
Perspectives on Logic-based Approaches for Reasoning
About Actions and Change

Agostino Dovier1, Andrea Formisano2, and Enrico Pontelli3

1 Univ. di Udine, Dip. di Matematica e Informatica.agostino.dovier@uniud.it
2 Univ. di Perugia, Dip. di Matematica e Informatica.formis@dmi.unipg.it

3 New Mexico State University, Dept. Computer Science.epontell@cs.nmsu.edu

Abstract. Action languages have gained popularity as a means for declaratively
describing planning domains. This paper overviews two action languages, the
Boolean languageB and its multi-valued counterpartBMV . The paper analyzes
some of the issues in using two alternative logic programming approaches (An-
swer Set Programming and Constraint Logic Programming overFinite Domains)
for planning withB andBMV specifications. In particular, the paper provides an
experimental comparison between these alternative implementation approaches.

1 Introduction

As illustrated by Lifschitz [19], research on planning requires the resolution of two
key problems: development of languages for the descriptionof planning problems—
using declarative and elaboration tolerant notations—anddesign of efficient and scal-
able planning algorithms.

Action languages [15] have gained popularity over the yearsas viable declarative
notations for the description of planning domains. Since the original proposal of the
languagesA, B, andC by Gelfond and Lifschitz [15], a variety of new action lan-
guages have appeared in the literature, with declarative features aimed at capturing
important features of real-world planning domains, such aspreferences [27], time and
duration s[1], numerical reasoning [17], and beliefs [13].

In recent years, we have witnessed an increased interest in exploring ways of bridg-
ing the gap between the declarative problem encodings offered by action language and
the development of effective implementations. In particular, an interesting line of work
has been developed to study the relationships between action languages andlogic pro-
gramming.The link between these two paradigms is quite natural, considering the log-
ical foundations underlying the semantics of most action languages. Furthermore, this
direction of research is fueled by some very attractive properties of logic programming,
such as:
◦ Research in logic programming has significantly enhanced the performance of mod-

ern logic programming inference engines; for example, answer set solvers are cur-
rently competitive with state-of-the-art SAT solvers (e.g., clasp in the 2009 SAT
Competition—http://www.satcompetition.org.).

◦ Logic programming implementations of action languages maintain the declarative
nature of the original encoding, enabling, for example, to maintain a good level of
elaboration tolerance in the executable encoding.

◦ The declarative nature of logic programming makes it feasible to envision the use
of user-defined search strategies, expressed as logic programming theories. Further-
more, it facilitates the orthogonal introduction of domainknowledge, that can be
used to guide the search for solutions during planning.

The advent ofAnswer Set Programming (ASP)[20, 22] has significantly impacted
the area of logic programming encoding of action languages—the support for non-
monotonic reasoning provided by ASP nicely matches the needs of action languages
(e.g., facilitating the resolution of the frame problem [21]).

Over the last few years, we have embarked on a comparative investigation of the fea-
tures of two of the most popular logic programming paradigms—answer set program-
mingandconstraint logic programming over finite domains (CLP(FD))[16]. Some pre-
liminary results have been presented in [3, 4, 6]. Recently,this line of work has focused
to the investigation of the respective strengths and weaknesses of ASP and CLP(FD) in
dealing with planning problems and action languages. We have investigated the relative
performances of the two paradigms on different classes of planning problems and on
different types of action languages [5, 10, 7, 8].

In this paper, we continue this line of work with several contributions:
◦ We explore some modifications of the encodings in both ASP (Section 3) and

CLP(FD) (Section 4), leading to significant improvements inperformance;
◦ We make use of the state-of-the-art systems in ASP and CLP(FD)—in particular,

ASP technology has made significant improvements since our previously published
results (e.g., [10]);

◦ We expand the pool of benchmarks, including more challenging problems like the
reverse folding problem and the tangram (Section 6);

◦ We emphasize the role of multi-valued fluents in gaining efficiency in planning and
compactness of domain descriptions (Section 5).

2 The Action LanguageB

In this section, we revisit the syntax and semantics of the action description language
B. The syntax and semantics presented in the following sections is a slight modification
of the original definitions from the seminal paper of Gelfondand Lifschitz [15].

2.1 Syntax ofB

An action signature consists of a setF of fluent names, a setA of action names,
and a setV of values for fluents inF . In this section, we consider Boolean fluents,
henceV = {0, 1} (or {false, true}). A fluent literal is either a fluentf or its negation
neg(f). Fluents and actions are concretely represented byground atomic formulae
p(t1, . . . , tm) from an underlying logic languageL—wherep is a predicate symbol and
t1, . . . , tm are ground terms. We assume that the set of allowed terms forL is finite.

The languageB allows us to specify an(action) domain descriptionD. The core
components of a domain description are itsfluents—properties used to describe the state
of the world, that may dynamically change in response to execution of actions—and
actions—denoting how an agent can affect the state of the world. Fluents and actions

2

are introduced by assertions of the formsfluent(f) andaction(a). An action
descriptionD relates actions and fluents using axioms of the following types —where
[list-of-conditions] denotes a list of fluent literals:

– causes(a, ℓ, [list-of-conditions]): this axiom encodes adynamic
causal law, describing the effect (i.e., truth assignment to the fluentliteral ℓ) of the
execution of the actiona in a state of the world that satisfies all the conditions in
[list-of-conditions];

– caused([list-of-conditions], ℓ): this axiom describes astatic causal
law—i.e., the fact that the fluent literalℓ is true in any state satisfying all the given
preconditions.

Moreover, preconditions can be imposed on the executability of actions by means of
assertion of the forms:

– executable(a, [list-of-conditions]): this axiom asserts that, for the
actiona to be executable, all the given conditions have to be satisfied in the current
state of the world.

A domain descriptionis a set of static causal laws, dynamic laws, and executability
conditions. A specificplanning problem〈D,O〉 contains a domain descriptionD along
with a setO of observationsdescribing theinitial stateand thedesired goal, specified
using the following types of statements:

– initially(ℓ) asserts that the fluent literalℓ is true in the initial state of the
world;

– goal(ℓ) asserts that the goal requires the fluent literalℓ to be true in the final state
of the world.

In the concrete specification of an action theory, we will allow a Prolog-like syntax to
express in a more succinct manner the laws of the theory. For instance, to assert that in
the initial state of the world all fluents are true, we can simply write the following rule:

initially(F) :- fluent(F).

instead of writing a factinitially(f) for each possible fluentf .

