Moreover, the experi-
ments indicate that this approach represents a viablenatiee to solve even complex
planning problems with reasonable efficiency. This has eade possible by recent
improvements in the available implementations of non-ntomic and constraint logic
programming. We believe that solvers f8rare reaching a sufficiently mature stage of
development to become, in the near future, competitive atitihe-of-the-art planners
that exploit various kinds of problem-dependent heussticreasoning. However, as
reported in [8], our approach already outperforms (in teainsfficiency) other logic
programming approaches to reasoning with action and clsdikgeGOLOG [18] and
Flux [26] when they are used for planning.

The CLP-based implementationsi®fre competitive with the state-of-the-art ASP-
solver clasp. Nevertheless, clasp remains a better chdierever the length of the plan
is large. We believe that further improvements in the styiateadopted in the labeling
phase have to be designed in order to amend such weaknBsSIGiSplan.

Figure 4 visualizes a qualitative comparison of the resolitined by the two
solvers for3. Each bar shows the percentage of instances solvéd®W_Splan, clasp,
both solvers, or left unsolved within the fixed time limitsh@h part of the instances
have been solved by both solvers, the thickness of the biestetheir relative effi-
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Fig. 5. Qualitative comparison betwedt/\-SICSplan and the best among the solversdor

ciency. E.g., for the Barrels domain, clasp @wbICSplan solved the same instances
but the latter showed better performance. On the other Handhe Trucks domain
clasp was faster and solved more instances.

The results obtained b '-SICSplan (Table 4) confirm that the introduction of
multi-valued fluents and constraints as first-class objefise action language, allows
us to develop more compact encodings—requiring a smalieteu of fluents and ac-
tions. This translates in a faster constraint-solving plaasl, consequently, in the ability
of BMV.SICSplan to solve more instances that the solvergfdrhis is particularly ev-
ident for those domains where numerical fluents can be ritim&roduced (c.f. also
the summary of the analysis reported in Figure 5).

7 Current Directions and Conclusion

In this paper, we summarized the current results from anrerpetal study aimed to
compare ASP and CLP(FD) in the encoding of action descrigéinguages. In particu-
lar, we emphasized some of the new features of the proposedieg, such as the use
of thet abl e constraint to speed-up computation of state transitiond,the impact
of the new answer set solvers (e.g., clasp) on the perforenah&SP-based planners.
The investigation relied on a new set of benchmarks, draam filifferent sources and
encoded using both Boolean and multi-valued action detsznifanguages.

The current directions of our investigation are pushingaias the development of
new action description languages that can better meet #dsraf real-world planning
domains, while taking full advantage of the features of thdarlying logic program-
ming inference engines (e.g., the features offered by nmoctamstraint logic program-
ming systems). Some of the current directions being purateedescribed next.

e Multi-agency:we are investigating extensions Bfand BV to support the de-
scription of multi-agent domains, where agents can inténedifferent ways (e.g.,
cooperatively, competitively). Several features haventsdeeady investigated, in-
cluding the creation of a core modeling framework and itoeivg in CLP(FD) [7,
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8], the modeling of cooperative features likegotiation[24], and the use of rea-
soning about agents’ knowledge and beliefs [13]. While tlagomity of the current
approaches rely on@entralizedperspective in the description of multi-agent sys-
tems, we have also launched an investigation of how logignamming (specif-
ically CLP(FD) with blackboard-style mechanisms) can bedu® provide a dis-
tributed implementation of a multi-agent action domairglaage [9].

e Heuristics:logic programming’s ability to implement search stratedias not been
properly employed to enhance efficiency of logic-basedmtegn CLP(FD)’s abil-
ity of dealing with search structures and with graphs is etgmbto provide very
effective ways of implementing both well-known search l&igs used by the plan-
ning community (e.g., graph plan [2]) as well as new hewssthade possible by
the declarative specification of planning domains providlethe action languages.
The interaction between planning heuristics and searalesfies explored by the
constraint programming community is also an open area afsityation that we
intend to explore.
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A Appendix: Experimental Results