2.2 Semantics ofB

We will rely on sets of fluent literals to describe a state of the world. If ℓ is a fluent
literal, andS is a set of fluent literals, we say thatS |= ℓ if and only if ℓ ∈ S. A list
of literalsL = [ℓ1, . . . , ℓm] denotes a conjunction of literals, henceS |= L if and only
if S |= ℓi for all i ∈ {1, . . . ,m}. We denote with¬S the set{f ∈ F : neg(f) ∈
S} ∪ {neg(f) : f ∈ S ∩ F}. We are interested in considering only sets of literals that
satisfy certain properties:

– A set of fluent literals isconsistentif there is no fluentf s.t. S |= f andS |=
neg(f).

– If S ∪ ¬S ⊇ F thenS is complete.

3

– A setS of literals isclosedw.r.t. a set of static laws

SL = {caused(L1, ℓ1), . . . ,caused(Lm, ℓm)}

if, for all i ∈ {1, . . . ,m}, it holds thatS |= Li impliesS |= ℓi.

The setCloSL(S) is defined as the smallest set of literals containingS and closed w.r.t.
SL. CloSL(S) is uniquely determined and not necessarily consistent. Whenever we are
working with a domain descriptionD, we will also denote withCloD(S) the result of
CloSL(S) whereSL is the set of all static causal laws inD.

LetD be an action description defined on the action signature〈V ,F ,A〉, composed
of dynamic lawsDL, executability conditionsEL, and static causal lawsSL. The se-
mantics ofD is given in terms of a transition system〈S, ν, R〉, consisting of a setS of
states, a total interpretation functionν : S → F → V (in this sectionV = {0, 1}), and
a transition relationR ⊆ S ×A× S.

Given a transition system〈S, ν, R〉 and a states ∈ S, let:

Lit(s) = {f ∈ F : ν(s)(f) = 1} ∪ {neg(f) : f ∈ F , ν(s)(f) = 0}.

Observe thatLit(s) is consistent and complete.
Given the set of all the dynamic causal laws

{causes(a, ℓ1, L1), . . ., causes(a, ℓm, Lm)}
for the actiona ∈ A present inD and a states ∈ S, we define the(direct) effects ofa
in s as follows:

ED(a, s) = {ℓi : 1 6 i 6 m,Lit(s) |= Li}.
The actiona is said to beexecutablein a states w.r.t.D if it holds that

Lit(s) |=
h
∨

i=1

Ci, (1)

whereexecutable(a, C1), . . ., executable(a, Ch) for h > 0, are the executabil-
ity axioms for the actiona in D. Observe that multiple executability axioms for the same
actiona are considered disjunctively. Hence, for each actiona, at least one executable
axiom must be present in the action description.

The transition system〈S, ν, R〉 described byD is such that:

– S is the set of all statess such thatLit(s) is closed w.r.t.SL;
– R is the set of all triples〈s, a, s′〉 such thata is executable ins and

Lit(s′) = CloD(ED(a, s) ∪ (Lit(s) ∩ Lit(s′))) (2)

Let 〈D,O〉 be a planning problem instance, where{ℓ | initially(ℓ) ∈ O} is a
consistent and complete set of fluent literals. Atrajectory in 〈S, ν, R〉 is a sequence

〈s0, a1, s1, a2, · · · , aN, sN〉

such that〈si, ai+1, si+1〉 ∈ R for all i ∈ {0, . . . ,N− 1}.
A sequence of actions〈a1, . . . , aN〉 is a solution (aplan) to the planning problem

〈D,O〉 if there is a trajectory〈s0, a1, s1, . . . , aN, sN〉 in 〈S, ν, R〉 such that:

4

– Lit(s0) |= r for eachinitially(r) ∈ O, and
– Lit(sN) |= ℓ for eachgoal(ℓ) ∈ O.

The plans characterized in this definition aresequential—i.e., we disallow concurrent
actions. Observe also that the desired plan lengthN is assumed to be given.

3 Answer Set Planning

The idea of using logic programming to address planning problems dates back to the
origins of logic programming [28]. The idea of using extended logic programming and
answer set programming can be traced back to the seminal works of Gelfond and Lifs-
chitz [14] and Subrahmanian and Zaniolo [25]. The various encodings proposed in the
literature tend to share similar ideas—fluents are represented by atoms of a logic pro-
gram, with an additional parameter used to represent the state si of a trajectory they
refer to.

3.1 The General Encoding

Let us describe how a domainD and a problem instance〈D,O〉 can be mapped to
a logic programΠD(N,O); the intuition is that the mapping should guarantee that
there is a one-to-one correspondence between plans of lengthN for 〈D,O〉 and answer
sets ofΠD(N,O). In the rest of this section, we illustrate the constructionof ΠD as
performed by a Prolog translator developed by the authors—and available atwww.
dimi.uniud.it/CLPASP. The structure of the translation follow the general lines
delineated in [19, 23].

The initial components ofΠD(N,O) are facts used to identify actions and fluents
of the domain; for eachf ∈ F and for eacha ∈ A we assume that the facts

fluent(f). action(a).

are present inΠD(N,O).
The encoding of the content ofO is also immediate: for eachinitially(ℓ) and

for eachgoal(ℓ′) in O we assume the presence of analogous facts inΠD(N,O) —i.e.,
O ⊆ ΠD(N,O).

Auxiliary rules are introduced in order to provide the definition of some of the
concepts used in the definition of the semantics of domain specifications; in particular,
we introduce inΠD(N,O) rules aimed at defining the notions of literal and complement
of a literal, as follows:

literal(F) :- fluent(F). literal(neg(F)) :- fluent(F).
complement(F,neg(F)). complement(neg(F), F).

The parameterN is used to denote the length of the desired trajectory; we introduce
the factstime(0..N) to identify the range of time points in the desired trajectory.

The statessi of a trajectory (fori = 0, . . . ,N) are described by the predicate
holds; intuitively, ν(si)(f) = 0 iff holds(neg(f), i) is true andν(si)(f) = 1
iff holds(f, i) is true.

The various axioms lead to the following rules:

5

– The executability conditions for an actiona provide the definition of a predicate
possible. Let us assume thatexecutable(a, L1), . . . , executable(a, Lh)
are all the executability axioms fora in D, and let us assume that forj ∈ {1, . . . , h}:
Lj = [ℓj1, . . . , ℓ

j
rj
]. Then the following rules are provided inΠD(N,O):

possible(a, T) :- time(T),holds(ℓ11, T), . . . ,holds(ℓ
1
r1
, T).

· · ·
possible(a, T) :- time(T),holds(ℓh1 , T), . . . ,holds(ℓ

h
rh
, T).

– Each static causal lawcaused([ℓ1, . . . , ℓr], ℓ) leads to the introduction of a rule
of the form

holds(ℓ, T):-time(T),holds(ℓ1, T), . . . ,holds(ℓr, T).

– Each dynamic causal lawcauses(a, ℓ, [ℓ1, . . . , ℓr]) in D introduces the following
rule

holds(ℓ, T + 1):-time(T),occ(a, T),holds(ℓ1, T), . . . ,holds(ℓr, T).

– The constraint that ensures consistency of each state constructed is

:-time(T),fluent(F),holds(F, T),holds(neg(F), T).

– The rule that provides the solution to the frame problem is

holds(L, T + 1) :- time(T),literal(L),holds(L, T),
complement(L,L1), not holds(L1, T + 1).

The following additional rules are needed to model the instanceO:

– In order to model the initial state, we need the additional rule to generate the de-
scription of the state at time0:

holds(L, 0):-initially(L).

– In order to model the satisfaction of the goal, we introduce the constraint

:-goal(L), notholds(L,N).

The following final rule is used to support the generation of aplan:

– The rules that generate the sequence of actions constituting the plan are:

1{occ(A, T) : action(A)}1:-time(T), T < N.
:-action(A),time(T),occ(A, T), notpossible(A, T).

Proposition 1. Let us consider a planning problem instance〈D,O〉 and the program
ΠD(N,O) constructed as discussed earlier.〈a1, . . . , aN〉 is a plan for〈D,O〉 iff there
is an answer setM ofΠD(N,O) such that{occ(a1, 0), . . . ,occ(aN,N− 1)} ⊆ M .

6

3.2 An Optimized Encoding

If the action theory does not contain any static causal laws,then it becomes possible to
simplify the translation to ASP. In particular, it becomes possible to avoid the creation of
separate atoms for representing negative literals. At the semantic level, we can observe
that, in absence of static causal laws, the formula (2) becomes

Lit(s′) = (Lit(s) \ ¬(ED(a, s))) ∪ ED(a, s)

Practically, this simplification leads to the following changes to the ASP encoding:

– In the encoding of the executability conditions, for each axiom

executable(a, [p1, . . . , pr,neg(q1), . . . ,neg(qs)]).

we can generate the rule

possible(a, T):- time(T),holds(p1, T), . . . ,holds(pr, T),
notholds(q1, T), . . . , notholds(qs, T).

– The encoding of the dynamic causal laws of the formcauses(a, f, L), for a fluent
f , is as before, while each law of the form

causes(a,neg(r), [p1, . . . , pr, not q1, . . . , not qs])
in D introduces the following rules

:- holds(r, T + 1),time(T),occ(a, T),
holds(p1, T), . . . ,holds(pr, T),
notholds(q1, T), . . . , notholds(qs, T).

non inertial(r, T + 1):-time(T),occ(A, T).

– Finally, the frame problem has a slightly different encoding: we exploit the above
rules, definingnon inertial, together with the rule:

hold(F, T + 1):- time(T),fluent(F),hold(F),
notnon inertial(F, T + 1).

The main advantage of this encoding is to reduce the number ofatoms and the size of
the ground version of the ASP encoding. However, considering our experiments, this
smaller grounding does not always guarantee better performance in the solving phase.

4 Planning Using CLP

In this section, we illustrate the main aspects of the encoding of the languageB into
constraint logic programming for the purpose of planning. Specifically, the target of
the encoding is a constraint logic program over finite domains (CLP(FD)). The model
presented here is an evolution of the pioneering work described in [10], with several
modifications aimed at enhancing performance.

As for the ASP encoding, we are interested in computing planswith N action
occurrences, relating a sequence ofN + 1 statess0, . . . , sN. For each statesi and

7

for each fluentf , we introduce a Boolean variableF i to describe the truth value of
f in si. The value of the literalneg(F i) is simply 1 − F i. A list of literals α =
[p1, . . . , pk,neg(q1), . . . ,neg(qh)] interpreted as a conjunction of literals in a statei
is described by a variablêαi defined by the constraint:

α̂i ≡





k
∧

j=1

P i
j = 1 ∧

h
∧

j=1

Qi
j = 0





We will also introduce, for each actiona, a Boolean variableAi, representing
whether the action is executed or not in the transition fromsi−1 to si.

Let us consider a state transition betweensi to si+1; we develop constraints that
relate the variablesF i+1, F i, andAi+1 for each fluentf and for each actionA. This is
repeated fori = 0, . . . ,N− 1. Moreover, constraints regarding initial state and goal are
added.

Let us consider a fluentf , and let

causes(at1 , f, α1) · · · causes(atm , f, αm)
causes(az1 ,neg(f), β1) · · · causes(azp ,neg(f), βp)

caused(δ1, f) · · · caused(δh, f)
caused(γ1,neg(f)) · · · caused(γk,neg(f))

be all of the dynamic and static laws that havef or neg(f) as their consequences. For
each actionaj let us assume that its executability conditions are the following:

executable(aj , ηr1) · · · executable(aj , ηrq)

Figure 1 describes the Boolean constraints that can be used in encoding the relations
that determine the truth value of the fluent literalF i+1. A fluentf is true in statei + 1
(see rule (3)) if a dynamic rule or a static rule explicitly forces it to be true (captured by
PosFiredf) or if it was true in statei and no dynamic or static rule forces it to be false
(expressed byNegFiredf). The constraint (4) forbids the execution of static/dynamic
rules with contradictory consequences, thus ensuring the consistency of the states being
created. The constraints (5) and (8) defines the conditions that make a fluent true or
false in the following state, either as effect of an action execution (constraints (6) and
(9)) or as result of static causal laws being triggered (constraints (7) and (10)). Two ad-
ditional constraints on actions are also added. The constraint (11) states that at least one
executability condition must be fulfilled in order for an action to occur. The constraint
(12) states that exactly one action per transition is allowed.

As a technical consideration, differently from older versions of the solver (e.g.
[5, 10]) conjunction and disjunction constraints are implemented using the built-in
CLP(FD) predicateminimum andmaximum, respectively. Moreover, constraints (3)
and (4) regarding four variables, are dealt with the combinatorial constrainttable
(only six 4-tuples are candidate solutions). This allows usto restrict the search to the6
solutions of the two combined constraints, instead of blindly exploring the16 possible
combinations of values at each state transition. Several other minor code optimizations
have been implemented.

8

F
i+1 = 1 ≡ PosFiredi

f ∨ (¬NegFiredi
f ∧ F

i = 1) (3)

¬PosFiredi
f ∨ ¬NegFiredi

f (4)

PosFiredi
f ≡ PosDyni

f ∨ PosStati+1

f (5)

PosDyni
f ≡

∨m

j=1
(α̂i

j ∧ Ai+1
tj

= 1) (6)

PosStati
f ≡

∨h

j=1
δ̂ij (7)

NegFiredi
f ≡ NegDyni

f ∨ NegStati+1

f (8)

NegDyni
f ≡

∨p

j=1
(β̂i

j ∧ Ai+1
zj

= 1) (9)

NegStati
f ≡

∨k

j=1
γ̂i
j (10)

A
i+1

j = 1 →
∨q

j=1
η̂i
rj

(11)
∑

aj∈A
Ai

j = 1 (12)

Fig. 1. Constraints for the fluentf and for all the actionsaj in the transition(si, si+1)

5 From Boolean to Multi-valued

We have investigated several extensions ofB (see, e.g., [10]). In this section, we sum-
marize the extension which allows the use of multi-valued fluents in the description of
a domain and references to values of fluents in past states. Werefer to this extended
version of the language asBMV .