Instance num.off num.of| plan | gringo+clasp| B-SICSplan
fluents| actions| length

barrels-5-7-12 27 6 11 0.20+0.81 | 0.03+0.60+0.69
barrels-7-9-16 35 6 15 0.40+8.47 | 0.05+1.75+2.98
barrels-9-11-20 | 43 6 19 | 0.71+67.54| 0.06+3.03+8.58
barrels-11-13-24 51 6 23 | 1.17+183.32| 0.55+0.55+21.05
barrels-15-17-32 67 6 31 |2.51+1871.430.17+14.25+79.1
barrels-31-33-64 131 6 63 T M
barrels-63-65-128 259 6 127 T M
hanoi.16-50-6 42 33 34 T T
hanoi.16-54-6 42 33 38 T T
hanoi.16-56-6 42 33 40 T T
hanoi.20-50-7 52 42 30 T T
hanoi.20-55-7 52 42 35 T T
hanoi.21-53-6 42 33 32 T T
hanoi.27-7 52 42 27 T 0.67+3023.23
hanoi.30-7 52 42 30 T 0.68+522.35
hanoi.31-6 42 33 31 T 0.56+3062.04
hanoi.32-6 42 33 32 T 1.32+3224.68
hanoi.32-63-6 42 33 31 T 0.59+3421.79
hanoi.32-7 52 42 32 T T
hanoi.33-6 42 33 33 T T
hanoi.34-6 42 33 34 T T
hanoi.35-6 42 33 35 T T
hanoi.36-6 42 33 36 T T
hanoi.36-7 52 42 36 T T
hanoi.37-6 42 33 37 T T
hanoi.37-7 52 42 37 T T
hanoi.38-6 42 33 38 T T

Table 1. An excerpt of the experimental results for tBencodings (timing in seconds).
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Instance num.of| num.of| plan | gringo+clasp| B-SICSplan
fluents| actions| length

hyd.cg21 24 13 3 0.01+0.01 0.01+0.01
hyd.cg22 24 13 2 0.01+0.01 0.01+0.01
hyd.cg23 24 13 2 0.01+0.01 0.01+0.01
hyd.cg31 36 20 3 0.01+0.01 0.01+0.01
hyd.cg32 36 20 3 0.01+0.01 0.01+0.01
hyd.cg33 36 20 3 0.01+0.01 0.01+0.01
hyd.cg61 104 64 16 0.07+0.07 0.34+0.06
hyd.cg62 104 64 16 0.07+0.07 0.34+0.06
hyd.cg63 104 64 16 0.07+0.07 0.31+0.06
rev-fold-s-4-2 | 65 4 2 0.64+0.01 0.36+0.03
rev-fold-s-9-4 | 325 14 4 | 82.70+11.63 M
rev-fold-z-4-2 | 65 4 2 0.65+0.01 0.38+0.32
rev-fold-z-5-3 | 101 6 3 2.62+0.01 2.47+0.36
rev-fold-z-6-4 | 145 8 4 8.15+0.06 11.17+2.88
rev-fold-z-8-6 | 257 12 6 | 49.00+19.88 M
rev-fold-z-16-6 1025 28 6 T M
15-puzzle-1 256 16 35 0.70+3.25 T
15-puzzle-2 256 16 35 0.69+0.49 T
15-puzzle-3 256 16 35 0.70+4.64 T
15-puzzle-4 256 16 35 0.70+8.26 T
15-puzzle-5 256 16 35 0.96+2.37 T
15-puzzle-6 256 16 36 0.72+5.63 T
15-puzzle-7 256 16 36 0.70+7.54 T
15-puzzle-8 256 16 36 0.70+1.18 T
15-puzzle-9 256 16 36 | 0.70+10.24 T
15-puzzle-10 | 256 16 40 0.78+8.08 T
15-puzzle-11 | 256 16 40 0.79+3.22 T
15-puzzle-12 | 256 16 40 0.80+0.99 T
15-puzzle-13 | 256 16 40 0.80+3.67 T
15-puzzle-14 | 256 16 40 0.76+0.96 T
15-puzzle-15 | 256 16 40 0.77+4.95 T
tangram-1 135 578 7 1.10+0.07 20.49+0.52
tangram-2 135 661 7 1.38+0.26 24.31+339.42
tangram-3 135 744 7 1.56+1.55 29.08+273.72
trucks-p01 99 324 13 0.31+0.51 | 0.03+1.26+9.06
trucks-p02 128 | 420 17 | 0.49+14.82|0.03+2.37+635.6
trucks-p03 205 939 20 |1.24+1066.84 T
trucks-p04 243 | 1116 | 23 T T
trucks-p05 347 | 2067 | 25 T T

19

Table 2. An excerpt of the experimental results for tBencodings (timing in seconds).