The syntax of the action language is modified to allow the declaration of a domain
for each fluent—the domain indicates the set of values that can be assigned to each
fluent. Thedomain declarationshave the form

fluent(f, {v1, . . . , vk})

For the sake of simplicity, we restrict our attention to domains containing integer num-
bers. If the domain is an interval[a . . . b] of integer numbers, one is allowed to write
simply:fluent(f, a, b).

Fluents can be used inFluent Expressions (FE), which are defined inductively as
follows:

FE ::= n | f t | FE⊕ FE | rei(FC)

wheren ∈ Z, ⊕ ∈ {+,−, ∗, /,mod}, t ∈ N with t ≤ 0, andf ∈ F . The notation
f0 will be often written simply asf , and it refers to the value off in the current
state; the notationf i denotes the value the fluentf had in theith preceding state. The
expressionrei(C) denotes the reification of a the constraintC (i.e.,1 if C is entailed,
0 otherwise).FC areFluent Constraintsand they are defined as follows:

FC ::= FE rel FE | ¬FC | FC ∧ FC | FC ∨ FC

whererel ∈ {=, 6=,≥,≤, >,<}. We will also refer to fluent constraints of the type
FE rel FE asprimitive fluent constraints.

9

The languageBMV allows one to specify an action domain description, which re-
lates actions, states, and fluents using predicates of the following forms (c denotes a
primitive fluent constraint, whileC is a fluent constraint):

◦ Axioms of the formexecutable(a, C), stating that the fluent constraintC has
to be entailed by the current state for the actiona to be executable.

◦ Axioms of the formcauses(a, c, C) encode dynamic causal laws. When the ac-
tion a is executed, if the constraintC is entailed by the current state, then state pro-
duced by the execution of the action is required to entail theprimitive constraintc.

◦ Axioms of the formcaused(C, c) describe static causal laws. If the fluent con-
straintC is satisfied in a state, then the constraintc must also hold in such state.

For example, a dynamic causal law can have the form:

causes(pour(X,Y), contain(Y) = contain(Y)−1 + contain(X)−1,
[Y − contain(Y)0 ≥ contain(X)0]).

The description of the semantics of this modified version of the language is beyond
the scope of this paper; it requires two major changes:(1) a state is now a function that
assigns to each fluent a value drawn from the fluent’s domain;(2) the truth of a fluent
constraint is expressed with respect to a trajectory, in order to enable the resolution
of the time references on the fluents. For example, a trajectory 〈s0, a1, s1, · · · , ak, sk〉
entails the constraintf0 = f−1 + f−2 if the value off in sk is equal to the sum
of the value off in sk−1 and the value off in sk−2. The translation to CLP(FD) is
also a relatively simple extension of what discussed earlier; the main changes are:(1)
the variablesF i are no longer Boolean variables, but they are finite domain variables,
whose domain is derived from the domain declarations in the action language;(2) the
constraints of Figure 1 need to map annotated fluentsf t to corresponding variables
F i+t. The interested reader is referred to [10] for more details.

6 Experiments and Evaluation

We report here the results on experiments performed on a collection of domains used
as benchmarks. Some of these domains (and instances) have been selected from prob-
lems presented in the last ASP competition (dtai.cs.kuleuven.be/events/
ASP-competition/) and in some of the past International Planning Competitions
(e.g.,ipc.informatik.uni-freiburg.de/).

For problems modeled inB we used the following two approaches:
• ASP: We first translated the domain, given the desired plan length, using the trans-

lator described in Section 3. The result of the translation was processed by the
gringo grounder [12] and the answer sets computed using the clasp [11] answer set
solvers.1

• CLPFD: In this case we compile the solverSICSplan presented in Section 4 to-
gether with the domain and ask for the existence of a plan of a given lengthN. In

1 We used the combination of gringo and clasp since it providesthe fastest ASP solver currently
available. Other systems such as lparse+smodels/cmodels can be used as well.

10

this case different search heuristics have been used. It is arelatively simple exer-
cise to use different CLP(FD) systems—e.g., translations to B-Prolog have been
investigated.

All the domains, the instances, the compiler, and the solvers are available atwww.
dimi.uniud.it/CLPASP.2

For the problems modeled in theBMV language, we used theCLP (FD) solver
SICSplanMV. TheBMV domains have been also translated to the correspondingBoolean
versions, where each multi-valued fluentf with domain{a1, . . . , ak} has been replaced
byk propositional fluentsf1, . . . , fk, and the axioms changed accordingly. Let us make
some observations about the drawbacks of this translation to the Boolean case. Let us
consider, for instance, two fluentsf andg, each with the interval1 . . . 100 as domain;
let us also assume that a dynamic causal law has the followingeffect:

f = f−1 + g−1

This is a unique constraint on three variables in theBMV encoding. In its propositional
version, this constraint becomes:

for {X,Y, Z} ⊆ {1, . . . , 100} s.t.Z = X + Y : f−1
X ∧ g−1

Y → fZ

This implies the use of300 fluents and4, 950 ground constraints:

f−1
1 ∧ g−1

1 → f2 f−1
1 ∧ g−1

2 → f3 · · · f−1
1 ∧ g−1

99 → f100
...

f−1
99 ∧ g−1

1 → f100

More in general, if the domain containsk values and the constraint includes3 fluents,
the Boolean encoding will required3k Boolean fluents and the ground version of the
constraint will lead toO(k2) constraints.

An alternative encoding can be realized using a logarithmicencoding of numbers. In
the example above, for each fluent we can introduce7 Boolean fluents, say,fb6 , . . . , fb0 ,
each representing one bit of the binary encoding of the valueof the fluent. Then, the
various rules will have the form:

neg(f−1

b6
) ∧ neg(f−1

b5
) ∧ f−1

b4
∧ f−1

b3
∧ f−1

b2
∧ f−1

b1
∧ f−1

b0
∧

neg(g−1

b6
) ∧ neg(g−1

b5
) ∧ f−1

g4
∧ f−1

g3
∧ f−1

g2
∧ f−1

g1
∧ f−1

g0
→

neg(fb6) ∧ fb5 ∧ fb4 ∧ fb3 ∧ fb2 ∧ fb1 ∧ neg(fb0)

This is the the rule for the sum31+ 31 = 62. In general, for domains withk elements,
we will need for each fluentb = ⌈log2 k⌉Boolean fluents, and the number of constraints
becomesO(2b2b) = O(k2), which leads to the same overall complexity of encoding.

6.1 Domains used

We briefly describe here the domains used for testing the two approaches to handle
planning domains.

2 A slightly adapted version of the solver, tailored to be executed by B-Prolog, is available too.

11

9

9 u

u

u

u

u

u

u

u

u

9

9 u

u

u

u u u u u u

9

9 u

u u

u u

u u

u u

9

9 u

u

u u u

u

uu

u

Fig. 2. Reverse folding problem. Four foldings withk=9: The initial (straight line) folding, the
result of a clockwise pivot move on the 4th element, a zigzag folding, and a spiral folding.

From the 2009 Answer Set Competition, We encoded thePeg Solitaire, the classical
Sam Lloyd’s 15 puzzle, and theTowers of Hanoiproblems, drawn from the Asparagus
repository.3 We also include theHydraulic planningproblem by Michael Gelfond, Ri-
cardo Morales, and Yuanlin Zhang. This is a simplified version of the hydraulic system
on a space shuttle, that is modeled with a directed graph, where nodes are labeled as
tanks, jets, or junctions, and every link between two nodes is labeled by a valve. Tanks
can be full or empty. Valves can be opened or closed. A node of Gis pressurizedif it
is a full tank or if there exists a path from some full tank to this node such that all the
valves on the edges of this path are open. The problem is to finda shortest sequential
plan to pressurize a given node.

Instead of looking for a solution exploiting graph algorithms (as done, e.g., by the
Potassco group in the ASP competition), we modeled the problem as a domain ex-
pressed inB and left the search to the solvers. We also developed a multi-valued nu-
merical extension of this problem that points out the benefits of multi-valued modeling
language.
We also encoded the following additional problems:
• Thetrucksdomain from the IPC5 planning competition;
• A generalized version of the classical barrels problem; thegeneralization uses the

parameters2k/k + 1/k − 1, for k ∈ N: there are three barrels of capacity2k/k +
1/k − 1. At the beginning, the largest barrel is full of wine while the other two are
empty. We wish to reach a state in which the two larger barrelscontain the same
amount of wine and the third is empty. The only permissible action is to pour wine
from one barrel to another, until the latter is full or the former is empty.

• The Gas Diffusion problem, originally proposed in [10]. A building contains a
number of rooms. Each room is connected to (some) other roomsvia gates. Ini-
tially, all gates are closed and some of the rooms contain a quantity of gas—while
the other rooms are empty. Each gate can be opened or closed—open(x,y) and
close(x,y) are the only possible actions, provided that there is a gate between
roomx and roomy. When a gate between two rooms is open, the gas contained in
these rooms flows through the gate. The gas diffusion continues until the pressure

3 asparagus.cs.uni-potsdam.de/contest

12

�
�
�
�

@
@

@
@

@
@

@@

�
�

@
@

@
@

�
�1

2

3

4

5
6

7

0 1 2 3 4
0

1

2

3

4

�
�
�
�

@
@

@
@
1,2

@
@

@
@

3 4,5

0 1 2 3 4
0

1

2

�
�

@
@

�
�

@
@

�
�

7

6

0 1 2
-1

0

1

2

3

�
�
�
�
�

�
��

�
�
�
�
��

�
�
�
�

�
�

�
�
�
�
��

�
�
�
�

�
�

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@@

@
@

@
@

@@

@
@

@
@

@
@

0 1 2 3 4
0

1

2

3

4

0 2
1

3
4 6

5

7
12 14

13

15

16 18
17

19

48 50
49

51
60 62

61

63

Fig. 3. Tangram solution, “base” position of the seven blocks, and space discretization using
triangles.

reaches an equilibrium. The only condition to be always satisfied is that a gate in
a room can be opened only if all the other gates are closed. Thegoal is to move a
desired quantity of gas to one specified room.

• A simplified version of thereverse folding problem. Given a string (e.g., represent-
ing a protein) composed ofk consecutive elements, we wish to place it on a 2D
plane (e.g., a 2D grid). The only admissible angles are0 (straight line),−90◦ (left
turn) and+90◦ (right turn). Different elements must occupy different positions. We
refer to each placement of the string as afolding. A pivot moveis obtained by se-
lecting an elementi ∈ {2, . . . , k − 1} and turning clockwise or counter-clockwise
the part of the string related to the elementsi+ 1, . . . , k.
The simplified reverse folding problem we propose is the following: given two
foldings in a plane, such that points 1 and 2 are set in the positions (k, k) and
(k, k + 1) of the grid, we wish to find the sequence of pivot moves that transforms
the first folding into the second. In our tests, we set the initial folding as a straight
line, while the final foldings is set either as a sort of stair (zigzag) or as a spiral (see
Figure 2).

• TheTangrampuzzle: there are seven blocks of different forms (see Figure 3) and
a form to be reconstructed (we just focus on the big square). The challenge for its
representation is that the sizes of the blocks are related bythe irrational number√
2 and therefore cannot be easily discretized. We encoded it inB based on a dis-

cretization of the space in small triangles. Each move puts ablock in a certain point
and with a certain rotation—we allow 8 angles:0◦, 180◦,±45◦,±135◦,±90◦. Our
implementation is inherently Boolean and does not benefit from multi-valued rep-
resentations.

6.2 Experimental results

We experimented with several instances for each of the domains described earlier. The
B encodings have been translated into ASP, as described in Section 3, and solved using
gringo 2.0.5 andclasp 1.3.3. The CLP-based planners forB andBMV (named
B-SICSplan andBMV-SICSplan, resp.) have been executed in SICStus Prolog version
4.1.1. All planners have been executed on an AMD Opteron 2.2GHz Linux machine.

An excerpt of the experimental results is reported in the Appendix. Tables 1–3 show
the results for theB-solvers while those regardingBMV-SICSplan are reported in Ta-
ble 4. For the ASP solver, we separately report the time required for grounding the ASP

13

Sicsplan ASP both none

pe
rc

e
nt

a
ge

of
in

st
a

nc
e

s

100%

0%

Barrels Hanoi
towers

Hydraulic
planning

15-puzzle Peg
solitaire

Tangram Reverse
folding

Trucks Gas
diffusion

Fig. 4. Qualitative comparison of the ASP- and CLP-based solvers for B. Each bar shows the
percentage of instances solved byB-SICSplan, clasp, both solvers, or left unsolved within the
fixed time limits. When part of the instances are solved by both solvers, the thickness of the bars
reflects their relative efficiency (i.e., the larger, the faster).

program and the time for solving the instances. Similarly, for the CLP-based solvers,
we separately report the time spent in imposing the constraint and the time to perform
the search for solution (using labeling). The symbol “M” denotes that the solver ran out
of memory (a bound of 2GB was imposed for each instance); “T” denotes that the prob-
lem could not be solved within a fixed period of time (a time bound of 60 minutes was
imposed for the instances of the Towers of Hanoi domain, the bound was 30 minutes
for all other domains).