D

Instance num.of| num.of| plan | gringo+clasp B-SICSplan
fluents| actions| length
peg-asy-24 33 76 24 0.11+0.12 | 1.02+0.02
peg-asy-25 33 76 25 0.12+2.33 | 1.02+0.02
peg-asy-26 33 76 26 0.13+0.13 | 0.94+0.02
peg-asy-27 33 76 27 0.13+1.87 | 0.95+0.03
peg-asy-28 33 76 28 | 0.13+64.91| 0.92+0.03
peg-asy-29 33 76 29 T 0.81+3.37
peg-asy-30 33 76 30 T 0.83+4.64
peg-asy-31 33 76 31 T T
peg-asy-32 33 76 32 T T
peg-center-24 33 76 24 0.11+0.02 | 0.96+0.02
peg-center-26 33 76 25 0.11+0.03 | 0.97+0.02
peg-center-26 33 76 26 0.12+3.57 | 0.98+0.02
peg-center-27 33 76 27 0.13+3.62 | 0.99+0.02
peg-center-28 33 76 28 |0.14+288.39 0.91+0.13
peg-center-29 33 76 29 | 0.14+81.79| 0.85+1.83
peg-center-30 33 76 30 T T
peg-center-3L 33 76 31 T 0.79+23.82
peg-center-32 33 76 32 T T
peg-edge-24| 33 76 24 0.11+0.11 | 1.02+0.02
peg-edge-25 33 76 25 0.12+0.12 | 1.01+0.03
peg-edge-26| 33 76 26 0.13+0.21 | 1.09+0.03
peg-edge-27| 33 76 27 0.13+7,93 | 0.95+0.03
peg-edge-28 33 76 28 |0.13+181.88 0.98+0.95
peg-edge-29| 33 76 29 | 0.14+20.88(0.86+108.81
peg-edge-30, 33 76 30 T T
peg-edge-31 33 76 31 T 0.76+382.82
peg-edge-32| 33 76 32 T T
gas-ila 3433 | 24 9 M T
gas-ilb 3433 | 24 9 M T
gas-ilc 3433 | 24 9 M T
gas-i2a 3433 | 24 13 M T
gas-i2b 3433 | 24 13 M T
gas-i2c 3433 | 24 13 M T
gas-i3a 3433 | 24 15 M T
gas-i3b 3433 | 24 15 M T
gas-i3c 3433 | 24 15 M T
gas-ida 3433 | 24 9 M T
gas-idb 3433 | 24 9 M T
gas-i4c 3433 | 24 9 M T
gas-i5e 1123 | 24 11 |(45.18+257.38 T
gas-i5f 1123 | 24 11 T M
gas-i5g 1123 | 24 11 M T
gas-i5h 1123 | 24 11 M T
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Instance num.of| num.of| plan | B*Y-SICSplar|
fluents| actions| length

rev-fold-s-4-2 9 4 2 0.07+0.01
rev-fold-s-9-4 19 14 4 3.11+0.02
rev-fold-z-4-2 9 4 2 0.06+0.01
rev-fold-z-5-3 11 6 3 0.22+0.01
rev-fold-z-6-4 13 8 4 0.55+0.04
rev-fold-z-8-6 17 12 6 2.33+12.67
rev-fold-z-16-6 33 28 6 48.37+24.94
barrels-5-7-12 3 6 11 0.05+0.05
barrels-7-9-16 3 6 15 0.06+0.10
barrels-9-11-20 3 6 19 0.08+0.18
barrels-11-13-24f 3 6 23 0.12+0.27
barrels-15-17-32 3 6 31 0.14+0.59
barrels-31-33-64 3 6 63 0.45+3.19
barrels-63-65-128 3 6 127 | 0.69+18.99
gas-ila 23 24 9 0.14+166.21
gas-ilb 23 24 9 0.13+127.99
gas-ilc 23 24 9 0.13+273.04
gas-i2a 23 24 13 T
gas-i2b 23 24 13 | 0.16+679.95
gas-i2c 23 24 13 | 0.17+1654.44
gas-i3a 23 24 15 T
gas-i3b 23 24 15 0.25+0.94
gas-i3c 23 24 15 0.24+1.47
gas-ida 23 24 9 0.15+163.43
gas-idb 23 24 9 0.15+128.08
gas-idc 23 24 9 0.14+270.96
gas-i5e 23 24 11 | 0.15+282.44
gas-i5f 23 24 11 0.15+17.92
gas-i5g 23 24 11 | 0.18+282.51
gas-i5h 23 24 11 | 0.14+284.53
MV-hyd-5 21 28 5 0.30+0.01
MV-hyd-9 20 40 9 0.97+2.89
MV-hyd-12 21 41 12 | 1.46+102.02
MV-hyd-14 30 45 14 2.91+7.24

Table 4. An excerpt of the experimental results for t8& -encodings (timing in seconds).
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