The experiments confirmed that action languages such asB, are suitable for ex-
pressing highly declarative specifications of planning domains. Moreover, the experi-
ments indicate that this approach represents a viable alternative to solve even complex
planning problems with reasonable efficiency. This has beenmade possible by recent
improvements in the available implementations of non-monotonic and constraint logic
programming. We believe that solvers forB are reaching a sufficiently mature stage of
development to become, in the near future, competitive withstate-of-the-art planners
that exploit various kinds of problem-dependent heuristics in reasoning. However, as
reported in [8], our approach already outperforms (in termsof efficiency) other logic
programming approaches to reasoning with action and changes like GOLOG [18] and
Flux [26] when they are used for planning.

The CLP-based implementations ofB are competitive with the state-of-the-art ASP-
solver clasp. Nevertheless, clasp remains a better choice whenever the length of the plan
is large. We believe that further improvements in the strategies adopted in the labeling
phase have to be designed in order to amend such weakness ofB-SICSplan.

Figure 4 visualizes a qualitative comparison of the resultsobtained by the two
solvers forB. Each bar shows the percentage of instances solved byB-SICSplan, clasp,
both solvers, or left unsolved within the fixed time limits. When part of the instances
have been solved by both solvers, the thickness of the bars reflects their relative effi-

14

best-B B
MV both none

pe
rc

e
nt

a
ge

of
in

st
a

nc
e

s

100%

0%

15-puzzle Barrels Reverse
folding

Gas
diffusion

Fig. 5. Qualitative comparison betweenBMV-SICSplan and the best among the solvers forB.

ciency. E.g., for the Barrels domain, clasp andB-SICSplan solved the same instances
but the latter showed better performance. On the other hand,for the Trucks domain
clasp was faster and solved more instances.

The results obtained byBMV-SICSplan (Table 4) confirm that the introduction of
multi-valued fluents and constraints as first-class objectsof the action language, allows
us to develop more compact encodings—requiring a smaller number of fluents and ac-
tions. This translates in a faster constraint-solving phase and, consequently, in the ability
of BMV-SICSplan to solve more instances that the solvers forB. This is particularly ev-
ident for those domains where numerical fluents can be naturally introduced (c.f. also
the summary of the analysis reported in Figure 5).

7 Current Directions and Conclusion

In this paper, we summarized the current results from an experimental study aimed to
compare ASP and CLP(FD) in the encoding of action description languages. In particu-
lar, we emphasized some of the new features of the proposed encoding, such as the use
of the table constraint to speed-up computation of state transitions, and the impact
of the new answer set solvers (e.g., clasp) on the performance of ASP-based planners.
The investigation relied on a new set of benchmarks, drawn from different sources and
encoded using both Boolean and multi-valued action description languages.

The current directions of our investigation are pushing towards the development of
new action description languages that can better meet the needs of real-world planning
domains, while taking full advantage of the features of the underlying logic program-
ming inference engines (e.g., the features offered by modern constraint logic program-
ming systems). Some of the current directions being pursuedare described next.
• Multi-agency:we are investigating extensions ofB andBMV to support the de-

scription of multi-agent domains, where agents can interact in different ways (e.g.,
cooperatively, competitively). Several features have been already investigated, in-
cluding the creation of a core modeling framework and its encoding in CLP(FD) [7,

15

8], the modeling of cooperative features likenegotiation[24], and the use of rea-
soning about agents’ knowledge and beliefs [13]. While the majority of the current
approaches rely on acentralizedperspective in the description of multi-agent sys-
tems, we have also launched an investigation of how logic programming (specif-
ically CLP(FD) with blackboard-style mechanisms) can be used to provide a dis-
tributed implementation of a multi-agent action domain language [9].

• Heuristics:logic programming’s ability to implement search strategies has not been
properly employed to enhance efficiency of logic-based planning. CLP(FD)’s abil-
ity of dealing with search structures and with graphs is expected to provide very
effective ways of implementing both well-known search heuristics used by the plan-
ning community (e.g., graph plan [2]) as well as new heuristics made possible by
the declarative specification of planning domains providedby the action languages.
The interaction between planning heuristics and search strategies explored by the
constraint programming community is also an open area of investigation that we
intend to explore.

Acknowledgments.The research has been partially supported by grants GNCS-INdAM: Tec-
niche innovative per la programmazione con vincoli in applicazioni strategiche; MUR-PRIN:
Innovative and multidisciplinary approaches for constraint and preference reasoning; Ricerca di
base 2009–cod.2009.010.0336; NSF grants IIS-0812267, CBET-0754525, and HRD-0420407.

References

[1] C. Baral, T. Son, and L.-C. Tuan. A transition function based characterization of actions
with delayed and continuous effects. In D. Fensel, F. Giunchiglia, D. L. McGuinness, and
M.-A. Williams, editors,KR2002: Principles of Knowledge Representation and Reasoning,
pages 291–302. Morgan Kaufmann, 2002.

[2] A. Blum and M. Furst. Fast planning through planning graph analysis.Artificial Intelli-
gence, 90:281–300, 1997.

[3] A. Dovier, A. Formisano, and E. Pontelli. A comparison ofCLP(FD) and ASP solutions to
NP-complete problems. In M. Gabbrielli and G. Gupta, editors, ICLP’05: Proceedings of
the 21st International Conference on Logic Programming, volume 3668 ofLecture Notes
in Computer Science, pages 67–82. Springer, 2005.

[4] A. Dovier, A. Formisano, and E. Pontelli. An experimental comparison of constraint logic
programming and answer set programming. In A. Howe and R. Holt, editors,AAAI’07:
Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages 1622–1625.
AAAI Press, 2007.

[5] A. Dovier, A. Formisano, and E. Pontelli. Multivalued action languages with constraints
in CLP(FD). In V. Dahl and I. Niemelä, editors,ICLP’07: Proceedings of the 23rd Inter-
national Conference on Logic Programming, volume 4670 ofLecture Notes in Computer
Science, pages 255–270. Springer, 2007.

[6] A. Dovier, A. Formisano, and E. Pontelli. An empirical study of CLP and ASP solutions
of combinatorial problems.Journal of Experimental & Theoretical Artificial Intelligence,
21(2):79–121, 2009.

[7] A. Dovier, A. Formisano, and E. Pontelli. Representing multi-agent planning in CLP. In
E. Erdem, F. Lin, and T. Schaub, editors,LPNMR 2009, volume 5753 ofLecture Notes in
Computer Science, pages 423–429. Springer, 2009.

16

[8] A. Dovier, A. Formisano, and E. Pontelli. An investigation of Multi-Agent Planning in
CLP. Fundamenta Informaticae, 2010. To appear.

[9] A. Dovier, A. Formisano, and E. Pontelli. Autonomous agents coordination: Action de-
scription languages meet CLP(FD) and Linda. InProceedings of the 25th Italian Confer-
ence on Computational Logic, volume 598 ofWorkshop Proceedings. CEUR, 2010.

[10] A. Dovier, A. Formisano, and E. Pontelli. Multivalued action languages with constraints in
CLP(FD). Theory and Practice of Logic Programming, 10(2):167–235, 2010.

[11] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer
set solver. In C. Baral, G. Brewka, and J. S. Schlipf, editors, LPNMR’07: Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning,
volume 4483 ofLecture Notes in Computer Science, pages 260–265. Springer Verlag, 2007.

[12] M. Gebser, T. Schaub, and S. Thiele. GrinGo: A new grounder for answer set programming.
In C. Baral, G. Brewka, and J. S. Schlipf, editors,LPNMR’07: Proceedings of the 9th
International Conference on Logic Programming and Nonmonotonic Reasoning, volume
4483 ofLecture Notes in Computer Science, pages 266–271. Springer Verlag, 2007.

[13] G. Gelfond, C. Baral, E. Pontelli, and S. Tran. Logic programmin for finding models in
the logics of knowledge and its applications.Theory and Practice of Logic Programming,
10(4-6):675–690, 2010.

[14] M. Gelfond and V. Lifschitz. Representing actions in extended logic programming. In
Joint International Conference and Symposium on Logic Programming, pages 559–573.
The MIT Press, 1992.

[15] M. Gelfond and V. Lifschitz. Action languages.Electronic Transactions on Artificial
Intelligence, 2:193–210, 1998.

[16] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

[17] J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In G. Gottlob and
T. Walsh, editors,IJCAI-03, Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, August 9-15,2003, pages 1079–1084. Morgan
Kaufmann, 2003.

[18] H. Levesque, F. Pirri, and R. Reiter. GOLOG: a logic programming language for dynamic
domains.Journal of Logic Programming, 31(1–3):59–83, 1997.

[19] V. Lifschitz. Answer set planning. In D. de Schreye, editor, Proc. of the 16th Intl. Confer-
ence on Logic Programming, pages 23–37. MIT Press, 1999.

[20] V. W. Marek and M. Truszczyński. Stable logic programming - an alternative logic pro-
gramming paradigm. In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors,25
years of Logic Programming Paradigm, pages 375–398. Springer, 1999.

[21] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence, volume 4, pages
463–502. Edinburgh University Press, 1969.

[22] I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

[23] T. Son, C. Baral, and S. A. McIlraith. Planning with different forms of domain-dependent
control knowledge - an answer set programming approach. In T. Eiter, W. Faber, and
M. Truszczyński, editors,LPNMR’01: Proceedings of the 6th International Conference
on Logic Programming and Nonmonotonic Reasoning, volume 2173 ofLecture Notes in
Computer Science, pages 226–239. Springer, 2001.

[24] T. Son, E. Pontelli, and C. Sakama. Logic programming for multi-agent planning with
negotiation. In P. M. Hill and D. S. Warren, editors,ICLP’09: Proceedings of the 25st In-
ternational Conference on Logic Programming, volume 5649 ofLecture Notes in Computer
Science, pages 99–114. Springer, 2009.

17

[25] V. S. Subrahmanian and C. Zaniolo. Relating stable models and ai planning domains. In
L. Sterling, editor,ICLP’95: Proceedings of the Twelfth International Conference on Logic
Programming, pages 233–247. The MIT Press, 1995.

[26] M. Thielscher. Reasoning about actions with CHRs and finite domain constraints. In
P. J. Stuckey, editor,ICLP’02: Proceedings of the 18th International Conferenceon Logic
Programming, volume 2401 ofLecture Notes in Computer Science, pages 70–84. Springer,
2002.

[27] S. Tran and E. Pontelli. Planning with preferences using logic programming.Theory and
Practice of Logic Programming, 6(5):559–607, 2006.

[28] D. Warren. WARPLAN: A system for generating plans. Technical Report DCL Memo 76,
University of Edinburgh, 1974.

A Appendix: Experimental Results

Instance num.of
fluents

num.of
actions

plan
length

gringo+clasp B-SICSplan

barrels-5-7-12 27 6 11 0.20+0.81 0.03+0.60+0.69
barrels-7-9-16 35 6 15 0.40+8.47 0.05+1.75+2.98
barrels-9-11-20 43 6 19 0.71+67.54 0.06+3.03+8.58
barrels-11-13-24 51 6 23 1.17+183.32 0.55+0.55+21.05
barrels-15-17-32 67 6 31 2.51+1871.430.17+14.25+79.16
barrels-31-33-64 131 6 63 T M
barrels-63-65-128 259 6 127 T M
hanoi.16-50-6 42 33 34 T T
hanoi.16-54-6 42 33 38 T T
hanoi.16-56-6 42 33 40 T T
hanoi.20-50-7 52 42 30 T T
hanoi.20-55-7 52 42 35 T T
hanoi.21-53-6 42 33 32 T T
hanoi.27-7 52 42 27 T 0.67+3023.23
hanoi.30-7 52 42 30 T 0.68+522.35
hanoi.31-6 42 33 31 T 0.56+3062.04
hanoi.32-6 42 33 32 T 1.32+3224.68
hanoi.32-63-6 42 33 31 T 0.59+3421.79
hanoi.32-7 52 42 32 T T
hanoi.33-6 42 33 33 T T
hanoi.34-6 42 33 34 T T
hanoi.35-6 42 33 35 T T
hanoi.36-6 42 33 36 T T
hanoi.36-7 52 42 36 T T
hanoi.37-6 42 33 37 T T
hanoi.37-7 52 42 37 T T
hanoi.38-6 42 33 38 T T

Table 1.An excerpt of the experimental results for theB encodings (timing in seconds).

18

Instance num.of
fluents

num.of
actions

plan
length

gringo+clasp B-SICSplan

hyd.cg21 24 13 3 0.01+0.01 0.01+0.01
hyd.cg22 24 13 2 0.01+0.01 0.01+0.01
hyd.cg23 24 13 2 0.01+0.01 0.01+0.01
hyd.cg31 36 20 3 0.01+0.01 0.01+0.01
hyd.cg32 36 20 3 0.01+0.01 0.01+0.01
hyd.cg33 36 20 3 0.01+0.01 0.01+0.01
hyd.cg61 104 64 16 0.07+0.07 0.34+0.06
hyd.cg62 104 64 16 0.07+0.07 0.34+0.06
hyd.cg63 104 64 16 0.07+0.07 0.31+0.06
rev-fold-s-4-2 65 4 2 0.64+0.01 0.36+0.03
rev-fold-s-9-4 325 14 4 82.70+11.63 M
rev-fold-z-4-2 65 4 2 0.65+0.01 0.38+0.32
rev-fold-z-5-3 101 6 3 2.62+0.01 2.47+0.36
rev-fold-z-6-4 145 8 4 8.15+0.06 11.17+2.88
rev-fold-z-8-6 257 12 6 49.00+19.88 M
rev-fold-z-16-6 1025 28 6 T M
15-puzzle-1 256 16 35 0.70+3.25 T
15-puzzle-2 256 16 35 0.69+0.49 T
15-puzzle-3 256 16 35 0.70+4.64 T
15-puzzle-4 256 16 35 0.70+8.26 T
15-puzzle-5 256 16 35 0.96+2.37 T
15-puzzle-6 256 16 36 0.72+5.63 T
15-puzzle-7 256 16 36 0.70+7.54 T
15-puzzle-8 256 16 36 0.70+1.18 T
15-puzzle-9 256 16 36 0.70+10.24 T
15-puzzle-10 256 16 40 0.78+8.08 T
15-puzzle-11 256 16 40 0.79+3.22 T
15-puzzle-12 256 16 40 0.80+0.99 T
15-puzzle-13 256 16 40 0.80+3.67 T
15-puzzle-14 256 16 40 0.76+0.96 T
15-puzzle-15 256 16 40 0.77+4.95 T
tangram-1 135 578 7 1.10+0.07 20.49+0.52
tangram-2 135 661 7 1.38+0.26 24.31+339.42
tangram-3 135 744 7 1.56+1.55 29.08+273.72
trucks-p01 99 324 13 0.31+0.51 0.03+1.26+9.06
trucks-p02 128 420 17 0.49+14.82 0.03+2.37+635.67
trucks-p03 205 939 20 1.24+1066.85 T
trucks-p04 243 1116 23 T T
trucks-p05 347 2067 25 T T

Table 2.An excerpt of the experimental results for theB encodings (timing in seconds).

19

Instance num.of
fluents

num.of
actions

plan
length

gringo+claspB-SICSplan

peg-asy-24 33 76 24 0.11+0.12 1.02+0.02
peg-asy-25 33 76 25 0.12+2.33 1.02+0.02
peg-asy-26 33 76 26 0.13+0.13 0.94+0.02
peg-asy-27 33 76 27 0.13+1.87 0.95+0.03
peg-asy-28 33 76 28 0.13+64.91 0.92+0.03
peg-asy-29 33 76 29 T 0.81+3.37
peg-asy-30 33 76 30 T 0.83+4.64
peg-asy-31 33 76 31 T T
peg-asy-32 33 76 32 T T
peg-center-24 33 76 24 0.11+0.02 0.96+0.02
peg-center-25 33 76 25 0.11+0.03 0.97+0.02
peg-center-26 33 76 26 0.12+3.57 0.98+0.02
peg-center-27 33 76 27 0.13+3.62 0.99+0.02
peg-center-28 33 76 28 0.14+288.39 0.91+0.13
peg-center-29 33 76 29 0.14+81.79 0.85+1.83
peg-center-30 33 76 30 T T
peg-center-31 33 76 31 T 0.79+23.82
peg-center-32 33 76 32 T T
peg-edge-24 33 76 24 0.11+0.11 1.02+0.02
peg-edge-25 33 76 25 0.12+0.12 1.01+0.03
peg-edge-26 33 76 26 0.13+0.21 1.09+0.03
peg-edge-27 33 76 27 0.13+7,93 0.95+0.03
peg-edge-28 33 76 28 0.13+181.88 0.98+0.95
peg-edge-29 33 76 29 0.14+20.88 0.86+108.87
peg-edge-30 33 76 30 T T
peg-edge-31 33 76 31 T 0.76+382.82
peg-edge-32 33 76 32 T T
gas-i1a 3433 24 9 M T
gas-i1b 3433 24 9 M T
gas-i1c 3433 24 9 M T
gas-i2a 3433 24 13 M T
gas-i2b 3433 24 13 M T
gas-i2c 3433 24 13 M T
gas-i3a 3433 24 15 M T
gas-i3b 3433 24 15 M T
gas-i3c 3433 24 15 M T
gas-i4a 3433 24 9 M T
gas-i4b 3433 24 9 M T
gas-i4c 3433 24 9 M T
gas-i5e 1123 24 11 45.18+257.38 T
gas-i5f 1123 24 11 T M
gas-i5g 1123 24 11 M T
gas-i5h 1123 24 11 M T

Table 3.An excerpt of the experimental results for theB encodings (timing in seconds).

20

Instance num.of
fluents

num.of
actions

plan
length

B
MV-SICSplan

rev-fold-s-4-2 9 4 2 0.07+0.01
rev-fold-s-9-4 19 14 4 3.11+0.02
rev-fold-z-4-2 9 4 2 0.06+0.01
rev-fold-z-5-3 11 6 3 0.22+0.01
rev-fold-z-6-4 13 8 4 0.55+0.04
rev-fold-z-8-6 17 12 6 2.33+12.67
rev-fold-z-16-6 33 28 6 48.37+24.94
barrels-5-7-12 3 6 11 0.05+0.05
barrels-7-9-16 3 6 15 0.06+0.10
barrels-9-11-20 3 6 19 0.08+0.18
barrels-11-13-24 3 6 23 0.12+0.27
barrels-15-17-32 3 6 31 0.14+0.59
barrels-31-33-64 3 6 63 0.45+3.19
barrels-63-65-128 3 6 127 0.69+18.99
gas-i1a 23 24 9 0.14+166.21
gas-i1b 23 24 9 0.13+127.99
gas-i1c 23 24 9 0.13+273.04
gas-i2a 23 24 13 T
gas-i2b 23 24 13 0.16+679.95
gas-i2c 23 24 13 0.17+1654.44
gas-i3a 23 24 15 T
gas-i3b 23 24 15 0.25+0.94
gas-i3c 23 24 15 0.24+1.47
gas-i4a 23 24 9 0.15+163.43
gas-i4b 23 24 9 0.15+128.08
gas-i4c 23 24 9 0.14+270.96
gas-i5e 23 24 11 0.15+282.44
gas-i5f 23 24 11 0.15+17.92
gas-i5g 23 24 11 0.18+282.51
gas-i5h 23 24 11 0.14+284.53
MV-hyd-5 21 28 5 0.30+0.01
MV-hyd-9 20 40 9 0.97+2.89
MV-hyd-12 21 41 12 1.46+102.02
MV-hyd-14 30 45 14 2.91+7.24

Table 4.An excerpt of the experimental results for theB
MV-encodings (timing in seconds).

21

